
246A Homework 7 Due Dec. 6

1. Give a direct proof of Montel’s Theorem (families uniformly bounded on compacta
are normal) from the Cauchy Integral and Arzelà–Ascoli Theorems. (The in-class
proof is via the analogue for harmonic functions.)

2. Suppose Ω ⊂ C is open and connected.
(a) Let fn : Ω→ C be univalent (=holomorphic and injective) and converge uniformly
on compact sets to some (holomorphic) f : Ω → C. Show that f is univalent or
constant.
(b) Suppose further that Ω has compact closure and z0 ∈ Ω. Show that among all
univalent maps f : Ω → D that obey f(z0) = 0, there is (at least) one that achieves
the maximal value of Re f ′(z0). [Note: you will need to verify that the set of maps is
non-empty and that Re f ′(z0) is bounded.]
(c) Explain why any such maximal f has f ′(z0) > 0.

3. Suppose that Ω ⊂ C is open, simply connected and has compact closure. Let
f : Ω→ D be one of the univalent maps found in Problem 2 above. To obtain a proof
of the Riemann Mapping Theorem, we need only show that f is onto. Suppose not
and let w0 ∈ D be a point not in the range of f .
(a) Show that there is a univalent function r : Ω→ D so that

r(z)2 = M1 ◦ f(z)

where M1 is a disk automorphism taking w0 to 0.
(b) Choose a disk automorphism M2 so that

g(z) = M2 ◦ r(z)

obeys g(z0) = 0 and g′(z0) ≥ 0.
(c) Rearrange the above to find φ : D→ D so that f(z) = φ ◦ g(z).

4. Continuing from the preceding problem:
(a) Use Schwarz Lemma to see that |φ′(0)| < 1.
(b) Now get your hands dirty and actually compute φ′(0).
(c) Conclude that any maximizing f from Problem 2 must be onto.
(d) Show that f is actually unique.

This completes the proof of the Riemann Mapping Theorem, at least if Ω has compact
closure in C. (In class, we will see how to treat more general Ω by reducing them to
this case.) This extremal argument is due to Koebe. The alternate argument given in
class is closer to Riemann’s original vision, relying on the solvability of the Dirichlet
problem.

5. (a) Suppose u : Rd → R is continuous and u(−x1, x2, . . . , xd) = −u(x1, x2, . . . , xd).
Show that if u is harmonic where x1 > 0, then it is harmonic throughout Rd.
(b) Fix d ≥ 2 and let φ : Rd−1 → R be bounded and continuous. Show that there
is a unique bounded continuous function u : [0,∞)× Rd−1 → R that is harmonic on
(0,∞)× Rd−1 and obeys u(0, y) = φ(y) for all y ∈ Rd−1.
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(c) Give an example of an unbounded harmonic u : Rd → R that vanishes on {x :
x1 = 0}, thus showing that boundedness is necessary for uniqueness in part (b).

6. Use the Poisson integral formula to prove the following version of Harnack’s in-
equality for the unit ball B(0, 1) ⊆ Rd (and d ≥ 2): If u : B(0, 1) → [0,∞) is
harmonic, then

1− |x|
(1 + |x|)d−1

u(0) ≤ u(x) ≤ 1 + |x|
(1− |x|)d−1

u(0)

for each |x| < 1. Moreover, equality can occur, so these estimates are best possible.

7. (a) Given a, b ∈ R and 0 < r < R <∞ find the solution to the Dirichlet problem
in the region Ω := {x ∈ R2 : r < |x| < R} with boundary values u(x) = a when
|x| = r and u(x) = b when |x| = R.
(b) Show that if u : R2 → R is subharmonic and bounded from above then it is
constant. (This is false for Rd when d ≥ 3 as u(x) = max{−1,−|x|2−d} shows.)

8. Show that if u : Rd → R is harmonic (with d ≥ 3) and bounded from above then
it is constant.


