- 1. Let $f: \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ be a non-constant doubly periodic function with periods 1 and τ as in HW3. (Recall $\tau \in \mathbb{C}$ has $\operatorname{Im} \tau > 0$.)
- (a) Show that the sum of the residues in any fundamental parallelogram (i.e., with vertices $\{z, z+1, z+1+\tau, z+\tau\}$) whose sides miss the poles of f is equal to zero.
- (b) Show that f(z) = w and $f(z) = \infty$ have an equal number of solutions in each fundamental parallelogram (for any $w \in \mathbb{C}$ and counting with multiplicity). From HW3 we know that this number is non-zero.
- (c) Show that

$$\wp(z) := \frac{1}{z^2} + \sum_{n \in \mathbb{Z}^2 \setminus \{0\}} \frac{1}{(z - n_1 - n_2 \tau)^2} - \frac{1}{(n_1 - n_2 \tau)^2}$$

defines a meromorphic function and that

$$\wp'(z) := -2\sum_{n \in \mathbb{Z}^2} \frac{1}{(z - n_1 - n_2 \tau)^3}.$$

Once you prove convergence, it is clear that $\wp'(z)$ is doubly periodic.

- (d) Use the fact that \wp is even (i.e. $\wp(z) = \wp(-z)$) to deduce that \wp is doubly periodic.
- 2. (a) Let A be a $n \times n$ matrix and let $f(z) := \det(z \operatorname{Id} A)$. Show

$$\frac{f'(z)}{f(z)} = \operatorname{Tr}\{(z\operatorname{Id} - A)^{-1}\}.$$

- (b) Apply Rouché's Theorem to f to show that the eigenvalues of A (repeated according to algebraic multiplicity) depend continuously on the entries of A. Here, we say that the distance between two multi-sets is the sum of the distances under the shortest matching.
- (c) Now suppose A(t) depends holomorphically on a parameter $t \in \mathbb{D}$ and that λ_0 is a simple (i.e. multiplicity one) eigenvalue of A(0). Show that there is a holomorphic function $t \mapsto \lambda(t)$ defined in an open neighbourhood of 0 so that $\lambda(0) = 0$ and $\lambda(t)$ is an eigenvalue of A(t).

Remark: The matrix function $t \mapsto \begin{bmatrix} 0 & 1 \\ t & 0 \end{bmatrix}$ shows that the eigenvalues may only be Hölder continuous as functions of the entries in A. In the $n \times n$ case, they may be merely Hölder $\frac{1}{n}$ continuous.

- 3. Suppose $f: \mathbb{C} \to \mathbb{C}$ is bijective and holomorphic.
- (a) Show that f^{-1} is holomorphic.
- (b) Use the continuity of f^{-1} to show that $|f(z)| \to \infty$ as $|z| \to \infty$.
- (c) Show that f(z) = O(|z|) as $z \to \infty$. [Hint: Look at g(z) = 1/f(1/z).]
- (d) Deduce that f(z) = az + b for some $a \in \mathbb{C} \setminus \{0\}$ and $b \in \mathbb{C}$.
- 4. Show that every meromorphic bijection f from $\mathbb{C} \cup \{\infty\}$ to itself is of the form

$$f(z) = \frac{az+b}{cz+d}$$

for some quadruplet $a, b, c, d \in \mathbb{C}$ obeying ad - bc = 1.

- 5. (a) Use Möbius transformations to determine the analogue of the Schwarz Reflection Principle for holomorphic functions f defined in an open neighbourhood of an arc of the circle $\{|z|=1\}$ that obey $|f(e^{i\theta})|=1$.
- (b) Use Möbius transformations to determine the analogue of Schwarz Lemma for mappings f of the half-plane $\{\text{Re } z > 0\}$ to itself that obey f(1) = 1.
- (c) Use Möbius transformations and Schwarz Lemma to prove the Borel–Carathéodory Theorem: Let f be holomorphic in an open neighbourhood of the closed unit disk, $\bar{\mathbb{D}}$. For each $z \in \mathbb{D}$,

$$|f(z)| \le \frac{1+|z|}{1-|z|}|f(0)| + \frac{2|z|}{1-|z|} \sup_{w \in \mathbb{D}} \operatorname{Re} f(w).$$