(1) (a) Consider a Poisson process of intensity λ indexed over the whole real line. What is the law and mean of total time elapsed Z between the arrival immediately prior to t = 0 and that immediately after. Compare E(Z) with the mean waiting time for the process.
(b) I find myself changing lightbulbs (in some specific location) according to a Poisson process with intensity λ bulbs/day. Show that the expected total lifespan

Poisson process with intensity λ bulbs/day. Show that the expected total lifespan of a typical bulb is less than that of the particular the bulb that is in place now. It seems that using a bulb makes it last longer — an emotive form of the Feller paradox — though once again we are merely experiencing sampling bias.

- (2) Let N: [0,∞) → Z be (the counting function associated to) a Poisson process of intensity λ and fix α ∈ (0,∞). Show that t → N(αt) is a Poisson process and determine its intensity.
 Hint: Remember that a Poisson process is the unique process with its marginal
- distributions. (3) Fix 0 < a < b < 1 and let $K \sim \text{Poisson}(\lambda)$. Given K, we lay down this many points independently and uniformly at random in the interval [0, 1]. Show that the numbers of points that end up in each of the three intervals [0, a], (a, b], and
 - (b, 1] are statistically independent and find their laws.
- (4) Let N: [0,∞) → Z be a Poisson process of intensity λ.
 (a) Show that N(n)/n converges almost surely (= with probability one) as n → ∞ and determine the value of this limit. Here n ∈ Z.
 (b) Show that N(t)/t converges almost surely as t → ∞; here t ∈ ℝ. Hint: Look at what happens when one replaces t by its adjacent integers n and n + 1.
- (5) Fix an integer $n \ge 1$. (a) Show that the joint law of the arrival times Y_1, Y_2, \ldots, Y_n for a Poisson (λ) process has pdf

$$f(y_1, \dots, y_n) = \begin{cases} \lambda^n e^{-\lambda y_n} &: 0 < y_1 < y_2 < \dots < y_n \\ 0 &: \text{ otherwise.} \end{cases}$$

Hint: Exploit the relation to the waiting times T_1, T_2, \ldots, T_n to compare MGFs. (b) Find the joint law of Y_1, Y_2, \ldots, Y_n conditioned on $Y_{n+1} = 1$.

- (6) Let $N : [0, \infty) \to \mathbb{Z}$ and $M : [0, \infty) \to \mathbb{Z}$ be independent Poisson processes of intensity $\frac{1}{2}$ and consider the process S(t) = N(t) M(t).
 - (a) What is the law of the waiting time to the first jump (up or down)?
 - (b) Compute the joint MGF of the random variables $S(t_1)$ and $S(t_2) S(t_1)$ for general $0 < t_1 < t_2 < \infty$.

(c) Given general $0 < t_1 < t_2 < \infty$, show that the joint MGF of the random variables

$$\frac{1}{\sqrt{n}}S(nt_1)$$
 and $\frac{1}{\sqrt{n}}[S(nt_2)-S(nt_1)]$

converges as $n \to \infty$ and identify the associated limiting law.

Remark: With a little more work in this direction, one can show that the processes $t \mapsto \frac{1}{\sqrt{n}}S(nt)$ converge, as $n \to \infty$, to a Brownian motion.