Proposition. Suppose X| ~ N(u1,03) and Xy ~ N(uz,02) are independent, then
X1+ Xy~ Ny +u2,0% + U%).
Proof. Let us write Z = X; + X5. Then, as shown previously,
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To proceed, we must complete the square in the exponent. In general we have
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In our particular case,
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As we will see, there is no advantage to simplifying the formula for yy; however we
do need to simplify the last two terms. After some effort, we find

(z—y—m)  (Y—mw)?® of+o3 o, (2= —pp)?
2 + 2 =——= 5 (Y—v) + 2 2
0y ) 0105 o1 + 03
Consequently,
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Now, recalling the general result
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which was shown in class, we deduce that
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This then shows that Z ~ N(uy + g, 03 + 03). O



