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Abstract

In this thesis, we construct a new anticyclotomic Euler system (in the sense of Jetchev-

Nekovář-Skinner (JNS)) for the Galois representation attached to a newform f of

weight 2k twisted by an anticyclotomic Hecke character χ of infinity type (l,−l),

denoted by Vf (χ), when the Heegner Hypothesis is not satisfied. The main ingredients

for our construction are the Bertolini-Seveso-Venerucci (BSV) diagonal classes and

the Lei-Loeffler-Zerbes norm maps. We then show some arithmetic applications of

the constructed Euler system, including the rank 0 Bloch-Kato Conjecture for Vf (χ)

when k ≥ l + 1, using the explicit reciprocity law of BSV and the machinery of JNS.
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Chapter 1

Introduction

1.1 Motivation

Classical Iwasawa theory relates special values of the Riemann zeta function ζ(n) to

the ideal class groups of cyclotomic fields by an equality of the ideal generated by

the Kubota-Leopoldt p-adic L-function and the characteristic ideal of the ideal class

groups. Since then, its theory and philosophy have been generalized to connect the

two sides
Analytic side

Special values of

(p− adic) L− functions


⇐⇒


Arithmetic side

Selmer groups of

Elliptic curves, Galois representations


via an equality of the ideal generated by the p-adic L-function and the characteristic

ideal of some corresponding Selmer group over an appropriate Iwasawa algebra. To

show such an equality of ideals, it’s quite natural to prove that each side divides the

1



other:

(analytic)|(arithmetic)

(arithmetic)|(analytic).

In their proof of the classical Iwasawa Main Conjecture (IMC) for GL1, Mazur-

Wiles [MW84] first connect the p-adic L-functions of even Dirichlet characters to

the cuspidal subgroups in the Jacobian of modular curves, then use the geometry of

the latter to construct sufficiently large quotients of the ideal class group, obtaining

(analytic)|(arithmetic). This so-called ‘automorphic approach’ is well studied and

has been used to prove the (analytic)|(arithmetic) divisibility for GL2 using Eisen-

stein series for U(2, 2) by Skinner-Urban [SU14]. To produce the opposite divisibility

for GL1, Rubin [Rub00] used Kolyvagin’s Euler system [Kol90] of cyclotomic units

to produce many principal ideals and hence obtained that ideal class groups are as

small as expected. Note that showing one divisibility is enough for the IMC for GL1

due to the existence of the analytic class number formula. For GL2, though, one does

not have such luxury. However, Kato [Kat04] did prove (arithmetic)|(analytic)

and in combination with Skinner-Urban, this resulted in the IMC for (most) ellip-

tic curves at ordinary primes. In the works of Rubin and Kato, L−functions enter

the arithmetic world, transforming into Euler systems and producing one divisibility

(arithmetic)|(analytic). In this thesis, we will construct a new Euler system for yet

another p−adic L−function.

1.2 The Heegner points story

In this section, we recall the construction of Heegner points [Gro91] together with

some of its impactful applications.
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Set-up.

1. Let E be a rational elliptic curve of conductor N .

2. Let K be an imaginary quadratic field. Let K[n] be the ring class field of

conductor n, for each positive integer n.

3. Assume that all prime factors of N split in K. This condition is normally called

the Heegner Hypothesis. From this, we can choose and fix an ideal n of OK

such that OK/n ∼= Z /N Z. Note that this condition implies the root number

w(E/K) = −1.

4. Let p be an odd prime such that E has good reduction at p, and Gal(Q(E[p]/Q)

∼= GL2(Z /pZ).

By the modularity theorem, we have the modular parametrization map ϕN from

the modular curve X0(N) to E. Combining with results from complex multiplication

theory we obtain:

Pic(OK)

''

// X0(N)(C),

ϕN
��

explicitly, [OK ]
�

''

� // [C/OK → C/n−1]
_

ϕN
��

E(C) y1 ∈ E(K[1]).

We also define

yK = TrK[1]/Ky1 ∈ E(K).

Now, in place of OK , we can do the whole construction over the order of conductor n,

On = Z+nOK , and get yn ∈ E(K[n]). A key property of {yn} is that TrK[nl]/K[n]ynl =

al(E)yn for (nl, 2NdK) = 1 and l inert in K. The Kummer map E(K[n]) ⊗ Zp →

H1
f (K[n], Tp(E)) can then be used to construct the (anticyclotomic) Euler system of

Heegner points [Gro91]. By focusing on the set of ‘nice’ primes l (where FrobK(E[p]/Q)l

is conjugate to the complex conjugation, which implies that l is inert in K and splits
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completely in Gal(K(E[p])/K), normally called Kolyvagin primes) Kolyvagin can

show the Rank 1 result assuming that yK /∈ pE(K):

yK has infinite order ⇒ rankZE(K) = 1.

The method is robust enough to be called the Kolyvagin system’s argument (note

that it also implies the finiteness of the Tate-Shafarevich group of E over K).

The Gross-Zagier formula [GZ86], which relates the Néron-Tate height of yK with

L′(E/K, 1) (hence yK has infinite order iff ords=1L(E/K, s) = 1), and results of Koly-

vagin that we recalled above, then show that the Birch Swinnerton-Dyer conjecture

holds for analytic rank 1, i.e.

ords=1L(E, s) = 1) ⇒ rankZE(Q) = 1.

1.3 About anticyclotomic Euler systems

The Euler system we construct is an ‘anticyclotomic’ Euler system (in contrast with

the ‘cyclotomic’ Euler system of Kato [Kat04]). The general description of such an

Euler system is as follows. More details can be found in Section 4.3.

Notation.

1. p is an odd prime.

2. K/Q is an imaginary quadratic field.

3. K(n) is the ring class field of K of conductor n.

4. K[n] is the maximal p−subextension of K(n).

5. The infinite extension K(p∞) =
⋃
n≥0K(pn) contains the anticyclotomic Zp-

extensionK−
∞ =

⋃
n≥0K[n] that satisfies: Gal(K−

∞/K) ≃ Zp and Gal(K−
∞/Q) =
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Gal(K−
∞/K) ⋊ Gal(K/Q), where Gal(K/Q) = {1, c} and cgc = g−1 for all g ∈

Gal(K−
∞/K). (compare withK+

∞, the cyclotomic Zp extension ofK with c acting

trivially on Gal(K+
∞/K)) (see [MN19]). Denote by Λ−

K = Zp[[Gal(K−
∞/K)]] the

anticyclotomic Iwasawa algebra.

Set-up.

1. Let Φ/Qp be a finite extension and O be its ring of integers. Let ϖ ∈ O be a

uniformizer and denote by F = O/ϖO the residue field.

2. Let V be a finite-dimensional conjugate self-dual (V c ≃ V ∨(1)) representation

of GK over Φ, unramified outside a finite set of primes Σ, and let T ⊂ V be a

Galois stable O−lattice.

3. Fix a choice of the Greenberg Selmer group H1
Gr(K[m], V ), consisting of ele-

ments that are unramfied at w ∤ p and some (well-behaved) conditions at w|p.

4. Assume that there exists σ ∈ GK such that:

(a) σ fixes K[1](µp∞)

(b) dimΦV/(σ − 1)V = 1.

This condition is called Hyp(σ).

5. For each positive integer n, the set of split-σ Kolyvagin primes level n, denoted

L σ
n , is a collection of primes l ∈ Q such that:

(a) l ∤ 2p, and l splits in K such that l = l l̄.

(b) V is unramified at l and l̄.

(c) Frobl lies in the GK conjugacy class of σ in Gal(Ωn/K), where Tn =

T/ϖnT , Ωn = K[1]K(µpn)K(Tn), and K(Tn) denotes the smallest exten-

sion of K such that GK(Tn) acts trivially on Tn.
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6. Denote L K,σ
n = {primes l of K such that l|l for some l ∈ L σ

n }.

7. For L a set of primes of K, we write N (L ) = {a = pa11 . . . parr ⊂ OK , where

pi ∈ L , ai = 1 if pi ∤ p, and pi ̸= pj, p̄j}.

Notation. Given Li a set consisting of primes of K for i ∈ {1, 2}, we write L1⊃̇L2

if the natural density of (L2 \ (L2 ∩L1)) is 0.

Definition. (Euler system) Let L be a set consisting of primes of K such that

L ⊃̇L K,σ
n for some n ≥ 1. A (split-σ) anticyclotomic Euler system for (T,L ) (in

the sense of Jetchev-Nekovář-Skinner) [JNS] is a collection of cohomology classes

c = {cm, where m ∈ N (L )} such that:

1. cm ∈ H1
Gr(K[m], T ), where m = NormK/Q(m)

2. For ml ∈ N (L ), where l is a prime of K with l = NormK/Q(l), we have the

following norm relation:

coresK[ml]/K[m](cm l) = Pl(Frob−1
l )cm

where Pl(X) = det(1− Frob−1
l X|T∨(1)).

Example 1.3.1. Alonso-Castella-Rivero in [ACR21] obtained such an anticyclotomic

Euler system for Vf ⊗ Vg(χ) (a 4−dimensional Galois representation where f, g are

newforms, and χ is some Hecke character).

Example 1.3.2. Kolyvagin’s famous Euler system of Heegner point [Gro91] is also an

anticyclotomic one. Though the cohomology classes lie in K[n] for n divisible by only

inert primes (not split!) in K.

In this thesis, we will construct an Euler system originating from algebraic cycles,

which cannot give a full Euler system but only an anticyclotomic one. The following

lines are a heuristic explanation for this phenomenon given by Loeffler. By Shapiro’s
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lemma, one can think of an Euler system as a collection of classes cχ ∈ H1(K,V (χ)),

where χ runs on some finite order characters ofGK . Either χ varies over all finite order

characters, which gives us a full Euler system, or χ varies over only anticyclotomic

characters (assume that K is CM) which give us an anticyclotomic Euler system.

Coming from an algebraic cycle, i.e. by a geometric construction, cχ will likely land

in the Bloch-Kato subspace H1
f . Now if 0 ̸= cχ ∈ H1

f (K,V (χ)), the Bloch-Kato

conjecture tells us that L(V ∨(1)⊗χ−1, 0) = 0. The only way to force many L−values

to vanish systematically at s = 0 is by ‘sign reasons’ (not because of poles of Γ−factors

as our classes come from algebraic cycles, and should correspond to central L−values).

This happens only when IndQ
KV (χ) is self-dual, forcing χ to be an anticyclotomic

character (at least if V is self-dual).

1.4 Construction of an anticyclotomic Euler sys-

tem and the main theorems

We now describe our construction. Let f be a modular newform of weight k level

Γ0(Nf ). Let K be an imaginary quadratic field. Let ψ1, ψ2 be two Hecke characters of

K with infinity types (1−l1, 0) and (1−l2, 0) respectively and such that 2|k+l1+l2 and

the central characters satisfy: χψ1χψ2 = 1. Corresponding to these Hecke characters

we have theta series θψi ∈ Sli(Nψi , χ
′
ψi

) [Miy89]. Let N = lcm(Nf , Nψ1 , Nψ2) and

denote by Y (m) the open modular curve of level Γ1(Nm) for each integer m coprime

with Np. From the diagonal embedding

Y (m)
∆
↪−→ Y (m)× Y (m)× Y (m),

7



Bertolini-Seveso-Venerucci (BSV) constructed a diagonal class [BSV21], which can be

pushed-forward to a class

κm,r ∈ H1(Q, H3
ét(Y (1)× Y (m)× Y (m)Q̄,Lr)⊗Qp(2− r)),

where r = (k − 2, l1 − 2, l2 − 2) ∈ {(r1, r2, r3) ∈ Z3
≥0 such that r = (r1 + r2 + r3)/2 ∈

Z and ri + rj ≥ rk for all i, j, k}.

For a triple of cuspidal eigenforms of weight 2, the p−adic Abel-Jacobi image of

the generalized Gross-Kudla-Schoen (GKS) cycle [DR14] (under a comparison isomor-

phism) equals (up to sign) the BSV diagonal class (see Proposition 2.5.1). The GKS

cycle is essentially the diagonal X123 = {(x, x, x), x ∈ X} in X3, where X = X1(N),

modified to make it null-homologous. More precisely, fix the cusp ∞ ∈ X at infinity

as base point and follow Gross-Kudla and Gross-Schoen [GK92], [GS95], define ∆ to

be the class in the Chow group CH2(X3) of codimension 2 cycles in X3 up to rational

equivalence of the formal sum

X123 −X12 −X13 −X23 +X1 +X2 +X3,

where X1 = {(x,∞,∞), x ∈ X}, X12 = {(x, x,∞), x ∈ X} and likewise for the

remainings. The GKS ∆ cycle appears in a p−adic Gross-Kudla formula of Darmon-

Rotger [DR14] and also in a complex one by Yuan-Zhang-Zhang [YZZ], relating the

first derivative L′(f, g, h, 2) to the Beilinson-Bloch height of ∆.

Now, we look at the case k = l1 = l2 = 2. First we project onto the H1
ét ⊗

H1
ét ⊗ H1

ét component of the Künneth decomposition of H3
ét, and then project each

piece to the corresponding geometric realization V ∨
g of the two-dimensional Galois

representation attached to a newform g (where g is one of f, θψ1 , θψ2). Here V ∨
g is

the maximal quotient of H1
ét(Y1(Ng),Zp(1))⊗Φ on which the Hecke operators T ′

l , ⟨d⟩′

8



acts as multiplication by al(g) and χg(d) respectively, where (ld,Ng) = 1 and l is a

prime (Φ/Qp is some finite extension containing the Fourier coefficients of g). Fix

a GQ−stable lattice T∨
f ⊂ V ∨

f . After pushing forward the cohomology class, we

essentially use the decomposition

T∨
θψ1
⊗ T∨

θψ1
= IndQ

KOψ1
−1 ⊗ IndQ

KOψ2
−1 = IndQ

KOψ1
−1 ψ2

−1 ⊕ IndQ
KOψ1

−1 ψ2
−c

and then project to the first direct summand. Finally, we use Shapiro’s lemma to

obtain:

κf,χ,m ∈ H1(K[m], V ∨
f (1− k

2
)(χ))

where χ = ψ1
−1 ψ2

−1N−1 is anticyclotomic of infinity type (1,−1). Due to the

geometric nature of the construction, it can be shown that κf,χ,m lands in the Bloch-

Kato Selmer group H1
f (K[m], V ∨

f (1− k
2
)(χ)).

The results in [BSV21] not only construct diagonal classes attached to a triple

(f, g, h) but also to a triple of Hida familes, so we can substitute one theta series with

a CM family passing through it. It turns out that by doing a similar analysis for the

case (2, 2, 2) but over the anticyclotomic tower for the weight (k, l, 2), one can show

the following result (see Theorem 4.3.4):

Theorem 1.4.1. Let f be a p−ordinary newform of even weight k. Let ψ1, ψ2 be

two Hecke characters over K of infinity types (1− l, 0), (−1, 0) and conductors f1, f2,

respectively, with l even. Assume that p = p p̄ splits in K and (p, hKf1f2) = 1. For

m ∈ N (L K,σ
1 ) such that m = NormK/Q(m) is coprime to pNfDKNormK/Q(f1f2), the

classes constructed in Theorem 3.2.2

κ∞f,ψ1,ψ2,m
∈ H1

Gr(K[mp∞], T∨
f (1− k/2)χ12P)

9



form an anticyclotomic Euler system for (T∨
f (1− k/2)χ12,L

K,σ
1 ), where

χ12 = ψ−1
1 ψ−1

2 N−l/2

is an anticyclotomic of infinity type (l/2,−l/2), and the Greenberg Selmer group is

defined by F+
p (V ) = V and F+

p̄ (V ) = 0.

Remark 1.4.1. By Shapiro’s Lemma, we can think of κ∞f,ψ1,ψ2,m
as an element of the

space H1(K[m], V ∨
f (1−k/2)(χ0)⊗Λ−

K). Absorbing the χ0, the inside module is a de-

formation of Vp(f)(1−k/2) which p-adically interpolates the twists of Vp(f)(1−k/2)

by the anticyclotomic Hecke characters χ, and hence the class will admit specialisa-

tions to H1(K[m], V ∨
f (1− k/2)(χ)).

1.5 Applications of the main theorems

The novelty of our work is that we construct an Euler system even when the Heegner

Hypothesis does not hold. In particular, throughout this section, we assume that:

Assumption 1.5.1. (non-Heeg): Nf = N+
f N

−
f where N+

f and N−
f are the product of

split and inert primes in K, respectively, and that N−
f is a squarefree product of an

odd number of inert primes.

Let κf,χ = coresK[1]/K(projK[1](κ
∞
f,ψ1,ψ2,1

), i.e. first taking the Iwasawa cohomol-

ogy class of conductor 1 from Theorem 1.4.1 and then taking the norm down to

H1(K,V ∨
f (1− k/2)(χ)), where χ has infinity type (l/2,−l/2) for l even. Feeding our

Euler system into the JNS machinery, we show the following result, (see Corollary

5.1.2) :

10



Theorem 1.5.1. (Rank 1 result) Under the same hypotheses as Theorem 1.4.1, if

f is not of CM type and l ≥ k:

κf,χ ̸= 0 =⇒ dimΦH
1
f (K,V ∨

f (1− k/2)(χ)) = 1. (1.5.0.1)

Next we use global duality to compare local conditions of the Bloch-Kato Selmer

group with the Greenberg Selmer goup, the reciprocity law of [BSV21] that relates the

cohomology class with the triple product p−adic L−function, and a non-vanishing of

central L−values with anticyclotomic twists result of Chida-Hsieh [CH18b] to obtain

(see Theorem 5.1.3):

Theorem 1.5.2. (Rank 0 Bloch-Kato) Assume the same hypotheses with Theorem

1.4.1 together with:

1. k ≥ 4, (Nf , DK) = 1 and T∨
f is residually absolutely irreducible ,

2. the local sign ϵq(V†
fθψ1θψ2

) = 1 for all primes q|N (see details in Assumption

4.1.1),

3. p ≥ k + 2 and p ∤ NfDK.

If χ is an anticyclotomic Hecke character of infinity type (l/2,−l/2) such that

(pNfDK , cond(χ)) = 1,

then

L(f, χ,
k

2
) ̸= 0 =⇒ H1

f (K,V ∨
f (1− k/2)(χ)) = 0. (1.5.0.2)

In other words, the Bloch-Kato conjecture holds in this analytic rank 0 case.

Note that the (non-Heeg) condition combining with L(f, χ, k
2
) ̸= 0 force k ≥ l+2.

The case k = 2 and l = 0 was already worked out by Bertolini-Darmon in [BD05]
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and generalized by Longo-Vigni in [LV10]. The case k ≥ 4 and l = 0 was obtained by

Chida in [Chi17], using the same methods as [BD05]. Kings-Loeffler-Zerbes [KLZ17]

achieved a similar result in the case of the Rankin-Selberg product of two modular

forms f and g (i.e. for a twist of f by a ray class character, not just a ring class

character). As they require χfχg ̸= 1 while we require χf = χg = 1, we do obtain

a new case for the Rank 0 Bloch-Kato Conjecture. Moreover, our method has the

advantage of being generalizable to totally real fields, which is not known for the

Euler system of Rankin-Eisenstein classes that was used in [KLZ17].

1.6 Main motivation

By the modularity theorem, we can associate a newform f of weight 2 to each rational

elliptic curve. Let χ be an anticyclotomic Hecke character of K of infinity type

(n,−n). We have the following table ®:

® ω(E/K) = −1 ω(E/K) = 1

1st quadrant 2nd quadrant

n = 0 ϵ(E,χ) = −1 ϵ(E,χ) = 1

Euler system of Heegner points ??

n ≥ 1 3rd quadrant 4th quadrant

ϵ(E,χ) = 1 ϵ(E,χ) = −1

?? My diagonal Euler system

The 1st quadrant is the classical Euler system of Heegner points [Gro91] con-

structed by Kolyvagin. It also comes with the formula of Gross-Zagier [GZ86] relat-

ing the Néron-Tate canonical height of the Heegner point yK to the first derivative

at s = 1 of the Rankin L-function L(f ⊗ θK , s).

We put ?? into the 2nd and 3rd quadrants to indicate the absence of a geometric

construction of an anticyclotomic Euler system. There have been efforts to go from
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the 1st to the 3rd using a p−adic Gross-Zagier formula by Bertolini-Darmon-Prasanna

[BDP13] that relates special values of an anticyclotomic p−adic L−function to image

of some Heegner cycles under the p−adic Abel-Jacobi map. To go from the 1st to the

2nd, Bertolini-Darmon [BD05] used the theory of congruences between modular forms

on quaternions algebras and the Cerednik-Drinfeld interchange of invariants to realise

the Galois representation E[pn] in the pn-torsion of the Jacobian of certain Shimura

curves for which the Heegner point construction becomes available, leading to results

similar to Theorem 1.5.2 but with some ‘level raising’ conditions (see Remark 5.1.3

for details).

What I do in my thesis is to fill in the 4th quadrant with a new diagonal Euler

system, then pass to the 2nd quadrant by p−adic methods and the reciprocity law of

[BSV21]. It is worth mentioning that building on the Bertolini-Darmon-Prasanna for-

mula for Heegner cycles [BDP13], Castella-Hsieh obtained similar results to Theorem

1.5.1 and 1.5.2 but in the ω(E/K) = −1 setting by using p−adic methods [CH18a].

Note that analogously to the Gross-Zagier formula, a result of Yuan-Zhang-Zhang

[YZZ] relates the first derivative L′(f ⊗ g ⊗ h, 2) to the Beilinson-Bloch height of ∆,

whereas our diagonal Euler system should be thought as a project of the image of

this ∆ under the p−adic Abel-Jacobi map.

1.7 Future research directions

We recall possible directions for future research.

1. The first project is to upgrade the divisibility of the Iwasawa Main Conjecture

without L−function (obtained by the [JNS] machinery) to the divisibility of

the Iwasawa Main Conjecture with L−function when weight(χ) ≥weight(f)/2,

in the spirit of Perrin-Riou [PR87].

2. Another direction is to go from the 4th quadrant to the 3rd quadrant using
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congruences like in [BD05] and [Chi17], by substituting our modular curves

with Shimura curves over totally real fields [Dis17].

3. We can also apply similar ideas from my thesis to other situations of special cy-

cles on certain Shimura varieties, such as those appearing naturally in the Gan-

Gross-Prasad setups. One direction would be to specialize the Euler system of

cycles, constructed by Jetchev et al. [Jet], [BBJ20] at points where the Galois

representation decomposes (analogously to IndQ
KOψ1⊗IndQ

KOψ2 = IndQ
KOψ1 ψ2⊕

IndQ
KOψ1 ψ2

c). These cycles are higher-dimensional counterparts of Heegner

points, getting from the diagonal embedding U(1, 1) ↪→ U(2, 1)×U(1, 1).

14



Chapter 2

Preliminaries

2.1 Modular curves and Hecke operators

We give a precise description of the modular curves and Hecke operators that will

appear in our construction. This section follows [Kat04, §2], [BSV21, §2], and [ACR21,

§2].

2.1.1 Modular curves

Let M,N, u, v be positive integers such that M +N ≥ 5. Define Y (M,N) to be the

affine modular curve over Z[1/MN ], that represents the functor:

S 7→


isomorphism classes of triples (E,P,Q) where E is an elliptic curve over S,

P , Q are sections of E over S such that M · P = N ·Q = 0; and the map

Z /M Z×Z /N Z→ E, mapping (a, b) 7→ a · P + b ·Q is injective
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for S a Z[1/MN ]−scheme. More generally, we also define the affine modular curve

Y (M(u), N(v)) over Z[1/MNuv] that represents the functor:

S 7→



isomorphism classes of quintuples (E,P,Q,C,D) where (E,P,Q) is as above,

P ∈ C is a cyclic subgroup of E of order Mu,

Q ∈ D is a cyclic subgroup of E of order Nv such that

C is complementary to Q and D is complementary to P

for S a Z[1/MuNv]−scheme.

Let H be the Poincaré upper half-plane and define the modular group:

Γ(M(u), N(v)) =

γ ∈ SL2(Z) such that γ ≡

1 0

0 1

 mod

M Mu

Nv N


 .

When either u = 1 or v = 1, we drop the (1) from the notation. The Riemann surface

Y (M,N)(C) admits a complex uniformisation:

(Z /M Z)⋆ × Γ(M,N)\H ∼−→ Y (M,N)(C)

(m, z) 7→ (C /Z+Z z,mz/M, 1/N),

and similarly for Y (M(u), N(v))(C).

Let l ≥ 2 be a prime. There is an isomorphism of Z[1/lMN ]−schemes:

φl : Y (M,N(l)) → Y (M(l), N)

(E,P,Q,C) 7→ (E/NC,P +NC, l−1(Q) ∩ C +NC, (l−1(Z ·P +NC)/NC)),

which under the complex uniformisation is induced by the map (m, z) 7→ (m, l · z).
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2.1.2 Degeneracy maps

We have the natural degeneracy maps:

Y (M,Nl)
µl // Y (M,N(l))

φl
��

νl // Y (M,N)

Y (M,Nl)
µ̃l
// Y (M(l), N)

ν̃l
// Y (M,N)

where µl(E,P,Q) = (E,P, l · Q,Z ·Q), νl(E,P,Q,C) = (E,P,Q), and µ̃l, ν̃l are

defined similarly. We also denote:

pr1 := νl ◦ µl i.e. pr1 : Y (M,Nl)→ Y (M,N)

(E,P,Q) 7→ (E,P, l ·Q)

prl := ν̃l ◦ φl ◦ µl i.e. prl : Y (M,Nl)→ Y (M,N)

(E,P,Q) 7→ (E/N Z ·Q,P +N Z ·Q,Q+N Z ·Q)

On the complex upper half plane H, the map pr1, prl are induced by the identity and

multiplication by l respectively. Moreover, the degeneracy maps µl, µ̃l, νl, ν̃l, pr1, prl

are all finite étale morphisms of Z[1/MNl] schemes.

2.1.3 Relative Tate modules and Hecke operators

Fix an integer r ≥ 0. Let S be a Z[1/MNlp]−scheme where p is a fixed prime. For

each Z[1/MNlp]− scheme X, denote the base change XS = X ×Z[1/MNlp] S. Notate

A = AX to be either the locally constant sheaf Z /pm Z(j) or the locally constant

p−adic sheaf Zp(j) on Xét (see [FK88, Def 12.6]) for some fixed m ≥ 1 and m, j ∈ Z.

To ease the notation, we may write · for M(u), N(v) (i.e. Y (·) = Y (M(u), N(v))).

Denote E(·) the universal elliptic curve over Y (·). Then one obtains a natural degree

l isogeny of universal elliptic curves under the base change by φ⋆lE(M(l), N) →
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Y (M,N(l)):

λl : E(M,N(l))→ φ⋆l (E(M(l), N).

Denote by v· : E(·)S → Y (·)S the structure map. We also use νl, ν̃l and λl for the

base change to S of the corresponding degeneracy maps. Set:

T·(A) = R1v·⋆ Zp(1)⊗Zp A and T ⋆
· (A) = HomA(T·(A), A)

where Rqv·⋆ is the q−th right derivative of v·⋆ : E(·)ét → Y (·)ét. When A = Zp, this

gives the relative Tate module of the universal elliptic curve, in this case we will drop

the Zp in the notation.

The (perfect) cup product pairing combined with the relative trace:

T· ⊗Zp T· → R2v·⋆ Zp(2) ∼= Zp(1)

allows one to identify T·(−1) with T ⋆
· . The smooth base change theorem ([Mil80,

Chap IV, Cor 4.2]) implies that T·(A) and its dual are locally constant p−adic

sheaves on Y (·)S, of formation compatible with base change along morphisms of

Z[1/MNlp]−schemes S ′ → S. Define:

L·,r(A) = Tsymr
AT·(A) and S·,r(A) = Symmr

AT ⋆
· (A),

where given any finite free module M over a profinite Zp−algebra R, Tsymr
RM is

the R−submodule of the symmetric tensors in M⊗r, and Symmr
RM is the maximal

symmetric quotient of M⊗r. When the level is clear, we may simplify the notations,

writing:

Lr(A) = LM(u),N(v),r(A), Lr = Lr(Zp), Sr(A) = SM(u),N(v),r(A), Sr = Sr(Zp).

(2.1.3.1)
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For this rest of this section, let F r
· be either L·,r(A) or S·,r(A). By the proper base

change theorem [Mil80, Chap VI, Cor 2.3] and a commutative diagram for the struc-

tural maps (see equation (9) in [BSV21]), one has natural isomorphisms of sheaves:

ν⋆l (F r
M,N) ∼= F r

M,N(l) and ν̃⋆l (F r
M,N) ∼= F r

M(l),N .

These induce pullbacks

H i
ét(Y (M,N)S,F

r
M,N)

ν⋆ltt
ν̃⋆l **

H i
ét(Y (M,N(l))S,F

r
M,N(l)) H i

ét(Y (M(l), N)S,F
r
M(l),N)

and traces

H i
ét(Y (M,N)S,F

r
M,N)

H i
ét(Y (M,N(l))S,F

r
M,N(l))

νl⋆

44

H i
ét(Y (M(l), N)S,F

r
M(l),N)

ν̃l⋆

jj

The finite étale isogeny λl induces morphisms:

λl⋆ : F r
M,N(l) → φ⋆l (F

r
M(l),N) and λ⋆l : φ⋆l (F

r
M(l),N)→ F r

M,N(l)

which allow one to define a pushforward

Φl⋆ := φl⋆ ◦ λl⋆ : H i
ét(Y (M,N(l))S,F

r
M,N(l))→ H i

ét(Y (M(l), N)S,F
r
M(l),N)

and a pullback

Φ⋆
l := λ⋆l ◦ φ⋆l : H i

ét(Y (M(l), N)S,F
r
M(l),N)→ H i

ét(Y (M,N(l))S,F
r
M,N(l)).
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We define a Hecke operator and a dual Hecke operator acting on the cohomology

group H i
ét(Y (M,N)S,F

r
M,N) by:

Tl = ν̃l⋆ ◦ Φl⋆ ◦ ν⋆l and T ′
l = νl⋆ ◦ Φ⋆

l ◦ ν̃⋆l

By writing pr⋆1 = µ⋆l ◦ ν⋆l , pr⋆l = µ⋆l ◦Φ⋆
l ◦ ν̃⋆l , pr1⋆ = νl⋆ ◦ µl⋆, prl⋆ = ν̃l⋆ ◦Φl⋆ ◦ µl⋆, one

obtains:

deg(µl)Tl = prl⋆ ◦ pr⋆1, and deg(µl)T
′
l = pr1⋆ ◦ pr⋆l

Remark 2.1.1. These definitions agree with [BSV21], but differ from [ACR21] where

they define π1⋆ = νl⋆, πl⋆ = ν̃l⋆ ◦ Φl⋆ to kill the extra factor deg(µl) for Tl.

For d ∈ (Z /MN Z)⋆, one can define on Y (·) the diamond operator ⟨d⟩ which is

defined on the moduli problem by

(E,P,Q,C,D) 7→ (E, d−1 · P, d ·Q,C,D).

There also exists a unique diamond operator ⟨d⟩ on the universal elliptic curve making

the following diagram cartesian:

E(·)S
v·
��

⟨d⟩
// E(·)S

v·
��

Y (·)S
⟨d⟩
// Y (·)S

This induces automorphisms ⟨d⟩ = ⟨d⟩⋆ and ⟨d⟩′ = ⟨d⟩⋆ on H i
ét(Y (·)S,F·).

For each profinite Zp−algebra R and finite free R−module M , the evaluation

map induces a perfect pairing:

Tsymr
RM ⊗R Symmr

RM
⋆ → R

where M⋆ = HomR(M,Zp). This gives us a perfect pairing Lr ⊗Zp Sr → Zp, i.e. a
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cup product:

⟨·, ·⟩N : H1
ét(Y (·)Q̄,L r(1))⊗Zp H

1
ét,c(Y (·)Q̄,S r)→ H2

ét(Y (·)Q̄,Zp(1)) ∼= Zp,

which is perfect by Poincaré duality after inverting p. The Hecke operators Tl, T
′
l , ⟨d⟩,

⟨d⟩′ induce endomorphisms on the compactly supported cohomology H1
ét,c(Y (·)Q̄,S r)

and from the construction, (Tl, T
′
l ) and (⟨d⟩, ⟨d⟩′) are adjoint to each other under

⟨·, ·⟩N . Moreover, the Eichler-Shimura isomorphism [Shi71]

H1
ét(Y1(N)Q̄,L r)⊗Zp C ∼= Mr+2(N,C)⊕ Sr+2(N,C)

commutes with the action of the Hecke operator on both sides.

2.2 Bloch-Kato Conjecture

In this section, we state our convention of L−functions attached to a Galois repre-

sentation, and the statement of the Bloch-Kato Conjecture, following [Bel].

Let p be a prime. Let V be a p−adic geometric representation of GK over Φ,

where K is a number field, and Φ/Qp is a finite extension. We first define the local

Euler factor Lv(V, s) of V at a prime v of K:

Lv(V, s) =


det(1− Frobv · q−sv |V Iv)−1 if v ∤ p,

det(1− φ · q−sv |Dcris(V |GFv ))−1 if v|p,

where s is a complex argument, Frobv is the geometric Frobenius, qv = pfv is the size

of the residue field of K at v, and φ = ϕfv with ϕ the crystalline Frobenius. We then
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define the L−function of V as an Euler product:

L(V, s) =
∏

v prime

Lv(V, s).

For V geometric and pure of weight w (recall that H i(X,Qp)(n) is pure of weight

i− 2n), L(V, s) is holomorphic on ℜ(s) > w/2 + 1. Furthermore, if V is automorphic

i.e. we can associate to V a cuspidal automorphic representation π of GLn(AK)

where n = dimΦ V , then by results of Hecke (for n = 1), Jacquet-Langlands (for

n = 2), and Jacquet-Shalika (for n ≥ 3) that L(V, s) = L(π, s) admits a meromorphic

continuation on the complex plane. For such a V , one can complete the L−function

by adding the ‘Euler factor at infinity’, and obtain Λ(V, s) together with its functional

equation:

Λ(V, s)ϵ(V, s) = Λ(V ∨(1),−s),

where ϵ(V, s) is entire and non-vanishing.

For τ ∈ Aut(K/Q), let V τ be the representation of GK over the same vector space

V but g ∈ GK acts as σgσ−1, where σ ∈ GQ such that to σ|K = τ . We say that V

is polarized of weight w0 if V τ (w0) ∼= V ∨ for some τ ∈ Aut(K/Q). If that happens,

as V τ (w0) and V ∨ are pure of weight w − 2w0 and −w, respectively, we must have

w0 = w. We record a fact that if an automorphic representation V is self-dual i.e. K

is a totally real field and τ is trivial, or V is conjugate self-dual i.e. K is a CM field

and τ is the complex conjugate, then V is regular (i.e. distinct Hodge-Tate weights).

For V geometric, polarized, pure of weight w, and automorphic, as:

Λ(V ∨(1),−s) = Λ(V ∨, 1− s) = Λ(V τ (w), 1− s) = Λ(V,w + 1− s),

the functional equation of V relates L(V,w + 1− s) and L(V, s). Hence (1 + w)/2 is

called the center of the functional equation (it also forces ϵ(V, (1+w)/2) = ±1). If we
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replace V by V (1+w
2

) (pure of weight −1) then the center of the functional equation

is s = 0.

Conjecture 2.2.1. (Bloch-Kato) Let V be a p−adic geometric irreducible repre-

sentation of GK over Φ, where K is a number field, and Φ/Qp is a finite extension.

Then one has:

dimΦH
1
f (K,V ∨(1)) = ords=0L(V, s) + dimΦ(V ∨(1)GK ),

where H1
f is the Bloch-Kato Selmer group.

Remark 2.2.1. The last term will be zero unless V = Φ(1).

Example 2.2.1. For V = Qp, L(V, s) = ζK(s) the Dedekind zeta function, and its

order of vanishing at s = 0 is r1 + r2 − 1. The Kummer map induces O×
K ⊗ Qp

∼−→

H1
f (K,Qp(1)), which tells us that dimQp H

1
f (K,Qp(1)) = rank O×

K . Hence the Bloch-

Kato conjecture in this case is just the Dirichlet’s unit theorem.

Example 2.2.2. For E an elliptic curve, denote by V = Vp(E) the Tate module of

E over K. Assuming the finiteness of the Tate-Shafarevich group of E over K and

using the Kummer map E(K)⊗Zp ↪→ H1
f (K,V ), we also obtain that the Bloch-Kato

conjecture for V = Vp(E) is equivalent to the Birch Swinnerton-Dyer conjecture.

2.3 Galois representations associated to newforms

Let f =
∑

n≥1 anq
n be a normalized newform of weight k ≥ 2, level Γ1(Nf ), and

nebentype χf . Let p ∤ Nf be a prime. Fix an embedding i∞ : Q̄ ↪→ C and ip : Q̄ ↪→ Q̄p.

Let L/Q be a finite extension containing all values i−1
∞ (an) and i−1

∞ ◦ χf . Let p be

the prime of L above p with respect to ip. Denote S = {prime l|pN} ∪ {∞}. Then

Eichler-Shimura (for k = 2 in [Eic54], [Shi58]) and Deligne (for k > 2 in [Del71])
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construct a p−adic Galois representation associated to f :

ρf,p : GQ,S → GL2(Lp) (2.3.0.1)

that satisfies: for all l /∈ S

1. Trace(ρf,p(Frobl)) = ip(al)

2. det(ρf,p(Frobl)) = ip(χf (l)lk−1)

3. ρf,p is irreducible, hence absolutely irreducible as the complex conjugate has ±1

eigenvalues [Rib77].

4. Here Frobl is the geometric Frobenius.

2.3.1 Scholl’s motives

Scholl [Sch90] constructed geometrically a Grothendieck motive M ⊂ hk−1(Z) ⊗ L

where Z is a suitable smooth compactification of the (k−1)−dimensional Kuga-Sato

variety over Y (Nf ) (say Nf ≥ 3). The p−adic realisation of M is Mp ⊂ Hk−1(Z̄ét, L⊗

Qp), free of rank 2 over L⊗Qp =
∏

p |p Lp, with its p−component Mf being ρf,p. Note

also that Mf is pure of weight k − 1.

2.3.2 Deligne’s construction

Before Scholl, Deligne [Del71] also constructed a geometric realisation Vf of ρf,p but

by using étale cohomology with non-constant coefficients.

Definition/Proposition.

1. The geometric realisation Vf of ρf,p, can be defined as the largest subspace of

H1
ét(Y1(Nf )Q̄,S k−2)⊗ Lp,
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on which Tl acts as multiplication by al for all l ∤ Nfp and ⟨d⟩′ = ⟨d⟩⋆ acts as

multiplication by χf (d) for all d ∈ (Z /Nf Z)⋆.

2. Its dual V ∨
f can be interpreted as the maximal quotient of

H1
ét(Y1(Nf )Q̄,L k−2(1))⊗ Lp,

on which the dual Hecke operator T ′
l acts as multiplication by al for all l ∤ Nfp

and ⟨d⟩ = ⟨d⟩⋆ acts as multiplication by χf (d) for all d ∈ (Z /Nf Z)⋆.

3. Denote the ring of integer for Lp as Op. We obtain Op−lattices Tf , T
∨
f , which

lies inside Vf and V ∨
f respectively, as the image of H1

ét(Y1(Nf )Q̄,S k−2) ⊗ Op

and H1
ét(Y1(Nf )Q̄,L k−2(1))⊗Op.

4. It can be shown directly by the Hochschild-Serre spectral sequence that Mf and

Vf are the same (isomorphic representations).

5. In general when Nf |N , the subspace (where Tl, ⟨d⟩ acts as above) we get from

H1
ét(Y1(N)Q̄,S k−2)⊗Lp is Vf (N) ∼= ⊕σ0(N/Nf )i=1 Vf non-canonically. And we have

a similar story for V ∨
f (N).

Properties.

1. Vf is 2−dimensional, irreducible, and a direct summand of the corresponding

H1
ét.

2. For l ∤ pNf , Vf is unramified at l and the Euler factor at l with respect to the

geometric Frobenius is:

Pl(Vf , t) = 1− alt+ lk−1χf (l)t2

3. If f is ordinary at p, i.e. ip(ap) ∈ Lp is a p−adic unit, the restriction of Vf to
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GQp is reducible and we have the following exact sequence of Lp[GQp ]−modules:

0→ V +
f → Vf → V −

f → 0

with dim(V ±
f ) = 1. The equation x2 − apx + χf (p)pk−1 = 0 has two distinct

roots: one is αp the p−adic unit and the other is βp: which is 0 if p|Nf and is

χf (p)pk−1/αp if p ∤ Nf . The sub-representation V +
f is unramified, with Frobp ∈

GQp/Ip acting on V +
f by αp. Poincaré duality shows that V ∨

f ≃ Vf (k− 1)(χ−1
f ),

i.e.

V −
f
∼= (V +

f )∨(1− k)(χ−1
f ).

4. V ∨
f ≃ Vf̄ (k − 1) where f̄ = f ⊗ χ−1

f .

5. When f is ordinary at p, by duality, we also obtain an exact sequence for V ∨
f

restricted to GQp :

0→ V ∨,+
f → V ∨

f → V ∨,−
f → 0 (2.3.2.1)

with dim(V ∨,±
f ) = 1. The sub-representation V ∨,−

f is unramified, with Frobp ∈

GQp/Ip acting on V ∨,−
f by αp. If we adopt the convention that Qp(1) has Hodge-

Tate (HT) weight −1, then the HT weight of V ∨,−
f is 0 and the HT weight of

V ∨,+
f is 1− k.

6. For an elliptic curve E/Q corresponding to a newform f by modularity, Vf ≃

H1
ét(EQ̄,Qp) ≃ Vp(E)(−1).

2.4 Lei-Loeffler-Zerbes norm map

In this section, we will explain our conventions on Hecke characters together with their

properties. Then we will recall the ‘norm map’ of Lei-Loeffler-Zerbes (cf. [LLZ15,

Sec 4]), which they used to construct a cyclotomic Euler system attached to a weight
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2 modular form twisted by a Hecke character over an imaginary quadratic field K.

2.4.1 Hecke characters and theta series

Definition/Proposition. Let K be an imaginary quadratic field. Fix an embedding

i∞ : Q̄ ↪→ C and ip : Q̄ ↪→ Q̄p. For a prime p that splits in K, let p |p be the prime

of K with respect to ip, i.e. p = p p̄.

1. For a pair (a, b) ∈ Z2, an algebraic Hecke character ψ of K with infinity type

(a, b) is a continuous homomorphism: A×
K/K

× → C× such that ψ∞(x∞) =

xa∞x̄
b
∞. Such a character ψ is called anticyclotomic if it is trivial on A×

Q. The

conductor of ψ is the largest integral ideal f of K such that ψq(u) = 1 for all

u ∈ (1 + fOK,q)× ↪→ K×
q .

2. We can identify ψ with a character on the set of ideals on OK that is coprime

to f (i.e. a character of Hf, the ray class group of K with conductor f) by

defining ψ(a) =
∏

q|a ψq(ϖq)
vq(a), where ϖq is a uniformizer at q, such that

ψ((α)) = α−aᾱ−b for all principal ideals (α) such that α ≡ 1 (mod f). By

restricting to A×
Q, we obtain a Dirichlet character modulo NK/Q(f) such that

ψ((n)) = n−a−bχ(n) for all integers n coprime with NK/Q(f).

3. Denote recK : A×
K → Gab

K the geometrically normalized Artin reciprocity map.

The (0, 0)−infinity type Hecke character ψ(x)x−a∞ x̄−b∞ will be a ray class charac-

ter, hence it will take value in a finite extension L/K. Denote primes P|p|p of

L/K/Q respectively with respect to ip. We attach a p−adic Galois represen-

tation ψP to ψ as follow: for g ∈ GK , first denote its image g′ ∈ Gab
K , then we

take x ∈ A×
K such that recK(x) = g′ and define

ψP(g) = ip ◦ i−1
∞ (ψ(x)x−a∞ x̄−b∞ )xapx

b
p̄. (2.4.1.1)
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Such a ψP will be called the p−adic avatar of ψ.

Let ψ be a Hecke character of K with infinity type (−1, 0), conductor f, taking

values in a finite extension L/K. Denote by χ the unique Dirichlet character modulo

NK/Q(f) such that ψ((n)) = nχ(n) for all (n,NK/Q(f)) = 1. The theta series attached

to ψ is:

θψ =
∑

(a,f=1)

ψ(a)qNK/Q(a) ∈ S2(Γ1(Nψ), χϵK)

where ϵK is the quadratic Dirichlet character attached to K. The cuspform θψ is new

of level Nψ = NK/Q(f) · disc(K/Q) [Miy89, Thm 4.8.2].

Fix a prime p ≥ 5 unramified in K with (p, f) = 1 and primes P|p|p of L/K/Q

respectively. Let O ⊂ LP be the ring of integers. Let ψP be the p−adic avatar of ψ,

then the p−adic representation attached to θψ is:

Vθψ
∼= IndQ

K(ψP) and its dual V ∨
θψ
∼= IndQ

K(ψ−1
P ).

2.4.2 Hecke algebras and norm maps

Let n be an integral ideal of K such that f|n and let N = NK/Q(n)disc(K/Q). Let

Kn be the ray class field of K with conductor n, and let Hn be the ray class group of

K modulo n. Let Kp
n be the largest abelian p−extension of K of conductor dividing

n, i.e. Gal(Kp
n/K) ∼= H

(p)
n is the largest p−power quotient of Hn. For an ideal k of K

coprime to n, let [k] be the class of k in Hn.

Let T′(N) be the subalgebra of EndZ(H1(Y1(N)(C),Z)) generated by the diamond

operators ⟨d⟩′, T ′
l for l ∤ N , and U ′

l for l|N .

Proposition 2.4.1. [LLZ15, Prop 3.2.1] There exists a homomorphism ϕn : T′(N)→
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O[Hn] acting on the generators as follows:

ϕn(Tl) =
∑

{
ideals l∤n,
NK/Q(l)=l

}[l]ψ(l)

ϕn(⟨d⟩′) = χ(d)ϵK(d)[(d)].

Proof. By specializing at a characters ρ of Hn, we would want a system of eigenvalues

corresponds to θψρ, which exists, again by [Miy89, Thm 4.8.2].

For n′ = nl, where l is a prime ideal and (n′, p) = 1, let N ′ = NK/Q(n)disc(K/Q)

and define the norm map:

N n′
n : O[H

(p)
n′ ]⊗T′(N ′)⊗Zp,ϕn′ H

1
ét(Y1(N

′)Q̄,Zp(1))→ O[H
(p)
n ]⊗T′(N)⊗Zp,ϕn H

1
ét(Y1(N)Q̄,Zp(1))

(2.4.2.1)

by the following formulae (see [LLZ15, Def 3.3.1, Prop 5.2.5]):

1. If l|n then

N n′

n = 1⊗ pr1⋆

2. If l ∤ n is split or ramified in K/Q then

N n′

n = 1⊗ pr1⋆ −
ψ(l)[l]

l
⊗ prl⋆

3. If l ∤ n is inert i.e. l = (l) then

N n′

n = 1⊗ pr1⋆ −
ψ(l)[l]

l2
⊗ prll⋆

4. We extend the definition of N n′
n to any pair of ideals n|n′ by composition.

Assumption 2.4.1. (†): p = pp̄ splits in K. If p|f we assume that p̄ ∤ f and ψO×
K,p

is

not congruent to ω, the Teichmüller character modulo P.
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Remark 2.4.1. This condition is so that the maximal ideal In of the Hecke alge-

bra associated to ϕn is non-Eisenstein, and p−distinguished (i.e. p−ordinary+ non-

Eisenstein) (see [LLZ15, Rem 5.1.3]). Later on, we will assume (p, f) = 1, hence this

condition will be automatically satisfied.

Theorem 2.4.2. Let A be the set of integral ideals n of K, generated by prime ideals

coprime to p̄, and let Af = {nf : such that n ∈ A}. Assume (†) holds, then there is

a family of Galois equivariant isomorphisms of O[H
(p)
n ] modules for any n ∈ Af:

vn : O[H(p)
n ]⊗T′(N)⊗Zp,ϕn H

1
ét(Y1(N)Q̄,Zp(1))

∼=−→ IndQ
Kp

n
O(ψ−1

P )

such that for any n′ ∈ A with n|n′, the following diagram commutes:

O[H
(p)
n′ ]⊗T′(N ′)⊗Zp,ϕn′ H

1
ét(Y1(N

′)Q̄,Zp(1))

N n′
n
��

vn′

∼=
// IndQ

Kp

n′
O(ψ−1

P )

Normn′
n

��

O[H
(p)
n ]⊗T′(N)⊗Zp,ϕn H

1
ét(Y1(N)Q̄,Zp(1))

vn
∼=
// IndQ

Kp
n
O(ψ−1

P )

where Normn′

n is the natural norm map (see the discussion leading to equation (3.1.0.6)

below).

Proof. See Proposition 5.2.5 and Corollary 5.2.6 in [LLZ15] for details. Nevertheless,

we will roughly sketch the key ideas for going from level Nl to level N , where l =

τ τ̄ ∤ pN is a prime that splits in K:

1. The main problem is a discrepancy on the Hecke action of the integral cohomol-

ogy groups of different level modular curves. Concretely, if we write H1(Y1(Nl))

for H1(Y1(Nl)(C),Z), this has an action of Ul ∈ TNl while H1(Y1(N)) has

an action of Tl ∈ TN . But by creating an artificial Hecke algebra T̃N :=

TN [X]/(X2 − TlX + l⟨l⟩) (cf. [Wil95]), one can unify the two Hecke algebras
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via the following commutative diagram:

Ul /∈ ŤNl� _

��

// TN ∋ Tl� _

��

Ul ∈ TNl
Ul 7→X

// T̃N

2. Next, we use Ihara’s lemma [Iha75]. The version here is borrowed from [DDT97,

Lem 4.28], which gives the surjectivity of the following horizontal map:

pr1⋆ ⊕ pr2⋆ : H1(Y1(Nl)) // //

**

H1(Y1(N))⊕2

∼
��

T̃N ⊗TN H
1(Y1(N))

The vertical isomorphism is just (a, b) 7→ a − b(Tl − X)/l. Here, X is acting

on H1(Y1(N))⊕2 via the matrix

Tl −⟨l⟩
l 0

. By localizing at a non-Eisenstein

maximal ideal I of TN of characteristic p ∤ Nl, we also get H1(Y1(N))I is a free

(TN)I module of rank 2. Hence the following map ι = pr1⋆ − pr2⋆(Tl −X)/l is

an isomorphism [LLZ15, Thm 4.2.8]:

ι : (T̃N)I ⊗TNl H
1(Y1(Nl))I

∼−→ (T̃N)I ⊗TN H
1(Y1(N))I

3. Now the isomorphism vn is obtained by simply patching all the V ∨
θψρ

for twists of

ψ by character ρ of H
(p)
n into one big isomorphism (which can be shown easily

by specializing at a finite order character ρ of H
(p)
n and obtain V ∨

θψρ
).

4. We obtain the ‘norm map’ N nl
n via base extension, i.e. extending ϕn from TN

to T̃N by defining Tl −X 7→ ψ(τ)[τ ].

In the end, we get a commutative diagram for n′ = nl where l is a split prime of K

coprime with NormK/Q(n). Lei-Loeffler-Zerbes show that such a result is also true
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when l is inert, and also in the Hida theory setting (cf. [LLZ15, Sec 4.3]).

To obtain a diagram for arbitrary n′ with n|n′, we order the set of ideals in Af by

divisibility (f = n0|fp1 = n1|fp1p2 = n2| · · · i.e. adding one prime at a time), acquire

a commutative diagram for ni|nj (i ≥ j), and then define all the cohomology class

for m|nj by corestriction. Note that in order to rigidify the system of isomorphisms,

there is a fixed choice of units of O[H
(p)
n ] for each level n, see more in [LLZ15, Cor

5.2.6].

Remark 2.4.2. We sketch a proof of the following version of Ihara’s lemma: the

following map is injective:

H1(Γ0(N),Z /lZ)⊕H1(Γ0(N),Z /lZ)→ H1(Γ0(qN),Z /lZ).

By a theorem of Ihara that

Γ0(N) ∗Γ0(Nq) Γ0(N) = Γ0(N,Z[
1

q
]),

one obtains the Lyndon exact sequence:

H1(Γ0(N,Z[
1

q
]),Z /lZ)→ H1(Γ0(N),Z /lZ)⊕2 → H1(Γ0(qN),Z /lZ),

and so it suffices to show that H1(Γ0(N,Z[1
q
]),Z /lZ) = 0. Now, an element of such

cohomology group corresponds to a group homomorphism: φ : Γ0(N,Z[1
q
])→ Z /lZ.

Because SL2(Z[1
q
]) satisfies the congruence subgroup property, ker(φ) will contain a

principal congruence subgroup. Therefore, if (l, Nϕ(N)) = 1 then φ = 0. This version

is used in the ‘level raising’ paper of K. Ribet [Rib84].
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2.5 Bertolini-Seveso-Venerucci diagonal classes con-

struction

We sketch the construction of the diagonal classes in the triple product of modular

curves Y1(N) using classical invariant theory, following Section 3 in [BSV21].

We recall some notation used in Section 2.1.3. Here, Y1(N) = Y1(N)Q, E1(N) =

E1(N)Q the universal elliptic curve over Y1(N) together with the structural map

v : E1(N) → Y1(N). The relative Tate module of the universal elliptic curve is

T = R1v⋆ Zp(1), and its dual is T ⋆ = HomZp(T ,Zp). The cup product pairing

combined with the relative trace:

T ⊗Zp T → R2v⋆ Zp(2) ∼= Zp(1)

gives a perfect relative Weil pairing

⟨, ⟩E1(N)p∞ : T ⊗Zp T → Zp(1),

which allows T (−1) to be identified with T ⋆.

For A either the locally constant sheaf Z /pm Z(j) or the locally constant p−adic

sheaf Zp(j) on Xét for some fixed m ≥ 1 and m, j ∈ Z, recall that

Lr(A) = Tsymr
AT (A) and Sr(A) = Symmr

AT ⋆(A),

where given any finite free module M over a profinite Zp−algebra R, Tsymr
RM is

the R−submodule of the symmetric tensors in M⊗r, and Symmr
RM is the maximal

symmetric quotient of M⊗r.

For a fixed geometric point η : Spec(Q̄) → Y1(N), denote by Gη = πét
1 (Y1(N), η)

the fundamental group of Y1(N) with base point η. The stalk of T at η, denoted Tη,
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is a free Zp−module of rank 2, equipped with a continuous action of Gη. Fix a choice

of Zp−module isomorphism ζ : Tη
∼= Zp⊕Zp such that ⟨x, y⟩E1(N)p∞ = ζ(x) ∧ ζ(y)

(where we identify
∧2 Z2

p with Zp via (1, 0)∧(0, 1) = 1). One then obtains a continuous

group homomorphism:

ρη : Gη → AutZp(Tη) ∼= GL2(Zp).

By [FK88, Prop A I.8], the category of locally constant p−adic sheaves on Y1(N)ét

is equivalent to the category of p−adic representations of Gη via the map F 7→ Fη.

Using ρη, one can associate with every continuous representation of GL2(Zp) over a

free finite Zp−module M a smooth sheaf M ét on Y1(N) such that M ét
η = M .

Let Si(A) be the set of 2−variable homogeneous polynomials of degree i inA[x1, x2]

equipped with the action of GL2(Zp) by gP (x1, x2) = P ((x1, x2)·g) for all g ∈ GL2(Zp)

and P ∈ Si(A). Its A−linear dual Li(A) is also equipped with a GL2(Zp)−action by

gτ(P (x1, x2)) = τ(g−1P (x1, x2)) for all g ∈ GL2(Zp), P ∈ Si(A), and τ ∈ Li(A). As

sheaves on Y1(N)Q, one has:

Li(A)ét = L i(A) and Si(A)ét = S i(A). (2.5.0.1)

Hence Tη
∼= L1(Zp) and Zp(1)η ∼=

∧2 Tη
∼= det−1. This implies that for any j ∈ Z,

and any p−adic representation M of GL2(Zp):

H0(GL2(Zp),M ⊗ det−j) ↪→ H0(Gη,M ⊗ det−j) ∼= H0
ét(Y1(N),M ét(j)). (2.5.0.2)

Assumption 2.5.1. Let r = (r1, r2, r3) such that ri ∈ Z≥0, (r1 + r2 + r3)/2 = r ∈ Z≥0,

and ri + rj ≥ rk for all permutation (i, j, k) of (1, 2, 3). We call this the balanced

condtion.
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Under the assumption 2.5.1, let

Sr = Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp)

a GL2(Zp)−representation, and let

S r = S ét
r = S r1(Zp)⊗Zp S r2(Zp)⊗Zp S r3(Zp).

We identify Sr with the module of 6−variable polynomials Zp[x1, x2, y1, y2, z1, z2]

which is homogeneous of degree r1, r2, and r3 in the variables (x1, x2), (y1, y2), and

(z1, z2) respectively. By the Clebsch-Gordan decomposition of classical invariant the-

ory, the following is a GL2(Zp)−invariant of Sr ⊗ det−r (cf. the balanced condition)

DetrN := det

x1 x2

y1 y2


r−r3

det

x1 x2

z1 z2


r−r2

det

y1 y2

z1 z2


r−r1

i.e. DetrN ∈ H0(GL2(Zp), Sr ⊗ det−r) and denote its image under (2.5.0.2) as:

DetrN ∈ H0
ét(Y1(N),S r(r)). (2.5.0.3)

Let pj : Y1(N)3 → Y1(N) for j ∈ {1, 2, 3} be the natural projections and denote

S [r] := p⋆1 S r1(Zp)⊗Zp p
⋆
2 S r2(Zp)⊗Zp p

⋆
3 S r3(Zp),

WN,r := H3
ét(Y1(N)3Q̄,S [r](r + 2)).

As Y1(N)Q̄ is a smooth affine curve over Q̄, H4
ét(Y1(N)3Q̄,S [r](r + 2)) = 0. By the

Hochschild-Serre spectral sequence,

Hp(Q, Hq
ét(Y1(N)3Q̄,S [r](r + 2))) =⇒ Hp+q

ét (Y1(N)3Q̄,S [r](r + 2))
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one obtains

HS : H4
ét(Y1(N)3,S [r](r + 2))→ H1(Q, WN,r).

If we let d : Y1(N) → Y1(N)3 be the diagonal embedding, then there is a natural

isomorphism d⋆ S [r]
∼= S r of smooth sheaves on Y1(N)ét. As d is an embedding of

codimension 2, there is a pushforward map:

d⋆ : H0
ét(Y1(N),S r(r))→ H4

ét(Y1(N)3,S r(r + 2)),

and we define the class

(HS ◦ d⋆)(DetrN) ∈ H1(Q, WN,r).

A result of Nekovář-Nizio l (see [NN16, Thm 5.9]) then tells us that this class is un-

ramified at all primes different from p and is geometric at p, i.e. lands in H1
g (Q,WN,r)

where WN,r = WN,r⊗Qp (see the definition of H1
g in equation (4.3.0.1) below, see more

in [BSV21, Prop 3.2]).

Dually, by the bilinear form det⋆ : Li(Zp) ⊗Zp Li(Zp) → Zp⊗ det−i defined by

det⋆(τ ⊗ σ) = τ ⊗ σ((x1y2 − x2y1)i) that becomes perfect after inverting p, we can

define an isomorphism of GL2(Zp)−modules:

si : Si(Qp) ∼= Li(Qp)⊗ deti, i.e. si : S i(Qp) ∼= L i(Qp)⊗ deti (2.5.0.4)

by the equivalence of categories. We then similarly define the sheaves L r on Y1(N)

and L [r] on Y1(N)3. Set

VN,r := H3
ét(Y1(N)3Q̄,L [r](2− r)) and VN,r = VN,r ⊗Qp . (2.5.0.5)

Let sr = sr1 ⊗ sr2 ⊗ sr3 , which gives an isomorphism: WN,r → VN,r. Finally, we
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arrive at the following geometric class

(sr⋆ ◦ HS ◦ d⋆)(DetrN) ∈ H1
g (Q, VN,r). (2.5.0.6)

Remark 2.5.1. Note that by [BSV21, Rem 3.3], going back and forth from Si(Qp)

to Li(Qp) introduced an extra factor that divides i!. Therefore, we can obtain an

integral class by multiplying with i! if necessary.

We record the following fact (see [BSV21, Prop 3.6]) that compare the generalised

Gross-Kudla-Schoen diagonal cycles ∆k,l,m (see the second paragraph of Section 1.4

for the idea of the construction, more details are in [DR14, Def 3.3]) with the class

we constructed above in equation (2.5.0.6).

Proposition 2.5.1. There exists a natural isomorphism that maps the p−adic Abel-

Jacobi image of (∆r1+2,r2+2,r3+2) to (HS ◦ d⋆)(DetrN) (up to sign).
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Chapter 3

Main theorems

3.1 Tame norm relation for weight (2, 2, 2)

In this section, we will construct cohomology classes using results from [BSV21] and

[LLZ15] recalled above, prove that they satisfy the norm relation, and obtain an

anticyclotomic Euler system.

Let f ∈ Sk(Γ0(Nf )), g ∈ Sl(Ng, χg), and h ∈ Sm(Nh, χh) be three newforms such

that χgχh = 1. Let L/K be a finite extension that contains the Fourier coefficients

of these newforms. Let N = lcm(Nf , Ng, Nh) and denote

Y (m) = Y (1, Nm) = Y1(Nm)

(i.e. level Γ1(mN)) for every positive integer m.

Let r = (r1, r2, r3) be a triple of non negative integers such that the balanced

condition holds. Denote:

L[r] = L 1,Nm,r1(Zp)⊗Zp L 1,Nm,r2(Zp)⊗Zp L 1,Nm,r3(Zp).
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We define a cohomology class:

κ1m,r ∈ H1(Q, H3
ét(Y (m)3Q̄,L [r])⊗Zp Qp(2− r)) (3.1.0.1)

which is the BSV class sr⋆ ◦HS◦d⋆(DetrNm) in Section 2.5. By Remark 2.5.1, the only

possible denominators of κ1m,r are divisors of w := (k−2)!(l−2)!(m−2)!. Multiplying

κ1m,r with pvp(w), we obtain an integral class, which is also denoted κ1m,r by an abuse

of notation.

Proposition 3.1.1. For a prime number q and a positive integer m, if (mq, pN) = 1

then

(pri⋆, prj⋆, prk⋆)κ
1
mq,r = (⋆)κ1m,r

where

(i, j, k) ⋆

(q, 1, 1) (q − 1)(Tq, 1, 1)

(1, q, 1) (q − 1)(1, Tq, 1)

(1, 1, q) (q − 1)(1, 1, Tq)

(1, q, q) qr−r1(q − 1)(T ′
q, 1, 1)

(q, 1, q) qr−r2(q − 1)(1, T ′
q, 1)

(q, q, 1) qr−r3(q − 1)(1, 1, T ′
q)

If (q,m) = 1 then we also have

(i, j, k) ⋆

(1, 1, 1) (q2 − 1)

(q, q, q) (q2 − 1)qr

Proof. See equation (174) and (176) in [BSV21].
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Define:

κ2m,r = (prm⋆, 1, 1)κ1m,r ∈ H1(Q, H3
ét(Y (1)× Y (m)2Q̄,L [r])⊗Zp Qp(2− r)) (3.1.0.2)

where prm⋆ is the composition of prei⋆, if we write the prime factorisation of m as∏
i ei.

We use the Künneth decomposition of H3
ét:

H3
ét(Y (1)× Y (m)2Q̄,L [r]) =

⊕
a+b+c=3H

a
ét(Y (1)Q̄,L r1)⊗Hb

ét(Y (m)Q̄,L r2)⊗Hc
ét(Y (m)Q̄,L r3),

(3.1.0.3)

cf. [Mil80, Chap VI, Thm 8.5] (note that we drop (1, Nm) in the notation of L ri).

Project the class κ2m,r to the H1
ét ⊗H1

ét ⊗H1
ét component and obtain:

κ3m,r ∈ H1(Q, H1
ét(Y (1)Q̄,L r1(1))⊗H1

ét(Y (m)Q̄,L r2(1))⊗H1
ét(Y (m)Q̄,L r3(1))(−1− r))

(3.1.0.4)

Set-up. Here are some notations and assumptions for this subsection:

1. f ∈ S2(Γ0(Nf )) is a newform.

2. K is an imaginary quadratic field.

3. ψ1, ψ2 are two Hecke characters over K, both of infinity type (−1, 0) with con-

ductors f1, f2 respectively. As recalled in Section 2.4.1, there are associated

theta series θψ1 ∈ S2(Nψ1 , χψ1) and θψ2 ∈ S2(Nψ2 , χψ2).

4. Assume that χψ1χψ2 = 1.

5. Let p ≥ 5 be a prime that splits in K and such that (p, f1f2) = 1, as in Section

2.4. Take L/K to be a finite extension, assumed to be large enough so that its

ring of integers contains the Fourier coefficients of f, θψ1 , θψ2 . Choose primes

P|p|p of L/K/Q respectively and let O ⊂ LP be its ring of integers.
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6. A newform F ∈ Sk(NF , χF ) will generate πF , an automorphic representation of

GL2(AQ). For any NF |N , denote Sk(N,χF )[πF ] to be the F−isotypic subspace

of Sk(N,χF ) attached to the automorphic representation πF . With a basis given

by {F (dz)}d|(N/NF ), this is a σ0(N/NF )−dimensional vector space with elements

being called test vectors.

We now combine our triplet (f, θψ1 , θψ2) with the constructions in Section 2.5.

Since f , θψ1 , θψ2 all have weight 2, we will take r = (0, 0, 0) .

Important choices. Fix a choice of test vectors:

f̌ ∈ S2(N)[f ], ǧ ∈ S2(N,χψ1)[θψ1 ], ȟ ∈ S2(N,χψ2)[θψ2 ]

and a choice of maps (recall Y (m) = Y1(lcm(Nf , Nψ1 , Nψ2)m)):

H1
ét(Y (1)Q̄,Zp(1))→ H1

ét(Y1(Nf )Q̄,Zp(1))

H1
ét(Y (m)Q̄,Zp(1))→ H1

ét(Y1(Nψ1m)Q̄,Zp(1))

H1
ét(Y (m)Q̄,Zp(1))→ H1

ét(Y1(Nψ2m)Q̄,Zp(1)).

Notation.

1. Let LK be the set of split primes l of K.

2. Given L a set of prime ideals of K, let N (L ) be the set of squarefree ideals m

of K which is generated by prime ideals of L i.e. m =
∏

i li and li ∈ L , such

that li ̸= lj, l̄j for all i ̸= j (i.e. pairwise distinct and conjugatedly distinct).

Let m ∈ N (LK) such that m = NormK/Q(m) is coprime to p. Let l ∈ LK be a

split prime of K such that l = NormK/Q(l) is coprime to pm. After tensoring with
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O, we can project κ3m,r in (3.1.0.4) to:

κ4f,ψ1,ψ2,m
∈ H1(Q, T∨

f ⊗H1
ét(Y1(Nψ1m)Q̄,Zp(1))⊗T′(Nψ1m) O[H(p)

m ]⊗

H1
ét(Y1(Nψ2m)Q̄,Zp(1))⊗T′(Nψ2m) O[H

(p)
m̄ ](−1)),

where in here we are using the ϕm, ϕm̄ maps and construction from Proposition 2.4.1

of Section 2.4.2 for the second and third pieces.

Remark 3.1.1. Notice that the numbering here changes from m to m, as we will

construct an ‘anticyclotomic’ Euler system. See more details in Section 4.3.

As (p, f1f2) = 1, condition (†) is satisfied for both ψ1, ψ2. We then use the

isomorphisms from Propositions 2.4.2:

vm : H1
ét(Y1(Nψ1m)Q̄,Zp(1))⊗T′(Nψ1m) O[H(p)

m ]
∼−→ IndQ

Kp
m
O(ψ−1

1P)

vm̄ : H1
ét(Y1(Nψ2m)Q̄,Zp(1))⊗T′(Nψ2m) O[H

(p)
m̄ ]

∼−→ IndQ
Kp

m̄
O(ψ−1

2P)

to obtain a class:

κ5f,ψ1,ψ2,m
∈ H1(Q, T∨

f ⊗O IndQ
Kp

m
O(ψ−1

1P)⊗O IndQ
Kp

m̄
O(ψ−1

2P)(−1)). (3.1.0.5)

We write IndQ
Kp

m
O(ψ−1

1P) = IndQ
KOψ−1

1P
[H

(p)
m ], the notation Oχ means the twisted by χ

1−dimensional Galois representation O(χ), and recall that H
(p)
m ≃ Gal(Kp

m/K) is the

largest p−quotient of the ray class group of K modulo m.

Since we assume that p ≥ 5, p will be coprime to |O×
K |. Given a positive integer n,

the ring class field of K of conductor n is the finite abelian extension K[n] of K such

that recK : K̂⋆/K⋆Q̂
⋆
Ô⋆n

∼−→ Gal(K[n]/K)
∼−→ Pic(On), where On = Z+nOK is the

order in OK of conductor n. Its Galois group, denoted H[n], is called the ring class

group of conductor n. Denote H[n](p) as the maximal p−power quotient of H[n], and

K[n](p) as the maximal p−extension inside the ring class field K[n].
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Furthermore, as m ∈ N (LK), its norm satisfies m = mm̄. Explicitly, we have

the following exact sequences (we will take the p−part ultimately) for the ring class

group:

O×
K

Z× →
(OK/mOK)×

(Z /mZ)×
→ H[m]→ H1 → 1,

and the ray class group:

1→ O×
K

O×
K ∩Km,1

→ (OK/mOK)× → Hm → H1 → 1.

Assumption 3.1.1. The prime p does not divide the class number of K, i.e. p ∤ |H1|.

Under this assumption, since (OK/mOK)× ∼= (OK/mOK)× × (OK/m̄OK)×, and

combine with the natural projections H
(p)
m ↠ H

(p)
m and H

(p)
m ↠ H

(p)
m̄ , we obtain an

isomorphism:

H(p)
m

∼−→ H(p)
m ×H

(p)
m̄ .

Theorem 3.1.2. For a prime p ≥ 5 that does not divide the class number of K, by

identifying H
(p)
m ×H(p)

m̄ with H
(p)
m as above, the following sequence is exact:

1→ (Z /mZ)×,(p)
∆−→ H(p)

m ×H
(p)
m̄

/∆−→ H[m](p) → 1

l
∆7−→ [l]× [l]

for a prime l such that (l,mp) = 1. If l = l̄l splits, the image of a prime ideal l in

the ray class groups H
(p)
m and H

(p)
m̄ will both be denoted [l]. Under quotienting by the

image of the diagonal ∆,

[l]× [l]
/∆7−→ Frobl

where now Frobl will be the Frobenius of l for the ring class field.
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Before applying this theorem, we make some remarks about the functorial prop-

erties of Galois and group cohomology [Mil]. If we have M , M ′ a G− and G′−module

respectively, together with compatible homomorphisms: a : G′ → G and b : M →M ′

in the sense that b(a(g′)◦m) = g′◦b(m), then one can define homomorphisms of com-

plexes of cochains and hence Hr(G,M) → Hr(G′,M ′) for any r ∈ Z≥0. In practice,

we use the following compatible pairs:

1. H ↪→ G a subgroup, and IndGH(M) → M where ϕ 7→ ϕ(1G), which induces the

Shapiro’s lemma isomorphism:

Hr(G, IndGH(M))
∼−→ Hr(H,M).

2. G
id−→ G the identity map, and M → IndGH(M): m 7→ ϕm where ϕm(g) = g ◦m,

which induces the restriction homomorphism:

Hr(G,M)

res
((

// Hr(G, IndGH(M))

∼
��

Hr(H,M)

where the vertical isomorphism is the Shapiro’s lemma.

3. G
id−→ G the identity map, and IndGH(M) → M : ϕ 7→

∑
σ∈Σ σ ◦ ϕ(σ−1) where

G =
⋃
σ∈Σ σH, which induces the corestriction homomorphism:

Hr(G, IndGH(M)) // Hr(G,M)

Hr(H,M)

∼

OO

cores

66

where the vertical isomorphism is the inverse of the Shapiro’s lemma morphism.

4. Given H � G, G → G/H is the natural projection, and MH ↪→ M is the
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inclusion, which induces the inflation homomorphism:

Hr(G/H,MH)
inf−→ Hr(G,M).

5. Given H2 ⊂ H1 both subgroups of G, we can define the map:

Norm : IndGH2
(M)→ IndGH1

(M)

where ϕ 7→ Norm(ϕ) with Norm(ϕ)(g) =
∑

σ∈H1/H2
σ ◦ ϕ(σ−1g). This map,

induced from the corestriction homomorphism above, makes the following dia-

gram commute:

Hr(G, IndGH2
(M))

Norm
��

∼ // Hr(H2,M)

cores

��

Hr(G, IndGH1
(M)) ∼ // Hr(H1,M)

(3.1.0.6)

We are now in the position to use the quotient map from Theorem 3.1.2 to define

the quotient:

IndQ
KOψ−1

1P
[H

(p)
m ]⊗O IndQ

KOψ−1
2P

[H
(p)
m̄ ]

ξ∆
++

ξ
// IndQ

KOψ−1
1Pψ

−1
2P

[H
(p)
m ×H(p)

m̄ ]

/∆

��

IndQ
KOψ−1

1Pψ
−1
2P

[H[m](p)],

(3.1.0.7)

where the horizontal map is f ⊗ g 7→ ξ(f ⊗ g) with ξ(f ⊗ g)(t) = f(t)⊗ g(t).

Lemma 3.1.3. The following diagram is commutative:

IndQKOψ−1
1P

[H
(p)
ml ]⊗O IndQKOψ−1

2P
[H

(p)

m̄̄l
]

⊗Normml
m Normm̄l̄

m̄
��

// IndQKOψ−1
1Pψ

−1
2P

[H[ml](p)]

Normmlm
��

IndQKOψ−1
1P

[H
(p)
m ]⊗O IndQKOψ−1

2P
[H

(p)
m̄ ] // IndQKOψ−1

1Pψ
−1
2P

[H[m](p)]

(3.1.0.8)
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where each of the Norm maps is a natural one, and the two horizontal maps are ξ∆,

the diagonal map in equation (3.1.0.7).

Proof. Under our assumptions, we first identify H
(p)
ml

∼−→ H
(p)
m l ×H

(p)

m̄̄l
. We also identify

H
(p)
ml /H

(p)
m

∼−→ H
(p)
m l /H

(p)
m × H(p)

m̄̄l
/H

(p)
m̄ , and H

(p)
ml /H

(p)
m (mod ∆)

∼−→ H[ml](p)/H[m](p).

Combining with the explicit natural norm map recalled in equation (3.1.0.6), one

obtains the result.

The image of the class κ5f,ψ1,ψ2,m
in (3.1.0.5) under the composition of (3.1.0.7)

gives us a class:

κ6f,ψ1,ψ2,m
∈ H1(Q, T∨

f ⊗O IndQ
KOψ−1

1Pψ
−1
2P

[H[m](p)](−1))

and by Shapiro’s lemma, we can rewrite the group cohomology:

κ6f,ψ1,ψ2,m
∈ H1(K[m](p), T∨

f (ψ−1
1Pψ

−1
2P)(−1)).

In the end, the diagram (3.1.0.8) from Lemma 3.1.3 implies that we have the

following commutative diagram:

H1(Q, T∨
f ⊗O IndQ

KOψ−1
1P

[H
(p)
ml ]⊗O IndQ

KOψ−1
2P

[H
(p)

m̄̄l
](−1))

⊗1⊗Normml
m Normm̄l̄

m̄
��

// H1(K[ml](p), T∨
f (ψ−1

1Pψ
−1
2P)(−1))

Normmlm
��

H1(Q, T∨
f ⊗O IndQ

KOψ−1
1P

[H
(p)
m ]⊗O IndQ

KOψ−1
2P

[H
(p)
m̄ ](−1)) // H1(K[m](p), T∨

f (ψ−1
1Pψ

−1
2P)(−1))

(3.1.0.9)

We define

H1(T∨
f , N

m
ψ1

(m), N m̄
ψ2

(m)) := H1(Q, T∨
f ⊗H1

ét(Y1(Nψ1m)Q̄,Zp(1))⊗T′(Nψ1m) O[H(p)
m ]

⊗H1
ét(Y1(Nψ2m)Q̄,Zp(1))⊗T′(Nψ2m) O[H

(p)
m̄ ](−1)).

Together with Proposition 2.4.2 (where Normml
m corresponds to Nml

m ), the diagram

46



(3.1.0.9) is just:

H1(T∨
f , N

ml
ψ1

(ml), N m̄̄l
ψ2

(ml))

⊗1⊗Nml
m N m̄l̄

m̄

��

// H1(K[ml](p), T∨
f (ψ−1

1Pψ
−1
2P)(−1))

Normmlm
��

H1(T∨
f , N

m
ψ1

(m), N m̄
ψ2

(m)) // H1(K[m](p), T∨
f (ψ−1

1Pψ
−1
2P)(−1))

(3.1.0.10)

Proposition 3.1.4. Let m ∈ N (LK) such that m = NormK/Q(m) is coprime to p.

Let l ∈ LK be a split prime of K such that l = NormK/Q(l) is coprime to pm. Assume

further that (ml,Np) = 1, then we have:

Normml
m (κ6f,ψ1,ψ2,m l) = (l − 1)

(
al(f)− ψ1(l)ψ2(l)

l
[l]× [l]− ψ1(̄l)ψ2(̄l)

l
[̄l]× [̄l]+

(1− l)ψ1(l)ψ2(̄l)

l2
[l]× [̄l]

)
(κ6f,ψ1,ψ2,m

) (3.1.0.11)

Proof. For simplicity, we will drop the subscripts f, ψ1, ψ2 and only keep track of the

numbering, m, and l. Tracing back the κi, we calculate:

(1⊗Nm l
m ⊗N m̄̄l

m̄ )(κ2ml) = (1⊗Nm l
m ⊗N m̄̄l

m̄ )(prml⋆, 1, 1)(κ1ml)

=(prm⋆, 1, 1)(prl⋆ ⊗Nm l
m ⊗N m̄̄l

m̄ )(κ1ml)

=(prm⋆, 1, 1)

(
prl⋆×(1⊗ pr1⋆ −

ψ1(l)[l]

l
⊗ prl⋆)× (1⊗ pr1⋆ −

ψ2(̄l)[̄l]

l
⊗ prl⋆)

)
(κ1ml)

=(prm⋆, 1, 1)

(
(prl⋆, pr1⋆, pr1⋆)−

ψ1(l)[l]

l
(prl⋆, prl⋆, pr1⋆)−

ψ2(̄l)[̄l]

l
(prl⋆, pr1⋆, prl⋆)

+
ψ1(l)ψ2(̄l)

l2
[l]× [̄l](prl⋆, prl⋆, prl⋆)

)
(κ1ml)

=̌(l − 1)(prm⋆, 1, 1)

(
(Tl, 1, 1)− ψ1(l)[l]

l
(1, 1, T ′

l )− (1, T ′
l , 1)

ψ2(̄l)[̄l]

l

+
ψ1(l)ψ2(̄l)

l2
[l]× [̄l](l + 1)

)
(κ1m)

=(l − 1)

(
(Tl, 1, 1)− ψ1(l)[l]

l
(1, 1, T ′

l )− (1, T ′
l , 1)

ψ2(̄l)[̄l]

l

+
ψ1(l)ψ2(̄l)

l2
[l]× [̄l](l + 1)

)
(κ2m)
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Here we use the table in Proposition 3.1.1 for =̌.

This implies that its image also satisfies:

(1⊗Nm l
m ⊗N m̄̄l

m̄ )(κ4m l)

=(l − 1)

(
(Tl, 1, 1)− ψ1(l)[l]

l
(1, 1, T ′

l )− (1, T ′
l , 1)

ψ2(̄l)[̄l]

l

+
ψ1(l)ψ2(̄l)

l2
[l]× [̄l](l + 1)

)
(κ4m)

=̃(l − 1)

(
al(f)− ψ1(l)[l]

l
(ψ2(l)[l] + ψ2(̄l)[̄l])− (ψ1(l)[l] + ψ1(̄l)[̄l])

ψ2(̄l)[̄l]

l

+
ψ1(l)ψ2(̄l)

l2
[l]× [̄l](l + 1)

)
(κ4m)

=(l − 1)

(
al(f)− ψ1(l)ψ2(l)

l
[l]× [l]− ψ1(̄l)ψ2(̄l)

l
[̄l]× [̄l]

+ (1− l)ψ1(l)ψ2(̄l)

l2
[l]× [̄l]

)
(κ4m),

where we use for the =̃, the fact that κ4 lands in an isotypical piece that can be

described by the map in Proposition 2.4.1. Now showing the norm relation for κ4 is

enough to conclude the proof thanks to the commutative diagram (3.1.0.10).

Remark 3.1.2. The (l−1) factor appears due to deg(µl)Tl = prl⋆◦pr⋆1, and deg(µl)T
′
l =

pr1⋆ ◦ pr⋆l , i.e. because of the µl degeneracy map. In the next subsection, we will get

rid of this extra factor.

Remark 3.1.3. We want to emphasize that this proposition is the key result for the

construction of our Euler system. Indeed, if we can get rid of (l − 1), the remaining

factor on the RHS of Proposition 3.1.4 can be massaged to be equal to the Euler

factor of the Galois representation Tf (ψ1ψ2)(2), giving the correct norm relation which

means that our class form an anticyclotomic Euler system.
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3.1.1 The fix

Follow the above remark, we attempt to get rid of of (l − 1) using some ideas from

[DR17, Sec 1.4].

Notation.

1. For this subsection, denote Y1(N, a) = Y (1, N(a)).

2. For a given prime l ̸= N and for i ∈ {1, l}, define the natural degeneracy maps:

Y1(Nl)
pri

%%

µl
��

Y1(N, l) πi
// Y1(N)

where µl is a cyclic Galois covering of degree l−1 and πi is a non-Galois covering

of degree l + 1.

3. Denote Dm = {(⟨d⟩, ⟨d⟩) : d ∈ (Z /NmZ)×, d ≡ 1 (mod N)}, the set of dia-

mond operators acting diagonally on Y1(Nm)2.

4. Let W1(Nm) = (Y1(Nm) × Y1(Nm))/Dm and denote by dm : Y1(Nm)2 →

W1(Nm) the natural projection map, which is an étale morphism of degree

ϕ(m).

One can obtain a class using the BSV class in (3.1.0.1):

κm ∈ H1(Q, H3
ét(Y1(N,m)×W1(Nm)Q̄,Zp)(2)) (3.1.1.1)

where we look at the case r = (0, 0, 0) such that

(µm⋆, dm⋆)κ
1
m,r = ϕ(m)κm. (3.1.1.2)
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Then for (m, q) = 1, as ϕ(m)(q − 1) = ϕ(mq), we have the following updated table,

which gets rid of the q − 1 factor in Proposition 3.1.1:

Proposition 3.1.5. For a prime number q and a positive integer m such that (m, q) =

1 and (mq, pN) = 1,

(πi⋆, prj⋆, prk⋆)κmq = (⋆)κm

where

(i, j, k) ⋆ (i, j, k) ⋆

(q, 1, 1) (Tq, 1, 1) (q, 1, q) (1, T ′
q, 1)

(1, q, 1) (1, Tq, 1) (q, q, 1) (1, 1, T ′
q)

(1, 1, q) (1, 1, Tq) (1, 1, 1) (q + 1)

(1, q, q) (T ′
q, 1, 1) (q, q, q) (q + 1)

Now we want to proceed as above to obtain the correct norm relation (i.e., without

the q−1 factor). This requires to be careful with the étale cohomology of Y1(N,m)×

W1(Nm).

We begin with the Hochschild-Serre spectral sequence:

Ep,q
2 = Hp(Dm, H

q
ét,c(Y1(N,m)× Y1(Nm)2Q̄,Zp))⇒ Hp+q

ét,c (Y1(N,m)×W1(Nm)Q̄,Zp).

This leads to an exact sequence:

E → H3
ét,c(Y1(N,m)×W1(Nm)Q̄,Zp)

(1,d⋆m)−−−→ E0,3
2

d0,32−−→ E2,2
2

where E is a canonical subquotient of E1,2
2 ⊕E

2,1
2 . From this, we see that the difference

between the two middle pieces are classes coming from Hq
ét,c(Y1(N,m)×Y1(Nm)2Q̄,Zp)

with q ≤ 2. From the Künneth decomposition here (see (3.1.0.3)), because of the

condition q ≤ 2 either H0
ét,c(Y1(N,m)Q̄,Zp) or H0

ét,c(Y1(Nm)Q̄,Zp) appears as one of

the factors. What we will do later is localizing at a non-Eisenstein maximal prime
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ideal I of T′
N , which will kill these factors, hence obtain an integral isomorphism of

H3
ét,c(Y1(N,m)×W1(Nm)Q̄,Zp)

(1,d⋆m)−−−→ E0,3
2 = H3

ét,c(Y1(N,m)× Y1(Nm)2Q̄,Zp))
Dm .

(3.1.1.3)

By Poincaré duality we also obtain a map:

H3
ét(Y1(N,m)×W1(Nm)Q̄,Zp)

(1,dm⋆)←−−−− H3
ét(Y1(N,m)× Y1(Nm)2Q̄,Zp))Dm , (3.1.1.4)

whose kernel and cokernel will also be annihilated by localization at (the dual of) the

ideal I.

The following lemma essentially tells us that by localizing at a non-Eisenstein

maximal ideal, there will be no difference between X1(N) and Y1(N), between H1

and H1
c .

Lemma 3.1.6. For I a non-Eisenstein maximal ideal of T′
N

H1
c (Y1(N)Q̄,Zp)I

∼−→ H1(X1(N)Q̄,Zp)I
∼−→ H1(Y1(N)Q̄,Zp)I (3.1.1.5)

Proof. The Manin-Drinfeld theorem tells us the existence of many primes l such that

(1+l−Tl) kills H1(∂X1(N)). The non-Eisenstein property tells us that we can choose

l such that (1 + l − Tl) /∈ I, which will be invertible after localizing at I.

We now recall more details from [LLZ15] besides those already recalled in Section

2.4.2. Firstly, for p ∤ m = mm̄, we have the composition map

T′
Nm

ϕm−→ OL[Hm]
aug−−→ OL → OL/P

and define Im to be its kernel. By [LLZ15, Prop 5.1.2], Im can be checked to be non-

Eisenstein (equivalently the associated residual representation is irreducible), ordinary
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and p−distinguished. At a later step, we will look at the following module

O[H(p)
m ]⊗T′(Nm)⊗Zp,ϕm H

1
ét(Y1(Nm)Q̄,Zp(1)),

and it is clear that the map from H1
ét(Y1(Nm)Q̄,Zp(1)) to this module factors through

completion at Im. One can choose an auxiliary prime l ∤ Nmp such that 1 + l −

al(F ) ∈ Z×
p and 1+l−Tl

1+l−al(F )
/∈ Im which annihilates H0

ét(Y1(Nm)Q̄,Zp(1)) and also

H2
ét(Y1(Nm)Q̄,Zp(1)) which fixes the F−isotypical piece that we are interested in.

These invertible elements after localization at Im will annihilate Hq
ét(Y1(N,m) ×

Y1(Nm)2Q̄,Zp) for q ≤ 2. We then use Lemma 3.1.6 to see that after localization

at non-Eisenstein maximal prime ideals, we acquire a map:

H3
ét(Y1(N,m)×W1(Nm)Q̄,Zp)

(1,d−1
m⋆)−−−−→ H1

ét(Y1(N,m)Q̄,Zp)⊗

H1
ét(Y1(Nm)Q̄,Zp)⊗Dm H1

ét(Y1(Nm)Q̄,Zp)).

Define: κ′m = (πm⋆, 1, 1)κm. One can adapt the notation, and mimic the construc-

tion of κim,r for our modified κ′m, beginning with equation (3.1.0.4) to Proposition

3.1.4. The key difference here is that the tensoring in equation (3.1.0.5) is over O,

while our class will land in:

H1(Q, T∨
f ⊗O IndQ

Kp
m
O(ψ−1

1P)⊗O[Dm] IndQ
Kp

m̄
O(ψ−1

2P)(−1)). (3.1.1.6)

Now, taking the Dm-coinvariant is compatible with the ξ∆ map because Dm lands in

its kernel. Indeed, for (⟨d⟩, ⟨d⟩) ∈ Dm, we have ϕm(⟨d⟩′) × ϕm̄(⟨d⟩′) = [d] × [d] ∈ ∆

(by Theorem 2.4.1 and 3.1.2). In the end, we arrive at a class:

κ′f,ψ1,ψ2,m
∈ H1(K[m](p), T∨

f (ψ−1
1Pψ

−1
2P)(−1)).
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Proposition 3.1.7. Let m ∈ N (LK) such that m = NormK/Q(m) is coprime to p.

Let l ∈ LK be a split prime of K such that l = NormK/Q(l) is coprime to pm. Assume

further that (ml,Np) = 1, then one has:

Normml
m (κ′f,ψ1,ψ2,m l) =

(
al(f)− ψ1(l)ψ2(l)

l
[l]× [l]− ψ1(̄l)ψ2(̄l)

l
[̄l]× [̄l]+

(1− l)ψ1(l)ψ2(̄l)

l2
[l]× [̄l]

)
(κ′f,ψ1,ψ2,m

) (3.1.1.7)

Proof. Same as Proposition 3.1.4, but instead of Proposition 3.1.1 we use Proposition

3.1.5.

Let Pl(X) = Pl(1−X ·Frobl|Tf (ψ1ψ2)(2)). Then we have the following congruence

of endomorphisms of H1(K[m](p), T∨
f (ψ−1

1Pψ
−1
2P)(−1)):

Pl(Frobl) =1− al(f)
ψ1ψ2(l)

l
Frobl +

(
ψ1ψ2(l)

l
Frobl

)2

≡̌
(
− al(f)

ψ1ψ2(l)

l
Frobl +

(
ψ1ψ2(l)

l
Frobl

)2

+
ψ1(l)ψ2(l)

l2
+

(l − 1)
ψ1(l)ψ2(̄l)

l2
[l]× [̄l] · ψ1(l)ψ2(l)

l
[l]× [l]

)
≡̃
(
− ψ1(l)ψ2(l)

l
[l]× [l]

)
Ql (mod l − 1)

where Ql is the factor in the RHS of equation (3.1.1.7). The congruence ≡̌ is due to

ψi(l) = lχψi(l) and χψ1χψ2 = 1. The congruence ≡̃ is because of Theorem 3.1.2, where

one has Frobl = [l]× [l] and FroblFrob̄l = 1 as an endomorphism of H1(K[m](p),−).

Combine this congruence with Lemma 9.6.1 from [Rub00] (which is about the way

to modify the Euler factor of a constructed cohomology class in order to obtain an

Euler system, given some congruent conditions), one obtains the following theorem:

Theorem 3.1.8. Let m ∈ N (LK) such that its norm m = NormK/Q(m) is coprime to

NfNψ1Nψ2p. Assume that H1(K[m](p), T∨
f (ψ−1

1Pψ
−1
2P)(−1)) is torsion-free for all such
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m. Then there exists a collection of classes:

zf,ψ1,ψ2,m ∈ H1(K[m](p), T∨
f (ψ−1

1Pψ
−1
2P)(−1))

such that given l ∈ LK a split prime of K satisfying (l, NfNψ1Nψ2pm) = 1, where

l = NormK/Q(l), one has the following norm relation:

Norm
K[ml](p)

K[m](p)
(zf,ψ1,ψ2,m l) = Pl(Frobl)(zf,ψ1,ψ2,m)

where Pl(X) = Pl(1−X · Frobl|Tf (ψ1ψ2)(2)).

Remark 3.1.4. We assume the torsion-freeness because we want to use Lemma 9.6.1

from Rubin, in order to get an equality for the norm relation, not just a congruence

modulo (l − 1). It will be satisfied if we have Tf being residually irreducible. Never-

theless, in practice, we only care about the p−power dividing l−1 (for the Kolyvagin

system’s argument) which means that we can drop the torsion-free condition.

3.2 Λ−adic tame norm relations for weights (k, l, 2)

In this section, we will generalise the construction in the previous one, from three

newforms to three Hida families along the anticyclotomic extension, hence obtaining

κ∞f,ψ1,ψ2,m
for more general weights. The machinery for doing this comes largely from

[ACR21, Sec 5] and [BSV21, Sec 4].

3.2.1 Hida families

We recall the notion of a Hida family.

Notation.

1. Let p be an odd prime.
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2. Let Λ = Zp[[1 + pZp]] be the completed group ring.

3. The formal spectrum of Λ: W = Spf(Λ) is known as the weight space. Explicitly,

for any extension L/Qp, W(L) = Homct(1 + pZp, L×).

4. An arithmetic point of W is an homomorphism νr,ϵ such that νr,ϵ : z 7→ ϵ(z)zr

where r ∈ Z≥0 and ϵ is a finite order character.

5. A classical point will be an arithmetic point with a trivial character ϵ, often

denoted νr = νr,1.

6. The weight of an arithmetic point νr,ϵ is k = r + 2.

7. We can generalise these notions to Λ′, a normal domain finite flat over Λ and

let the weight space be WΛ′ = Spf(Λ′). A point x ∈ WΛ′(Q̄p) is arithmetic or

classical if it lies above an arithmetic point νr,ϵ or a classical point νr ofW(Q̄p),

respectively. The weight of x is still k = r + 2.

Definition. For a positive integerN such that (N, p) = 1, an ordinary Hida family

of tame level N and character χ : (Z /MpZ)× → Q̄×
p is a formal q−expansion:

f =
∑
n≥1

an(f)qn ∈ Λf [[q]],

where Λf is a normal domain finite flat over Λ, such that for any arithmetic point

x ∈ WΛf
(Q̄p) lying over νr,ϵ, the power series

fx =
∑
n≥1

an(f)(x)qn ∈ Q̄p[[q]],

called the specialization at x, is the q−expansion of a p−ordinary cuspidal eigenform

in Sk(Mps, χϵω−r). Here s = max(1, ordp(cond(ϵ))). A Hida family f is primitive if

the specializations at arithmetic points are p−stabilized newforms, and is normalized

if a1(f) = 1.
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Definition/Proposition. Let f be a normalized primitive Hida family of tame level

N . For each arithmetic point x ∈ WΛf
(Q̄p), let fx be the newform that corresponds

to the specializations fx. There exists a locally-free rank two Λf −module Vf , called

the big Galois representation attached to f , coming with an action of GQ such

that the specialization Vf ⊗Λf ,x Q̄p recovers the GQ representation V ∨
fx

attached to fx.

If the specialization at one (equivalently at all) arithmetic point x ∈ WΛf
(Q̄p) of Vf is

residually irreducible (i.e. T∨
fx

is residually irreducible), then Vf is a free Λf module.

3.2.2 Continuous functions and distributions

The two sets T = Z×
p ×Zp and T ′ = pZp×Z×

p come with a right action of

Σ0(p) =

 Z×
p Zp

pZp Zp

 and Σ′
0(p) =

 Zp Zp

pZp Z×
p


respectively on row vectors. Let E/Qp be a finite extension, O its ring of integers,

and m the maximal ideal of O. Let Ct(Zp,O) be the space of continuous functions

from Zp to O. For a character ν : Z×
p → E, one can define the following O−modules

equipped with the m−adic topology:

Aν = {f : T → O s.t. f(1, z) ∈ Ct(Zp,O); f(a · t) = ν(a)f(t) ∀ a ∈ Z×
p , t ∈ T}

A′
ν = {f : T ′ → O s.t. f(pz, 1) ∈ Ct(Zp,O); f(a · t) = ν(a)f(t) ∀ a ∈ Z×

p , t ∈ T ′}.

The dual O−modules:

Dν = Homct(Aν ,O), and D′
ν = Homct(A′

ν ,O),

are equipped with the weak-∗ topology. The right action of Σ0(p) on T induces a left

(resp. right) Σ0(p) action on Aν (resp. Dν). We also have similar actions of Σ′
0(p) on
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T ′, A′
ν , and D′

ν .

3.2.3 Group cohomology and étale cohomology

Let N , m be positive integers such that N , m and p are coprime pairwise. Let

Y = Y (1, Nm(p)) and Γ = Γ(1, Nm(p)). Let E → Y be the universal elliptic curve

and denote by Cp the canonical cyclic p−subgroup of E . Let T be the relative p−adic

Tate module of E over Y . We fix a geometric point η : Spec(Q̄) → Y and define an

isomorphism:

Tη
∼= Zp⊕Zp

such that the Weil pairing on the left is identified with the determinant map on the

right, and the reduction mod p of (0, 1) generates Cp,η. Let G = πét
1 (Y, η). The

action of G on T yields an action of G on Zp⊕Zp, i.e. a continuous representation

ρ : G → GL2(Zp), where g · (x, y) = (x, y)ρ(g)−1. Since the action of G preserves

the canonical subgroup, ρ : G → Γ0(pZp) ⊂ GL2(Zp). Note that the anti-involution

γ → ιγ := det(γ)γ−1 on Γ0(pZp) allows us to consider the group action either as a

right or a left action.

For a topological group G, define Mf (G) as the category of finite G−sets of

p−power order. Let Mct(G) be the category of G−modules which are filtered unions

∪iMi such that Mi ∈ Mf (G). Let M(G) ⊂ Mct(G)N be the category of inverse

systems of objects in Mct(G). By taking the stalk at η, one has an equivalence of

categories between Sf (Yét), the category of locally constant constructible sheaves with

finite stalk of p−power order at η, and Mf (G). One can define S(Yét) similarly to

M(G), and hence obtain an equivalence of categories between M(G) and S(Yét). We

also have a functor M(Γ0(pZp)) → M(G) coming from ρ. We adopt the following

choice with regards to this functor: if F ∈M(Γ0(pZp)) is given as a left (respectively

right) Γ0(pZp)−module then we define the action of G via ρ (respectively ρ−1).

57



For an inverse system of sheaves F = (Fi)i∈N ∈ S(Yét), we denote by Hj
ét(Y,F)

the continuous étale cohomology defined by Jannsen. We also write:

H
j
ét(Y,F) = lim←−

i

Hj
ét(Y,Fi).

Similarly we can define the compactly supported cohomology groups Hj
ét,c(Y,F)

and H
j
ét,c(Y,F). Note that there is a natural surjective morphism Hj

ét(Y,F) →

H
j
ét(Y,F).

There is an isomorphism πét
1 (YQ̄, η) ∼= Γ̂, which induces the natural isomorphisms:

H1
ét(YQ̄,F) ∼= H1(Γ̂,F) ∼= H1(Γ,F) (3.2.3.1)

where F ∈Mf (G) is a discrete G−module, corresponding to F ∈ Sf (Yét).

Let F ∈ Mf (Γ0(pZp)) be a left Γ0(pZp)−module and assume that the Γ0(pZp)

action extends to a left action of Σ.
0(p). Let S = Σ.

0(p)∩GL2(Q) then the pair (Γ, S)

is a Hecke pair in the sense of Ash-Stevens [AS86a, Sec 1.1]. There is also a covariant

(left) action of D(Γ, S) the Hecke algebra on H1(Γ,F) (notated H (Γ, S) in [AS86a,

Sec 1.1]). Denote for each g ∈ S, T (g) = ΓgΓ ∈ D(Γ, S). Define for positive integers

n and a, where (a, p) = 1, the Hecke operators [GS93, Sec 1]:

Tn = T


1 0

0 n


 , T ′

n = T


n 0

0 1


 , [a]p = [a]′p = T


a 0

0 a


 .

For each (b,N) = 1, choose βa ∈ Γ0(Npm) whose lower right entry is ≡ a (mod N),

and β′
a ∈ Γ0(Npm) whose its lower right entry is ≡ a−1 (mod N). Let

[a]N = T (βa), [a]′N = T (β′
a).

In order to specify the maps between different levels, let Y (m) = Y (1, Nm(p))

58



and let Γ(m) be the corresponding modular group. Fix a positive integer s and let

r = 1 + vp(s). Let ηs : Spec(Q̄)→ Y (ms) be a geometric point lying above the point

η fixed above. Choose an isomorphism Tηs
∼= Zp⊕Zp such that the Weil pairing on

the left is identified with the natural determinant map on the right, and the reduction

mod pr of (0, 1) generates the canonical subgroup Cpr,ηs . One can then compare the

group cohomology and the étale cohomology via the following commutative diagrams:

H1
ét(Y (ms)Q̄,F)

∼=
��

pr1⋆ // H1
ét(Y (m)Q̄,F)

∼=
��

H1
ét(Y (m)Q̄,F)

∼=
��

pr⋆1 // H1
ét(Y (ms)Q̄,F)

∼=
��

H1(Γ(ms),F) cor // H1(Γ(m),F) H1(Γ(m),F) res // H1(Γ(ms),F)

For us =

s 0

0 1

 ∈ Σ.
0(p), we have the following commutative diagram, and we

let pr2⋆ be the composition of maps in its lower line:

H1
ét(Y (ms)Q̄,F)

∼=
��

λs⋆ // H1
ét(Y (ms)Q̄, φ

⋆
s(F))

∼=
��

φs⋆
// H1

ét(Y (1(s), Nm(p))Q̄,F)

∼=
��

ν̃s⋆ // H1
ét(Y (m)Q̄,F)

∼=
��

H1(Γ(ms),F)
λs⋆ // H1(Γ(ms), φ⋆s(F))

φs⋆
// H1(Γ(1(s), Nm(p)),F) cor // H1(Γ(m),F)

Similarly for ls =

1 0

0 s

 ∈ Σ.
0(p), we have the following commutative diagram,

and we let pr⋆2 be the composition of maps in its lower line:

H1
ét(Y (m)Q̄,F)

∼=
��

ν̃⋆s // H1
ét(Y (1(s), Nm(p))Q̄,F)

∼=
��

φ⋆s // H1
ét(Y (ms)Q̄, φ

⋆
s(F))

∼=
��

λ⋆s // H1
ét(Y (ms)Q̄,F)

∼=
��

H1(Γ(m),F) res // H1(Γ(1(s), Nm(p)),F)
φ⋆s // H1(Γ(ms), φ⋆s(F))

λ⋆s // H1(Γ(ms),F)

In these diagrams:

1. φ⋆s(F) is F with the action of Γ0(p
r Zp) conjugated by us.

2. λs⋆ is induced by F → φ⋆s(F): c 7→ us · c.
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3. φs⋆ is induced from: Γ(1(s), Nm(p)) → Γ(1, Nm(ps)) → Γ(ms), γ 7→ u−1
s γus;

and φ⋆s(F)→ F , c 7→ c.

4. λ⋆s is induced from φ⋆s(F)→ F : c→ ls · c.

5. φ⋆s is induced by: Γ(ms)→ Γ(1(s), Nm(p)), γ → l−1
s γls; F → φ⋆s(F), c 7→ c.

It can be shown that deg(µq)Tq = pr1⋆ ◦ pr⋆2 and deg(µq)T
′
q = pr2⋆ ◦ pr⋆1, i.e. under

(3.2.3.1) the covariant (left) action of Tq, T
′
q on the étale cohomology corresponds

to the covariant action of Tq, T
′
q on the group cohomology respectively. Similar

correspondences hold for ⟨d⟩, ⟨d⟩′ and [d]N , [d]′N . Now the anti-involution ι turns a

left (resp. right) action of Σ0(p) into a right (resp. left) action of Σ′
0(p), i.e. for any

F ∈ M(Γ0(pZp)) whose right action of Γ0(pZp) extends to a right action of Σ.
0(p)

there is an isomorphism:

H1
ét(YQ̄,F) ∼= H1(Γ,F).

The contravariant (right) actions of Tq, T
′
q, ⟨d⟩, ⟨d⟩′ on the H1

ét(YQ̄,F) correspond to

the contravariant actions of Tq, T
′
q, [d]N , [d]′N on the H1(Γ,F).

Denote

P (Zp) =


a b

0 1

 ∈ GL2(Zp)

 , P ′(Zp) =


 1 0

pc d

 ∈ GL2(Zp)

 .

As Γ0(pZp) acts transitively on T ′ and P (Zp) is the stabilizer of (0, 1), we can identify

T ′ with P (Zp)\Γ0(pZp). Similarly we can identify T with P ′(Zp)\Γ0(pZp). Let

Γ1(p
j Zp) =


a b

c d

 ∈ GL2(Zp) s.t. c ≡ 0 (mod pj), d ≡ 1 (mod pj)


Γ′
1(p

j Zp) =


 a b

pc d

 ∈ GL2(Zp) s.t. a ≡ 1 (mod pj), b ≡ 0 (mod pj−1)
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for any j ∈ Z≥1.

For any i ∈ Z≥1, we define the following left O[Σ.
0(p)]-modules:

A′
ν,i,j =

f : Γ1(p
j Zp)\Γ0(pZp)→ O/mi s.t.

f(a · γ) = ν(a) · f(γ), ∀a ∈ Z×
p ,

and γ ∈ Γ1(p
j Zp)\Γ0(pZp)

 ,

Aν,i,j =

f : Γ′
1(p

j Zp)\Γ0(pZp)→ O/mi s.t.
f(a · γ) = ν(a) · f(γ), ∀a ∈ Z×

p ,

and γ ∈ Γ′
1(p

j Zp)\Γ0(pZp)

 .

Let A.ν,i = lim−→j
A.ν,i,j and A.ν = lim←−iA

.
ν,i. Denote by A.

ν ∈ S(Yét) the object cor-

responding to {A.ν,i}i ∈ M(Γ0(pZp)). Define the right O[Σ.
0(p)]−modules D.ν,i =

HomO(A.ν,i,i,O/mi) and D.ν = lim←−iD
.
ν,i. Denote by D.

ν ∈ S(Yét) the object corre-

sponding to {D.ν,i ∈M(Γ0(pZp))}i. There are natural morphisms of O−modules:

H1
ét(YQ̄,A.

ν)→ H1ét(YQ̄,A.
ν)
∼= H1(Γ,A.ν)

H1
ét(YQ̄,D.

ν)→ H1ét(YQ̄,D.
ν)
∼= H1(Γ,D.ν)

H1
ét,c(YQ̄,D.

ν)
∼= H1ét,c(YQ̄,D.

ν)
∼= H1

c (Γ,D.ν)

which are Hecke equivariant, where Hj
c (Γ,−) = Hj−1(Γ,HomZ(Div0(P1(Q)),−)).

These isomorphisms allow us to define continuous Galois actions on the group co-

homology.

For a character χ : Z×
p → O×, let O(χ) be the module O with an action χ ◦det of

Γ0(pZp). The natural G−equivariant map A.ν ⊗O D.ν → O gives a Galois equivariant

cup-product pairing:

H1(Γ,A.ν)⊗O H
1
c (Γ,D.ν)→ O(−1) (3.2.3.2)

under which the covariant Hecke action on the left is adjoint to the same operators

acting contravariantly on the right. Let det : T ′ × T → Z×
p where ((a, b), (c, d)) 7→
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ad − bc and detν = ν ◦ det. Evaluation at this function gives a G−equivariant map

D′
ν ⊗Dν → O(−ν) and hence induces a Galois equivariant cup-product pairing:

H1(Γ,D′
ν)⊗O H

1
c (Γ,Dν)→ O(ν)(−1), (3.2.3.3)

where ν = ν ◦ ϵcyc : GQ → O×, under which the contravariant Hecke operators (e.g.

Tq) on the left are adjoint to the contravariant Hecke operators (e.g. T ′
q) on the right

and vice versa.

3.2.4 Ordinary cohomology

For any Zp−algebra B, denote by Sr(B) the set of homogeneous polynomials of

degree r in B[x, y]. We let Σ.
0(p) act on the left Sr(B) by: (g · P )(x, y) = P ((x, y) ·

g). Corresponding to the p−adic Γ0(pZp)−representation Sr = Sr(Zp) is a locally

constant p−adic sheaf S r on Yét (see (2.1.3.1)). There is then the following Hecke

equivariant isomorphism:

H1
ét(YQ̄,S r) ∼= H1(Γ, Sr)

with the Hecke operators acting covariantly on both sides. Via this isomorphism, we

define a Galois action on the group cohomology.

Dually, let Lr(B) = HomB(Sr(B), B) and let Σ.
0(p) act on the right of Lr(B) by:

(H · γ)(P (x, y)) = H(γ · P (x, y)) where H ∈ Lr(B), γ ∈ Σ.
0(p) and P ∈ Sr(B). Cor-

responding to the p−adic Γ0(pZp)−representation Lr = Lr(Zp) is a locally constant

p−adic sheaf L r on Yét (see (2.1.3.1)), and there is a Hecke equivariant isomorphism:

H1
ét(YQ̄,L r) ∼= H1(Γ, Lr)

with the Hecke operators acting contravariantly on both sides. Using this, we can

define a Galois action on the group cohomology.
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The evaluation map Sr ⊗ Lr → Zp is Γ0(pZp)−equivariant and induces a Galois

equivariant pairing:

H1(Γ, Sr)⊗Zp H
1
c (Γ, Lr)→ Zp(−1) (3.2.4.1)

which becomes perfect after inverting p. Here the covariant Hecke operators on the

left are adjoint to the contravariant Hecke operator on the right.

Denote by νr : Z×
p → Z×

p the character where z 7→ zr. Evaluation at (x1y2 −

x2y1)
r ∈ Sr ⊗ Sr defines a Γ0(pZp)−equivariant map Lr ⊗ Lr → Zp(−νr), and hence

induces a Galois equivariant pairing:

H1(Γ, Lr)⊗H1
c (Γ, Lr)→ Zp(r − 1) (3.2.4.2)

which becomes perfect after inverting p. Here the contravariant Hecke operators (e.g.

Tq) on the left are adjoint to the contravariant Hecke operators (e.g. T ′
q) on the right.

From (3.2.4.1) and (3.2.4.2), one can define a Galois equivariant morphism:

sr⋆ : H1(Γ, Sr(Qp))→ H1(Γ, Lr(Qp))(−r) (3.2.4.3)

which intertwines the covariant Hecke operators on the left (e.g. Tq) with the con-

travariant Hecke operators (e.g. T ′
q) on the right. Notice that one can also define sr⋆

directly via Sr(Qp) ∼= Lr(Qp)(νr) (see equation 2.5.0.4): the denominators appeared

are bounded by r!, i.e. sr⋆(im(H1(Γ, Sr) → H1(Γ, Sr(Qp)))) ⊂ im((H1(Γ, Lr) →

H1(Γ, Lr(Qp))))/r!, by Remark 3.3 in [BSV21].

By viewing two variable polynomials as functions on T . we obtain a morphism

of left Zp[Σ.
0(p)]−modules : Sr → A.νr . Dually, we also have a morphism of right

Zp[Σ.
0(p)]−modules: D.νr → Lr. These induce Hecke and Galois equivariant mor-

phisms:

H1(Γ, Sr)→ H1(Γ,A.νr), H1(Γ,D.νr)→ H1(Γ, Lr)
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By applying Hida’s (anti-)ordinary projector e.ord := limn→∞(T .p)
n!, these morphisms

become isomorphisms:

e.ordH
1(Γ, Sr) ∼= e.ordH

1(Γ,A.νr), e.ordH
1(Γ,D.νr) ∼= e.ordH

1(Γ, Lr)

Note that the pairings (3.2.4.1) and (3.2.4.2) correspond to the pairings (3.2.3.2) and

(3.2.3.3) respectively under these isomorphisms.

3.2.5 Λ−adic Poincaré pairing

For d ∈ (Z /Npr Z)× such that d ≡ a (mod N) and d ≡ b (mod pr), the diamond

operator ⟨d⟩ will be written as ⟨a; b⟩. We write ϵN : GQ → (Z /N Z)× for the mod N

cyclotomic character (factoring through Gal(Q(ζN)/Q)). Define for each s ∈ Z≥1:

Gs = 1 + p(Z /ps Z) ⊂ Γs := (Z /ps Z)×

together with its Zp−coefficients associated group rings:

Λs = Zp[Gs] ↪→ Λ̃s = Zp[Γs], Λ = lim←−
s

Λs = Zp[[1 + pZp]] ↪→ Λ̃ = lim←−
s

Λ̃s = Zp[[Z×
p ]].

For each i ∈ (Z /(p− 1)Z), define idemopotents:

ei =
1

p− 1

∑
ζ∈µp−1

ζ−i[ζ] ∈ Λ̃.

Let

κi : Z×
p → Λ×, κi(z) = ωi(z)[⟨z⟩], (3.2.5.1)

and κi = κi ◦ ϵcyc : GQ → Λ×.
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Dropping the 1 and N , we put X(psm) = X(1, Npsm) and let:

H1
ét(X∞(m)Q̄,Zp) = lim←−

s

H1
ét(X(psm)Q̄,Zp).

There is a natural action of Λ̃s and Λ̃ on the cohomology with the group element [α]

acting as the diamond operator ⟨1;α⟩′.

Following [DR17, Sec 1], we fix a norm-compatible collection {ζps}s≥1 of primitive

roots of unity of p−power order, and then similarly define Atkin-Lehner automor-

phisms ωps and ω for the curve X(psm). These actions satisfy the following relation:

ωσps = ⟨1; ϵcyc(σ)⟩ωps , ωσ = ⟨ϵN(σ); 1⟩ω, for σ ∈ GQ,

and we let them act on cohomology via pullback.

The Galois equivariant pairing:

⟨., .⟩Gs : eiH
1
ét(X(psm)Q̄,Zp)× e−iH1

ét(X(psm)Q̄,Zp)→ Λs(−1)

⟨θ, δ⟩Gs 7→
∑
σ∈Gs

⟨θσ, δ⟩σ−1,

where ⟨., .⟩Gs on the left hand side is the natural Poincaré pairing, is linear in the first

and anti-linear in the second argument. The modifying pairing

[θ, δ]Gs = ⟨θ, ωωpr · (T ′
p)
r · δ⟩Gs

is Galois equivariant and Λs−linear in both its arguments:

[., .]Gs : eiH
1
ét(X(psm)Q̄,Zp)× eiH1

ét(X(psm)Q̄,Zp)(⟨ϵ−1
N ; 1⟩′)→ Λs(κi)(−1).

The pairing [., .]Gs are compatible with the pr1⋆ map in the sense that the following
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diagram commutes:

eiH
1
ét(X(ps+1m)Q̄,Zp)× eiH1

ét(X(ps+1m)Q̄,Zp)(⟨ϵ−1
N ; 1⟩′)

pr1⋆×pr1⋆
��

[,]Gs+1
// Λs+1(κi)(−1)

��

eiH
1
ét(X(psm)Q̄,Zp)× eiH1

ét(X(psm)Q̄,Zp)(⟨ϵ−1
N ; 1⟩′)

[,]Gs // Λs(κi)(−1)

Taking the inverse limits, this yields a perfect Galois-equivariant Λ−adic pairing:

eiH
1
ét(X∞(m)Q̄,Zp)ord × eiH1

ét(X∞(m)Q̄,Zp)ord(⟨ϵ−1
N ; 1⟩′)→ Λs(κi)(−1) (3.2.5.2)

where H1(−)ord = e′ordH
1(−). The Hecke operators are all self-adjoint under this

pairing.

3.2.6 The big Galois representation

We upgrade the constructions in the previous Sections 3.2.3 and 3.2.4, from O-

modules to Λ−modules.

Let mΛ be the maximal ideal of Λ. Let Ct(Zp,Λ) be the space of continuous

functions from Zp to Λ. Let κ be one of the κi : Z×
p → Λ× (so κ(z) = ωi(z)[⟨z⟩]).

Define the following Λ−modules equipped with the mΛ−adic topology:

A′
κ = {f : T ′ → Λ s.t. f(pz, 1) ∈ Ct(Zp,Λ); f(a · t) = ν(a)f(t) ∀ a ∈ Z×

p , t ∈ T ′}.

Similarly we define its Λ−dual: D′
κ = Homct(A′

κ,Λ). These are also Λ[Σ0(p)
′]-

modules.

For any i, j ∈ Z≥1, we define the following left Λ[Σ′
0(p)]-modules:

A′
κ,i,j =

f : Γ1(p
j Zp)\Γ0(pZp)→ Λ /mi

Λ s.t.
f(a · γ) = κ(a) · f(γ), ∀ a ∈ Z×

p

and γ ∈ Γ1(p
j Zp)\Γ0(pZp)

 ,
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Let A′
κ,i = lim−→j

A′
κ,i,j and A′

κ = lim←−iA
′
κ,i. Let A′

κ ∈ S(Yét) be the object cor-

responding to {A′
κ,i}i ∈ M(Γ0(pZp)). Define the right Λ[Σ′

0(p)]-modules D′
κ,i =

HomΛ(A′
κ,i,i,Λ /m

i
Λ) and D′

κ = lim←−iD
′
κ,i. The object D′

κ ∈ S(Yét) corresponds to

{D′
κ,i ∈M(Γ0(pZp))}i.

There are natural morphisms of Λ−modules:

H1
ét(YQ̄,A′

κ)→ H1ét(YQ̄,A′
κ)
∼= H1(Γ,A′

κ),

H1
ét(YQ̄,D′

κ)→ H1ét(YQ̄,D′
κ)
∼= H1(Γ,D′

κ),

H1
ét,c(YQ̄,D′

κ)
∼= H1ét,c(YQ̄,D′

κ)
∼= H1

c (Γ,D′
κ),

which are Hecke equivariant. These isomorphisms allow us to define continuous Galois

actions on the group cohomology. The natural G−equivariant map A′
κ ⊗ D′

κ → Λ

gives a Galois equivariant cup-product pairing:

H1(Γ,A′
κ)⊗Λ H

1
c (Γ,D′

κ)→ Λ(−1) (3.2.6.1)

under which the covariant actions of Hecke operators on the left are adjoint to the

same operators acting contravariantly on the right.

Recall the notation Γ = Γ(1, Nm(p)). Let S = Σ′
0(p) ∩ GL2(Q) and for r ∈ Z≥1

define:

Σ′
1(p

r) =

 Zp Zp

pr Zp 1 + pr Zp

 , Sr = Σ′
1(p

r) ∩GL2(Q), Γr = Γ(1, Nm(pr)).

We say that the Hecke pair (Γr, Sr) is compatible to the Hecke pair (Γs, Ss) [AS86a,

Sec 1.1] if (Γr, Sr) ⊂ (Γs, Ss), Sr Γs = Ss and Γs ∩S−1
r Sr = Γr (note the changing

left-right conventions). If Γr has finite index in Γs then for any Sr−module M we
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define the induction, equipped with a right action of Ss:

IndΓs
Γr
M = {ϕ : Γs →M s.t. ϕ(xy) = ϕ(y)x−1 ∀ x ∈ Γr, y ∈ Γs}

(ϕ · g)(x) =
∑

γ∈Γr \Γ∩Srxg−1

ϕ(γ)γgx−1,∀ ϕ ∈ IndΓs
Γr
M, g ∈ Sr.

Note that by definition, the Hecke pair (Γr, Sr) is compatible to the Hecke pair (Γs, Ss)

if r ≥ s and also to the Hecke pair (Γ, S). Let

A′
κ,s =

f : Γ1(p
s Zp)\Γ0(pZp)→ Λs s.t.

f(a · γ) = κ(a) · f(γ), ∀a ∈ Z×
p ,

and γ ∈ Γ1(p
s Zp)\Γ0(pZp)

 ,

and D′
κ,r = Hom(A′

κ,r,Λr). One obtains D′
κ = lim←−rD

′
κ,r.

Let Sr act trivially on Zp, and consider the right Zp[S1]−module IndΓ1
Γr
Zp. The

map

IndΓ1
Γr
Zp → D′

κ,r : ϕ 7→ [f 7→
∑

r∈Γr \Γ1

ϕ(r)f(r)]

is an isomorphism of right Zp[S1]−modules, hence induces the natural isomorphisms:

H1(Γ1,D′
κ)
∼= lim←−

r

H1(Γ1, D
′
κ,r)
∼= lim←−

r

H1(Γr,Zp),

which are Hecke equivariant (following [AS86a], both corestriction and the Shapiro

map commute with the action of (Γ, S) via restriction of Hecke algebras).

Denote

H1
ét(Y∞(m)Q̄,Zp) = lim←−

r

H1
ét(Y (1, Nprm)Q̄,Zp),

where the inverse limit is with respect to pr1⋆. Then

H1(Γ1,D′
κ)
∼= H1

ét(Y∞(m)Q̄,Zp) (3.2.6.2)
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where we use: lim←−rH
1
ét(Y (1, Npr(m))Q̄,Zp) ∼= lim←−rH

1(Γr,Zp) (one needs to choose

a compatible system of geometric points for Y (1, Npr(m)) and suitably compatible

bases for the corresponding Tate modules). Here, the contravariant Hecke operators

(e.g. T ′
q, [d]′N , [a]′p) on the left correspond to the contravariant Hecke operators (e.g.

T ′
q, ⟨d; 1⟩′, ⟨1; a⟩′) on the right (defined via the compatibility with pr1⋆). Since κ = κi,

the restriction maps yield a Hecke equivariant isomorphism:

H1(Γ,D′
κ)
∼= eiH

1(Γ1,D′
κ)

i.e. one obtains from (3.2.6.2):

H1(Γ,D′
κ)
∼= eiH

1
ét(Y∞(m)Q̄,Zp) (3.2.6.3)

and also

H1
c (Γ,D′

κ)
∼= eiH

1
ét,c(Y∞(m)Q̄,Zp) (3.2.6.4)

using [AS86b, Prop 4.2].

3.2.7 Proof of the Λ−adic tame norm relations

Following [ACR21, Sec 6] we adopt the constructions in [BSV21, Sec 8], which applies

to three Hida families f , g, and h. Then we specialize to f a newform, g a CM Hida

family, and h a CM form attached to a Hecke character of infinity type (−1, 0).

We first recall the set-up:

Set-up.

1. k, l ≥ 2 are positive even integers.

2. f ∈ Sk(Γ0(Nf )) is a newform, ordinary at p.

3. K is an imaginary quadratic field.

69



4. ψ1, ψ2 are two Hecke characters over K of infinity type (1 − l, 0), (−1, 0) with

conductors f1, f2 respectively. As recalled in Section 2.4.1, one can associate

with ψ1 and ψ2 two theta series θψ1 ∈ Sl(Nψ1 , χψ1) and θψ2 ∈ S2(Nψ2 , χψ2).

5. We do not need to assume that ψ1 and ψ2 satisfy condtion (†) because p will

be chosen to be coprime with f1f2.

6. We assume that χψ1χψ2 = 1.

7. N = lcm(Nf , Nψ1 , Nψ2).

8. p ≥ 5, is a prime such that p = pp̄ splits in K and (p, hKf1f2) = 1, as in Section

2.4. Let L/K be a finite extension, large enough so that its ring of integers

contains the Fourier coefficients of f, θψ1 , θψ2 . Fix primes P|p|p of L/K/Q

respectively and let O ⊂ LP be its ring of integers.

9. Γp is the unique Zp extension of K unramified outside p. Following [BL18,

Sec 3], denoted by ψ0 the unique Hecke character of infinity type (−1, 0) of

conductor p whose p−adic avatar factors through Γp. Then ψ1 can be written

uniquely as αψl−1
0 where α is a ray class character of conductor dividing f1p

(using the fact that the quotient of these two characters has finite p−power

order with conductor dividing p and that p ∤ hK).

10. Hf1p∞ is the maximal pro−p quotient of the ray class group of K of conductor

f1p
∞. Let [a] be the image of a in Hf1p∞ under the geometric Artin map. Note

that p ∤ hK implies that Hf1p∞
∼= H

(p)
f1
× Γp.

The formal q−expansion [LLZ15, Sec 6.2]

Θ =
∑

(a,f1p=1)

[a]qNK/Q(a) ∈ O[[Hf1p∞ ]][[q]]
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can be specialized to

g =
∑

(a,f1p=1)

α(a)ψ0(a)[a]qNK/Q(a) ∈ O[[Γp]][[q]] =: Λg[[q]].

Under the identification of Γp with Γ = 1 + pZp (via Γ ∼= O(1)
K,p → Γp: s 7→

artp(s)
−1), one can view g as a primitive Hida family passing through the ordinary

p−stabilization of θψ1 . Explicitly, for a general Hecke character ψ = αψk0−1
0 such that

ψ((m)) = mk0−1χ(m) for all integers (m,NK/Q(f)) = 1, one has χ = αω1−k0 and

gk0 =
∑

(a,f1p=1)

α(a)ψk0−1
0 (a)qNK/Q(a) ∈ Sord

k0
(Nψp, αω

1−k0ϵK).

Let χQ be the adelic character attached to χ, χK = χQ ◦NK/Q, and ψ⋆ = χ−1
K ψ. Note

that the Hida family g⋆ attached to ψ⋆ (defined similar as above) is just g ⊗ χ−1.

Let (r1, r2, r3) = (k − 2, l − 2, 0). Let κ = κr2 and choose the square root κ1/2 of

this character defined by κ1/2(s) = ω(s)r2/2[⟨u⟩1/2]. Following [BSV21, Sec 8.1], we

obtain a class

κ0m ∈ H0
ét(Y (1, Nm(p)),Ar1 ⊗A′

κ ⊗A0(−κ1/2 − νr1/2))

by specializing the Hida families f and h to f , θψ2 respectively (note the change

from working with modules of locally analytic functions in [BSV21] to working with

modules of continuous function in [ACR21]). Following the notation of [BSV21], we

define:

κ1m = (eord ⊗ e′ord ⊗ eord) ◦ K ◦ HS ◦ d⋆(Detfghm ) ∈ H1(Q, H1(Y (1, Nm(p)),Ar1)ord⊗

H1(Y (1, Nm(p)),A′
κ)

ord ⊗H1(Y (1, Nm(p)),A0)
ord(κ1/2 + 2 + r1/2))

where κ1/2 = κ1/2◦ϵcyc, and K comes from the Künneth decomposition (see definitions
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of HS and d⋆ in Section 2.5).

Proposition 3.2.1. For a prime number q and a positive integer m if (mq, pN) = 1

then

(pri⋆, prj⋆, prk⋆)κ
1
mq = (⋆)κ1m

where

(i, j, k) ⋆

(q, 1, 1) (q − 1)(T ′
q, 1, 1)

(1, q, 1) (q − 1)(1, T ′
q, 1)

(1, 1, q) (q − 1)(1, 1, T ′
q)

(1, q, q) (q − 1)q−r1/2κ1/2(q)(Tq, 1, 1)

(q, 1, q) (q − 1)κ−1/2(q)qr1/2(1, Tq, 1)

(q, q, 1) (q − 1)κ1/2(q)qr1/2(1, 1, Tq)

If we also have that (q,m) = 1 then

(i, j, k) ⋆

(1, 1, 1) (q2 − 1)

(q, q, q) (q2 − 1)qr1/2κ1/2(q)

Proof. See equations (174) and (176) in [BSV21].

3.2.8 Another fix

This subsection will largely follow Section 3.1.1 in order to get rid of the unwanted

factor (q − 1) in Proposition 3.2.1. The pairings in (3.2.6.1) and (3.2.6.4) induce a

map:

H1(Γ(1, Nm(p)),A′
κ)→ HomΛ(H1

c (Γ(1, Nmp),D′
κ),Λ)(−1)

∼= HomΛ(er2H
1
ét,c(Y∞(Nm)Q̄,Zp),Λ)(−1).

72



By localizing at the p−ordinary maximal ideal In of T′(1, Nmp∞)ord corresponding

to the Hida family g⋆ (using condition (†)), one can go back and forth between coho-

mology of the open and closed curves, and étale cohomology and étale cohomology

with compact support:

H1
ét,c(Y∞,Zp)ord

In
∼= H1

ét,c(X∞,Zp)ord
In
∼= H1

ét(Y∞,Zp)ord
In (3.2.8.1)

(see Lemma 3.1.6). Note that this choice is compatible with taking the inverse limit

of the map

ϕm̄,r : T(1, Nψ1mp
r)′ord → O[H

(p)
m̄pr ]

attached to αψ0χ
−1
K (see Proposition 2.4.1) to get:

ϕm̄,∞ : T(1, Nψ1mp
∞)′ord → O[Hm̄p∞ ] = O[H

(p)
m̄ ]⊗O[[Γp]].

Combining with the pairings (3.2.5.2) and (3.2.6.1), one obtains a morphism:

Mg⋆ : H1(Γ(1, Nm(p)),A′
κ)

ord → er2H
1
ét(Y∞(Nm)Q̄,Zp)ord

In (⟨ϵ−1
N ; 1⟩′)(−κ)

which is Galois equivariant, where the covariant action of T ′
q, [d]′N , [a]′p on the left

corresponding to the contravariant action of T ′
q, ⟨d; 1⟩′, ⟨1; a⟩′ on the right.

Following Section 3.1.1, we obtain our amended class: ϕ(m)κ2m = (µm⋆, dm⋆)κ
1
m

where

κ2m ∈ H1(Q, H1(Y (1, N(p)),Ar1)ord⊗

H1(Y (1, Nm(p)),A′
κ)

ord ⊗O[Dm] H
1(Y (1, Nm(p)),A0)

ord(κ1/2 + 2 + r1/2)).

(3.2.8.2)

We also have a parallel lemma with Lemma 3.2.1, but getting rid of the (q−1) factor
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as expected, similar to Lemma 3.1.5.

Important choices. Fix a choice of level N test vector ǧ for g and let :

f̌ ∈ Sk(N,χf )[f ], ǧ⋆ = ǧ ⊗ χ−1, ȟ ∈ S2(N,χψ2)[θψ2 ].

Fix also choices of maps (recall Y (m) = Y (1, lcm(Nf , Nψ1 , Nψ2)m):

H1
ét(Y (1, N(p))Q̄,Lr1(1))

µ⋆p−→ H1
ét(Y1(Np)Q̄,Lr1(1))→ H1

ét(Y1(Nf )Q̄,Lr1(1)),

H1
ét(Y∞(Nm)Q̄,Zp(1))ord → H1

ét(Y∞(Nψ1m)Q̄,Zp(1))ord,

H1
ét(Y (1, Nm(p))Q̄,Zp(1))

µ⋆p−→ H1
ét(Y (1, Nmp)Q̄,Zp(1))→ H1

ét(Y (1, Nψ2m)Q̄,Zp(1)),

which are compatible with f̌ , ǧ⋆, and ȟ.

Let m ∈ N (LK) such that m = NormK/Q(m) is coprime to p. Let l ∈ LK be a

split prime of K such that l = NormK/Q(l) is coprime to pm. Assume further that

(ml,Np) = 1. After tensoring with O, we can project (3.2.8) to:

κ3m ∈ H1(Q, T∨
f ⊗H1

ét(Y∞(Nψ1m)Q̄,Zp(1))(⟨ϵ
−1
N ; 1⟩′)(−κ−1/2)⊗ϕm̄,∞ O[H

(p)
m̄ ]⊗O O[[Γp]]

⊗O[Dm] H
1
ét(Y (1, Nψ2m)Q̄,Zp(1))⊗T′(1,Nψ2m) O[H

(p)
m ](−k/2)). (3.2.8.3)

Using the geometric normalised Artin map, we identify Γ− = Gal(K−
∞/K) with the

anti-diagonal in (1 + pZp)× (1 + pZp) ≃ O(1)
K,p ×O

(1)
K,p̄ and define:

κac : Γ− → Z×
p where ((1 + p)−1/2, (1 + p)1/2) 7→ (1 + p)

κac : Γ− → Λ× where ((1 + p)−1/2, (1 + p)1/2) 7→ [(1 + p)].
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We then obtain a Galois equivariant isomorphism of ΛO[H
(p)
m̄ ]−modules:

H1
ét(Y∞(Nψ1m)Q̄,Zp(1))(⟨ϵ−1

N ; 1⟩′)(−κ−1/2)⊗ϕm̄,∞ O[H
(p)
m̄ ]⊗O O[[Γp]]

∼= IndQ
Kp

m̄
ΛO(ψ−1

1Pκ
r2/2
ac κ−1/2

ac )(−r2/2),

see [ACR21, Eq 6.4]. Combining with the map:

vm : H1
ét(Y (1, Nψ2m)Q̄,Zp(1))⊗T′(1,Nψ2m) O[H(p)

m ]
∼−→ IndQ

Kp
m
O(ψ−1

2P)

and using the ξ∆ map from equation (3.1.0.7) as in Section 3.1, we arrive at a class:

κ4m ∈ H1(Q, T∨
f (−k/2)⊗ IndQ

K[m](p)
ΛO(ψ−1

1Pψ
−1
2Pκ

r2/2
ac κ−1/2

ac )(−r2/2)).

Using Shapiro’s lemma, we rewrite the cohomology group as:

κ4m ∈ H1(K[m](p), T∨
f (−k/2)⊗ ΛO(ψ−1

1Pψ
−1
2Pκ

r2/2
ac κ−1/2

ac )(−r2/2)). (3.2.8.4)

Definition. For any L−valued GK representation V with a Galois stable O−lattice

T , the Iwasawa cohomology is defined as

H1
Iw(K[mp∞], T ) = lim←−

r

H1(K[mpr](p), T )

that lies in

H1
Iw(K[mp∞], V ) = H1

Iw(K[mp∞], T )⊗ L,

where the inverse limit is taken with respect to the corestriction maps.

Under this notation,

κ4m ∈ H1
Iw(K[mp∞], T∨

f (1− k/2)χ12Pκ
r2/2
ac )
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where χ12 = ψ−1
1 ψ−1

2 N−r2/2−1 is an anticyclotomic Hecke character of infinity type

(l/2,−l/2). We are now in the position to state the ‘Λ−adic tame norm’ relations:

Theorem 3.2.2. Let m ∈ N (LK) such that its norm m = NormK/Q(m) is coprime

to NfNψ1Nψ2p. Assume that H1(K[mpr], T∨
f (1−k/2)χ12Pκ

r2/2
ac ) is torsion-free for all

such m and r ≥ 0. Then there exists a collection of classes:

κ∞f,ψ1,ψ2,m
∈ H1

Iw(K[mp∞], T∨
f (1− k/2)χ12P)

such that given l ∈ LK a split prime of K satisfying (l, NfNψ1Nψ2pm) = 1, where

l = NormK/Q(l), one has the following norm relation:

Norm
K[ml](p)

K[m](p)
(κ∞f,ψ1,ψ2,m l) = Pl(Frobl)(κ

∞
f,ψ1,ψ2,m

)

where Pl(X) = Pl(1−X · Frobl|Tf (ψ1ψ2)((k + l)/2)).

Proof. Similar to what we did in the proof of Theorem 3.1.8, using the fact that the

morphism Mg⋆ interchanges the degeneracy maps pr1⋆ and prl⋆, one obtains the result

but for T∨
f (1− k/2)χ12Pκ

r2/2
ac . Now we use the twisting result of Rubin (see [Rub00,

Thm 6.3.5]) to finish the proof.
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Chapter 4

Triple product p−adic L−functions

and Selmer groups

4.1 Triple product p−adic L−functions

We start with three primitive Hida families f , g, h of tame level Nf , Ng, Nh with

character χf , χg, χh and coefficients in Λf , Λg, Λh respectively, such that χfχgχh = ωa

for some even integer a. For our application we want g and h to pass through

the ordinary p−stabilizations of θψ1 and θψ2 at some arithmetic points y0 and z0

respectively.

We may assume that Λf is a finite flat extension of ΛO and consider only the

arithmetic points of WΛf
(Q̄p) lying in Homct,O(Λf , Q̄p). Moreover, despite the fact

that Λg and Λh might not be regular, we can still consider the Λ−adic families g and

h coming from embedding Λg and Λh into the rings of functions of suitable wide open

connected subsets Ug and Uh of W(Q̄p) defined over some finite extension L (with O

its ring of integers) of Qp containing y0 and z0 respectively. We denote these rings

also by Λg and Λh. They are non-canonically isomorphic to O[[T ]] (so regular). The

prime ideal generated by l − l in Λg corresponding to the point y0 and similarly for
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(m−m) in Λh with the point z0.

Define κf and κ
1/2
f to be the composition Z×

p

κr1−−→ Λ× ↪→ Λ×
f and the fixed

choice of square root κ
1/2
r1 , respectively, as in equation (3.2.5.1). Define κg h(u) =

ω(u)l+m−4⟨u⟩l+m−4 as a character Z×
p → (Λg ⊗̂Λh)× (recall u = ω(u)⟨u⟩) and also

choose its square root κ
1/2
g h . Denote Λf g h = Λf ⊗̂Λg ⊗̂Λh and consider the self-dual

Galois Λf g h−module:

V†
f g h := Vf ⊗̂Vg⊗̂Vh(Ξf g h) where Ξf g h = ϵ−1

cycκ
−1/2
f κ

−1/2
g h

where Vϕ is the big Galois representation attached to ϕ for ϕ ∈ {f ,g,h}. Its ‘spe-

cialization’ as a Λf −module:

V†
f gh := Vf ⊗ Tg⊗Th(Ξf gh) where Ξf gh = ϵ(2−l−m)/2

cyc κ
−1/2
f

is also Galois self-dual.

Definition.

1. Given a triple of integers (a, b, c),

(a, b, c) is called



balanced if a+ b > c, b+ c > a, c+ a > b,

f -unbalanced if a ≥ b+ c,

g-unbalanced if b ≥ a+ c,

h-unbalanced if c ≥ a+ b.

Moreover, ϕ-unbalanced for ϕ ∈ {f, g, h} is also called unbalanced.

2. Given a set Σ ⊂ Z3, Σ is called balanced if all of its elements are balanced.

Similarly, we have the same definition for unbalanced, f -, g-, and h-unbalanced

set.
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For each choice of a triple of test vectors (f̆ , ğ, h̆) for (f ,g,h) of level N , Harris-

Tilouine [HT01] (for N=1) and Darmon-Rotger [DR17] construct a triple product

p−adic L−function:

Lfp(f̆ , ğ, h̆) ∈ Frac(Λf )⊗̂Λg ⊗̂Λh

that interpolates the square root of the central critical values

L(fk ⊗ gl ⊗ hm, c) = L(V†,∨
fkglhm

(1), 0),

where c = (k+ l+m− 2)/2 given that k ≥ l+m (i.e. f -unbalanced) (see the explicit

definition of the LHS in [DR14, Sec 4.1]).

Subsequently, Hsieh [Hsi21] constructed an explicit choice of test vector for which

Lfp(f̆ , ğ, h̆) ∈ Λf ⊗̂Λg ⊗̂Λh

and satisfies a precise and simpler interpolation formula in the same range k ≥ l+m

(i.e. f -unbalanced).

Assumption 4.1.1. (‡)

1. gcd(Nf , Ng, Nh) is squarefree, (imposed for the local Rankin-Selberg calcula-

tion).

2. There is a triple of arithmetic points with weights (k, l,m) such that the local

sign ϵq(V†
fk gl hm

) = 1 for all primes q|N . Because the local sign at infinity

depends on whether the weights are balanced or unbalanced, this condition

implies that ϵ(V†
fk gl hm

) equals to 1 in the unbalanced range and −1 in the

balanced range.

3. There is a classical point k such that Vfk is residually absolutely irreducible

and p−distinguished. This implies the Gorenstein property of the local ring
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Λf by Mazur-Wiles [MW86, Sec 9, Prop 2] and Wiles [Wil95]. Hida [Hid88]

then proved that the congruence module of f is isomorphic to Λf /(ζ) for some

nonzero ζ ∈ Λf , (ζ) is normally called the congruence ideal of f .

The following theorem is Theorem A in [Hsi21]. The p−adic L−function con-

structed there is unique up to a choice of generator ζ of the congruence ideal of f .

Nevertheless, the ratio by ζ is a genuine p−adic L−function.

Theorem 4.1.1. Under the assumption (‡), there exists a choice of a triple of test

vector (f̆ , ğ, h̆) for (f ,g,h) of level N and an element Lfp(f̆ , ğ, h̆) ∈ Λf ⊗̂Λg ⊗̂Λh

such that for all triples of f−unbalanced arithmetic points (k, l,m), Lf,ζp satisfies the

following interpolation property:

Lf,ζp (f̆ , ğ, h̆)2(k, l,m) = Ck,l,m
L(V†

fk gl hm
, 0))

π2k−4(f#k , f
#
k )Nf

where Ck,l,m is an explicit nonzero constant depending on {p, fk, gl, hm}, f#k is the

newform associated to the p−stabilized form fk, and (, )Nf
is the Peterson inner prod-

uct.

Recall that we will choose g and h to pass through the ordinary p−stabilizations

of θψ1 and θψ2 at some arithmetic points y0 and z0 respectively. We can specialize

Theorem 4.1.1 to obtain the existence of test vectors (f̆ , ğ, h̆) for (f , g, h) of level N

and an element

Lf,ζp (f̆ , ğ, h̆) ∈ Λf

such that its square Lfp(f , g, h) = Lf,ζp (f̆ , ğ, h̆)2 interpolates L(V†
fk gh

, 0). Even though

Lf,ζp depends on the choice of ζ, the principal ideal it generates in Λf will be indepen-

dent of that choice.
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4.2 The reciprocity law

For ϕ ∈ {f ,g,h}, assume that the Galois representation attached to ϕ is residually

absolutely irreducible and p−distinguished (for the definition, see [Hsi21, p. 415]).

Restricting to GQp , Vϕ admits a filtration:

0→ V+
ϕ → Vϕ → V−

ϕ → 0

where V±
ϕ is free of rank one over Λϕ. The Frobenius acts on V−

ϕ as multiplication by

ap(ϕ). One obtains the following filtration of GQp−stable of Λf g h−modules:

0 ⊂ F 3V†
f g h ⊂ F 2V†

f g h ⊂ F 1V†
f g h ⊂ V†

f g h,

where

F 3V†
f g h = V+

f ⊗̂V+
g ⊗̂V+

h (Ξf g h)

F 2V†
f g h = (V+

f ⊗̂V+
g ⊗̂Vh +V+

f ⊗̂Vg ⊗̂V+
h +Vf ⊗̂V+

g ⊗̂V+
h )(Ξf g h)

F 1V†
f g h = (V+

f ⊗̂Vg ⊗̂Vh +Vf ⊗̂V+
g ⊗̂Vh +Vf ⊗̂Vg ⊗̂V+

h )(Ξf g h).

If we also let

Vg h
f := V−

f ⊗̂V+
g ⊗̂V+

h ,

Vf h
g := V+

f ⊗̂V−
g ⊗̂V+

h ,

Vf g
h := V+

f ⊗̂V+
g ⊗̂V−

h ,

then

F 2V†
f g h /F 3V†

f g h
∼= Vg h

f ⊕Vf h
g ⊕Vf g

h . (4.2.0.1)

A similar notation will be used when we specialize to (f, g, h).
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Important choices. The class κ31 in (3.2.8.3) that corresponds to the choice of

level N test vectors given by Hsieh’s construction in Theorem 4.1.1, gives a class

κ(f , g, h) ∈ H1(Q,V†
f gh) by the augmentation map O[H

(p)
1 × H

(p)
1 ] → O (but as we

assume (p, hK) = 1, this map is constant). Corollary 8.2 in [BSV21] tells us that

resp(κ(f , g, h)) ∈ H1
bal(Qp,V

†
f gh) := im(H1(Qp,F

2V†
f gh)

i−→ H1(Qp,V
†
f gh)).

As i is an injection, we may view resp(κ(f , g, h)) ∈ H1(Qp,F
2V†

f gh).

Then the projection onto the first direct summand of (4.2.0.1) gives a a map:

projf : H1
bal(Qp,V

†
f gh)→ H1(Qp,V

gh
f ). (4.2.0.2)

Building on the work of Kings-Loeffler-Zerbes [KLZ17], Bertolini-Seveso-Venerucci

constructed a three-variable Perrin-Riou regulator map [BSV21, Sec 7.1] (see [ACR21,

Prop 7.3] for details)

Logζ : H1(Qp,V
gh
f )→ Λf

which is an injective Λf −module homomorphisms with pseudo-null cokernel such

that:

Theorem 4.2.1. (Explicit Reciprocity Law) One has the reciprocity law:

Logζ(projf (resp(κ(f , g, h)))) = Lfp(f̆ , ğ, h̆) (4.2.0.3)

Proof. This is the reciprocity law attached to the triple (f , g, h), which is Theorem A

in [BSV21].

82



4.3 Anticyclotomic Euler systems

We discuss the theory of anticyclotomic Euler systems together with applications

constructed by Jetchev-Nekovář-Skinner [JNS].

Set-up.

1. Fix an odd prime p.

2. Let K be an imaginary quadratic field. For an integral prime ideal m of K,

denote by K(m) the maximal p−subextension of the ray class field of conductor

m. For a positive integerm, denote byK[m] the maximal p−subextension of the

ring class field of conductor m. Denote by K−
∞ the anticyclotomic Zp−extension

of K.

3. Assume that p = pp̄ splits in K.

4. Let Φ/Qp be a finite extension and O be its ring of integers. Let ϖ ∈ O be a

uniformizer and denote by F = O/ϖO the residue field.

5. Let V be a finite dimensional representation of GK over Φ, unramified outside

a finite set of primes Σ (in practice we want V to be geometric), and let T ⊂ V

be a Galois stable O−lattice. Let A = V/T .

Assumption 4.3.1.

1. There exists a non-degenerate symmetric O−bilinear pairing: ⟨, ⟩ : T × T →

O(1) such that ⟨xσ, ycσc−1⟩ = ⟨x, y⟩σ for all x, y ∈ T , σ ∈ GK , where c ∈ GQ is

a complex conjugation. This implies that V c ∼= V ∨(1), where V c is the vector

space V but with g ∈ GK acting as cgc−1.

(a) Note that if the above pairing is perfect then we also have T c ∼= T∨(1).
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(b) For a finite extension M/K where M is c−stable with w a finite place of

M , denote w̄ = wc. Then we have local pairings (induced from ⟨, ⟩):

H1(Mw, V )×H1(Mw̄, V )→ Φ, and H1(Mw, T )×H1(Mw̄, T )→ O.

The isomorphism H1(Mw̄, V ) ∼= H1(Mw, V
c) (where GMw̄ → GMw : σ 7→

cσc and V → V c: x 7→ x) combined with V c ∼= V ∨(1) implies that

H1(Mw, V
∨(1)) ∼= H1(Mw̄, V ),

and the above local pairing is just the natural cup-product pairing.

2. (abs-irr): V is an absolutely irreducible GK−representation.

3. (res-irr): T̄ = T/ϖT is an absolutely irreducible GK−representation.

4. (per): The pairing ⟨, ⟩ : T × T → O(1) is perfect.

5. Hyp(σ): There exists σ ∈ GK such that:

(a) σ fixes K[1](µp∞)

(b) dimΦV/(σ − 1)V = 1

Note that this hypothesis can be deduced from the existence of an element

σ ∈ GK acting nontrivially and unipotently on V . In particular, verifying

this hypothesis relies on some ‘big image results’, which often hold in practice.

Hyp(σ) will then be used to show some finite Galois modules are free of rank 1

in the ‘Kolyvagin system argument’ (see more in [Rub00, Chap 5, Sec 2]).

6. Hyp(γ): There exists γ ∈ GK such that:

(a) γ fixes K[1](µp∞ ,O×,1/p∞
K )
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(b) V = (γ − 1)V (i.e. 1 is not an eigenvalue γ)

This hypothesis ensures the ‘rigidity’ of an anticyclotomic Euler system (see

[Rub00, Sec 9.1]). Specifically, the standard assumption that there exists a

Zp−extension ofK in which no finite prime splits completely cannot be satisfied

for the anticyclotomic extension K−
∞ (inert primes split completely in K−

∞).

7. Hyp(ζ): There exists ζ ∈ GK such that ζ acts on T̄ = T/ϖT as multiplication

by some scalar 1 ̸= aζ ∈ F×.

Definition. We assume that Hyp(σ) holds.

1. For each positive integer n, the set of split-σ Kolyvagin primes level n, denoted

L σ
n , is a collection of primes l ∈ Q such that:

(a) l ∤ 2p, and l splits in K such that l = l l̄.

(b) V is unramified at l and l̄.

(c) Frobl lies in the GK conjugacy class of σ in Gal(Ωn/K), where Tn =

T/ϖnT , Ωn = K[1]K(µpn)K(Tn), and K(Tn) denotes the smallest exten-

sion of K such that GK(Tn) acts trivially on Tn.

2. Denote L K,σ
n = {primes l of K such that l|l for some l ∈ L σ

n }.

3. For L a set of primes of K, we denote N (L ) = {a = pa11 . . . parr ⊂ OK , where

pi ∈ L , ai = 1 if pi ∤ p, and pi ̸= pj, p̄j}.

For each prime v ∈ {p, p̄} lying above p of K, we choose a GKv−stable O-

submodule F+
v (T ) of T and denote F−

v (T ) = T/F+
v (T ). Define: F+

v (V ) = F+
v (T )⊗O

Lp ⊂ V and F−
v (V ) = V/F+

v (V ). Let M/K be a c−stable finite extension. For each

place w of M , define the Greenberg Selmer group:

H1
Gr(M,V ) = ker

(
H1(M,V )→

∏
w

H1(Mw, V )

H1
Gr(Mw, V )

)
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where the local condition is defined as follow:

H1
Gr(Mw, V ) =


ker(H1(Mw, V )→ H1(Mur

w , V )) if w ∤ p

ker(H1(Mw, V )→ H1(Mw, F
−
p (V ))) if w| p

ker(H1(Mw, V )→ H1(Mw, F
−
p̄ (V ))) if w|p̄.

In addition, instead of H1
Gr(Mw, V ), we may choose the following local conditions for

w|p:

H1
g (Mw, V ) = ker(H1(Mw, V )→ H1(Mw, V ⊗BdR)) (4.3.0.1)

H1
f (Mw, V ) = ker(H1(Mw, V )→ H1(Mw, V ⊗Bcris)) (4.3.0.2)

and define the Bloch-Kato Selmer groups H1
g (M,V ) and H1

f (M,V ) with these new

conditions.

We can also define the Greenberg Selmer group for T and A = V/T by propagating

the local conditions as follows:

1. H1
Gr(Mw, T ) is the preimage of H1

Gr(Mw, V ) from the map H1(Mw, T )→ H1(Mw, V ).

2. H1
Gr(Mw, A) is the image of H1

Gr(Mw, V ) from the map H1(Mw, V )→ H1(Mw, A).

Assumption 4.3.2. (orth) For all squarefree integer m which is divisible by only

primes l ∈ L σ
n and all places w of K[m] above p, the local conditions H1

Gr(K[m]w, V )

and H1
Gr(K[m]w̄, V ) are orthogonal complements under the local pairing

H1(K[m]w, V )×H1(K[m]w̄, V )→ Φ.

Note that this holds for places away from p by [Rub00, Prop 1.4.2]. If (orth) holds,

H1
Gr(K[m]w, T ) and H1

Gr(K[m]w̄, T ) are also orthogonal complements (see [Rub00,

Prop B.2.4]).
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A special case (of interests) of the Greenberg Selmer group local condition at

v ∈ {p, p̄} is when

1. F+
v (V ) = 0, we call it the strict condition

2. F+
v (V ) = V , we call it the relaxed condition.

If the Greenberg Selmer group is defined by the relaxed and strict conditions at p

and p̄ respectively, i.e. F+
p (V ) = V and F+

p̄ (V ) = 0, then (orth) is automatic. We

call it the ‘relaxed-strict’ Greenberg Selmer groups.

4.3.1 The ‘relaxed-strict’ Greenberg Selmer groups

In this subsection, we show that the classes constructed in Section 3 do land in the

‘relaxed-strict’ Greenberg Selmer groups. We assume that Hyp(σ) holds and we are

in the Set-up of Section 3.2.7.

As recalled in Section 2.3.2, since f is p−ordinary, we have an exact sequence for

V ∨
f restricted to GQp :

0→ V ∨,+
f → V ∨

f → V ∨,−
f → 0 (4.3.1.1)

with dim(V ∨,±
f ) = 1 and the sub-representation V ∨,−

f is unramified. Since our con-

vention is that Qp(1) has HT weight −1, then the HT weight of V ∨,−
f is 0 and the

HT weight of V ∨,+
f is 1 − k. If χ is an algebraic Hecke character over K of infinity

type (a, b) then the HT weight of its p−adic avatar χP (see our convention in Section

2.4.1) is −a at p, and −b at p̄.

Denote by V = V ∨
f (1−k/2)(χ12P), where χ12 = ψ−1

1 ψ−1
2 N−l/2 is an anticyclotomic

Hecke character of infinity type (l/2,−l/2), V + = V ∨,+
f (1 − k/2)(χ12P) and V − =

V ∨,−
f (1− k/2)(χ12P). Beside the relaxed and the strict conditions, we can also define

the ordinary condition as follows:

F+
v (V ) = V + for v|p.
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Notation. Denote by H1
α,β the subgroup of H1(K,V ) where classes are unramified

at all primes v ∤ p and satisfy the conditions α, β at p and p̄ respectively, where

α, β ∈ {rel, str, ord}, and these conditions correspond to the relaxed, strict, and

ordinary condition respectively.

Lemma 4.3.1. The Bloch-Kato Selmer group satisfies

H1
f (K,V ) =


H1

rel,str(K,V ) if l ≥ k,

H1
ord,ord(K,V ) if k ≥ l + 2.

(4.3.1.2)

Proof. By using the following table of Hodge-Tate weights:

V + V −

HT weight

at p

−k−l
2

k−2−l
2

HT weight

at p̄

l−k
2

k+l−2
2

and looking at the Panchiskin condition ([Gre94], [BK07, Thm 4.1(ii)]), one obtains

the result (e.g. if l ≥ k, the HT weights of both V ± at p and p̄ are < 0 and ≥ 0

respectively).

Proposition 4.3.2. Let m ∈ N (L K,σ
1 ) such that m = NormK/Q(m) is coprime to

NfNψ1Nψ2p, then the class constructed in Theorem 3.1.8 satisfies:

zf,ψ1,ψ2,m ∈ H1
Gr(K[m], T∨

f (ψ−1
1Pψ

−1
2P)(−1)),

where the Greenberg Selmer group is defined by the relaxed and strict conditions at p

and p̄ respectively.

Proof. If w ∤ p, because V is conjugate self-dual, and pure of weight (−1) [Nek93, Sec

8.3], we have H0(K[m]w, V ) = 0 = H2(K[m]w, V
∨(1)) i.e. H2(K[m]w, V ) = 0. Hence
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H1(K[m]w, V ) = 0 by the local Euler characteristic formula.

If w|p, by [BSV21, Prop 3.2], the class κ1 is geometric at p, thus its restriction at

w lands in H1
g . The geometricity is preserved after taking the (direct sum) quotient

ξ∆. Moreover, H1
g equals to the Bloch-Kato subspace H1

f ([Nek93, Prop 1.24(2)]).

Because we are in the case k = l = 2, using Lemma 4.3.1, we have H1
f = H1

Gr.

Definition. The Iwasawa Greenberg Selmer group is defined as:

H1
Gr(K[mp∞], T ) = lim←−

r

H1
Gr(K[mpr], T )

that lies inside

H1
Gr(K[mp∞], V ) = H1

Gr(K[mp∞], T )⊗O L.

Proposition 4.3.3. Let m ∈ N (L K,σ
1 ) such that m = NormK/Q(m) is coprime to

NfNψ1Nψ2p, the class constructed in Theorem 3.2.2 satisfies:

κ∞f,ψ1,ψ2,m
∈ H1

Gr(K[mp∞], T∨
f (1− k/2)(χ12P))

where it is propagated from the relaxed condition at p and the strict condtion at p̄.

Proof. Similar to Proposition 4.3.2, one can show that the class vanishes at all

prime v ∤ p by showing that each layer H1(K[mpr]v, V ) vanishes. For v|p, by us-

ing that κ1m lands in the balanced Selmer group, our classes will land in the im-

age of H1
bal(Qp,V

†
fθψ1θψ2

) under the (direct sum) quotient ξ∆. Furthermore, the

reducibility of the restriction of V ∨
θψ

to the decomposition group GQp allows us to

write V ∨,+
θψ

= O(ψ−1) and V ∨,−
θψ

= O(ψ−c) for ψ ∈ {ψ1, ψ2}. Finally, we interpret

the ξ map as quotienting by the direct summand (V ∨
f ⊗ O(ψ−1

1 ) ⊗ O(ψ−c
2 ) ⊕ V ∨

f ⊗

O(ψ−c
1 ) ⊗ O(ψ−1

2 ))(1 − (k + l)/2), and we can show that the local condition at p is

V ∨
f (1− k/2)(χ12P) (i.e. relaxed) and the local condition at p̄ is 0 (i.e. strict).
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4.3.2 About split-σ Kolyvagin primes and the anticyclotomic

Euler system

For this subsection, in order to define an anticyclotomic Euler system, we will assume

that Hyp(σ) holds.

Notation. Given Li a set consisting of primes of K for i ∈ {1, 2}, we write L1⊃̇L2

if the natural density of (L2 \ (L2 ∩L1)) is 0.

Definition. (Euler system) Fix a choice of the Greenberg Selmer group. Let L

be a set consisting of primes of K such that L ⊃̇L K,σ
n for some n ≥ 1. A (split-

σ) anticyclotomic Euler system for (T,L ) (in the sense of Jetchev-Nekovář-Skinner)

[JNS] is a collection of cohomology classes c = {cm, where m ∈ N (L )} such that:

1. cm ∈ H1
Gr(K[m], T ), where m = NormK/Q(m)

2. For ml ∈ N (L ), where l is a prime of K with l = NormK/Q(l), we have the

following norm relation:

coresK[ml]/K[m](cm l) = Pl(Frob−1
l )cm (4.3.2.1)

where Pl(X) = det(1− Frob−1
l X|T∨(1)).

Remark 4.3.1. The asymmetry comes from L σ
n . In particular, for each l ∈ L σ

n , there

is only one prime λ|l of L K,σ
n such that Frobλ lies in the conjugacy class of σ in

Gal(Ωn/K).

Definition. Fix a choice of the Greenberg Selmer group and given a set L consisting

of primes of K such that L ⊃̇L K,σ
n for some n ≥ 1. A (split-σ) Λ−

K −adic anticyclo-

tomic Euler system for (T,L ) is a collection of cohomology classes c∞ = {cm,∞ ∈

H1
Gr(K[mp∞], T ), where m ∈ N (L ) and m = NormK/Q(m)} that satisfies the same
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norm relation (4.3.2.1). In this case, we have the following map (where γ is a topo-

logical generator of Λ−
K that maps to (1 + T ) under the isomorphism Λ−

K
∼−→ Zp[[T ]])

:

H1
Gr(K[mp∞], T ) = H1

Gr(K[m], T ⊗̂Λ−
K)

/(γ−1)−−−−→ H1
Gr(K[m], T )

where the first identification is by Shapiro’s Lemma, and we denote its composition as

projK[m]. Then cm := projK[m](cm,∞) ∈ H1
Gr(K[m], T ) forms a (split-σ) anticyclotomic

Euler system, and we say that c = {cm,m ∈ N (L )} extends along the anticyclotomic

Zp−extension.

The main contribution of this thesis is the following theorem:

Theorem 4.3.4. The classes constructed in Theorem 3.2.2

κ∞f,ψ1,ψ2,m
∈ H1

Gr(K[mp∞], T∨
f (1− k/2)χ12P)

form a Λ−
K −adic anticyclotomic Euler system for (T∨

f (1 − k/2)χ12,L
K,σ
1 ), where

χ12 = ψ−1
1 ψ−1

2 N−l/2 is an anticyclotomic of infinity type (l/2,−l/2).

Proof. By combining Theorem 3.2.2 and Proposition 4.3.3, we obtain the result.

Before finishing this section, we record two applications of [JNS].

Theorem 4.3.5. [JNS] Assume that p splits in K, that (abs-irr), Hyp(σ),Hyp(γ),

and (orth) hold. Let c be a Λ−adic anticyclotomic Euler system for (T,L ) that

extends along the anticyclotomic Zp−extension. If coresK[1]/Kc1 ̸= 0 then H1
Gr(K,T )

has O−rank one.

Notation. For a topological Zp−module M we denote its Pontrjagin dual

M⋆ = Homct(M,Qp /Zp)
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Under a stronger assumption, the machinery in [JNS] also gives us one divisibility

of the Iwasawa Main Conjecture without L−function (see more in [Ski, Sec 4.3]).

Theorem 4.3.6. [JNS] Assume that p splits in K, that (res-irr), (per), (orth) and

Hyp(ζ) hold. Let c be a Λ−
K −adic anticyclotomic Euler system for (T,L ) that extends

along the anticyclotomic Zp−extension. If c∞ = coresK[1]/Kc1,∞ ∈ H1
Gr(K

−
∞, T ) is not

Λ−
K −torsion then one has

rankΛ−
K

(X⋆) = rankΛ−
K

(H1
Gr(K

−
∞, T )) = 1, where X = H1

Gr(K
−
∞, T ⊗ Λ−

K
⋆
),

and the following divisibility of characteristic ideals:

charΛ−
K

(X⋆
tors) | charΛ

(
H1
Gr(K

−
∞, T )

Λ−
K c∞

)2

,

where X⋆
tors is the torsion part of X⋆ as an Λ−

K module.
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Chapter 5

Applications

5.1 Main applications

In this section, we present the proof of the main arithmetic applications of the Euler

system constructed. First we make precise the setup of our main applications.

Set-up.

1. Let K be an imaginary quadratic field.

2. Let p ≥ 5 be a prime.

3. Let k, l ≥ 2 be two positive even integers.

4. Let f ∈ Sk(Γ0(Nf )) be a newform, ordinary at p.

5. Let ψ1, ψ2 be two Hecke characters over K of infinity type (1 − l, 0), (−1, 0)

with conductor f1, f2 respectively. As recalled in Section 2.4.1, there are two

theta series θψ1 ∈ Sl(Nψ1 , χψ1) and θψ2 ∈ S2(Nψ2 , χψ2) associated with ψ1 and

ψ2. Assume that χψ1χψ2 = 1.

6. Let N = lcm(Nf , Nψ1 , Nψ2).
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7. We assume that p = pp̄ splits in K, and (p, hKf1f2) = 1 as in Section 2.4. Take

L/K to be a finite extension, and assume it to be large enough so that its ring

of integers contains the Fourier coefficients of f, θψ1 , θψ2 . Choose primes P|p|p

of L/K/Q respectively and let O ⊂ LP = Φ be its ring of integers.

8. Let χ12 = ψ−1
1 ψ−1

2 N−l/2. This is an anticyclotomic Hecke character of infinity

type (l/2,−l/2) of conductor dividing f1f2.

9. Note that since (p, hK) = 1, we have K[1] = K.

Theorem 5.1.1. (Rank 1 result) Let κf,χ12 = projK(κ∞f,ψ1,ψ2,1
) be the base class of

the Euler system in Theorem 4.3.4. Then we have

κf,χ12 ̸= 0 =⇒ dimΦH
1
Gr(K,V

∨
f (1− k/2)(χ12)) = 1

where we also assume that f is not of CM type. The Greenberg Selmer group local

condition will be the ‘relaxed-strict’ condition i.e. F+
p (V ) = V and F+

p̄ (V ) = 0.

Proof. The assumption that f is not CM implies the big image result ([Mom81],

[Rib85]), in other words the image of GK (open in GQ) inside Aut(V ∨
f )(1 − k/2) ∼=

GL2(LP) contains an open subgroup of GL2(Zp). This induces the irreducibility

(hence absolute irreducibility) over GK . Moreover, the image of Gal(K̄/Kab) is open

inside SL2(Zp) (as the derived subgroup), fixing χ12 hence containing a nontrivial

element σ =

1 a

0 1

. This implies that Hyp(σ) holds true (see more in [LLZ15, Sec

7.1]). The condition (orth) is automatic for the relaxed-strict condition. Now we

are in a position to apply the Jetchev-Nekovář-Skinner machinery (Theorem 4.3.5) to

our anticyclotomic Euler system in Theorem 4.3.4, which finishes the proof.
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Corollary 5.1.2. Assume the same conditions as in Theorem 5.1.1 and assume also

that l ≥ k . Then we have:

κf,χ12 ̸= 0 =⇒ dimΦH
1
f (K,V ∨

f (1− k/2)(χ12)) = 1

Proof. By using Lemma 4.3.1 and Theorem 5.1.1, we obtain the result.

5.1.1 The case k ≥ l + 2

Now we focus on the case when k ≥ l + 2 . Assume that f is not of CM type (i.e.

we can apply Theorem 5.1.1) and κf,χ12 ̸= 0. By Poitou-Tate global duality [Rub00,

Thm 1.7.3], one has the following exact hexagon:

H1
ord(Kp̄, V )

res∨p̄
// H1

str,rel(K,V
∨(1))∨

))

H1
rel,ord(K,V )

resp

''

resp̄
66

H1
str,ord(K,V ∨(1))∨

H1(Kp,V )

H1
ord(Kp,V )

res∨p
// H1

ord,ord(K,V ∨(1))∨

55

(5.1.1.1)

where V = V ∨
f (1 − k/2)(χ12). Here we use notations in Section 4.3.1. We also have

the following observations.

1. By Lemma 4.3.1, H1
ord,ord(K,V ) will be the Bloch-Kato Selmer group H1

f (K,V )

while H1
rel,str(K,V ) will be our Greenberg Selmer group H1

Gr(K,V ) that κf,χ12

lands in. Note that H1
ord(Kp̄, V ), H1(Kp,V )

H1
ord(Kp,V )

, and H1
rel,str(K,V ) (by Theorem

5.1.1) are all one-dimensional. Furthermore, as V is conjugate self-dual, we

have H1
str,rel(K,V

∨(1)) ∼= H1
str,rel(K,V

c) = H1
rel,str(K,V ), i.e. H1

str,rel(K,V
∨(1))∨

is also one-dimensional.
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2. Recall that we are assuming κf,χ12 ̸= 0. We have:

κf,χ12 ∈ H1
rel,str(K,V ) ↪→ H1

rel,ord(K,V ).

Firstly, we use the explicit reciprocity law to obtain the surjectivity of resp (as

its range is one-dimensional, and also the projection of the reciprocity law projf

in Theorem 4.1.1 maps to V ∨,−
f ). This implies that res∨p̄ is injective, i.e. an

isomorphism (as both of its range and domain are one-dimensional). Hence we

have H1
str,ord(K,V ∨(1))∨ = 0 by the exactness of the top sides of the hexagon

(5.1.1.1). Moreover, as res∨p = 0 (by the exactness at H1/H1
ord), we obtain

H1
ord,ord(K,V ∨(1))∨ = H1

str,ord(K,V ∨(1))∨ = 0.

This shows that H1
f (K,V ) = H1

ord,ord(K,V ) = 0. In the end, we arrive at:

κf,χ12 ̸= 0 =⇒ H1
f (K,V ∨

f (1− k/2)(χ12)) = 0. (5.1.1.2)

Note that in order to be able to apply the reciprocity law as well as the interpola-

tion property, we need the following conditions to hold. They are assumption 4.1.1,

which come from the Hsieh triple product p−adic L−function contruction that we

recalled in Section 4.1:

Assumption 5.1.1. (‡)

1. gcd(Nf , Ng, Nh) is squarefree. (for the local Rankin-Selberg calculation)

2. There is a triple of arithmetic point (k, l,m) such that the local root numbers

ϵq(V†
fk gl hm

) = 1 for all primes q|N .

3. The Galois representation attached to f is residually absolutely irreducible and

p−distinguished.
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Using the observations above, we obtain the following case of the Bloch-Kato

conjecture:

Theorem 5.1.3. (Rank 0 Bloch-Kato) Assume (‡). assume further that:

(a) (non-Heeg): For Nf = N+
f N

−
f where N+

f and N−
f are the products of split and

inert primes in K, respectively, N−
f is a squarefree product of an odd number of

(inert) primes.

(b) f is a newform of weight k ≥ 4

(c) (p large): p ≥ k + 2

(d) (Nf , DK) = 1 and p ∤ NfDK

Then for all anticyclotomic Hecke characters χ12 of infinity type (l/2,−l/2) such that

(pNfDK , cond(χ12)) = 1, (5.1.1.3)

we have

L(V ∨
f (1− k/2)(χ12), 0) ̸= 0 =⇒ H1

f (K,V ∨
f (1− k/2)(χ12)) = 0. (5.1.1.4)

Remark 5.1.1. Note that for conjugate self-dual representation V i.e. V ∨(1) ∼= V c,

one has L(V, 0) = L(V c, 0) = L(V ∨(1), 0) so we can write the Bloch-Kato conjecture

in this way. Also (non-Heeg) combining with L−value nonvanishing implies that

k ≥ l + 2 and ϵ(f, χ12) = 1.

Proof. The Hypothesis (non-Heeg) implies that f is not a CM form i.e. we can

apply our main theorem about Rank 1 (Theorem 5.1.1).

For χ12 an anticyclotomic character of infinity type (l/2,−l/2) with conductors
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satisfying (5.1.1.3), we want firstly the implication:

L(V ∨
f (1− k/2)(χ12), 0) ̸= 0 =⇒ L(V †

fθψ1θψ2
, 0) ̸= 0 (5.1.1.5)

Note that changing the pair (ψ1, ψ2) 7→ (ψ1χ, ψ2χ
−1) where χ is a ring class character

does not change χ12. Also the decomposition of the Galois representation V †
fθψ1θψ2

gives:

L(V †
fθψ1θψ2

, 0) = L(V ∨
f (1− k/2)(χ12), 0)L(V ∨

f (1− k/2)(ρ12), 0)

where ρ12 = ψ−1
1 ψ−c

2 N−l/2 an anticyclotomic Hecke character of infinity type (l/2 −

1, 1− l/2). Changing the pair (ψ1, ψ2) 7→ (ψ1χ, ψ2χ
−1) replaces ρ12 with ρ12 ·χ−2. We

will show that for any given ψ1, ψ2 there exists a ring class character χ such that

L(V ∨
f (1− k/2)(ρ12χ

−2), 0) ̸= 0. (5.1.1.6)

Indeed, such a χ exists (and will have q-power conductor where q is a prime not

dividing pNfDK) by Lemma 5.1.4 below and [CH18b, Thm 5.9] under the assumption

that:

1. (DK , N
−
f ) = 1 (which holds by (d)).

2. p ∤ NfDK , p ≥ k − 2 (holds by (d) and (p large)) and the p−adic Galois

representation attached to f is absolutely residually irreducible (holds by ‡(3)).

Choosing such a χ, i.e. (5.1.1.5) holds, and noting that (k, l, 2) lies in the f -

unbalanced range so we can use not only the reciprocity law (Theorem 4.2.1) but also

the interpolation property of the triple product p−adic L−function (Theorem 4.1.1).

Furthermore, we would want the implication:

L(V †
fθψ1θψ2

, 0) ̸= 0 =⇒ κf ,g,h ̸= 0 = κf,ρ12 ⊕ κf,χ12 =̌⇒ κf,χ12 ̸= 0 (5.1.1.7)
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Here, ρ12 = ψ−1
1 ψ−c

2 N−l/2, which is a Hecke character of infinity type (l/2−1, 1− l/2).

The Selmer group H1
Gr(K,V

†
fθψ1θψ2

) decomposes under V †
fθψ1θψ2

= V ∨
f (1− k/2)(ρ12)⊕

V ∨
f (1−k/2)(χ12) into H1

f (V ∨
f (1−k/2)(ρ12))⊕H1

Gr(V
∨
f (1−k/2)(χ12)) (check that the

local conditions at both p and p̄ for the first direct summand are V ∨,+
f (1−k/2)(ρ12P)),

and the classes κf,ρ12 , κf,χ12 are projections to the correspondingly summand. For the

=̌⇒ one would need κf,ρ12 = 0, which would follow from

H1
f (K,V ∨

f (1− k/2)(ρ12)) = 0,

i.e. the Bloch-Kato conjecture for V ∨
f (1− k/2)(ρ12) would need to hold.

However, because the projection projf in equation (4.2.0.2) maps to V ∨,−
f (ψ−1

1 ψ−1
2 ),

the image of κf ,g,h under projf will not see κf,ρ12 , i.e. we actually obtain the following

implication:

L(V †
fθψ1θψ2

, 0) ̸= 0 =⇒ projf (κf ,g,h) ̸= 0 =⇒ κf,χ12 ̸= 0. (5.1.1.8)

We finish the proof by using the observation (5.1.1.2) to obtain that (5.1.1.4) is true

for χ12 of infinity type (l/2,−l/2).

Lemma 5.1.4. Given ρ1 an anticyclotomic character over K of infinity type (a,−a)

and conductor f. There exists a prime q such that (q, pf) = 1, and a finite order GK

character χ such that

ρ1χ
−2 = ρν,

where ρ is anticyclotomic character over K of infinity type (a,−a) with conductor q,

and ν is a finite order anticyclotomic character of q−power conductor.

Proof. We first choose a prime q such that (q, pf) = 1, q = qq̄ splits in K, and

q ≡ 1 (mod 2|O×
K |). As there exists ψ0 a Hecke character of infinity type (1, 0)

and conductor q, if we denote ρ = (ψ0ψ
−c
0 )a then ρ is an anticyclotomic character
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of infinity type (a,−a) and conductor q. Let ψ = ρ1ρ
−1. Then ψ is a finite order

anticyclotomic character of conductor fq. Now as K is an imaginary quadratic field

(a finite order character of A×
K will be trivial on K×

∞), ψ will be a character of:

∏
λ/∈P O

×
λ ×

∏
λ∈P K

×
λ

O×
P

∼−→
A×
K,f

K× ,

where P is a finite set consisting of primes λ ∤ qf that generates the class group of

K, and O×
P is the set of P−units. Using this identification, we can construct a global

character χ such that it is anticyclotomic, its conductor divides fq, and χ2
λ = ψλ for

all λ|f (where we use 2|O×
K | divides q − 1 for the inclusions O×

K ↪→ O×
q ,O×

q̄ in order

to kill the image of O×
P ). In the end, if we denote by χ−2ρ1ρ

−1 = ν then ν is a finite

order anticyclotomic character of q−power conductor.

Remark 5.1.2. The case k = 2 and l = 0 was worked out by Bertolini-Darmon in

[BD05] and generalized by Longo-Vigni in [LV10], using the Euler system for CM

points on Shimura curves. Hence the restriction to k ≥ 4 is on the theorem.

Remark 5.1.3. The case k ≥ 4 and l = 0 was worked out by Chida in [Chi17]. The

proof in [Chi17] uses the same methods as in [BD05] for the ordinary case, and CM

cycles on Kuga-Sato varieties for the non-ordinary case combined with level raising

results. In order to obtain such a level raising result, Chida assumed the following

hypothesis on the residual Galois representation attached to f , (which will hold for

all but finitely many primes if f is not of CM type):

Hypothesis (level raising):

1. p ≥ k + 2 and #(F×
p )k−1 > 5

2. The residual Galois representation attached to f , denoted ρ̄f , is absolutely

irreducible when restricted to Gal(Q̄/Q(
√
l⋆)), where l⋆ = (−1)

l−1
2 l.

3. ρ̄f is ramified at q if either:
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(a) q|N−
f and q2 ≡ 1 (mod p)

(b) q||N+
f and q ≡ 1 (mod p)

4. If q2|N and q ≡ −1 (mod p) then the restriction of ρ̄f to the inertia group at q

is irreducible.

This is Hypothesis (CR+) in [Chi17].

Remark 5.1.4. Kings-Loeffler-Zerbes [KLZ17] also obtained similar results in the case

of the Rankin-Selberg product of two modular forms f and g. Nevertheless, they

require χfχg ̸= 1 for their ‘big image’ hypothesis [KLZ17, Rem 11.1.3], meanwhile

our result concerns about χf = χg = 1. Moreover, our methods can be generalized

to totally real fields, which is presumably not true for the Euler system of Rankin-

Eisenstein classes used in [KLZ17].

5.2 The work of Castella-Hsieh (and Magrone)

We recall the results and methods that were used in [CH18a], where they obtained

the analytic rank zero case of Bloch-Kato conjecture but with the Heegner Hypothesis

(Heeg), which contrasts with our assumption (non-Heeg) in Theorem 5.1.3.

Set-up.

1. f is a newform of Sk(Γ0(N)), where k is even.

2. K is an imaginary quadratic of odd discriminant −DK < −3.

3. χ is an anticyclotomic Hecke character of infinity type (l/2,−l/2), where l is

an even integer, such that its conductor is prime to N .
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Assumption 5.2.1.

1. (Heeg): N is a product of primes that split in K.

2. p ∤ 2(k − 1)!Nφ(N) is a prime that splits in K.

3. f is p−ordinary.

The following theorem is [CH18a, Thm A].

Theorem 5.2.1. [CH18a](Rank 0 Bloch-Kato) Under Assumption 5.2.1, the fol-

lowing implication holds:

L(f, χ, k/2) ̸= 0 =⇒ H1
f (K,V ∨

f (1− k/2)(χ)) = 0

Remark 5.2.1. For this implication to be non-vacuous, the condition |l| ≥ k is neces-

sary. Indeed, L(f, χ, k/2) ̸= 0 implies that ϵ(f, χ) = 1. Combining that with (Heeg),

we obtain |l| ≥ k.

When |l| < k , so ϵ(f, χ) = −1, the χ−component of zf (some p−adic Abel-Jacobi

image of generalized Heegner cycles), form an anticyclotomic Euler system. In this

case, one has the following theorem [CH18a, Thm B].

Theorem 5.2.2. [CH18a](Rank 1 result)

zf,χ ̸= 0 =⇒ H1
f (K,V ∨

f (1− k/2)(χ)) = Φ · zf,χ (5.2.0.1)

Remark 5.2.2. Under the generalized (Heeg), i.e. N− is a squarefree product of even

number of inert primes, Magrone [Mag] in her thesis obtains a more general result

using the generalized Kuga-Sato varieties instead of generalized Heegner cycles, and

Brooks’ generalization of BDP in a quaternionic setting [Bro14].
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5.3 Updated picture

As a consequence of the results in this Section we can update the picture ® described

in the Introduction.

Under the following setup:

1. f is a newform of Sk(Γ0(N)) with k even,

2. K is an imaginary quadratic of odd discriminant −DK < −3,

3. χ is an anticyclotomic Hecke character of infinity type (l/2,−l/2), where l is

an even integer, such that its conductor is prime to N ,

4. N = N+N−, where N+ and N− are the product of split and inert primes in K

respectively, and N− is squarefree,

we obtain the following updated table

(Heeg) [CH18a],[Mag] (non-Heeg) This thesis

(number of inert primes |N− is even) (number of inert primes |N− is odd)

1st quadrant 2nd quadrant

l < k ϵ(f, χ) = −1 ϵ(f, χ12) = 1

ES of generalized Heegner cycles Bloch-Kato conjecture for rank 0

3rd quadrant 4th quadrant

l ≥ k ϵ(f, χ) = 1 ϵ(f, χ12) = −1

Bloch-Kato conjecture for rank 0 My ES from diagonal cycles

We finish by noting that the modularity theorem associates each rational elliptic

curve a newform f of weight 2, hence our anticyclotomic Euler system fits right in

the 4th quadrant. But the Bloch-Kato result for analytic rank 0 that fits in the 2nd

quadrant was taken from [BD05] and [LV10].
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Remark 5.3.1. Notice that we do not use any Hypothesis (Heeg) or (non-Heeg)

in our construction. With a slight modification in the construction, we expect a

new anticyclotomic Euler system in the 1st quadrant. Using a different reciprocity

law in Theorem 4.2.1 (projg that maps cohomology classes to Lgp), we get classes in

H1
f (K,V ∨

f (1−k/2)(χ12)) and H1
Gr(K,V

∨
f (1−k/2)(ρ12)). By specialising to |l| > k, we

hope to recover the Bloch-Kato conjecture for rank 0 results of [CH18a] and [Mag] in

the 3rd quadrant using the non vanishing result of Hsieh [Hsi14, Thm C]. In particular,

we expect the Euler system constructed in this thesis to control the arithmetic results

of the whole table!
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Birkhäuser Boston, Boston, MA, 2007.

[BL18] Kâzım Büyükboduk and Antonio Lei. Anticyclotomic p−ordinary iwasawa

theory of elliptic modular forms. Forum Mathematicum, 30(4):887–913,

2018.

[Bro14] Ernest Hunter Brooks. Shimura Curves and Special Values of p−adic

L−functions. International Mathematics Research Notices, 2015(12):4177–

4241, 2014.

[BSV21] Massimo Bertolini, Marco Seveso, and Rodolfo Venerucci. Reciprocity laws

for balanced diagonal cycles. Astérisque, 2021. To appear.

[CH18a] Francesc Castella and Ming-Lun Hsieh. Heegner cycles and p-adic L-

functions. Mathematische Annalen, 370(1):567–628, 2018.

[CH18b] Masataka Chida and Ming-Lun Hsieh. Special values of anticyclotomic L-

functions for modular forms. Journal für die reine und angewandte Math-

ematik (Crelles Journal), 2018(741):87–131, 2018.

[Chi17] Masataka Chida. Selmer groups and central values of L-functions for mod-

ular forms. Annales de l’Institut Fourier, 67(3):1231–1276, 2017.

[DDT97] Henri Darmon, Fred Diamond, and Richard Taylor. Fermat’s last theorem.

In Elliptic curves, modular forms and Fermat’s last theorem, pages 2–140.

International Press, Cambridge, MA, 1997.

106



[Del71] Pierre Deligne. Formes modulaires et représentations l-adiques. In Sémi-

naire Bourbaki. Vol. 1968/69: Exposés 347–363, volume 175 of Lecture

Notes in Math., pages Exp. No. 355, 139–172. Springer, Berlin, 1971.

[Dis17] Daniel Disegni. The p-adic Gross-Zagier formula on Shimura curves. Com-

pos. Math., 153(10):1987–2074, 2017.

[DR14] Henri Darmon and Victor Rotger. Diagonal cycles and Euler systems I: A p-

adic Gross-Zagier formula. Ann. Sci. Éc. Norm. Supér. (4), 47(4):779–832,

2014.

[DR17] Henri Darmon and Victor Rotger. Diagonal cycles and Euler systems II: The

Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions. J.

Amer. Math. Soc., 30(3):601–672, 2017.

[Eic54] Martin Eichler. Quaternäre quadratische Formen und die Riemannsche

Vermutung für die Kongruenzzetafunktion. Arch. Math., 5:355–366, 1954.

[FK88] Eberhard Freitag and Reinhardt Kiehl. Étale cohomology and the Weil

conjecture, volume 13 of Ergebnisse der Mathematik und ihrer Grenzgebiete

(3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin,

1988. Translated from the German by Betty S. Waterhouse and William

C. Waterhouse, With an historical introduction by J. A. Dieudonné.

[GK92] Benedict H. Gross and Stephen S. Kudla. Heights and the central criti-

cal values of triple product L-functions. Compositio Math., 81(2):143–209,

1992.

[Gre94] Ralph Greenberg. Iwasawa theory and p-adic deformations of motives. In

Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages

193–223. Amer. Math. Soc., Providence, RI, 1994.

107



[Gro91] Benedict H. Gross. Kolyvagin’s work on modular elliptic curves. In L-

functions and arithmetic (Durham, 1989), volume 153 of London Math.

Soc. Lecture Note Ser., pages 235–256. Cambridge Univ. Press, Cambridge,

1991.

[GS93] Ralph Greenberg and Glenn Stevens. p-adic L-functions and p-adic periods

of modular forms. Invent. Math., 111(2):407–447, 1993.

[GS95] Benedict H. Gross and Chad Schoen. The modified diagonal cycle on the

triple product of a pointed curve. Ann. Inst. Fourier (Grenoble), 45(3):649–

679, 1995.

[GZ86] Benedict H. Gross and Don B. Zagier. Heegner points and derivatives of

L-series. Invent. Math., 84(2):225–320, 1986.

[Hid88] Haruzo Hida. Modules of congruence of Hecke algebras and L-functions

associated with cusp forms. Amer. J. Math., 110(2):323–382, 1988.

[Hsi14] Ming-Lun Hsieh. Special values of anticyclotomic Rankin-Selberg L-

functions. Doc. Math., 19:709–767, 2014.

[Hsi21] Ming-Lun Hsieh. Hida families and p-adic triple product L-functions. Amer.

J. Math., 143(2):411–532, 2021.

[HT01] Michael Harris and Jacques Tilouine. p-adic measures and square roots of

special values of triple product L-functions. Math. Ann., 320(1):127–147,

2001.

[Iha75] Yasutaka Ihara. On modular curves over finite fields. In Discrete subgroups

of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973),

pages 161–202. Oxford Univ. Press, 1975.

108



[Jet] Dimitar P. Jetchev. Hecke and galois properties of special cycles on unitary

shimura varieties. Available at https://arxiv.org/abs/1410.6692.

[JNS] Dimitar P. Jetchev, Jan Nekovář, and Christopher Skinner. preprint.
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