- 1. Let $\Omega \subseteq \mathbb{C}$ be open, connected, and simply connected. Let $f: \Omega \to \mathbb{C} \setminus \{0\}$ be holomorphic. Show the following:
- (a) There is a holomorphic function $g:\Omega\to\mathbb{C}$ so that $f(z)=e^{g(z)}$; moreover if $\tilde{g}:\Omega\to\mathbb{C}$ is holomorphic and $f(z)=e^{\tilde{g}(z)}$, then $g(z)-\tilde{g}(z)$ is constant and equal to some element of $2\pi i\mathbb{Z}$.
- (b) There is a holomorphic function $h: \Omega \to \mathbb{C}$ so that $f(z) = [h(z)]^2$. Except $\tilde{h}(z) = -h(z)$ there are no other holomorphic functions with this property.
- 2. Fix $0 < r < R < \infty$ and let $A := \{z \in \mathbb{C} : r \le |z| \le R\}$. Suppose $f : A \to \mathbb{C}$ is continuous and is holomorphic on the interior of A, which we denote A° .
- (a) Express f(z) for each $z \in A^{\circ}$ as a Cauchy-like integral over the two circles |z| = r and |z| = R.
- (b) Deduce that there is a holomorphic function g on $\{z : |z| > r\}$ and another holomorphic function h on $\{z : |z| < R\}$ so that f(z) = g(z) + h(z) for all $z \in A^{\circ}$.
- (c) Conclude that there are coefficients c_n , $n \in \mathbb{Z}$, so that

$$f(z) = \sum_{-\infty}^{\infty} c_n z^n$$

as a uniformly convergent sum on all compact subsets of A° .

Remark: The series above is called a Laurent series for f. Suppose now that f is holomorphic in the 'annulus' $\{z \in \mathbb{C} : 0 < |z| < R'\}$. Choosing some 0 < r < R < R' we can apply the analysis above to get a Laurent series representation. Close inspection of your argument should reveal that the coefficients c_n do not depend on the particular choice of r or R. Thus, we have a Laurent expansion valid in throughout $\{z \in \mathbb{C} : 0 < |z| < R'\}$.

- 3. Let $E \subseteq [0,1] \subseteq \mathbb{R} \subseteq \mathbb{C}$ denote the usual Cantor ternary set and let $B = \{z \in \mathbb{C} : |z| < 2\}$. Suppose $f : B \setminus E \to \mathbb{C}$ is bounded and holomorphic. Show that f admits a holomorphic extension to all of B. [Hint: E can be surrounded by a finite collection of contours with arbitrarily small total length.]
- 4. (a) Evaluate

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 1} \, dx$$

by writing $2i\sqrt{x} = \lim_{\varepsilon \to 0} \exp\{\frac{1}{2}\text{Log}(-x + i\varepsilon)\} - \exp\{\frac{1}{2}\text{Log}(-x - i\varepsilon)\}.$

(b) Evaluate

$$\int_0^{2\pi} [\sin \theta]^{2k} \, d\theta$$

for all integers $k \geq 1$. [Hint: What is $(z - z^{-1})$ when $z = e^{i\theta}$.]

5. In class, we saw that

$$\zeta(s) = \frac{1}{2i\cos(\pi s/2)} \int_{\gamma} \frac{z^{-s} dz}{e^{-2\pi z} - 1}.$$

where $\gamma : \mathbb{R} \to \mathbb{C}$ by $\gamma(t) = \frac{1}{2} - |t| + it$. Initially this was for $\operatorname{Re} s > 1$ and $s \notin 2\mathbb{Z} + 1$ for other values of s the integral can be regarded as the definition of $\zeta(s)$ (as a meromorphic function). For this problem, we consider only $s \in \mathbb{C}$ with $\operatorname{Re} s < 0$.

(a) By collapsing the contour onto $(-\infty, 0]$ evaluate

$$\int_{\gamma} e^{2\pi nz} z^{-s} \, dz$$

for each integer $n \geq 1$. (Note that the answer involves the Γ function.)

(b) Similarly show that

$$\int_{\gamma} \frac{e^{2\pi Nz}}{e^{-2\pi z} - 1} z^{-s} \, dz$$

converges to 0 as $N \to \infty$.

(c) By writing

$$\frac{1}{e^{-2\pi z} - 1} = \frac{e^{2\pi Nz}}{e^{-2\pi z} - 1} + \sum_{n=1}^{N} e^{2\pi nz}$$

deduce that ζ obeys the functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$$

and so conclude (using results from class and previous homework) that s=1 is the only (non-removable) singularity of ζ .