
246A Homework 3 Due Mar 13.

1. Let us define the Hardy space H1(D) as those holomorphic functions f : D → C
for which ∥∥f∥∥

H1(D) := sup
0<r<1

∫ 2π

0

|f(reiθ)| dθ
2π
<∞.

(a) Show that |f(z)| is subharmonic whenever f : D → C is holomorphic. Deduce
that

r 7→
∫ 2π

0

|f(reiθ)| dθ
2π

is increasing on [0, 1). (b) Show that if f ∈ H1(D) and f 6≡ 0 then∑
1− |zj| <∞

where zj enumerates the zeros of f , repeated according to multiplicity.
(b) Let B be the Blaschke product formed from the zeros of 0 6≡ f ∈ H1(D). Show
that ∥∥∥ f(z)

B(z)

∥∥∥
H1(D)

=
∥∥∥f(z)

∥∥∥
H1(D)

.

[Hint: Show it is true with B replaced by a partial product.]

2. (a) By changing variables to s = uv and t = u(1− v) in

Γ(x)Γ(y) =

∫ ∞
0

∫ ∞
0

tx−1sy−1e−s−t ds dt

deduce Euler’s Beta Integral: For x, y > 0,

B(x, y) :=

∫ 1

0

vx−1(1− v)y−1 dv =
Γ(x)Γ(y)

Γ(x+ y)

(b) Use basic properties of Γ to show

1 = xB(x, 1) = xe−x log(n)
n∏
k=1

(
1 +

x

k

)∫ n

0

ux−1
(
1− u

n

)n
du

and so derive the Schlömilch formula:

1

Γ(z)
= zeγz

∞∏
k=1

(
1 +

z

k

)
e−z/k

for all z ∈ C.
(c) Prove Euler’s Reflection Formula:

Γ(z)Γ(1− z) =
π

sin(πz)

as meromorphic functions on C.

3. Let Ω be a simply-connected open domain bounded by a Jordan curve. As we
know, any conformal map f of D onto Ω can be extended to a homeomorphism of D̄
onto Ω̄.
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Recall that a curve γ : ∂D → C is rectifiable if there exists a constant L so that
for any 0 ≤ θ0 < θ1 < · · · < θn ≤ 2π,

n∑
k=0

|γ(eiθk)− γ(eiθk+1)| ≤ L

where θn+1 = θ0. The minimal such constant L is called the length of γ.
Prove the following theorem of F. and M. Riesz: f ′ ∈ H1 if and only if ∂Ω is

rectifiable. [Hint : the function z 7→
∑
|f(zeiθk) − f(zeiθk+1)| is continuous and sub-

harmonic on D.]

4. Suppose

f(z) =
∞∑
n=0

anz
n

extends meromorphically to the whole complex plane.
(a) Show that if

(∗) rnan
nk
→ c 6= 0 as n→∞

for some integer k ≥ 0 and some r > 0, then f(z) has a pole of order k + 1 at z = r.
(b) Now suppose f(z) has a pole of order k + 1 at z = r but no other singularities in
the closed disk |z| ≤ r. Show that (∗) holds.

Remark: Part (a) is an example showing how the asymptotic behaviour of coefficients
is passed to the corresponding power series. This type of result is known as an
Abelian Theorem. Part (b) goes the other way: understanding the behaviour of the
power series tells us about the asymptotics of the coefficients. Such theorems are
known as Tauberian Theorems; they are of a more subtle nature (and have stronger
hypotheses) since the power series clearly captures strongly averaged information
about the coefficients. The Abelian/Tauberian names were introduced by Hardy and
Littlewood.

5. In this problem p is always restricted to lie among the (positive) prime numbers.
Let us define functions π and θ of x ∈ [0,∞) by

π(x) = #{p : p ≤ x} and θ(x) =
∑
p≤x

log(p).

(a) Show (following Chebyshev) that θ(x) ≤ 4 log(2)x by using the divisibility prop-
erties of

(
2n
n

)
≤ 22n to estimate the product of primes in (n, 2n].

(b) Show that as x→∞,

θ(x)

x
→ 1 ⇐⇒ π(x) log(x)

x
→ 1.

(c) Show that for s > 1 ∫ ∞
1

θ(x)
dx

xs+1
= − ζ

′(s)

sζ(s)
− F (s)

s
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where F (s) is holomorphic in the half-plane Re s > 1
2
. Sending s ↓ 1, use this to show

that if θ(x)/x converges as x→∞, then the limit must be 1.

Remark: Everything you need to know about ζ(s) was in HW2 last quarter. Note that
to prove the Prime Number Theorem, we are faced with a Tauberian type problem —
we know that θ(x)/x→ 1 in some averaged sense, but we need to show convergence
in the usual sense.


