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Abstract. We construct a new anticyclotomic Euler system (in the sense of Jetchev–Nekovář–Skinner)
for the Galois representation Vf,χ attached to a newform f of weight k ≥ 2 twisted by an anticyclotomic

Hecke character χ defined over an imaginary biquadratic field K0. We then show some arithmetic

applications of the constructed Euler system, including results on the Bloch–Kato conjecture, and a
divisibility towards the Iwasawa–Greenberg main conjecture for Vf,χ.
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1. Introduction

Let f =
∑∞
n=1 anq

n ∈ Sk(Γ0(Nf )) be an elliptic newform of even weight k = 2r ≥ 2, and let p ∤ 6Nf
be a prime. Let K0/Q be an imaginary biquadratic field in which p splits. This means that K0 contains
two distinct imaginary quadratic subfields K1, K2 together with one real quadratic subfield K3. Let L
be a number field containing K0 and the Fourier coefficients of f , and let P be a prime of L above p at
which f is ordinary, i.e. vP(ap) = 0. Let χ be an anticyclotomic Hecke character of K0 with infinity type
(−a, a,−b, b) where a ≥ b ≥ 0 1 that satisfies the decomposition hypothesis (6.1) i.e. χ can be factored

χ = ψ̃1ψ̃2N
(k1+k2−2)/2.

Here, for i ∈ {1, 2}, ψi is a Hecke character of Ki of infinity type (1 − ki, 0) and modulus fi; ψ̃i is the

Hecke character of K0, obtained by composing A×
K0

NK0/Ki−−−−−→ A×
Ki

ψi−→ C. Not that if this happens, we

must have k1 = a−b+1 and k2 = a+b+1. We then focus on the conjugate self-dual GK0
= Gal(Q/K0)-

representation

Vf,χ := V ∨
f (1− r)⊗ χ−1,

where V ∨
f is the contragredient of Deligne’s P-adic Galois representation associated to f .

Throughout the remainder of this section, we assume the following hypotheses:

• f is ordinary and non-Eisenstein at P;
• p splits in K;
• p ∤ hK0

, where hK0
is the class number of K0.

For every integral ideal µ3 of OK3 , let K0[µ3] be the maximal p-subextension of the ring class field of K0

of conductor µ3. Denote by N the set of squarefree products of primes µ3 ⊂ OK3 , where m = NK3/Q(µ3)
is squarefree, prime to p, and split in K0.

Theorem A (Theorem3.2.1). There exists a collection of Iwasawa cohomology classes

zf,χ,µ3
∈ H1

Iw

(
K0[µ3p

∞], Tf,χ
)
,

where Tf,χ is a certain GK-stable O-lattice inside Vf,χ, such that for every prime λ3 ∈ N of norm ℓ, with
(ℓ,mp) = 1 we have the norm relation

Norm
K0[µ3 λ3]
K0[µ3]

(zf,χ,µ3 λ3
) = PL4

(FrobL4
)(zf,χ,µ3

),

where PL4(X) = det(1−X · FrobL4 | (Tf,χ)∨(1)), and FrobL4 is the geometric Frobenius.

Remark. In [JNS], Jetchev–Nekovář–Skinner have developed a theory of ‘split’ anticyclotomic Euler
systems attached to conjugate self-dual representations over CM fields, and our construction fits within
their framework. Furthermore, we note that the condition where m = NK3/Q(µ3) splits in K0 does
exclude the setting when m is inert in K3 and µ3 splits in K0. Nevertheless, this does not affect the
application of the [JNS] machinery.

Due to its geometric origin, if we let

κf,χ := corK0[1]/K0
(zf,χ,(1))

then it will land in a Selmer subgroup of H1(K0, Vf,χ) with ‘nice’ local conditions (see Section 4.2). Then
feeding Theorem A to the general Euler system machinery of [JNS], we deduce the following cases of the
Bloch–Kato conjecture in analytic rank 0.

Theorem B (Theorem6.3.1). Let f ∈ Sk(Γ0(Nf )) be a newform. Let χ be an anticyclotomic Hecke
character of K0 of infinity type (−a, a,−b, b) satisfying the Hypotheses (6.1). Assume further that:

(1) Either k ≥ 2a+ 2 or 2b ≥ k;

1By either using L(f/K0, χ, r) = L(f/K0, χc, r), where χc is the composition of χ with the action of complex conjugation,

or swapping the order of K1 and K2, we would be able to cover other cases of a and b.
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(2) NfOK3
= n+n− where n+ (respectively n−) is divisible only by primes which are split (respectively

inert) in K0/K3 and n− is a squarefree product of an even number of primes;
(3) ρ̄f is absolutely irreducible;
(4) (pNf ,NormK1/Q(f1)NormK2/Q(f2)DK0) = 1;

Then

L(f/K0, χ, r) ̸= 0 =⇒ SelBK(K0, Vf,χ) = 0,

and hence the Bloch–Kato conjecture for Vf,χ holds in this case.

Note that the first 2 conditions of Theorem B imply that the sign of the functional equation of Vf,χ
is equal to +1, see also Remark 6.3.2. This puts us in an ideal situation for the non-vanishing of central
L−values generically.

Let O be the ring of integers of LP. We say that f has big image if for a certain Galois stable O-lattice
T∨
f ⊂ V ∨

f , the image of GQ in AutO(T
∨
f ) contains a conjugate of SL2(Zp). Under this assumption, we

also have results towards the Bloch–Kato conjecture in the analytic rank 1 case.

Theorem C (Theorem6.5.1). Let the hypotheses be as in Theorem B, and assume in addition that:

(1) ρ̄f is p-distinguished;
(2) f has big image;
(3) p > k − 2.

If 2a ≥ k ≥ 2b+ 2 (which implies L(f/K, χ, r) = 0), then

dimLP
SelBK(K0, Vf,χ) ≥ 1.

Moreover, there exists a class zf,χ ∈ SelBK(K0, Vf,χ) such that

zf,χ ̸= 0 =⇒ dimLP
SelBK(K0, Vf,χ) = 1.

Finally, we note that results also include the proof of a divisibility towards the anticyclotomic Iwasawa
Main Conjecture for Vf,χ, see Theorem6.4.1.

1.1. Relation to previous works. When χ is an anticyclotomic Hecke character over K, an imaginary
quadratic field, the arithmetic of Vf,χ has been studied intensively via the Euler system of Heegner
points pioneering by Gross–Zagier and Kolyvagin [GZ86, Kol88] (see also [Zha97, Tia03, Nek07]), and
generalized Heegener cycles by Bertolini–Darmon–Prasanna [BDP13]. In particular, these objects have
direct implications towards the Bloch-Kato conjecture in analytic rank 0 for Vf,χ by either varying the
generalised Heegner cycles in p-adic families like in Castella–Hsieh [CH18] (see also [Cas20]), or by the
‘level-raising’ method like in Bertolini–Darmon [BD05] (see also [LV10, CH15, Chi17]). In the same vein
as [BD05], Nekovář [Nek12] and Wang [Wan23] proved results towards the rank 0 Bloch-Kato conjecture
when f is a cuspidal Hilbert modular eigenform over a totally real field F of parallel weight 2 and higher
weights respectively, where χ is a finite order character, see also result of Tamiozzo [Tam21].

Outside of the Heegner realm, it is worthwhile to mention that the Euler system of Beilinson–Flach
classes constructed by Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ17, KLZ20]
can be applied to obtain similar rank 0 results. Relying on this, Lamplugh [Lam] constructed Euler

systems for IndK1

K0
O(χρ) overK1 (where ρ is an auxiliary character) and used that to bound the associated

Selmer group over the K0 via Rubin’s machinery [Rub00].
The anticyclotomic Euler system over K0 that we will describe in this paper is more comparable with

the anticyclotomic diagonal Euler system [Do22, CD23] over K (an imaginary quadratic field) and comes
together with application towards the Bloch-Kato conjecture in analytic rank 0. The construction of the
cohomology classes, similar to [CD23], is based on a generalisation of the diagonal cycles pioneered by
Gross–Kudla [GK92] and Gross–Schoen [GS95], and improved recently by Darmon–Rotger and Bertolini–
Seveso–Venerucci (see [BDR+22]). Despite the fact that it is being done later, the imaginary biquadratic
case is actually a generic case (where K1 ̸= K2) while the imaginary quadratic case is a degenerate
situation (where K = K1 = K2).
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In future work, we intend to construct a bipartite Euler system over a biquadratic field as well as
investigate the case where p does not split completely in K0.

1.2. Acknowledgements. The author would like to thank Francesc Castella and Christopher Skin-
ner for many fruitful discussions and encouragements, Haruzo Hida for suggesting the problem, Chan-
drashekhar Khare, Romyar Sharifi and Alex Smith for helpful communication.

2. Preliminaries

2.1. Galois representations associated to newforms. In this section, we follow [CD23, Sec. 1.1] and
introduce some important notations and results. Let f ∈ Sk(Γ1(Nf ), χf ) be a normalized newform of

weight k ≥ 2 and let
∑∞
n=1 anq

n be its q-expansion. Let p ∤ Nf be a prime. Fix embeddings i∞ : Q ↪→ C

and ip : Q ↪→ Qp. Let L/Q be the coefficient field of f i.e. L containes all values i−1
∞ (an) and i

−1
∞ ◦ χf .

Let P be the prime of L above p with respect to ip. Let S = {prime ℓ|pNf}∪{∞}. Then Eichler-Shimura
(for k = 2) and Deligne (for k > 2) construct a p−adic Galois representation associated to f :

ρf,P : GQ,S → GL2(LP),

such that for all primes ℓ /∈ S:
• trace(ρf,P(Frobℓ)) = ip(aℓ),
• det(ρf,P(Frobℓ)) = ip(χf (ℓ)ℓ

k−1),
• ρf,P is irreducible, hence absolutely irreducible.

Here Frobℓ is the geometric Frobenius.
As in [CD23, Sec. 1.1], one obtains the geometric realization Vf of ρf,P defined as the subspace of

H1
ét(Y1(Nf )Q,S k−2)⊗ LP.

Dually, V ∨
f = Hom(Vf , LP) can be interpreted as the maximal quotient of

H1
ét(Y1(Nf )Q,L k−2(1))⊗ LP

on which the dual Hecke operator T ′
ℓ acts as multiplication by aℓ for all ℓ ∤ Nfp and ⟨d⟩ = ⟨d⟩∗ acts as

multiplication by χf (d) for all d ∈ (Z/NfZ)
×.

Let O be the ring of integers of LP. There exists a GQ-stable O-lattice T∨
f ⊂ V ∨

f defined as the image

of H1
ét(Y1(Nf )Q,L k−2(1))⊗O in V ∨

f .

If f is ordinary at p (which means ip(ap) ∈ O×), then the restriction of Vf to GQp
is reducible. This

leads us to an exact sequence of LP[GQp
]-modules

0→ V +
f → Vf → V −

f → 0,

where dimLP
V ±
f = 1. Dually, we also obtain an exact sequence for the restriction of V ∨

f to GQp

(2.1) 0→ V ∨,+
f → V ∨

f → V ∨,−
f → 0,

where V ∨,+
f ≃ (V −

f )∨(1− k)(χ−1
f ), and the GQp

-action on the quotient V ∨,−
f is given by the unramified

character sending the arithmetic Frobenius Frob−1
p to αp, which is the unit root of x2−apx+χf (p)pk−1.

2.2. Patched CM Hecke modules. Here, we recall the conventions on Hecke characters and the
construction of certain patched CM Hecke modules from [CD23, Sec. 1.3] and [LLZ15].
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2.2.1. Hecke characters and theta series. Let K be an imaginary quadratic field. Let p = pp̄ be a prime
that splits in K with p, the prime of K above p, induced by ip : Q ↪→ Qp. We say that a Hecke character

ψ : A×
K/K

× → C× has infinity type (m,n), where m,n are integers, if ψ∞(x∞) = xm∞x̄
n
∞.

Let recK : A×
K → Gab

K be the geometrically normalised Artin reciprocity map. Following [CD23,

Sec. 1.3.1], given g ∈ GK , we take x ∈ A×
K such that recK(x) = g|Kab and define

ψP(g) = ip ◦ i−1
∞ (ψ(x)x−m∞ x̄−n∞ )xmp x

n
p̄ .

Such a ψP will be called the p-adic avatar of ψ. We shall also use ψ to denote its p-adic avatar if the
context make this usage reasonable.

Attaching to ψ, a Hecke character of K of infinity type (−1, 0) with conductor f that takes values in
a finite extension L/K, is the theta series

θψ =
∑

(a,f)=1

ψ(a)qNK/Q(a) ∈ S2(Γ1(Nψ), χψϵK)

whereNψ = NK/Q(f)disc(K/Q), χψ is the unique Dirichlet character moduloNK/Q(f) such that ψ((n)) =
nχψ(n) for all n ∈ Z with (n,NK/Q(f)) = 1, and ϵK is the quadratic Dirichlet character attached to K.
The cuspform θψ is new of level Nψ = NK/Q(f) · disc(K/Q) by [Miy89]. One obtains the following
description of the P-adic representation of θψ

V ∨
θψ
∼= IndQKLP(ψ−1).

2.2.2. Hecke algebras and norm maps. We keep the notation of the previous section and follow [CD23,
Sec. 1.3.1]. Let n ⊂ OK be an ideal divisible by f and let N = NK/Q(n)disc(K/Q). Let Kn be the ray
class field of K with conductor n. Let Hn = Gal(Kn/K) be the ray class group of K modulo n. Let K(n)

be the largest p-subextension of K contained in Kn, i.e. Gal(K(n)/K) ∼= H
(p)
n is the largest p-power

quotient of Hn. Given an ideal k of K that is coprime to n, let [k] be the class of k in Hn. Let T′(N) be
the subalgebra of EndZ(H

1(Y1(N)(C),Z)) generated by ⟨d⟩′ and T ′
ℓ for all primes ℓ then one can prove

that:

Proposition 2.2.1 (Proposition 3.2.1 in [LLZ15]). There exists a homomorphism ϕn : T′(N) → O[Hn]
defined by

ϕn(T
′
ℓ) =

∑
l⊂OK ,l∤n,
NK/Q(l)=ℓ

[l]ψ(l),

ϕn(⟨d⟩′) = χψ(d)ϵK(d)[(d)].

For m = nl, with l a prime ideal and (m, p) = 1, put M = NK/Q(m)disc(K/Q) and one has the
following map

Nm
n : O[H(p)

m ]⊗T′(M)⊗Zp,ϕm
H1

ét(Y1(M)Q,Zp(1))→ O[H
(p)
n ]⊗T′(N)⊗Zp,ϕn

H1
ét(Y1(N)Q,Zp(1)).

This norm map is defined explicitly by splitting into 3 cases (see [CD23, Sec. 1.1.2] for the definition of
the degeneracy map):

• If l | n then
Nm

n = 1⊗ pr1∗;

• If l ∤ n is split or ramified in K, then

Nm
n = 1⊗ pr1∗ −

ψ(l)[l]

ℓ
⊗ prℓ∗;

• If l ∤ n is inert in K, say l = (ℓ), then

Nm
n = 1⊗ pr1∗ −

ψ(l)[l]

ℓ2
⊗ prℓℓ∗.
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Note that one can extend the definition of Nm
n to any pair of ideals n | m by composition.

Following [CD23, Sec. 1.3.2], if p splits in K and (p, f) = 1 then for any ideal n ⊂ OK divisible by f
such that (n, p̄) = 1, the maximal ideal of T′(N) defined by the kernel of the composition

T′(N)
ϕn−→ O[Hn]

aug−→ O → O/P,

is non-Eisenstein, p-ordinary, and p-distinguished.
We finish this section by extracting a crucial result in [LLZ15] in the case where p splits in K. This

will be used later to prove the norm relation of our Euler system.

Theorem 2.2.2 (Corollary 5.2.6 in [LLZ15]). Assume that (p, f) = 1. Let A be the set of ideals m ⊂ OK
with (m, p̄) = 1, and put Af = {fm : m ∈ A}. Given n ∈ Af, there is a GQ-equivariant isomorphisms of

O[H(p)
n ]-modules

νn : O[H(p)
n ]⊗T′(N)⊗Zp,ϕn

H1
ét(Y1(N)Q,Zp(1))

∼=−→ IndQK(n)O(ψ
−1
P ).

Furthermore, for any n,m ∈ Af with n | m, the following diagram commutes:

O[H(p)
m ]⊗T′(M)⊗Zp,ϕm

H1
ét(Y1(M)Q,Zp(1))

Nm
n

��

νm
∼=
// IndQK(m)O(ψ

−1
P )

Normm
n

��
O[H(p)

n ]⊗T′(N)⊗Zp,ϕn
H1

ét(Y1(N)Q,Zp(1))
νn
∼=
// IndQK(n)O(ψ

−1
P ),

where Normm
n is the natural norm map of the induced representations.

3. The construction

For a newform f and two Hecke characters ψ1, ψ2 of 2 distinct imaginary quadratic fields K1,K2

respectively, using the results from [BSV22] and [LLZ15] recalled in the preceding section, we construct

a family of cohomology classes for f ⊗ ψ̃1ψ̃2 defined over ring class field extensions of K0, which is the
compositum of K1 and K2, and prove that they satisfy the norm relations of an anticyclotomic Euler
system. Following [CD23, Sec. 2], we first give the construction and show the tame norm relations in the
case where (f, θψ1

, θψ2
) have weights (2, 2, 2). Then by varying the diagonal cycle classes in Hida families

we extend the construction to more general weights and prove the wild norm relations.
Throughout this section we consider the following set-up:

(1) Let f ∈ Sk(Γ0(Nf )) be a newform of weight k ≥ 2.
(2) Let K1/Q be an imaginary quadratic field of discriminant D1 coprime to Nf . Let ψ1 be a Hecke

character of K1 of infinity type (1− k1, 0), with k1 ≥ 1, and modulus f1.
(3) Let K2/Q be an imaginary quadratic field of discriminant D2 ̸= D1 and coprime to Nf . Let ψ2

be a Hecke character of K2 of infinity type (1− k2, 0), with k2 ≥ 1, and modulus f2.
(4) Denote by ϵKi the quadratic character attached to the quadratic field Ki for i ∈ {1, 2}.
(5) Let K0 be the compositum of K1 and K2. Since K0 is a biquadratic field, we can consider K3,

the unique real quadratic field inside K0.

(6) Let ψ̃i be the Hecke character ofK0, obtained by composing A×
K0

NK0/Ki−−−−−→ A×
Ki

ψi−→ C for i ∈ {1, 2}.
(7) Denote by

θψi ∈ Ski(Nψi , χψiϵKi)
the associated theta series, where Nψi = NKi/Q(fi)·disc(Ki/Q) and χψi is the Dirichlet character

modulo NKi/Q(fi) defined by ψi((n)) = nki−1χψi(n) for all integers n prime to NKi/Q(fi) (i ∈
{1, 2}).

(8) We assume the self-duality condition

(3.1) χψ1ϵK1χψ2ϵK2 = 1.
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Let L/K0 be a finite extension containing the Fourier coefficients of f , θψ1
, and θψ2

. Let p ≥ 5 be a
prime that splits in K0 and such that (p,NfNψ1

Nψ2
) = 1, and let P|p be the primes of L/K0 above p

determined by a fixed embedding ip : Q ↪→ Qp. Finally, let LP be the completion of L at P, and denote
by O the ring of integers of LP.

3.0.1. Digression to primes decomposition and the top left-corner notations. Let ℓ be a split prime in K0

i.e. (ℓ) = L1L2L3L4. We can write (ℓ) = λ1 λ̄1 and (ℓ) = λ2 λ̄2 in K1 and K2 respectively. Note that

ℓ also splits in K3 as λ3 λ̃3, where the tilde corresponds to the nontrivial element generating the Galois
group Gal(K3/Q).

Let τi to be the generator of Gal(K0/Ki) for i = {1, 2, 3} then we have τ3 = τ1τ2 (this is the complex
conjugation on K3). Due to the Galois group action on primes lying above ℓ, we can further assume that:

λ1 = L1L4, λ̄1 = L3L2, λ2 = L1L3, λ̄2 = L2L4,

λ3 = L4L3 (so λ3 |λ1 λ2), and λ̃3 = L1L2,

where

L4 = τ1L1, L3 = τ2L1, L2 = τ3L1 = τ1τ2L1.

Denote by L the set of primes λ3 ⊂ OK3
, where ℓ = NK3/Q(λ3) primes to p and ℓ splits in K0. Let

N be the set of squarefree products of primes inside L such that its norm down to Q is still squarefree.
For such λ3, we can choose λ1 ⊂ OK1 and λ2 ⊂ OK2 as above such that λ3 |λ1 λ2.

Given µ3 ∈ N i.e. its norm m =
∏
i ℓi will be a product of split primes ℓi in K0. Similarly, we can

decompose (m) =M1M2M3M4, (m) = µ1µ̄1, (m) = µ2µ̄2, (m) = µ3µ̃3 as a decomposition inside K0,
K1, K2 and K3 respectively, where we can have the following decomposition:

µ1 =M1M4, µ̄1 =M3M2, µ2 =M1M3, µ̄2 =M2M4,

µ3 =M4M3 (so µ3|µ1µ2), and µ̃3 =M1M2.

Here, for every i,Mj =
∏
i Lj,i, ℓi =

∏
j Lj,i, for 1 ≤ j ≤ 4, µj =

∏
i λj,i for every j ∈ {1, 2, 3}.

For each i ∈ {0, 1, 2}, we denote iKni as the ray class field of Ki with conductor ni (an integral ideal
inside OKi), and let iHni be the ray class group of Ki modulo ni. Let Ki(ni) be the largest p-subextension

of Ki contained in iKni , so Gal(Ki(ni)/Ki) ∼= iH
(p)
ni is the largest p-power quotient of iHni .

3.1. Construction in weight (2, 2, 2) and tame norm relation. Suppose in this subsection that
(k, k1, k2) = (2, 2, 2). Let N = lcm(Nf , Nψ1 , Nψ2). Following Section 2.1 of [CD23], which is based on
the diagonal classes in the triple product of modular curves [BSV22, Sec. 3], we have cohomology classes:
(3.2)

Z(1)
m := κ̃(3)m ∈ H1

(
Q, H1

ét(Y1(N)Q,Zp(1))⊗H
1
ét(Y1(Nψ1

m)Q,Zp(1))⊗H
1
ét(Y1(Nψ2

m)Q,Zp(1))(−1)
)
.

for every positive integer m. One then chooses a test vector f̆ ∈ S2(N)[f ]. As noted in op. cit., the maps

used to construct Z(1)
m are compatible with correspondences. This allows one to tensor them with O and

obtain:

Z(1)
µ3
∈ H1

(
Q, T∨

f ⊗H1
ét(Y1(Nψ1

m)Q,Zp(1))⊗T′(Nψ1
m) O[1H

(p)
f1µ1

]

⊗H1
ét(Y1(Nψ2

m)Q,Zp(1))⊗T′(Nψ2
m) O[2H

(p)
f2µ2

]
)
.

Here, the chosen f̆ is used to take the image under the projection H1
ét(YQ,Zp(1))→ T∨

f in the first factor.
The tensor products are taken from Proposition 2.2.1

ϕf1µ1
: T′(Nψ1

m)→ O[1H(p)
f1µ1

], ϕf2µ2
: T′(Nψ2

m)→ O[2H(p)
f2µ2

]

with respect to two distinct imaginary quadratic fields K1 and K2, respectively .
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Via the isomorphisms from Proposition with respect to 2 distinct imaginary quadratic fields 2.2.2:

νf1µ1
: H1

ét(Y1(Nψ1
m)Q,Zp(1))⊗T′(Nψ1

m) O[1H
(p)
f1µ1

]
∼−→ IndQK1(f1µ1)

O(ψ−1
1 ),

νf2µ2 : H1
ét(Y1(Nψ2m)Q,Zp(1))⊗T′(Nψ2

m) O[2H
(p)
f2µ2

]
∼−→ IndQK2(f2µ2)

O(ψ−1
2 ),

one then obtains a cohomology class in

H1
(
Q, T∨

f ⊗O IndQK1(f1µ1)
O(ψ−1

1 )⊗O IndQK2(f2µ2)
O(ψ−1

2 )(−1)
)
,

which under the maps 1Hf1µ1 ↠ 1Hµ1 and 2Hf2µ2 ↠ 2Hµ2 can be projected to a class

(3.3) Z(2)
µ3
∈ H1

(
Q, T∨

f ⊗O IndQK1
Oψ−1

1
[1H(p)

µ1
]⊗O IndQK2

Oψ−1
2

[2H(p)
µ2

](−1)
)
.

Note that the group cohomology can be rewritten as

H1
(
Q, T∨

f ⊗O IndQK0
Oψ̃−1

1 ψ̃−1
2

[1H(p)
µ1
× 2H(p)

µ2
](−1)

)
,

which by Shapiro’s lemma gives us elements:

(3.4) Z(3)
µ3
∈ H1

(
K0, T

∨
f ⊗O Oψ̃−1

1 ψ̃−1
2

[1H(p)
µ1
× 2H(p)

µ2
](−1)

)
.

3.1.1. Projection to ring class groups. Recall the fundamental exact sequence for ray class groups:

O×
Ki

// (OKi/µiOKi)× // iHµi
// iH1

// 1,

where i ∈ {1, 2}. Assume that p ∤ 6hK0
, where hK0

is the class number of K0. Note that by [FT91,
Thm. 74], we have

p ∤ hKi ,
which is the class number of Ki for i ∈ {1, 2, 3}. Taking the p-primary parts of the above exact sequence
induces two isomorphisms

1H(p)
µ1

≃−→ (OK1
/µ1OK1

)×,(p)
≃−→ (OK0

/M4OK0
)×,(p)

2H(p)
µ2

≃−→ (OK2/µ2OK2)
×,(p) ≃−→ (OK0/M3OK0)

×,(p)

and hence the following projection:

(3.5) 1H(p)
µ1
× 2H

(p)
µ2

≃−→ (OK0/µ3OK0)
×,(p) ↠ 0H(p)

µ3
.

Recall that K3 is the totally real field sitting inside a CM field K0. Given an integral ideal n of K3, let
H[n] be the ring class group of K0 of conductor n, so H[n] ≃ Pic(On) under the Artin reciprocity map,
where On = OK3 +nOK0 is the order of K0 of conductor n. Let H[n](p) be the maximal p-power quotient
of H[n], and denote by K0[n] be the maximal p-extension inside the ring class field of K0 of conductor
n, i.e. H[n](p) = Gal(K0[n]/K0). Note that for the ring class groups and fields of K0, we drop the upper
left corner 0 notation.

Proposition 3.1.1. Suppose p ∤ 6hK0 and µ3 is a squarefree ideal of OK3 of norm m, where m is divisible
only by primes that are split in K0. Using (3.5), we have the following short exact sequence:

1→ (OK3
/µ3OK3

)×,(p)
∆−→ 1H

(p)
µ1
× 2H

(p)
µ2

e◦w−−→ H[µ3]
(p) → 1.

Here, the map ∆ uses the identifications

(OK3
/µ3OK3

)×,(p) ≃ (OK0
/M4OK0

)×,(p), (OK3
/µ3OK3

)×,(p) ≃ (OK0
/M3OK0

)×,(p).

Moreover, if (ℓ) = L1L2L3L4 is a prime that splits in K0 and is coprime to m, the projection e ◦ w
(defined in the proof below) sends

[λ1]× [λ̄2] 7→ FrobL4/ λ3

where FrobL4/ λ3
is the Frobenius element of L4 in H[µ3]

(p).
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Proof. We have the following exact diagram together with the fact that |O×
K0
/O×

K3
| is a power of 2:

O×
K0

//

��

(OK0/µ3OK0)
× //

��

0Hµ3
//

��

0H1
//

��

1

O×
K0
/O×

K3

// (OK0
/µ3OK0

)×/(OK3
/µ3OK3

)× // H[µ3] // 0H1
// 1.

Taking the p−part of this and using the assumption that p ∤ 6hK0
, we obtain the following diagram:

O×
K0
⊗ Qp

Zp
//

��

(OK0
/µ3OK0

)×,(p)
w //

��

0H
(p)
µ3

//

e

��

1

1 // (OK0
/µ3OK0

)×,(p)/(OK3
/µ3OK3

)×,(p) // H[µ3]
(p) // 1.

Using the middle arrow and the identification 3.5, we can show the first exact sequence.
One can show the second part by noting that L4 is a prime of K0 lying above both λ1 (a prime of K1)

and λ̄2 (a prime of K2). □

In the same setting as Proposition 3.1.1, we can consider the image of Z(3)
µ3 from 3.4 under the com-

position e ◦ w. This results in the class

Z(4)
µ3
∈ H1

(
K0, T

∨
f ⊗O Oψ̃−1

1 ψ̃−1
2

[H[µ3]
(p)](−1)

)
.

By Shapiro’s lemma, its image under the isomorphism

H1
(
K0, T

∨
f ⊗O Oψ̃−1

1 ψ̃−1
2

[H[µ3]
(p)](−1)

)
≃ H1

(
K0[µ3], T

∨
f (ψ̃

−1
1 ψ̃−1

2 )(−1)
)

then defines

Z(5)
µ3
∈ H1

(
K0[µ3], T

∨
f (ψ

−1
1 ψ−1

2 )(−1)
)
.

The next lemma is in the same vein with [CD23, Lem. 2.1.3]:

Lemma 3.1.2. Let λ3 be a split prime in K3 of norm ℓ coprime to mp, where ℓ splits in K0. The
following diagram commutes:

IndQK1
Oψ−1

1
[1H

(p)
µ1 λ1

]⊗O IndQK2
Oψ−1

2
[2H

(p)
µ2 λ2

]

Normµ1 λ1µ1
⊗Normµ2 λ2µ2

��

// IndK3

K0
Oψ̃−1

1 ψ̃−1
2

[H[µ3 λ3]
(p)]

Normµ3 λ3µ3

��
IndQK1

Oψ−1
1

[1H
(p)
µ1 ]⊗O IndQK2

Oψ−1
2

[H
(p)
µ2 ] // IndK3

K0
Oψ̃−1

1 ψ̃−1
2

[H[µ3]
(p)],

where the norm maps are the natural ones, and where the horizonal arrows are given by the composition
e ◦ w in (3.1.1).

Using this Lemma 3.1.2, one can show the following Proposition 3.1.3. Similar to [CD23, Prop 2.2.1],

this is the key result for the construction of our anticyclotomic Euler system for T∨
f (ψ̃

−1
1 ψ̃−1

2 )(−1) over
the biquadratic field K0.

Proposition 3.1.3. The family {Z(5)
µ3 } satisfies the following norm relation:

Norm
K0[µ3 λ3]
K0[µ3]

(Z(5)
µ3 λ3

) = (ℓ− 1)

(
aℓ(f)−

ψ1(λ1)ψ2(λ̄2)

ℓ
([λ1]× [λ̄2])−

ψ1(λ̄1)ψ2(λ2)

ℓ
([λ̄1]× [λ2])

+ (1− ℓ)ψ1(λ1)ψ2(λ2)

ℓ2
([λ1]× [λ2])

)
(Z(5)

µ3
).
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Proof. As in the proof of [CD23, Prop 2.2.1], one has

(1⊗N µ1 λ1
µ1

⊗N µ2 λ2
µ2

)(Z(5)
µ3 λ3

)

= (ℓ− 1)

(
(Tℓ, 1, 1)−

ψ1(λ1)[λ1]

ℓ
(1, 1, T ′

ℓ)−
ψ2(λ2)[λ2]

ℓ
(1, T ′

ℓ , 1) +
ψ1(λ1)ψ2(λ2)

ℓ2
([λ1]× [λ2])(ℓ+ 1)

)
(Z(5)

µ3
)

= (ℓ− 1)

(
aℓ(f)−

ψ1(λ1)[λ1]

ℓ
(ψ2(λ2)[λ2] + ψ2(λ̄2)[λ̄2])− (ψ1(λ1)[λ1] + ψ1(λ̄1)[λ̄1])

ψ2(λ2)[λ2]

ℓ

+
ψ1(λ1)ψ2(λ2)

ℓ2
([λ1]× [λ2])(ℓ+ 1)

)
(Z(5)

µ3
)

= (ℓ− 1)

(
aℓ(f)−

ψ1(λ1)ψ2(λ̄2)

ℓ
([λ1]× [λ̄2])−

ψ1(λ̄1)ψ2(λ2)

ℓ
([λ̄1]× [λ2])

+ (1− ℓ)ψ1(λ1)ψ2(λ2)

ℓ2
([λ1]× [λ2])

)
(Z(5)

µ3
).

This implies the result via combining Theorem 2.2.2 and Lemma 3.1.2. □

Following [CD23, §2.2] verbatim, which borrows ideas from [DR17, §1.4], we can strip out the (ℓ− 1)
factor by quotienting out the diamond operators action and obtain modified classes

Z(6)
µ3
∈ H1

(
K0[µ3], T

∨
f (ψ̃

−1
1 ψ̃−1

2 )(−1)
)
.

Then the term in the right-hand side of Proposition 3.1.3 can be massaged to agree with the local Euler
factor at L2 of the Galois representation [T∨

f (ψ̃
−1
1 ψ̃−1

2 )(−1)]∨(1) = Tf (ψ̃1ψ̃2)(2), giving the correct norm
relations:

Theorem 3.1.4. Suppose p ∤ 6hK0 and f is non-Eisenstein modulo P. Let µ3 ∈ N be a squarefree ideal
of OK3

. Then there exists a collection of cohomology classes

Zµ3
∈ H1

(
K0[µ3], T

∨
f (ψ̃

−1
1 ψ̃−1

2 )(−1)
)

such that for every split prime λ3 ∈ L of OK3 of norm ℓ with (ℓ,m) = 1, we have the norm relation

Norm
K0[µ3 λ3]
K0[µ3]

(Zµ3 λ3
) = PL4

(FrobL4/ λ3
)(Zµ3

),

where PL4
(X) = det(1−X · FrobL4/ λ3

|Tf (ψ̃1ψ̃2)(2)).

Proof. The proof is parallel to the one of [CD23, Thm. 2.2.7]. First notes that [λ1]× [λ̄2] corresponds to

FrobL4/ λ3
∈ H[µ3]

(p) under the map e◦w of Proposition 3.1.1. One then multiplies the class Z(6)
µ3 λ3

with

−ψ1(λ1)ψ2(λ̄2)([λ1] × [λ̄2]). From ψ1ψ2((ℓ)) = χψ1
χψ2

(ℓ)ℓ2 = ϵK1
(ℓ)−1ϵK2

(ℓ)−1ℓ2 = ℓ2 since ℓ splits in

K0, ψ1(λ1)ψ2(λ̄2) = ψ̃1(L4)ψ̃2(L4), and the fact that [ℓ]× [ℓ] maps to the identity element inside the ring
class group together with Lemma 9.6.1 and 9.6.3 in [Rub00], the result follows from the explicit formula
of Proposition 3.1.3. □

3.2. Construction for general weights and wild norm relations. We now extend the above con-
struction to other weights (k, k1, k2) ∈ Z3

≥1 following [CD23, Sec. 2.3]. Then we show that the constructed

cohomology classes also satisfy the wild norm relations for the anticyclotomic Z2
p-extension of K0.

First, we assume that p ∤ 6hK0
. Assume further that p splits in K0 i.e.

(p) = P1P2P3P4 in K0,

and P2 = τ3P1, P3 = τ2P1, P4 = τ1P1,. Hence

(p) = p1p̄1 in K1, (p) = p2p̄2 in K2,

with P1 the prime of K0 above p induced by our fixed embedding ip : Q ↪→ Qp, and P1 lies above pi, the
prime of Ki for i ∈ {1, 2}. Note that the numbering here is parallel to our convention in Section 3.0.1.
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Let ΓKipi be the Galois group of the unique Zp-extension of Ki unramified outside pi. There exists a
unique Hecke character ψ0,i of Ki of infinity type (−1, 0) and conductor pi such that its p-adic avatar

factors through ΓKipi . The character ψi fixed at the beginning of this section can be decomposed as

ψi = ξiψ
ki−1
0,i ,

where ξi is a ray class character of K of conductor dividing fipi. Noting that ΓKipi is a quotient of iHfip∞
i

allows us to view ψ0,i and ξi as characters of
iHfip∞

i
. The formal q-expansion

θξi(q) =
∑

(a,fipi)=1

ξiψ0,i(a)[a]q
NK/Q(a) ∈ Λpi [[q]],

where Λpi = O[[Γ
Ki
pi ]] ≃ OJΓK and Γ = 1+ pZp, is the Hida family passing through θψi (the specialisation

of θξi at weight ki and trivial character recovers the ordinary p-stabilization of θψi). Here we identify

ΓKipi with 1 + pZp via the (geometrically normalised) local Artin map.
Let f be the Hida family associated to f . Let g = θξ1 , h = θξ2 be the CM Hida families associated

to ψ1 and ψ2, respectively. Denote by κf , κg, and κh the Dirichlet characters modulo p giving the p-part
of the tame characters of f , g, and h, respectively.

Under the assumption that ξiψ0,i ̸≡ ω (modP) for i ∈ {1, 2}, following equation (2.17) from [CD23,
§2.3] and its notation, we have the GQ-equivariant maps

(3.6)
H1(Γ(m, p),D′

κ1
)⊗O[[1H(p)

f1µ1p∞
1
]]→ IndQK1

O(ξ1ψ0,1)−1 [1H(p)
µ1

][[ΓK1
p1

]],

H1(Γ(m, p),D′
κ2
)⊗O[[2H(p)

f2µ2p∞
2
]]→ IndQK2

O(ξ2ψ0,2)−1 [2H(p)
µ2

][[ΓK2
p2

]],

where Γ(m, p) = Γ1(Nm)∩Γ0(p) is a congruence subgroup. Focusing on the class κ
(2)
m in equation (2.15)

of op. cit., we first tensor it with O[1H(p)
f1µ1pr1

] and O[2H(p)
f2µ2pr2

], let r →∞, and then arrive at

Z(1)
µ3
∈ H1

(
Q, H1(Γ(1, p),D′

κf
)⊗̂O(H

1(Γ(m, p),D′
κg )⊗O[[

1H
(p)
f1µ1p∞

1
]])

⊗̂O[Dm](H
1(Γ(m, p),D′

κh
)⊗O[[2H(p)

f2µ2p∞
2
]])(2− κ∗fgh)

)
.

Now choose a level-N test vector for f , denote as f̆ . It comes with a specialization map

(3.7) πf : H1(Γ(1, p),D′
κf
)(1)→ T∨

f .

Under the natural maps induced by (3.6) and (3.7), the image of Z(1)
µ3

is then

Z(2)
µ3
∈ H1

(
Q, T∨

f ⊗O (IndQK1
O(ξ1ψ0,1)−1 [1H(p)

µ1
][[ΓK1

p1
]])⊗̂O[Dm](Ind

Q
K2
O(ξ2ψ0,2)−1 [2H(p)

µ2
][[ΓK2

p2
]])(−1−κ∗fgh)

)
.

We first follow (3.3) and then apply the diagonal map e ◦ w in Proposition 3.1.1, this induces the class

(3.8) Z(3)
µ3
∈ H1

(
K3, T

∨
f (1− k/2)⊗O IndK3

K0[µ3]
ΛO(ψ̃

−1
1 ψ̃−1

2 κ̃
(k1−2)/2
ac,1 κ̃

(k2−2)/2
ac,2 κ−1

ac )(1− (k1 + k2)/2)
)
.

Here, for i ∈ {1, 2}, we identify Γ−
i = Gal(K−

i,∞/Ki) with the anti-diagonal in (1 + pZp) × (1 + pZp) ≃
O(1)
Ki,pi

×O(1)
Ki,p̄i

via the geometric normalised Artin map, and define

κac,i : Γ
−
i → Z×

p , ((1 + p)−1/2, (1 + p)1/2) 7→ (1 + p).

We then identify the anticyclotomic Z2
p extension Γ− = Gal(K−

0,∞/K0) of K0 with ΓK1
p1
× ΓK2

p2
via the

following diagram:
(3.9)

(O(1)
K0,P1

×O(1)
K0,P2

)× (O(1)
K0,P3

×O(1)
K0,P4

)

Norm

��

// //

��

(1+pZp)×(1+pZp)
diag × (1+pZp)×(1+pZp)

diag

��

≃ // Z2
p

��
(O(1)

K1,p1
×O(1)

K1,p̄1
)× (O(1)

K2,p2
×O(1)

K2,p̄2
) // // (1+pZp)×(1+pZp)

diag × (1+pZp)×(1+pZp)
diag

≃ // Zp × Zp
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Let Λ− = ZpJΓ−K and define further κac : Γ
− → Λ× where

((1 + p)−1/2, (1 + p)1/2, (1 + p)−1/2, (1 + p)1/2) 7→ [(1 + p), (1 + p)].

Given an O-lattice T inside a GK0-representation V , Shapiro’s lemma allows us to write

H1
(
K0, T ⊗̂OΛ

−
O(κ

−1
ac )

)
≃ H1

Iw(K0[p
∞], T ),

where H1
Iw(K0[p

∞], T ) := lim←−r,sH
1(K0[p

r
3p̄
s
3], T ) with limit under the corestriction maps. Then the image

of Z(3)
µ3

in (3.8) under Shapiro’s lemma is an Iwasawa cohomology class

(3.10) Zµ3 ∈ H1
Iw

(
K0[µ3p

∞], T∨
f (1− k/2)⊗ ψ̃−1

1 ψ̃−1
2 κ̃

(k1−2)/2
ac,1 κ̃

(k2−2)/2
ac,2 (1− (k1 + k2)/2)

)
for the conjugate self-dual representation T∨

f (1− k/2) twisted by the Hecke character

χ−1 = ψ̃−1
1 ψ̃−1

2 N1−(k1+k2)/2,

where χ is anticyclotomic and of infinity type (corresponding to the order (P1,P2,P3,P4) or (1, τ3, τ2, τ1)):(
2− k1 − k2

2
,
k1 + k2 − 2

2
,
k1 − k2

2
,
k2 − k1

2

)
.

Denote by

(3.11) Tf,χ = T∨
f (1− k/2)⊗ χ−1.

Following the proof of Theorem 3.1.4 and invoking [Rub00, Thm 6.4.1] to go from a collection of
Iwasawa cohomology classes for the anticyclotomic twist, we thus arrive at the proof for the wild norm
relation, which is formulated inside the following theorem.

Theorem 3.2.1. Suppose p ∤ 6hK0 and f is non-Eisenstein modulo P. Let µ3 ∈ N and denote m =
NK3/Q(µ3). Then there exists a collection of Iwasawa cohomology classes

zf,χ,µ3 ∈ H1
Iw

(
K0[µ3p

∞], Tf,χ
)

such that for every split prime λ3 of OK3
of norm ℓ, where ℓ splits in K0, with (ℓ,mp) = 1 we have the

norm relation
Norm

K0[µ3 λ3]
K0[µ3]

(zf,χ,µ3 λ3) = PL4(FrobL4)(zf,χ,µ3),

where PL4
(X) = det(1−X · FrobL4

| (Tf,χ)∨(1)).

4. Anticyclotomic Euler systems in the sense of Jetchev–Nekovář–Skinner

In this section, we show that the classes constructed in Theorem3.2.1 land in certain Selmer groups
defined by Greenberg [Gre94]. This allows us to identify our classes as an anticyclotomic Euler system
in the sense of Jetchev–Nekovář–Skinner [JNS] and uses that to obtain arithmetic consequences.

Keeping the setup at the start of Section 3, we assume further that f is a p-ordinary newform of even
weight k ≥ 2 with p ∤ Nf .

4.1. Selmer groups. Let χ be an anticyclotomic Hecke character of K0 of infinity type (−a, a,−b, b)
for some integers a, b ≥ 0. We will focus on the conjugate self-dual GK0

-representation

Vf,χ := V ∨
f (1− k/2)⊗ χ−1.

Definition 4.1.1. For each prime P ∈ {P1,P2,P3,P4} of K0 above p, we fix a GK0,P -stable subspace

F+
P (Vf,χ) ⊂ Vf,χ and denote

F−
P (Vf,χ) = Vf,χ/F

+
P (Vf,χ).

Let L be a finite extension ofK0. TheGreenberg Selmer group SelF (L, Vf,χ) attached to F = {F+
P (Vf,χ)}P|p

is defined by

(4.1) SelF (L, Vf,χ) := ker

{
H1(L, Vf,χ)→

∏
w

H1(Lw, Vf,χ)

H1
F (Lw, Vf,χ)

}
,
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where w runs over the finite primes of L, and the local conditions are given by

H1
F (Lw, Vf,χ) =

{
ker

{
H1(Lw, Vf,χ)→ H1(Lur

w , Vf,χ)
}

if w ∤ p,
ker

{
H1(Lw, Vf,χ)→ H1(Lw,F

−
P (Vf,χ))

}
if w | P | p.

We fix a lattice Tf,χ ⊂ Vf,χ. Let H
1
F (Lw, Tf,χ) be the inverse image of H1

F (Lw, Vf,χ) under the natural
map

H1(Lw, Tf,χ)→ H1(Lw, Vf,χ).

This then defines SelF (L, Tf,χ) as in (4.1). For any Z2
p-extension L∞ =

⋃
r,s Lr,s of L, we put

SelF (L∞, Tf,χ) := lim←−
r,s

SelF (Lr,s, Tf,χ),

where the inverse limit is taken with respect to the corestriction map. We also put SelF (L∞, Vf,χ) :=
SelF (L∞, Tf,χ)⊗Zp Qp. Note that this group is independent of the chosen lattice Tf,χ.

Definition 4.1.2. We also define the Bloch-Kato Selmer group SelBK(L, Vf,χ) following [BK90]:

SelBK(L, Vf,χ) := ker

{
H1(L, Vf,χ)→

∏
w

H1(Lw, Vf,χ)

H1
f (Lw, Vf,χ)

}
,

where the local conditions are given by

H1
f (Lw, Vf,χ) = ker

{
H1(Lw, Vf,χ)→ H1(Lur

w , Vf,χ)
}
,

at primes w ∤ p, and the crystalline condition at primes w | p:
H1
f (Lw, Vf,χ) = ker

{
H1(Lw, Vf,χ)→ H1(Lw, Vf,χ ⊗Bcris)

}
with Bcris being Fontaine’s crystalline period ring. The local conditions H1

f (Lw, Tf,χ) ⊂ H1(Lw, Tf,χ)
are defined by propagation similarly.

Besides the crystalline condition, there are three local conditions at primes P | p that we will be
interested in:

(1) The strict condition:

F+
P (Vf,χ) = 0

(2) The relaxed condition:

F+
P (Vf,χ) = Vf,χ

(3) The ordinary condition, corresponding to the fact that the restriction of Vf,χ to GQp is reducible
(see equation 2.1):

F+
P (Vf,χ) = V +

f,χ := V ∨,+
f (1− k/2)⊗ χ−1

Definition 4.1.3. Denote by Selα,β,γ,δ(K0, V ) the subgroup of H1(K0, V ) where classes are unramified
at all primes v ∤ p; and they satisfy the conditions α, β, γ, δ at P1, P2, P3, P4 respectively, where
α, β, γ, δ ∈ {rel, str, ord}, and these conditions correspond to the relaxed, strict, and ordinary condition
respectively.

We will now compute the explicit local conditions for the Bloch-Kato Selmer group. Here we shall
adopt the convention that the p-adic cyclotomic character has Hodge–Tate weight −1. Thus, since χ has
infinity type (−a, a,−b, b), the p-adic avatar of χ has Hodge–Tate weight a,−a, b,−b at P1,P2,P3,P4

respectively.

Lemma 4.1.4. Assume that a ≥ b. For any finite extension L of K we have

SelBK(L, Vf,χ) =


Selord,ord,ord,ord(L, Vf,χ) if k ≥ 2a+ 2,

Selrel,str,ord,ord(L, Vf,χ) if 2b+ 2 ≤ k < 2a+ 2

Selrel,str,rel,str(L, Vf,χ) if k < 2b+ 2.
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Proof. By the Panchiskin condition [BK90, Thm 4.1(ii)] (see also [Nek00, (3.1)-(3.2)] and [Fla90, Lem. 2,
p. 125]), for every prime w|P|p of L/K0/Q we have

H1
f (Lw, Vf,χ) = im

{
H1(Lw,Fil

1
P(Vf,χ))→ H1(Lw, Vf,χ)

}
,

where Fil1P(Vf,χ) ⊂ Vf,χ is a GKP -stable subspace (assuming it exists) such that the Hodge–Tate weights

of Fil1P(Vf,χ) (resp. Vf,χ/Fil
1
P(Vf,χ)) are all < 0 (resp. ≥ 0).

Now, by computing the Hodge–Tate weights table of V +
f,χ and V −

f,χ := Vf,χ/V
+
f,χ at the primes of K0

above p:

V +
f,χ V −

f,χ

HT weight at P1 −a− k/2 −a− 1 + k/2
HT weight at P2 a− k/2 a− 1 + k/2
HT weight at P3 −b− k/2 −b− 1 + k/2
HT weight at P4 b− k/2 b− 1 + k/2

we obtained the equalities in the lemma. □

Fix a choice of Galois stable subgroups F = {F+
P (Vf,χ)}P|p and let

Af,χ := HomZp(Tf,χ, µp∞).

Define the associated dual Selmer group SelF∗(L,Af,χ) by

SelF∗(L,Af,χ) := ker

{
H1(L,Af,χ)→

∏
w

H1(Lw, Af,χ)

H1
F∗(Lw, Af,χ)

}
,

where H1
F∗(Lw, Af,χ) is the orthogonal complement of H1

F (Lw, Tf,χ) under local Tate duality

H1(Lw, Tf,χ)×H1(Lw, Af,χ)→ Qp/Zp.

One can then compute that:

(1) The dual Selmer group of Selrel,str,ord,ord(L, Tf,χ) consists of classes that are unramified outside
p and have the strict, relaxed, ordinary, ordinary condition at P1,P2,P3,P4 respectively. Under
Definition 4.1.3, this can be denoted as Selstr,rel,ord,ord(L,Af,χ).

(2) The dual Selmer group of Selord,ord,ord,ord(L, Tf,χ) consists of classes that are unramified outside
p, and land in the image of the natural map

H1(Lw,F
+
P (Af,χ))→ H1(Lw, Af,χ), F+

P (Af,χ) := HomZp(F
−
P (Tf,χ), µp∞),

for w|P|p. Under Definition 4.1.3, this can be denoted as Selord,ord,ord,ord(L,Af,χ).

4.2. Local conditions at p of the Euler system. Recall from Theorem 3.2.1 that we have classes

zf,χ,µ3 ∈ H1
Iw(K0[µ3p

∞], Tf,χ),

where Tf,χ = T∨
f (1− k/2)⊗ χ−1 and χ−1 = ψ̃−1

1 ψ̃−1
2 N1−(k1+k2)/2.

Proposition 4.2.1. Suppose p ∤ 6hK0
and f is non-Eisenstein modulo P. Let µ3 ∈ N (taken from

Section 3.0.1) run over squarefree product of prime ideals of λ3 ∈ L with m = NK3/Q(µ3) coprime to p.
The class zf,χ,µ3

of Theorem3.2.1 satisfies

zf,χ,µ3
∈ Selrel,str,ord,ord(K0[µ3p

∞], Tf,χ).

Proof. By [BSV22, Cor. 8.2] and [CD23, Sec. 4.1], the class zf,χ,µ3
lands in the balanced Selmer group

Selbal(Q,V†), where the balanced local condition at p upon specialised to f is given by

(4.2)
F bal
p (V†

Q1
) ≃

(
T∨
f (1− r)⊗ ξ̃−1

1 Ψ̃T1
ξ̃−1
2 Ψ̃T2

)
⊕

(
T∨,+
f (1− r)⊗ ξ̃−1

1 Ψ̃T1
ξ̃−c
2 Ψ̃c

T2

)
⊕

(
T∨,+
f (1− r)⊗ ξ̃−c

1 Ψ̃c
T1
ξ̃−1
2 Ψ̃T2

)
.
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Put Ṽ†
Q1

= T∨
f (1−r)⊗ ξ̃

−1
1 Ψ̃T1

ξ̃−1
2 Ψ̃T2

then Shapiro Lemma tells us that H1(Q,V†
Q1

) ≃ H1(K0, Ṽ
†
Q1

),

see (6.10). Following [CD23, Sec. 5.3], the local condition F bal
p (V†

Q1
) cutting out the specialised balanced

Selmer group at p corresponds to

F bal
P1

(Ṽ†
Q1
|GK0

) = T∨
f (1− k/2)⊗ ξ̃−1

1 Ψ̃T1 ξ̃
−1
2 Ψ̃T2 ,

F bal
P2

(Ṽ†
Q1
|GK0

) = 0,

F bal
P3

(Ṽ†
Q1
|GK0

) = T∨,+
f (1− k/2)⊗ ξ̃−c

1 Ψ̃c
T1
ξ̃−1
2 Ψ̃T2

,

F bal
P4

(Ṽ†
Q1
|GK0

) = T∨,+
f (1− k/2)⊗ ξ̃−1

1 Ψ̃T1
ξ̃−c
2 Ψ̃c

T2
.

(4.3)

Hence the class zf,χ,µ3 satisfies the relaxed-strict-ordinary-ordinary condition at the primes above p.
On the other hand, at the primes w ∤ p, because Vf,χ is conjugate self-dual and pure of weight −1, we

see that

H0(K0[µ3p
r
3p̄
s
3]w, Vf,χ) = H2(K0[µ3p

r
3p̄
s
3]w, Vf,χ) = 0

for all r, s, and therefore

H1(K0[µ3p
r
3p̄
s
3]w, Vf,χ) = 0

by Tate’s local Euler characteristic formula. This implies the torsionness of H1(K0[µ3p
r
3p̄
s
3]w, Tf,χ), and

one has the following inclusion:

resw(zf,χ,µ3
) ∈ lim←−

r,s

H1
f (K0[µ3p

r
3p̄
s
3]w, Tf,χ),

which concludes the proof. □

4.3. Applying the general machinery. We show some arithmetic applications by invoking the gen-
eral Euler system machinery of Jetchev–Nekovář–Skinner [JNS]. These results will be used to deduce
the Bloch–Kato conjecture and the anticyclotomic Iwasawa main conjecture by exploiting the relation
between our Euler system classes and special values of complex and p-adic L-functions via an explicit
reciprocity law.

For every ideal µ3 ∈ N , denote by

zf,χ,µ3
∈ Selrel,str,ord,ord(K0[µ3], Tf,χ)

the image of zf,χ,µ3
from Theorem3.2.1 under the projection

Selrel,str,ord,ord(K0[µ3p
∞], Tf,χ)→ Selrel,str,ord,ord(K0[µ3], Tf,χ).

And denote the base class

zf,χ := corK0[1]/K0
(zf,χ,1) ∈ Selrel,str,ord,ord(K0, Tf,χ).

Theorem 4.3.1. Assume that f is not of CM-type, non-Eisenstein at P, and that p ∤ 6hK0
. One has:

zf,χ ̸= 0 ⇒ Selrel,str,ord,ord(K0, Vf,χ) is one-dimensional.

Proof. Combining Theorem 3.2.1 and Proposition 4.2.1, the system of classes

(4.4)
{
zf,χ,µ3

∈ Selrel,str,ord,ord(K0[µ3], Tf,χ) : µ3 ∈ N
}

forms an anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner [JNS] for the relaxed-
strict-ordinary-ordinary Greenberg Selmer group.

Under the assumption that f is not of CM-type, the following properties (i)–(iii) follow from Momose’s
big image results [Mom81] as in [LLZ15, Prop. 7.1.4]:

(i) Vf,χ is absolutely irreducible;

(ii) There is an element σ ∈ GK0
fixing K0[1]K0(µp∞ , (O×

K0
)1/p

∞
) such that Vf,χ/(σ − 1)Vf,χ is

one-dimensional;
(iii) There is an element γ ∈ GK0

fixing K0[1]K0(µp∞ , (O×
K0

)1/p
∞
) such that V γ=1

f,χ = 0.
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Hence the nonvanishing of zf,χ implies the one-dimensionality of Selrel,str,ord,ord(K0, Vf,χ) by the general
machinery of [JNS]. □

Recall that K−
0,∞ is the anticyclotomic Z2

p-extension over K0 and Λ−
K0

= ZpJGal(K−
0,∞/K)K. Let zf,χ,1

be the Λ−
K0

-adic class of Theorem3.2.1 of conductor µ3 = (1), and put the Iwasawa-theoretic base class

zf,χ := corK0[1]/K0
(zf,χ,(1)) ∈ Selrel,str,ord,ord(K

−
0,∞, Tf,χ).

Note that by Proposition 4.2.1, one has

zf,χ ∈ Selrel,str,ord,ord(K
−
0,∞, Tf,χ).

Definition 4.3.2. We say that f has big image atP if the image of GQ in AutO(T
∨
f ) contains a conjugate

of SL2(Zp).

Remark 4.3.3. By a theorem of Ribet [Rib85], if f is not of CM-type then it has big image for all but
finitely many primes of L.

Denote by

Xstr,rel,ord,ord(K
−
0,∞, Af,χ) = HomZp

(
lim−→ Selstr,rel,ord,ord(K0[p

r
3p̄
s
3], Af,χ),Qp/Zp

)
.

One then has a divisibility towards an anticyclotomic Iwasawa main conjecture ‘without L-functions’
as follows:

Theorem 4.3.4. Assume that f is not of CM-type, has big image at P, and that p ∤ 6hK0 . If zf,χ is
non-torsion, then:

(1) Xstr,rel,ord,ord(K
−
0,∞, Af,χ) and Selrel,str,ord,ord(K

−
0,∞, Tf,χ) both have Λ−

K0
-rank one.

(2) And we have the divisibility

charΛ−
K0

(Xstr,rel,ord,ord(K
−
0,∞, Af,χ)tors) ⊃ charΛ−

K0

(
Selrel,str,ord,ord(K

−
0,∞, Tf,χ)

Λ−
K0
· zf,χ

)2

in Λ−
K0

.

Here, the subscript tors denotes the Λ−
K0

-torsion submodule.

Proof. Combining Theorem3.2.1 and Proposition 4.2.1, the system of classes

(4.5)
{
zf,χ,µ3

∈ Selrel,str,ord,ord(K0[µ3p
∞], Tf,χ) : µ3 ∈ N

}
forms a Λ−

K0
-adic anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner for the relaxed-

strict-ordinary-ordinary Selmer group.
Under the assumption that f has big image atP, the following properties hold (see [LLZ15, Prop. 7.1.6])

(i) T̄f,χ := Tf,χ/PTf,χ is absolutely irreducible;

(ii) There is an element σ ∈ GK fixing K[1]K(µp∞ , (O×
K)1/p

∞
) such that Tf,χ/(σ − 1)Tf,χ is free of

rank 1 over O;
(iii) There is an element γ ∈ GK fixing K[1]K(µp∞ , (O×

K)1/p
∞
) and acting as multiplication by a

scalar aγ ̸= 1 on T̄f,χ;

and so the non-torsionness of zf,χ implies the conclusions by the general machinery of [JNS]. □

5. Triple product p-adic L-function and Selmer group

Here, we will recall some conventions on Hida families, triple product p-adic L-function and Selmer
group following [Hsi21].
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5.1. Hida families. We follow the convention of [Hsi21, §3.1]. Let O be the ring of integers of a finite
extension of Qp. Let I be a normal domain, finite flat over the Iwasawa algebra

Λ := OJ1 + pZpK.

Let N be a positive integer primes p and χ : (Z/NpZ)× → O× be a Dirichlet character. Denote by
So(N,χ, I) ⊂ IJqK the space of ordinary I-adic cusp forms of tame level N and branch character χ.

Let X+
I ⊂ Spec I(Qp) be the set of arithmetic points of I, which consists of the ring homomorphisms

Q : I→ Qp such that for some kQ ∈ Z≥2 called the weight of Q and ϵQ(z) ∈ µp∞ ,

Q|1+pZp : z 7→ zkQ−1ϵQ(z).

We say that f =
∑∞
n=1 an(f)q

n ∈ So(N,χ, I) is a primitive Hida family if the specialization fQ for every

Q ∈ X+
I gives the q-expansion of an ordinary p-stabilised newform of weight kQ and tame conductor N .

Let Xcls
I ⊂ Spec I(Qp) be the set of ring homomorphisms Q as above with kQ ∈ Z≥1 such that fQ is the

q-expansion of a classical modular form.
Given f a primitive Hida family of tame conductor N , one can associate a Galois representation

ρf : GQ → AutI(Vf ) ≃ GL2(I),

where the determinant of ρf is χI · εcyc, see [Hsi21, §3.2]. By [Wil88, Thm. 2.2.2], the restriction of Vf
to GQp is reducible and one has a short exact sequence

0→ V +
f → Vf → V −

f → 0.

Here the quotient V −
f is free of rank one over I, with GQp acting via the unramified character sending

an arithmetic Frobenius Frob−1
p to ap(f). Let T(N, I) be the Hecke algebra acting on

⊕
χ S

o(N,χ, I),
where χ runs over the characters of (Z/NpZ)×. There is a I-algebra homomorphism attached to f

λf : T(N, I)→ I

that factors through a local component Tm. Following [Hid88], we define the congruence ideal C(f) of f
by

C(f) := λf (AnnTm
(kerλf )) ⊂ I.

Under the assumption that the residual representation ρ̄f is absolutely irreducible and p-distinguished,
Wiles [Wil95] and Hida [Hid88] prove that C(f) is generated by a nonzero element ηf ∈ I.

5.2. CM Hida families revisited. We explicitly construct CM Hida families, following the exposition
in [Hsi21, §8.1]. Let K be an imaginary quadratic field of discriminant −DK < 0, and suppose that
p = pp̄ splits in K, with p the prime of K above p induced by our fixed embedding ıp : Q→ Qp.

Let K∞ be the Z2
p-extension of K. Let K(p∞) be the maximal subfield of K∞ unramified outside p.

Put

Γ∞ := Gal(K∞/K) ≃ Z2
p, Γp := Gal(K(p∞)/K) ≃ Zp.

For every ideal c ⊂ OK , recall that Kc is the ray class field of K of conductor c. Using our notation,
K(p∞) is the maximal Zp-extension of K inside Kp∞ . Denote by Artp the restriction of the Artin map to
K×

p , with geometric normalisation. Then Artp induces an embedding 1 + pZp → Γp, where we identified

Z×
p and O×

Kp
via ιp. Let γp be the image of 1 + p hence it will be a topological generator of Γp.

For each variable S let ΨS : Γ∞ → OJSK× be the universal character given by

ΨS(σ) = (1 + S)l(σ),

where l(σ) ∈ Zp is such that σ|K(p∞) = γ
l(σ)
p . Now assume that c is prime to p. Given a finite order

character ξ : GK → O× of conductor dividing c, let

θξ(S)(q) =
∑

(a,pc)=1

ξ(σa)Ψ
−1
1+S
1+p−1

(σa)q
NK/Q(a) ∈ OJSKJqK,



18 K.T.DO

where σa ∈ Gal(Kcp∞/K) is the Artin symbol of a. Then θξ(S) is a Hida family defined over OJSK of
tame level NK/Q(c)DK and tame character (ξ ◦V )ϵKω

−1, where V : Gab
Q → Gab

K is the transfer map and

ϵK is the quadratic character corresponding to K/Q.

5.3. Triple products of Hida families. Let

f ∈ So(Nf , χf , If ), g ∈ So(Ng, χg, Ig), h ∈ So(Nh, χh, Ih)

be three primitive Hida families such that

(5.1) χfχgχh = ω2a for some a ∈ Z,

where ω is the Teichmüller character. Let

R = If ⊗̂OIg⊗̂OIh

be a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ.
Let X+

R ⊂ SpecR(Qp) be the weight space of R given by

X+
R :=

{
Q = (Q1, Q2, Q3) ∈ X+

If × Xcls
Ig × Xcls

Ih : kQ1
+ kQ2

+ kQ3
≡ 0 (mod 2)

}
.

One can then partition X+
R = Xbal

R ⊔ Xf
R ⊔ Xg

R ⊔ Xh
R as follows:

(1) the set of balanced weights:

Xbal
R :=

{
Q ∈ X+

R : kQ1
+ kQ2

+ kQ3
> 2kQi for all i ∈ {1, 2, 3}

}
,

(2) the set of f -unbalanced weights:

Xf
R :=

{
Q ∈ X+

R : kQ1
≥ kQ2

+ kQ3

}
,

(3) the set of g-unbalanced weights:

Xg
R :=

{
Q ∈ X+

R : kQ2
≥ kQ1

+ kQ3

}
,

(4) the set of h-unbalanced weights:

Xh
R :=

{
Q ∈ X+

R : kQ3 ≥ kQ1 + kQ2

}
.

Let V = Vf ⊗̂OVg⊗̂OVh be the triple tensor product Galois representation attached to (f , g,h). By
(5.1), one can decompose the determinant of V as detV = X 2εcyc. Put

(5.2) V† := V ⊗X−1.

This is a self-dual twist of V. For any Q = (Q1, Q2, Q3) ∈ Xf
R, denote by V†

Q the corresponding

specialisation.

For each prime ℓ, let εℓ(V
†
Q) be the epsilon factor attached to the local representation V†

Q|GQℓ
(cf.

[Tat79, p. 21]). We assume that for some Q ∈ Xf
R, we have

(5.3) εℓ(V
†
Q) = +1 for all prime factors ℓ of NfNgNh.

Note that condition (5.3) is independent of Q (see [Hsi21, §1.2]). Furthermore it implies that the sign of
the functional equation for the triple product L-function (with center at s = 0)

L(V†
Q, s)

is +1 (resp. −1) for all Q ∈ Xf
R ∪ Xg

R ∪ Xh
R (resp. Q ∈ Xbal

R ).
Q1
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Theorem 5.3.1 (Theorem A in [Hsi21]). Let f , g,h be three primitive Hida families satisfying conditions
(5.1) and (5.3). Assume also that gcd(Nf , Ng, Nh) is squarefree, and the residual representation ρ̄f is
absolutely irreducible and p-distinguished. Fix a generator ηf of the congruence ideal of f . Then there
exists a unique element

L
f ,ηf
p (f , g,h) ∈ R

such that for all Q = (Q1, Q2, Q3) ∈ Xf
R of weight (k1, k2, k3) with ϵQ1

= 1 we have

(
L

f ,ηf
p (f , g,h)(Q)

)2
= ΓV†

Q
(0) ·

L(V†
Q, 0)

(
√
−1)2k1 · Ω2

fQ1

· Ep(F f
p (V

†
Q)) ·

∏
q∈Σexc

(1 + q−1)2,

where:

• ΓV†
Q
(0) = 16(2π)−2k1Γ(wQ)Γ(wQ + 2− k2 − k3)Γ(wQ + 1− k2)Γ(wQ + 1− k3),

and wQ = (k1 + k2 + k3 − 2)/2;

• ΩfQ1
is the Hida canonical period

ΩfQ1
:= (−2

√
−1)k1+1 ·

∥f◦
Q1
∥2Γ0(Nf )

ηfQ1

·
(
1−

χ′
f (p)p

k1−1

α2
Q1

)(
1−

χ′
f (p)p

k1−2

α2
Q1

)
,

with f◦
Q1
∈ Sk1(Γ0(Nf )) the newform of conductor Nf associated with fQ1

, χ′
f the prime-to-p

part of χf , and αQ1
the specialisation of ap(f) ∈ I×f at Q1;

• Ep(F f
p (V

†
Q)) is the modified p-Euler factor and Σexc is an explicitly defined subset of the prime

factors of NfNgNh, [Hsi21, p. 416].

5.4. Triple product Selmer groups. Recall from equation (5.2) that V† = V ⊗ X−1 is the self-dual
twist of the Galois representation associated to a triple of primitive Hida families (f , g,h) given (5.1).

Definition 5.4.1. Let

F bal
p (V†) :=

(
Vf ⊗ V +

g ⊗ V +
h + V +

f ⊗ Vg ⊗ V
+
h + V +

f ⊗ V
+
g ⊗ Vh

)
⊗X−1,

and define the balanced local condition H1
bal(Qp,V

†) by

H1
bal(Qp,V

†) := im
(
H1(Qp,F

bal
p (V†))→ H1(Qp,V

†)
)
.

Similarly, recall that

F f
p (V

†) =
(
V +
f ⊗ Vg ⊗ Vh

)
⊗X−1,

and define the f -unbalanced local condition H1
f (Qp,V

†) by

H1
f (Qp,V

†) := im
(
H1(Qp,F

f
p (V

†))→ H1(Qp,V
†)
)
.

Note that the maps appearing in these definitions are injective, so we can identify H1
⋆(Qp,V

†) with
H1(Qp,F ⋆

p (V
†)) for ⋆ ∈ {bal,f}.

Definition 5.4.2. Let ⋆ ∈ {bal,f}. Define the Selmer group Sel⋆(Q,V†) by

Sel⋆(Q,V†) := ker

{
H1(Q,V†)→ H1(Qp,V

†)

H1
⋆(Qp,V†)

×
∏
v ̸=p

H1(Qnr
v ,V

†)

}
.

We call Selbal(Q,V†) the balanced Selmer group and Self (Q,V†) the f -unbalanced Selmer group.

Definition 5.4.3. Let A† = HomZp(V
†, µp∞) and let ⋆ ∈ {bal,f}. Define H1

⋆(Qp,A
†) ⊂ H1(Qp,A

†) to

be the orthogonal complement of H1
⋆(Qp,V

†) under the local Tate duality

H1(Qp,V
†)×H1(Qp,A

†)→ Qp/Zp.
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Similarly as above, we then define the balanced and f -unbalanced Selmer groups with coefficients in A†

by

Sel⋆(Q,A†) := ker

{
H1(Q,A†)→ H1(Qp,A

†)

H1
⋆(Qp,A†)

×
∏
v ̸=p

H1(Qnr
v ,A

†)

}
.

Let
X⋆(Q,A†) = HomZp(Sel

⋆(Q,A†),Qp/Zp)

be the Pontryagin dual of Sel⋆(Q,A†).

6. Arithmetic applications

Finally, we obtain some arithmetic results from our constructed Euler system via results from Section
4 and the explicit reciprocity law.

6.1. Reciprocity law and Greenberg–Iwasawa main conjectures. Let (f , g,h) be a triple of primi-
tive Hida families as in §5.1 satisfying (5.1). LetN = lcm(Nf , Ng, Nh). The big diagonal class constructed
in [BSV22, §8.1]

(6.1) κ(f , g,h) ∈ H1(Q,V†(N)),

where V†(N) is a free R-module isomorphic to finitely many copies of V†, can be identified with classes

κ̃
(1)
m , κ

(2)
m in equation (2.14), (2.15) respectively of [CD23]. The definition of the Selmer groups in §5.4

extends to V†(N), and by [BSV22, Cor. 8.2] we have κ(f , g,h) ∈ Selbal(Q,V†(N)).
We define more GQp

-invariant subspaces of V†:

(6.2)

F 3
p (V

†) = V +
f ⊗̂OV

+
g ⊗̂OV

+
h ⊗X

−1,

Vgh
f = V −

f ⊗̂OV
+
g ⊗̂OV

+
h ⊗X

−1,

Vfh
g = V +

f ⊗̂OV
−
g ⊗̂OV

+
h ⊗X

−1,

Vfg
h = V +

f ⊗̂OV
+
g ⊗̂OV

−
h ⊗X

−1,

and obtain

(6.3) F bal
p (V†)/F 3

p (V
†) ∼= Vgh

f ⊕Vfh
g ⊕Vfg

h ,

Assume that the congruence ideal C(f) ⊂ If is principal, generated by the nonzero ηf ∈ If (this will
be satisfied when the residual representation ρ̄f is absolutely irreducible and p-distinguished). One can
deduce from results in [KLZ17] the construction of an injective three-variable p-adic regulator map with
pseudo-null cokernel:

(6.4) Logηf : H1(Qp,V
gh
f )→ R,

see the explicit map in [CD23, §4.3.1] and the explanation in [BSV22, §7.3].
Let resp(κ(f , g,h))f be the image of κ(f , g,h) under the natural composition of maps:

(6.5) Selbal(Q,V†)
resp−−→ H1(Qp,F

bal
p (V†))→ H1(Qp,F

bal
p (V†)/F 3

p (V
†))→ H1(Qp,V

gh
f ),

where we first restrict at p and then project onto the first direct summand in (6.3). The following result
is an explicit reciprocity law that relates diagonal cycles with the triple product p-adic L-functions.

Theorem 6.1.1 (Theorem A in [BSV22]). Let (f , g,h) be a triple of primitive Hida families as in
Theorem 5.3.1. Then

Logηf (resp(κ(f , g,h))f ) = L
f ,ηf
p (f , g,h).

Assume that the associated ring R is regular. Similar to [ACR21, §7.3], the following result can be
seen as the equivalence between two different formulation of the Iwasawa main conjecture in the style of
Greenberg [Gre94] for the p-adic deformation V†.

Proposition 6.1.2 (Proposition 4.3.3 in[CD23]). The following statements (I) and (II) are equivalent:
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(I) L
f ,ηf
p (f , g,h) is nonzero, the modules Self (Q,V†) and Xf (Q,A†) are both R-torsion, and

charR
(
Xf (Q,A†)

)
=

(
L f
p (f , g,h)2

)
in R⊗Zp Qp.

(II) κ(f , g,h) is not R-torsion, the modules Selbal(Q,V†) and Xbal(Q,A†) have both R-rank one,
and

charR
(
Xbal(Q,A†)tors

)
= charR

(
Selbal(Q,V†)

R · κ(f , g,h)

)2

in R⊗Zp Qp, where the subscript tors denotes the R-torsion submodule.

6.2. The triple product p-adic L-function and Selmer groups. Let f ∈ S2r(pNf ) be a p-stabilised
newform, and suppose the residual representation ρ̄f is absolutely irreducible and p-distinguished. By
Hida theory, f is the specialisation of a unique primitive Hida family f ∈ So(Nf , I) at an arithmetic
point Q1 ∈ X+

I of weight 2r. For i ∈ {1, 2} let fi ⊂ OKi be an ideal coprime to pNf , ξi be ray class
characters of Ki of conductors dividing fi. Let χξi be the central character of ξi. We assume that

(6.6) χξ1ϵK1χξ2ϵK2 = 1,

and let

(6.7) g1 = θξ1(S1) ∈ OJS1KJqK, g2 = θξ2(S2) ∈ OJS2KJqK

be the CM Hida families attached to ξ1 and ξ2, respectively.
The triple (f , g1, g2) satisfies conditions (5.1) and the associated f -unbalanced triple product p-adic

L-function L
f ,ηf
p (f , g1, g2) is an element in R = I⊗̂OOJS1K⊗̂OOJS2K ≃ IJS1, S2K. Let

(6.8) L
f ,ηf
p (f, g1, g2) ∈ OJS1, S2K

be its image under the natural map IJS1, S2K→ OJS1, S2K defined by Q1.

Write V†
Q1

for the specialisation of V† at Q1. Let V ∨
f be the Galois representation associated to f ,

and recall that det(V ∨
f ) = ε2r−1

cyc in our conventions. Setting Ti = v−1(1 + Si) − 1 (i ∈ {1, 2}), we have

det(VgT1 ⊗ VhT2 ) = ΨT1
ΨT2
◦ V , and so

(6.9)
V†
Q1
≃ T∨

f ⊗ (IndQKξ
−1
1 ΨT1

)⊗ (IndQKξ
−1
2 ΨT2

)⊗ ε1−rcyc (Ψ
−1/2
T1

Ψ
−1/2
T2

◦ V )

≃ T∨
f (1− r)⊗ IndQK0

ξ̃−1
1 Ψ̃T1 ξ̃

−1
2 Ψ̃T2 ,

where T∨
f is a GQ-stable O-lattice inside V ∨

f . In particular, we get

(6.10) H1(Q,V†
Q1

) ≃ H1(K0, T
∨
f (1− r)⊗ ξ̃−1

1 Ψ̃T1
ξ̃−1
2 Ψ̃T2

)

by Shapiro’s lemma.

Proposition 6.2.1. Via the isomorphism (6.10),

(1) the balanced Selmer group Selbal(Q,V†
Q1

) can be rewritten as

Selbal(Q,V†
Q1

) ≃ Selrel,str,ord,ord(K0, T
∨
f (1− r)⊗ ξ̃−1

1 Ψ̃T1
ξ̃−1
2 Ψ̃T2

),

(2) the f -unbalanced Selmer group Self (Q,V†
Q1

) can be rewritten as

Self (Q,V†
Q1

) ≃ Selord,ord,ord,ord(K0, T
∨
f (1− r)⊗ ξ̃−1

1 Ψ̃T1 ξ̃
−1
2 Ψ̃T2).

(3) the h-unbalanced Selmer group Selh(Q,V†
Q1

) can be rewritten as

Selh(Q,V†
Q1

) ≃ Selrel,str,rel,str(K0, T
∨
f (1− r)⊗ ξ̃−1

1 Ψ̃T1
ξ̃−1
2 Ψ̃T2

).
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Proof. For the balanced case, see Proposition 4.2.1. For the f -unbalanced case, note that

(6.11)
F f
p (V

†
Q1

) ≃
(
T∨,+
f (1− r)⊗ ξ̃−1

1 Ψ̃T1 ξ̃
−1
2 Ψ̃T2

)
⊕

(
T∨,+
f (1− r)⊗ ξ̃−1

1 Ψ̃T1 ξ̃
−c
2 Ψ̃c

T2

)
⊕
(
T∨,+
f (1− r)⊗ ξ̃−c

1 Ψ̃c
T1
ξ̃−1
2 Ψ̃T2

)
⊕

(
T∨,+
f (1− r)⊗ ξ̃−c

1 Ψ̃c
T1
ξ̃−c
2 Ψ̃c

T2

)
.

and the result follows. The h-unbalanced case can be obtained in a similar manner. □

As a consequence we also obtain the following isomorphisms for the Selmer groups with coefficients in

A†
Q1

= HomZp(V
†
Q1
, µp∞) by local Tate duality. Let Af (r) = HomZp(T

∨
f (1− r), µp∞).

Corollary 6.2.2. We can identify the balanced Selmer group Selbal(Q,A†
Q1

) as

Selbal(Q,A†
Q1

) ≃ Selstr,rel,ord,ord(K0, Af (r)⊗ ξ̃1Ψ̃−1
T1
ξ̃2Ψ̃

−1
T2

),

the f -unbalanced Selmer group Self (Q,A†
Q1

) as

Self (Q,A†
Q1

) ≃ Selord,ord,ord,ord(K0, Af (r)⊗ ξ̃1Ψ̃−1
T1
ξ̃2Ψ̃

−1
T2

),

and the h-unbalanced Selmer group Selh(Q,A†
Q1

) as

Selh(Q,A†
Q1

) ≃ Selstr,rel,str,rel(K0, Af (r)⊗ ξ̃1Ψ̃−1
T1
ξ̃2Ψ̃

−1
T2

).

6.3. On the Bloch–Kato conjecture in rank 0. Our first applications is the Bloch–Kato conjecture
in analytic rank zero for the conjugate self-dual GK0

-representation Vf,χ = V ∨
f (1− r)⊗ χ−1.

Assumption 6.1. We assume that the anticyclotomic Hecke character χ over K0 can be decomposed
as:

χ = ψ̃1ψ̃2N
(k1+k2−2)/2,

where

(1) ψ1 is a Hecke character of K1 of infinity type (1− k1, 0), with k1 ≥ 1, and modulus f1.
(2) ψ2 is a Hecke character of K2 of infinity type (1− k2, 0), with k2 ≥ 1, and modulus f2.

(3) ψ̃i is the Hecke character of K0, obtained by composing A×
K0

NK0/Ki−−−−−→ A×
Ki

ψi−→ C for each
i ∈ {1, 2}.

(4) By swapping K1 and K2, we may assume that k2 ≥ k1.
In this scenario, the infinity type of χ (corresponding to the order (P1,P2,P3,P4) or (1, τ3, τ2, τ1)) is(

2− k1 − k2
2

,
k1 + k2 − 2

2
,
k1 − k2

2
,
k2 − k1

2

)
.

Theorem 6.3.1. Let f ∈ Sk(Γ0(pNf )) be a p-ordinary p-stabilised newform of weight k = 2r ≥ 2 which
is old at p. Let χ be an anticyclotomic Hecke character of K0 as in (6.1). Assume that:

(1) Either k ≥ k1 + k2 if k2 − k1 ≥ k;
(2) NfOK3

= n+n− where n+ (respectively n−) is divisible only by primes which are split (respectively
inert) in K0/K3 and n− is a squarefree product of an even number of primes.

(3) ρ̄f is absolutely irreducible;
(4) (pNf ,NormK1/Q(f1)NormK2/Q(f2)DK0) = 1;
(5) p ∤ 6hK0

, the class number of K0;

then we have the following implication

L(f/K0, χ, r) ̸= 0 =⇒ SelBK(K0, Vf,χ) = 0.

In other words, the Bloch–Kato conjecture holds in analytic rank zero for Vf,χ.
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Proof. We consider the CM Hida families

g = θξ1(S1), h = θξ2(S2),

that pass through θψ1
and θψ2

respectively. Note that the triple (f , g1, g2) satisfies (5.3). Then the

isomorphism (6.9) of the associated V†
Q1

together with the specialization Q1 corresponding to θψ1
and

θψ2 show that

L(V†
Q1
, 0) = L(f/K0, χ, r).

By Theorem6.1.1 we then have

L(f/K0, χ, r) ̸= 0 =⇒ resp(κ(f , g,h))f ,Q1
̸= 0.

Note that from our construction, the class κ(f , g,h)Q1
∈ Selrel,str,ord,ord(K0, Vf,χ) is the base class of the

anticyclotomic Euler system{
zf,χ,µ3

∈ Selrel,str,ord,ord(K0[m], Tf,χ) : µ3 ∈ N
}

of (4.4). By Theorem4.3.1, we conclude that the Selmer group Selrel,str,ord,ord(K0, Vf,χ) is one-dimensional,
spanned by

zf,χ = corK0[1]/K0
(zf,χ,1) = κ(f , g,h)Q1

.

If k ≥ k1 + k2, since resP1
(zf,χ) ̸= 0 by the reciprocity law, the vanishing of Selord,ord,ord,ord(K0, Vf,χ)

then follows by a standard argument using Poitou–Tate duality (see [Do22, §5.1.1]). This yields the result
by using the Lemma 4.1.4 for k ≥ k1 + k2 to identify the latter group with SelBK(K0, Vf,χ).

If k2 − k1 ≥ k, similarly by using resP2(zf,χ) ̸= 0 we obtain the vanishing of Selrel,str,rel,str(K0, Vf,χ),
which is again the Bloch-Kato Selmer group SelBK(K0, Vf,χ) by Lemma 4.1.4 for k2 − k1 ≥ k. □

Remark 6.3.2. Let ϵ(f, χ) to be the sign of the functional equation for Vf,χ. Then ϵ(f, χ) =
∏
ϵ(πK0,v

⊗
χv, 1/2) over places v of K0 as a product of local root numbers. If v|n+ then ϵ(πK0,v

⊗ χv, 1/2) = +1
and if v|n− then ϵ(πK0,v

⊗ χv, 1/2) = −1. Therefore the contribution from the local places is +1 due to
assumption (2). At the infinity places,

ϵ∞(πK0
⊗ χ, 1

2
) = i|k−1+(k1+k2−2)|+|k−1−(k1+k2−2)|+|k−1+(k2−k1)|+|k−1−(k2−k1)|

=


+1 if k > (k1 + k2 − 2)

−1 if k2 − k1 < k ≤ k1 + k2 − 2

+1 if k ≤ k2 − k1.

Hence conditions (1) and (2) of Theorem 6.3.1 then imply that ϵ(f, χ) = 1.

6.4. On the Iwasawa main conjecture. Our second application is an evidence towards the anticy-
clotomic Iwasawa main conjecture for modular forms. Recall that we have an eigenform f of weight
k = 2r ≥ 2 with trivial nebentypus and an anticyclotomic character χ satisfying Assumption 6.1. Let

Af,χ = HomZp(T
∨
f (1− r)⊗ χ−1, µp∞).

Theorem 6.4.1. Under the same assumption as in Theorem 6.3.1, we assume further that:

(1) ρ̄f is p-distinguished,
(2) f has big image,
(3) p > k − 2.

If k ≥ k1 + k2 then Selord,ord,ord,ord(K
−
∞, Af,χ) is cotorsion over Λ−

K0
. Furthermore, inside Λ−

K0
⊗Zp Qp,

we have the following inclusion

charΛ−
K0

(
Selord,ord,ord,ord(K

−
0,∞, Af,χ)

∨) ⊃ (
L

f ,ηf
p (f, g1, g2)

2
)
.
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Proof. Recall from Corollary 6.2.2 that we have

(6.12) Self (Q,A†) ≃ Selord,ord,ord,ord(K
−
0,∞, Af (r)⊗ χ),

where A† = HomZp(V†, µp∞).

Note that from (6.8), L
f ,ηf
p (f, g1, g2) is an element of OJS1, S2K. We then identify Λ−

K0
≃ OJS1, S2K

via the diagram (3.9). The p-adic L-function L
f ,ηf
p (f, g1, g2) is nonzero by [Hun17, Thm.C]. Note that

our assumption that k ≥ k1+k2 ensures that we are in the critical specializations i.e. −kσ/2 < mσ < kσ/2
for all σ ∈ Σ, following the notation of op. cit.. Hence Theorem 6.1.1 implies that the class

κ(f, g,h) ∈ Selrel,str,ord,ord(K0, T
∨
f (1− r)⊗ ξ̃−1

1 Ψ̃T1 ξ̃
−1
2 Ψ̃T2)

is non-torsion. Since by construction κ(f, g,h) is the base class of the Λ−
K0

-adic anticyclotomic Euler
system {

zf,χ,µ3 ∈ Selrel,str,ord,ord(K0[µ3p
∞], Tf,χ) : µ3 ∈ N

}
in (4.5), the result follows immediately from Theorem4.3.4 applied to

(6.13) zf,χ := corK0[1]/K0
(zf,χ,(1)) = κ(f, g,h),

the equivalence in Proposition 6.1.2, and the Selmer group isomorphism (6.12). □

Remark 6.4.2. Inside Theorem 6.4.1, one can relate the RHS to the p-adic L-function of Wan [Wan15,
Thm. 86] and Hung [Hun17] under the assumptions of Fujiwara [Fuj06, Thm. 11.1,11.2] and Wan [Wan15,
Thm. 103]. The author expect the full Iwasawa Main Conjecture will then follow from the opposite
divisibility of Wan [Wan15] and the vanishing of the µ-invariant of the p-adic L-function [Hun17], which
is a generalization Skinner-Urban [SU14] and Vatsal [Vat03] respectively.

Remark 6.4.3. One expects a similar result that if k2−k1 ≥ k then Selstr,rel,str,rel(K
−
∞, Af,χ) is cotorsion

over Λ−
K0

together with the following inclusion inside Λ−
K0
⊗Zp Qp,

charΛ−
K0

(
Selstr,rel,str,rel(K

−
0,∞, Af,χ)

∨) ⊃ (
L h,ηh
p (f, g1, g2)

2
)
.

The only missing ingredients are the non-vanishing of the p-adic L-function in this region.

6.5. On the Bloch–Kato conjecture in rank 1. Our last application is extracted from the proof of
Theorem 6.4.1. It provides result towards the Bloch–Kato conjecture in rank 1.

Theorem 6.5.1. Under the same assumption as in Theorem 6.4.1, if k1+ k2− 2 ≥ k ≥ k2− k1+2 (this
induces L(f/K, χ, r) = 0), then

dimLP
SelBK(K0, Vf,χ) ≥ 1.

Proof. The class zf,χ ∈ Selrel,str,ord,ord(K
−
0,∞, Tf,χ) is non-torsion via the proof of Theorem 6.4.1. Fur-

thermore, zf,χ is the base of a Λ−
K0

-adic anticyclotomic Euler systems as in (6.13) for the relaxed-strict-

ordinary-ordinary Selmer group. One then uses theorem 4.3.4 then implies that Selrel,str,ord,ord(K
−
0,∞, Tf,χ)

has Λ−
K0

-rank 1. Invoking Mazur’s control theorem [JSW17] for the relaxed-strict part and [Gre99] for
the ordinary-ordinary part, we have that the natural map

(6.14) Selrel,str,ord,ord(K
−
0,∞, Tf,χ)/(γ1,− − 1, γ2,− − 1)→ Selrel,str,ord,ord(K0, Tf,χ)

is injective with finite cokernel and hence the Selmer group Selrel,str,ord,ord(K0, Tf,χ) has positive O-rank.
The theorem then follows by Lemma 4.1.4, which computes the local conditions of the Bloch-Kato Selmer
group explictly. □

Remark 6.5.2. Note that by letting zf,χ ∈ Selrel,str,ord,ord(K0, Tf,χ) be the image of zf,χ under the
projection (6.14), such a class zf,χ ∈ SelBK(K0, Vf,χ) satisfies:

zf,χ ̸= 0 =⇒ dimLP
SelBK(K0, Vf,χ) = 1.

by Theorem 4.3.1.
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