
Lemma 1 (Riesz Lemma). Fix 0 < θ < 1. If M ( X is a proper closed subspace of a
Banach space X then one can find x ∈ X with ‖x‖ = 1 and dist(x,M) ≥ θ.

Proof. By the hyperplane separation theorem, there is a unit element ` ∈ X∗ that vanishes
on M . Now choose x so that `(x) ≥ θ. As ` is 1-Lipschitz, |`(x)| ≤ dist(x,M). �

By employing this lemma inductively, we obtain the following, which better reflects how
we will use the lemma.

Corollary 2 (Riesz Lemma). Given a strictly nested sequence of closed subspaces

{0} ( N1 ( N2 ( N3 ( N4 ( · · ·

of a Banach space X, one can find a sequence of vectors xn ∈ Nn with ‖xn‖ = 1 and
dist(xn, Nn−1) ≥ 1

2 . Similarly, for a sequence of closed subspaces nested in the opposite

direction, R1 ) R2 ) · · · , there are unit vectors xn ∈ Rn with dist(xn, Rn+1) > 1
2 .

Proposition 3. Suppose T : X → X is compact and λ 6= 0.
(a) For each integer m ≥ 1, ker(λ−T )m is finite dimensional. Moreover, there is an integer

k so that ker(λ− T )m ⊆ ker(λ− T )k for every integer m ≥ 1.
(b) The range of (λ− T )m is closed for each integer m ≥ 1.
(c) λ− T is surjective ⇐⇒ it is injective.

Remarks. 1. When ker(λ − T ) is nontrivial, then λ is an eigenvalue of T . In this case,
dim ker(λ − T ) is called the geometric mulitplicity of the eigenvalue, while dim ker(λ − T )k

(with k as in (a)) is called the algebraic multiplicity.
2. As ker(λ−T )m ⊆ ker(λ−T )k+1, so dim ker(λ−T )m+1 ≤ dim ker(λ−T )m+1. However,

the rate at which the dimension increases is decreasing:

dim ker(λ− T )m+2 − dim ker(λ− T )m+1 ≤ dim ker(λ− T )m+1 − dim ker(λ− T )m (1)

To see this, argue that λ− T defines an injective map from ker(λ− T )m+2/ ker(λ− T )m+1

to ker(λ− T )m+1/ ker(λ− T )m.

Proof. By rescaling T 7→ λ−1T , it suffices to consider the case λ = 1.
If the kernel of 1 − T were infinite dimensional, then by the Riesz Lemma we can find

a 1
2 -separated sequence of unit vectors therein. But T is compact, so xn = Txn lie in a

compact set, which contradicts their separation.
As T is compact, so is

1− (1− T )m =
(
m
1

)
T −

(
m
2

)
T 2 ± · · · ± Tm. (2)

Thus the reasoning just given shows that the kernel of (1− T )m is also finite dimensional.
If the nested sequence of subspaces Nm := ker(λ − T )m did not stabilize then by (1) we

see that each is properly contained in its successor. Thus we may apply the Riesz lemma to
produce a sequence xm ∈ Nm with dist(xm, Nm−1) ≥ 1

2 . But then for n > m,

Txn − Txm = xn − (1− T )xn − xm + (1− T )xm ∈ xn +Nn−1.

Thus ‖Txn − Txm‖ ≥ dist(xn, Nn−1) ≥ 1
2 which implies the image of the unit ball under T

contains a 1
2 -separated sequence. This contradicts the compactness of T .

We now turn to part (b). By the trick (2), it suffices to treat the case m = 1. This
requires us to show that if yn = (1 − T )xn and yn → y then there exists x ∈ X so that
y = (1− T )x. For brevity, we continue to use the notation N1 := ker(1− T ).
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First we claim that dn := dist(xn, N1) is bounded. We prove this by contradiction and
so assume (perhaps after passing to a subsequence) that dn → ∞. Choose zn ∈ N1 so that
‖xn − zn‖ < 2dn and observe that

(1− T )d−1n (xn − zn) = d−1n yn → 0. (3)

As T is compact, any subsequence of d−1n (xn− zn) has a subsequence so that d−1n T (xn− zn)
converges. In view of (3) above, d−1n (xn − zn) also converges to some w ∈ X along the
subsequence; indeed we see that w ∈ N1. But this leads us to a contradiction:

1 = d−1n dist(xn, N1) ≤ d−1n ‖xn − (zn − w)‖ = ‖d−1n (xn − zn)− w‖ → 0 as n→∞.

Having proved our claim, we know that we may choose zn ∈ N1 so that xn − zn is
bounded. From this and the compactness of T , we deduce that T (xn− zn) has a convergent
subsequence. Moreover, along this subsequence, (1− T )(xn − zn) = yn → y and so not only
does xn − zn have a limit, say x ∈ X, but this limit obeys (1− T )x = y. This completes the
proof of (b).

Consider now the ⇒ direction of part (c). Suppose (1− T ) is not injective; then there is
a non-zero x1 ∈ ker(1 − T ). But if (1 − T ) were surjective then there would be an x2 ∈ X
so that (1 − T )x2 = x1. Proceeding inductively we find a sequence of linearly independent
vectors xn so that (1− T )nxn = 0. This contradicts part (a) of the current Theorem.

To prove the other implication of part (c) we suppose (1−T ) is injective, but not surjective.
Then Rm := (1− T )mX form a properly nested sequence of closed (cf. part (b)) subspaces.
Choosing xn ∈ Rn as in Corollary 2 we find that for n < m,

Txn − Txn = xn − (1− T )xn − xm + (1− T )xm ∈ xn +Rn+1

and so ‖Txn − Txm‖ ≥ dist(xn, Rn+1) ≥ 1
2 . This contradicts the compactness of T . �

Theorem 4. Suppose T : X → X is compact, then
(a) Every 0 6= λ ∈ σ(T ) is an eigenvalue with finite geometric and algebraic multiplicities.
(b) If X is infinite dimensional, 0 ∈ σ(T ).
(c) σ(T ) is countable and may only accumulate at 0.

Proof. (a) If 0 6= λ ∈ C is not an eigenvalue then (λ− T ) is injective. By Proposition 3(c) it
must also be surjective. The open mapping theorem then implies that (λ−T ) is continuously
invertible, which shows that λ 6∈ σ(T ).

(b) Let B denote the closed unit ball in X. If 0 6∈ σ(T ) then T is (continuously) invertible
and so writing B = T−1TB we see that B lies in the continuous image of a compact set,
namely, TB. This implies that the unit ball is (norm-)compact, which is only true when X
is finite dimensional (cf. the Riesz lemma).

(c) As σ(T ) is compact, it suffices to show that there are no non-zero accumulation points.
Suppose to the contrary that there is a sequence λn ∈ σ(T ) with |λn| > δ > 0 for all n.
Then we apply Corollary 2 to the combined eigen-spaces

Nn := ker(λn − T ) + · · ·+ ker(λ1 − T )

to find xn ∈ Nn with dist(xn, Nn−1) > 1
2 . Noting that (λn − T ) : Nn → Nn−1 we find

Txn − Txm = λnxn − (λn − T )xn − λmxm ∈ λnxn +Nn−1

for any n > m. Thus ‖Txn − Txm‖ ≥ |λn|dist(xn, Nn−1) ≥ δ
2 , which contradicts the

compactness of T . �
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Theorem 5. (Fredholm Alternative I) If T : X → X is compact then

(1− T )X = ker(1− T ′)> := {x ∈ X : `(x) = 0 for all ` ∈ ker(1− T ′)}
Equivalently, given y ∈ X there exists x ∈ X with (1 − T )x = y if and only if for every
` ∈ X∗, (1− T ′)` = 0 implies `(y) = 0.

Remark. We use the upside-down ⊥ symbol to distinguish from the annihilating set in X∗∗.

Proof. The key point is that the range of (1− T ) is closed. Recalling a few definitions,

` ∈ ker(1− T ′) ⇐⇒ ` ◦ (1− T ) = 0 (as an element of X∗)

⇐⇒ (1− T )X ⊆ ker `.

That is, ker(1 − T ′) = [(1 − T )X]⊥. Next we recall that by the hyperplane separation
theorem, the closure of a vector subspace M ⊆ X can be computed as

M̄ = (M⊥)> = {x ∈ X : `(x) = 0 whenever M ⊆ ker `}.
By Proposition 3(b), we know that (1− T )X is closed. �

By combining this theorem with Proposition 3(c) we obtain the following variant:

Corollary 6. (Fredholm Alternative II) If T : X → X is compact then

1− T is invertible ⇐⇒ 1− T ′ is invertible

and in particular, σ(T ) = σ(T ′).

To see the ‘alternative’ in the Fredholm Alternative, we note the following:

Corollary 7. (Fredholm Alternative III) If T : X → X is compact and then either
(a) x− Tx = y has a solution for all y ∈ X; or
(b) `− T ′` = 0 has a non-zero solution ` ∈ X∗;
but never both.


