- (1) Consider the following processes: There are $N_0 = 1$ many individuals in the zeroth generation. The number of individuals N_k in the kth generation comes from each individual in the (k-1)th generation having $Poisson(\lambda)$ many offspring independent of all others.
 - (a) Find a formula for $\mathbb{E}(N_k)$.
 - (b) Suppose $\lambda < 1$. Show that $\mathbb{P}(N_k = 0)$ converges to unity as $k \to \infty$.
- (2) Consider the processes from the previous problem modified so that the number of offspring which each individual has is Bernoulli(p) distributed.
 - (a) Use moment generating functions to determine the law of N_k for each k.
 - (b) Use the above to determine $\mathbb{P}(N_k = 0)$.
 - (c) Give a simpler direct determination of $\mathbb{P}(N_k = 0)$.
- (3) Let X be a random variable for which $M_X(s)$ is finite for all $s \in \mathbb{R}$.
 - (a) Show that $\ln M_X(s)$ is a convex function of s.
 - (b) Deduce that $\ln M_x(s) \geq s\mathbb{E}(X)$.
- (4) Fix $p \in (0,1)$, let $b \ge p$, and let $X \sim \text{Binomial}(n,p)$. In class, we showed that $\mathbb{P}(X \ge an) \le e^{-nH}$ with $H = a \log\left(\frac{a}{p}\right) + (1-a)\log\left(\frac{1-a}{1-p}\right)$

by following the Cramér/Chernoff method; see also Problem 5.2.

- (a) Find an analogous bound for $\mathbb{P}(X \leq an)$ for a < p. [Mimic the above but with $s \leq 0$.]
- (b) A candidate claims 75% support for their policy. If this is true, give an upper bound on the probability that a sample of ten thousand people shows less than 50% support.