ANTICYCLOTOMIC EULER SYSTEM OVER BIQUADRATIC FIELDS

KIM TUAN DO

ABSTRACT. We construct a new anticyclotomic Euler system (in the sense of Jetchev—Nekovai—Skinner)
for the Galois representation Vy , attached to a newform f of weight k > 2 twisted by an anticyclotomic
Hecke character x defined over an imaginary biquadratic field Kp. We then show some arithmetic
applications of the constructed Euler system, including results on the Bloch-Kato conjecture, and a
divisibility towards the Iwasawa-Greenberg main conjecture for Vj .
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1. INTRODUCTION

Let f=37",ang" € S(To(Ny)) be an elliptic newform of even weight k = 2r > 2, and let p { 6N
be a prime. Let Ky/Q be an imaginary biquadratic field in which p splits. This means that K, contains
two distinct imaginary quadratic subfields K;, K> together with one real quadratic subfield K3. Let L
be a number field containing Ky and the Fourier coefficients of f, and let 3 be a prime of L above p at
which f is ordinary, i.e. vp(ap) = 0. Let x be an anticyclotomic Hecke character of Ky with infinity type
(—a,a,—b,b) where a > b > 0! that satisfies the decomposition hypothesis (6.1) i.e. x can be factored

X = P1hp N1 Fh2=2)/2,
Here, for i € {1,2}, v¢; is a Hecke character of K; of infinity type (1 — k;,0) and modulus f;; ; is the

Nio /K v
Hecke character of Ky, obtained by composing Ax, BRI Ax. Y4, C. Not that if this happens, we

must have k; = a—b+1 and ko = a+b+1. We then focus on the conjugate self-dual G, = Gal(Q/Kj)-
representation
Vi =V/(1-rex !,
where va is the contragredient of Deligne’s 3-adic Galois representation associated to f.
Throughout the remainder of this section, we assume the following hypotheses:

e f is ordinary and non-Eisenstein at 3;

e p splits in K;

e p1{hg,, where hg, is the class number of K.
For every integral ideal us of O, let Ko[us] be the maximal p-subextension of the ring class field of Ky
of conductor pz. Denote by N the set of squarefree products of primes p3 C Of,, where m = Nk, q(us)
is squarefree, prime to p, and split in K.

Theorem A (Theorem3.2.1). There exists a collection of Iwasawa cohomology classes

Zf x,us3 € Hllw (KO [/1’3]300]7 Tf,x) ;
where Ty, is a certain G -stable O-lattice inside Vy,y, such that for every prime As € N of norm ¢, with
(¢, mp) = 1 we have the norm relation

K, A
NOI‘HIKE {Zi] ? (Zf7X,N3 >\3) = Pr, (Fr0b£4)(zf7X7N3)’

where Pr,(X) = det(1 — X - Frobg, | (Tr)¥ (1)), and Frobg, is the geometric Frobenius.

Remark. In [JNS], Jetchev—Nekovai—Skinner have developed a theory of ‘split’ anticyclotomic Euler
systems attached to conjugate self-dual representations over CM fields, and our construction fits within
their framework. Furthermore, we note that the condition where m = N, /Q(ug) splits in Ky does
exclude the setting when m is inert in K3 and pg splits in K. Nevertheless, this does not affect the
application of the [JNS] machinery.

Due to its geometric origin, if we let

Kfx 1= COTK 1]/, (Zf,x,(1))

then it will land in a Selmer subgroup of H'(Kj, V., ) with ‘nice’ local conditions (see Section 4.2). Then
feeding Theorem A to the general Euler system machinery of [JNS], we deduce the following cases of the
Bloch-Kato conjecture in analytic rank O.

Theorem B (Theorem6.3.1). Let f € Sp(I'o(Nf)) be a newform. Let x be an anticyclotomic Hecke
character of K of infinity type (—a,a,—b,b) satisfying the Hypotheses (6.1). Assume further that:
(1) FEither k> 2a+2 or2b>k;

1By either using L(f/Ko,x,7) = L(f/Ko, x¢,7), where X is the composition of y with the action of complex conjugation,
or swapping the order of K; and Ka, we would be able to cover other cases of a and b.
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(2) NfOg, =ntn~ wheren™ (respectively n™ ) is divisible only by primes which are split (respectively
inert) in Ko/Ks and n~ is a squarefree product of an even number of primes;
(3) py is absolutely irreducible;
(4) (pNy,Normp, /q(f1)Normy, q(f2) Dr,) = 1;
Then
L(f/Ko, X ’I“) 75 0 = SelBK(KQ, Vf,X) =0,

and hence the Bloch-Kato conjecture for Vi, holds in this case.

Note that the first 2 conditions of Theorem B imply that the sign of the functional equation of V.,
is equal to +1, see also Remark 6.3.2. This puts us in an ideal situation for the non-vanishing of central
L—values generically.

Let O be the ring of integers of Lgz. We say that f has big image if for a certain Galois stable O-lattice
Ty C Vy/, the image of Gq in Auto(T}) contains a conjugate of SLa(Z,). Under this assumption, we
also have results towards the Bloch—Kato conjecture in the analytic rank 1 case.

Theorem C (Theorem 6.5.1). Let the hypotheses be as in Theorem B, and assume in addition that:

(1) py is p-distinguished;

(2) f has big image;

3)p>k-—2.
If 2a > k > 2b+ 2 (which implies L(f/K,x,r) =0), then

dimLm SelBK(KO, nyX) Z 1.
Moreover, there exists a class zf, € Selgk (Ko, Vy,) such that
Zfx 7& 0 = d.il’Iqu3 SelBK(KOa Vf7X) =1.

Finally, we note that results also include the proof of a divisibility towards the anticyclotomic Iwasawa
Main Conjecture for V; ., see Theorem 6.4.1.

1.1. Relation to previous works. When y is an anticyclotomic Hecke character over K, an imaginary
quadratic field, the arithmetic of Vy, has been studied intensively via the Euler system of Heegner
points pioneering by Gross—Zagier and Kolyvagin [GZ86, Kol88] (see also [Zha97, Tia03, Nek07]), and
generalized Heegener cycles by Bertolini-Darmon—Prasanna [BDP13]. In particular, these objects have
direct implications towards the Bloch-Kato conjecture in analytic rank 0 for V, by either varying the
generalised Heegner cycles in p-adic families like in Castella—Hsieh [CH18] (see also [Cas20]), or by the
‘level-raising’ method like in Bertolini-Darmon [BDO05] (see also [LV10, CH15, Chil7]). In the same vein
as [BD05], Nekovai [Nek12] and Wang [Wan23] proved results towards the rank 0 Bloch-Kato conjecture
when f is a cuspidal Hilbert modular eigenform over a totally real field F' of parallel weight 2 and higher
weights respectively, where x is a finite order character, see also result of Tamiozzo [Tam21].

Outside of the Heegner realm, it is worthwhile to mention that the Euler system of Beilinson-Flach
classes constructed by Lei-Loeffler—Zerbes [LLZ14, LLZ15] and Kings—Loeffler—Zerbes [KLZ17, K1.Z20]
can be applied to obtain similar rank 0 results. Relying on this, Lamplugh [Lam] constructed Euler
systems for Indgé(’)(xp) over K (where p is an auxiliary character) and used that to bound the associated
Selmer group over the K via Rubin’s machinery [Rub00].

The anticyclotomic Euler system over K that we will describe in this paper is more comparable with
the anticyclotomic diagonal Euler system [Do022, CD23] over K (an imaginary quadratic field) and comes
together with application towards the Bloch-Kato conjecture in analytic rank 0. The construction of the
cohomology classes, similar to [CD23], is based on a generalisation of the diagonal cycles pioneered by
Gross—Kudla [GK92] and Gross—Schoen [GS95], and improved recently by Darmon—Rotger and Bertolini—
Seveso—Venerucci (see [BDR722]). Despite the fact that it is being done later, the imaginary biquadratic
case is actually a generic case (where K; # Kj) while the imaginary quadratic case is a degenerate
situation (where K = K; = K»).
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In future work, we intend to construct a bipartite Euler system over a biquadratic field as well as
investigate the case where p does not split completely in K.

1.2. Acknowledgements. The author would like to thank Francesc Castella and Christopher Skin-
ner for many fruitful discussions and encouragements, Haruzo Hida for suggesting the problem, Chan-
drashekhar Khare, Romyar Sharifi and Alex Smith for helpful communication.

2. PRELIMINARIES

2.1. Galois representations associated to newforms. In this section, we follow [CD23, Sec. 1.1] and
introduce some important notations and results. Let f € Sip(I'1(N¢), xs) be a normalized newform of
weight k£ > 2 and let Ezozl anq" be its g-expansion. Let p { Ny be a prime. Fix embeddings i : Q—=C
and i, : Q <= Q,,. Let L/Q be the coefficient field of f i.e. L containes all values i2!(a,) and i} o ;.
Let B be the prime of L above p with respect to i,. Let S = {prime ¢|pNs}U{oco}. Then Eichler-Shimura
(for k = 2) and Deligne (for k& > 2) construct a p—adic Galois representation associated to f:

Prp - GQ,S — GLQ(ng)7
such that for all primes ¢ ¢ S:

o trace(ps g (Frobe)) = ip(ae),

o det(pg s (Froby)) = i (xs ()" 1),
e pra is irreducible, hence absolutely irreducible.

Here Froby is the geometric Frobenius.
As in [CD23, Sec.1.1], one obtains the geometric realization Vy of pyq defined as the subspace of

Hi(Yi(Np)g, 7 k—2) ® L.
Dually, va = Hom(V}, Ly) can be interpreted as the maximal quotient of

H(Yi(Nyp)g, ZLr-2(1)) ® Ly

*

on which the dual Hecke operator T, acts as multiplication by a, for all £{ N;p and (d) = (d)* acts as

multiplication by x(d) for all d € (Z/N;Z)*.

Let O be the ring of integers of Ly. There exists a Gq-stable O-lattice T}’ C va defined as the image
of Hélt(Yl(Nf)Qa gk_g(l)) ® O in va.

If f is ordinary at p (which means i,(a,) € O*), then the restriction of V; to Gq, is reducible. This
leads us to an exact sequence of Ly[Gq,]-modules

+ —_
0=V =V =V, =0,
where dimyp,,, VfjE = 1. Dually, we also obtain an exact sequence for the restriction of VfV to Gq,
(2.1) 0=V, T =V -V =0,

where va’+ ~ (Vi)Y (1—k) (X;1)7 and the Gq,-action on the quotient va’_ is given by the unramified

character sending the arithmetic Frobenius Frob, L %o ay, which is the unit root of 2% — a,z + x s (p)p* 1.

2.2. Patched CM Hecke modules. Here, we recall the conventions on Hecke characters and the
construction of certain patched CM Hecke modules from [CD23, Sec. 1.3] and [LLZ15].
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2.2.1. Hecke characters and theta series. Let K be an imaginary quadratic field. Let p = pp be a prime
that splits in K with p, the prime of K above p, induced by i, : Q < Qp. We say that a Hecke character
¥ A% /K* — C* has infinity type (m,n), where m,n are integers, if oo (Too) = T T .

Let recx : A — G}‘? be the geometrically normalised Artin reciprocity map. Following [CD23,
Sec. 1.3.1], given g € Gk, we take x € A} such that reck (x) = g|xa» and define

v(g) = ip 0 i) (Y(@)a "2 )ary'wp
Such a g will be called the p-adic avatar of 1. We shall also use i to denote its p-adic avatar if the
context make this usage reasonable.
Attaching to v, a Hecke character of K of infinity type (—1,0) with conductor § that takes values in
a finite extension L/K, is the theta series

b= (@)™ € Sy(I1(Ny). xuer)
(a,f)=1
where Ny, = Nk /q(f)disc(K/Q), xy is the unique Dirichlet character modulo Ng,q(f) such that ¢ ((n)) =
nxy(n) for all n € Z with (n, Nx/q(f)) = 1, and ek is the quadratic Dirichlet character attached to K.
The cuspform 6y, is new of level Ny = Ng,q(f) - disc(K/Q) by [Miy89]. One obtains the following
description of the ‘B-adic representation of 0,

Vyl, 2 Ind@ L),

2.2.2. Hecke algebras and norm maps. We keep the notation of the previous section and follow [CD23,
Sec.1.3.1]. Let n C Ok be an ideal divisible by f and let N = Nk q(n)disc(K/Q). Let K, be the ray
class field of K with conductor n. Let H, = Gal(K,/K) be the ray class group of K modulo n. Let K(n)
be the largest p-subextension of K contained in K,, i.e. Gal(K(n)/K) = HP) is the largest p-power
quotient of H,. Given an ideal £ of K that is coprime to n, let [€] be the class of ¢ in H,. Let T'(N) be
the subalgebra of Endz(H'(Y1(N)(C),Z)) generated by (d)’ and T} for all primes ¢ then one can prove
that:

Proposition 2.2.1 (Proposition 3.2.1 in [LL.Z15]). There exists a homomorphism ¢, : T/(N) — O[H,]
defined by
¢11(Té) = Z [[]wa)v

[COK,H’H,
Ni/q(h=¢

$a((d)') = Xy (d)ex (d)[(d)]-

For m = nl, with [ a prime ideal and (m,p) = 1, put M = Ng,q(m)disc(K/Q) and one has the

following map

N OHP) @1 (002,00 Ha (V1 (Mg, Zp(1)) = O[HP) @1(n)62,.0, HE (V1(N)g, Zp(1)).
This norm map is defined explicitly by splitting into 3 cases (see [CD23, Sec.1.1.2] for the definition of
the degeneracy map):

o If [ | n then

J\/’lfln =1 & prl*;
e If [{n is split or ramified in K, then

SO

Nt =1®pry, — 0 @ Pryy;

o If [{nis inert in K, say [ = (£), then

Ol
62

N‘?:1®prl*7 & Prygy-
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Note that one can extend the definition of N to any pair of ideals n | m by composition.
Following [CD23, Sec.1.3.2], if p splits in K and (p,f) = 1 then for any ideal n C Ok divisible by f§
such that (n,p) = 1, the maximal ideal of T'(N) defined by the kernel of the composition

T/(N) 2% O[H,] 2% 0 — 0/,

is non-Eisenstein, p-ordinary, and p-distinguished.
We finish this section by extracting a crucial result in [LLZ15] in the case where p splits in K. This
will be used later to prove the norm relation of our Euler system.

Theorem 2.2.2 (Corollary 5.2.6 in [LLZ15]). Assume that (p,f) = 1. Let A be the set of ideals m C Ok
with (m,p) = 1, and put A; = {fm: m € A}. Given n € A;, there is a Gq-equivariant isomorphisms of

O[H,Sp)] -modules

o

v OLHY ) @1/ (3)02,.0, HE(Vi(N)g. Zp(1) — IndF, O(").
Furthermore, for any n,m € A; with n| m, the following diagram commutes:

Vm

O[HY) @ (anyez, 60 HE (YT (M)g, Zp(1)) —=> ndF, O(u")

N \L NormJ' i

OHY] @1/ (xys2y00 HE(Vi(N)g, Zp(1) — == nd, O(g"),
where Norm)' is the natural norm map of the induced representations.

3. THE CONSTRUCTION

For a newform f and two Hecke characters 1,19 of 2 distinct imaginary quadratic fields K;, Ko
respectively, using the results from [BSV22] and [LLZ15] recalled in the preceding section, we construct
a family of cohomology classes for f ® 1110 defined over ring class field extensions of K, which is the
compositum of K; and Ks, and prove that they satisfy the norm relations of an anticyclotomic Euler
system. Following [CD23, Sec. 2], we first give the construction and show the tame norm relations in the
case where (f, 8y, ,0,,) have weights (2, 2,2). Then by varying the diagonal cycle classes in Hida families
we extend the construction to more general weights and prove the wild norm relations.

Throughout this section we consider the following set-up:

(1) Let f € Sp(To(Ny)) be a newform of weight & > 2.

(2) Let K1/Q be an imaginary quadratic field of discriminant D; coprime to Ny. Let ¢; be a Hecke
character of K of infinity type (1 — k1,0), with k; > 1, and modulus f;.

(3) Let K2/Q be an imaginary quadratic field of discriminant Dy # D; and coprime to Ny. Let )9
be a Hecke character of Ky of infinity type (1 — k2,0), with ko > 1, and modulus fs.

(4) Denote by ek, the quadratic character attached to the quadratic field K; for i € {1, 2}.

(5) Let Ky be the compositum of K; and Ks. Since Kj is a biquadratic field, we can consider Kj,
the unique real quadratic field inside K.

(6) Let 1Zl be the Hecke character of K, obtained by composing AX
(7) Denote by

Ny /K,

Kol px P Cori e {1,2}.

gﬁbi € Ski(NdJﬂXwieKi)
the associated theta series, where Ny, = Nk, /q(fi)-disc(K;/Q) and xy, is the Dirichlet character
modulo Nk, q(fi) defined by ;((n)) = n¥i~'xy, (n) for all integers n prime to Nk, q(fi) (i €

{1,2}).

(8) We assume the self-duality condition
(3.1) Xup1 €K1 Xopo €K, = 1.
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Let L/Kj be a finite extension containing the Fourier coefficients of f, 6y,, and 6y,. Let p > 5 be a
prime that splits in Ky and such that (p, NyNy, Ny,) = 1, and let B|p be the primes of L/K, above p

determined by a fixed embedding i, : Q — Qp. Finally, let Ly be the completion of L at '3, and denote
by O the ring of integers of Leg.

3.0.1. Digression to primes decomposition and the top left-corner notations. Let ¢ be a split prime in K
ie. (0) = L1LoL3Ly. We can write (£) = A\ Ay and (£) = Xy Ag in K and Ky respectively. Note that
¢ also splits in K3 as A3 /~\37 where the tilde corresponds to the nontrivial element generating the Galois
group Gal(K3/Q).

Let 7; to be the generator of Gal(Ky/K;) for i = {1,2,3} then we have 73 = 7172 (this is the complex
conjugation on K3). Due to the Galois group action on primes lying above ¢, we can further assume that:

A1 = L1Ly, A= L3Ls, Ay = L1 L3, A2 = LoLy,
)\3 = £4£3 (SO )\3 ‘ )\1 )\2), and 5\3 = £1£2,

where
L4 =1L, L3 =1L, Lo =1Ly =T1T2Ly.

Denote by L the set of primes A\3 C Of,, where £ = Nk, /q(A3) primes to p and £ splits in K. Let
N be the set of squarefree products of primes inside £ such that its norm down to Q is still squarefree.
For such A3, we can choose A\; C Ok, and Ay C Ok, as above such that Az | A1 Aa.

Given pug € N ie. its norm m = [], ¢; will be a product of split primes ¢; in K. Similarly, we can
decompose (m) = MiMaM3zMy, (M) = p1fi1, (M) = pofia, (M) = usfiz as a decomposition inside Ky,
K, K5 and K3 respectively, where we can have the following decomposition:

1 = MiMy, fi1 = MaMa, po = MiMs, fia = MaMy,
pz = MyMsj (so p3|p1piz), and fiz = MiMa.

Here, for every i, M; =[], L, l; = [I; £y, for 1 <j <4, pj =[], Aji for every j € {1,2,3}.

For each i € {0,1,2}, we denote "K,, as the ray class field of K; with conductor n; (an integral ideal
inside Ok, ), and let Z4Hni be the ray class group of K; modulo n;. Let K;(n;) be the largest p-subextension
of K; contained in 'K, so Gal(K;(n;)/K;) = iH‘(f;) is the largest p-power quotient of *H,, .

3.1. Construction in weight (2,2,2) and tame norm relation. Suppose in this subsection that
(k,k1,ko) = (2,2,2). Let N = lem(Ny, Ny, , Ny,). Following Section 2.1 of [CD23], which is based on
the diagonal classes in the triple product of modular curves [BSV22, Sec. 3|, we have cohomology classes:
(3.2)

Z) =R € HY(Q, HL(Yi(N)g, Z,(1) © HE (Y1 (Nyym)g, Zy(1)) @ Hy (Y1 (Ny,m)g, Zp(1)(~1)).

for every positive integer m. One then chooses a test vector f € S, (N)[f]. As noted in op. cit., the maps

used to construct Z,SP

obtain:

are compatible with correspondences. This allows one to tensor them with O and

z() e HY(Q,TY ® HL(Yi(Nym)g. Zp(1) @1y, my O HT) |

® Hy (Yi(Nyam)gg: Zp(1) ©rv(vy,m) OPH{L)).
Here, the chosen f is used to take the image under the projection Hélt(Ya, Z,(1)) — T)Y in the first factor.
The tensor products are taken from Proposition 2.2.1

(bfllil : T/(Nwlm) — O[le(lpl)“

I, Gfaia : T (Ny,m) — OPH?P) |

fape

with respect to two distinct imaginary quadratic fields K7 and K», respectively .
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Via the isomorphisms from Proposition with respect to 2 distinct imaginary quadratic fields 2.2.2:

Vi + Hy (Vi (Ny,m)g, Zp(1) @1y, my OLHITL ] S Wnd O,

Vs + He (Vi (Nyym) gy, Zp(1)) @10,y m) O H“” J S md o),
one then obtains a cohomology class in

- -1
Hl (Qny Ko IndKl(fl}h) (1/)1 ) o IndKz(fQHQ) (% )(_1))5
which under the maps 'Hjy, ., - 'H,,, and *Hj,,, — ?H,,, can be projected to a class
(3.3) 22 € H'(Q, T} ®0 IndZ, 0,1 ['HP] ®0 IndR,0,, -+ PHP](~1)).
Note that the group cohomology can be rewritten as
H'(Q, T} ®@o ndR O 1 ['HE x HP)(-1)),

which by Shapiro’s lemma gives us elements:
(3.4) z{3) € H' (Ko, Tf ®0 O ['HE x 2HP)](-1)).

3.1.1. Projection to ring class groups. Recall the fundamental exact sequence for ray class groups:

OIXQ (Ok,/1:0k,)* iHui ‘H, 1,

where ¢ € {1,2}. Assume that p { 6hg,, where hg, is the class number of K. Note that by [FT91,
Thm. 74], we have

p 1, th
which is the class number of K; for i € {1,2,3}. Taking the p-primary parts of the above exact sequence
induces two isomorphisms

~

YHP) = (0K, /110K, i(OKU/MwKo) (P)

M1

~

2H(p — (0K2/N20K2) i) (OKU/MBOK )X ()
and hence the following projection:
(3:5) YHP) x H( = (Oky 1301,) ") — "HP).

Recall that K3 is the totally real field sitting inside a CM field K. Given an integral ideal n of K3, let
Hn] be the ring class group of Ky of conductor n, so H[n] ~ Pic(O,) under the Artin reciprocity map,
where O, = O, +n0k, is the order of K of conductor n. Let H[n]®) be the maximal p-power quotient
of H[n], and denote by Ky[n] be the maximal p-extension inside the ring class field of Ky of conductor
n, i.e. Hn]®) = Gal(Ky[n]/Ko). Note that for the ring class groups and fields of Ky, we drop the upper
left corner 0 notation.

Proposition 3.1.1. Suppose p t 6hg, and ps is a squarefree ideal of Ok, of norm m, where m is divisible
only by primes that are split in Ky. Using (3.5), we have the following short exact sequence:

A ( ) eow
L= (Or/msO1) @ 2 LH 5 2H 22 Hpig]® 1.
Here, the map A uses the identifications
(Ok, [130k,) P ~ (Ok, | MyOx, )P, (Oky /130K, P 2 (O M50, )P

Moreover, if (£) = L1L2L3Ly is a prime that splits in Ko and is coprime to m, the projection e o w
(defined in the proof below) sends

[)\1] X [5\2] — Frob&/ A3

where Frobg, / , is the Frobenius element of L4 in H{ps)®.
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Proof. We have the following exact diagram together with the fact that |OIX(O / OIX(3| is a power of 2:

OIX(O (OKO/:UBOKO)X OHug OHI 1
Ok, /0%, — Ok, /1130k,)* / (Ore, / 1130k, ) * H{ps)] 0, L

Taking the p—part of this and using the assumption that p { 6hg,, we obtain the following diagram:

w

OIX(O ® T: - (OKO/:LL3OKO)X»(P) oHl(g) o

| | le

1 ——— (Oko/130k,) P /(Orc, | 1301, ) ) —— H]pu]?) —— 1.

Using the middle arrow and the identification 3.5, we can show the first exact sequence.
One can show the second part by noting that £, is a prime of Ky lying above both A; (a prime of K7)
and Ay (a prime of K3). O

In the same setting as Proposition 3.1.1, we can consider the image of Z,(g) from 3.4 under the com-

position e o w. This results in the class
2 € H' (Ko, T ®0 0151 [H[us)P](=1)).
By Shapiro’s lemma, its image under the isomorphism
H' (Ko, T} ®0 O-151[Hps] V) (=1)) = H (Kolus], T (4 "4y 1) (=1))
then defines
2% € H' (Kolus], Ty (v 'y ) (-1)).
The next lemma is in the same vein with [CD23, Lem. 2.1.3]:

Lemma 3.1.2. Let A3 be a split prime in K3 of norm £ coprime to mp, where £ splits in Ky. The
following diagram commutes:

(») (
dR O, ['HY, | @0 mdR, 0, 2H

W] = Ind 201 o [Hl s 2] P)]

lNormﬂ} A ®Normﬁ§ A2 lNormﬂg A3
K-
mdR 0,1 ['HE| @0 WdF, 0,1 [HE] —— nd}30 -1 [H{ps] P,
where the norm maps are the natural ones, and where the horizonal arrows are given by the composition
eow in (3.1.1).

Using this Lemma 3.1.2, one can show the following Proposition 3.1.3. Similar to [CD23, Prop 2.2.1],
this is the key result for the construction of our anticyclotomic Euler system for T (1), L 1) (—1) over
the biquadratic field K.

Proposition 3.1.3. The family {Z;([Z)} satisfies the following norm relation:

Norme s (20, ) = (0 1) (%(f) - el ) )y - DO 5y

Ko[us] 13 Ag ¢

Y1 (A)Y2(X2)

+ =020 () ) ) 260),
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Proof. As in the proof of [CD23, Prop 2.2.1], one has
11 A 12 A2 (5)
<1 ®Nlln ®N:b2 )<Zﬂs >\3)

= (0= 1)1, - 2 gy - 2B g 2RO g e ) ) 219)
= (0= 1) (ar) 2L (gl 4 v ) = (0 )00 + A 2202
+ 0B ) papie+ 1)) (269)
= (0= 1) () — 20O 3 g - LSO g
#0020 g pap ) 2f2),
This implies the result via combining Theorem 2.2.2 and Lemma 3.1.2. (|

Following [CD23, §2.2] verbatim, which borrows ideas from [DR17, §1.4], we can strip out the (¢ — 1)
factor by quotienting out the diamond operators action and obtain modified classes
20 € H' (Kolus], Ty (47 "3 ) (-1)).
Then the term in the right-hand side of Proposition 3.1.3 can be massaged to agree with the local Euler

factor at Lo of the Galois representation [T}(&;%;l)(_n]vu) = Ty (¢1102)(2), giving the correct norm
relations:

Theorem 3.1.4. Suppose p{6hk, and f is non-Eisenstein modulo B. Let us € N be a squarefree ideal
of Ok,. Then there exists a collection of cohomology classes

2y, € H' (Kolpa], TY (91 '3 ) (=1)
such that for every split prime A3 € L of Ok, of norm £ with (¢,m) = 1, we have the norm relation

K A
NOI‘HIKE{Z; ol (ZMS )\3) = PE4 (Fr0b£4/ As)(zﬂs)v

where P, (X) = det(1 — X - Frobg, , », |Tf(1/~)11ﬁ2)(2)).

Proof. The proof is parallel to the one of [CD23, Thm.2.2.7]. First notes that [A] x [A2] corresponds to
Frobg,/a, € H{[;13)®”) under the map e ow of Proposition 3.1.1. One then multiplies the class 2/563)/\3 with
=11 (A1)2(A2)([A1] % [A2]). From 1112((€)) = Xy Xun ()02 = €xc, (€) " Lex, (€) 102 = 2 since ¢ splits in
Ko, ¥1(A1)h2(A2) = 11 (L4)a(Ly), and the fact that [¢] x [¢] maps to the identity element inside the ring
class group together with Lemma 9.6.1 and 9.6.3 in [Rub00], the result follows from the explicit formula
of Proposition 3.1.3. O

3.2. Construction for general weights and wild norm relations. We now extend the above con-

struction to other weights (k, k1, k2) € Z2, following [CD23, Sec. 2.3]. Then we show that the constructed

cohomology classes also satisfy the wild ‘norm relations for the anticyclotomic Zg—extension of K.
First, we assume that p{ 6hg,. Assume further that p splits in Ky i.e.

(p) = 731'P2,P3'P4 in Ko,
and Py = 13P1, P3 = 7oP1, Py = 71P1,. Hence
(p) = p1p1 in Ky, (p) = pap2 in Ko,

with P; the prime of Ky above p induced by our fixed embedding i, : Q < Qp, and P; lies above p;, the
prime of K; for i € {1,2}. Note that the numbering here is parallel to our convention in Section 3.0.1.
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Let I‘K’ be the Galois group of the unique Z,-extension of K; unramified outside p;. There exists a
unique Hecke character v ; of K; of infinity type (—1,0) and conductor p; such that its p-adic avatar
factors through I'X p; - The character 1; fixed at the beginning of this section can be decomposed as

W = G

where §; is a ray class character of K of conductor dividing f;p;. Noting that I‘,Ifi" is a quotient of *H. Fipoe
allows us to view 1y ; and &; as characters of iHﬁpgo. The formal g-expansion

Oc(0) = > &ou(a)algV /el e Ay [q],
(a,fipi)=1
where A, = O[[Ffj]] ~ O[I'] and I = 1+ pZ,, is the Hida family passing through 6y, (the specialisation
of B¢, at weight k; and trivial character recovers the ordinary p-stabilization of 8,,). Here we identify
Fﬁ? with 1+ pZ, via the (geometrically normalised) local Artin map.

Let f be the Hida family associated to f. Let g = 0¢,, h = 08¢, be the CM Hida families associated
to 11 and 1)y, respectively. Denote by k¢, 1y, and sy, the Dirichlet characters modulo p giving the p-part
of the tame characters of f, g, and h, respectively.

Under the assumption that &g ,; # w (mod ) for i € {1,2}, following equation (2.17) from [CD23,
§2.3] and its notation, we have the Gg-equivariant maps

56 HY(T(m,p),D,,) @ O[[ngfglp ] = Ind, O,y [LHP][TE],
H'(T(m,p),D.,,) & 0[[2H§§;2p ] — Id, O ey ) PHDITE],

where I'(m, p) = T'1 (Nm)NTy(p) is a congruence bubgroup Focusing on the class k2 in equation (2.15)

of op. cit., we first tensor it with O H® ] and O2H

Fipia pT let » — oo, and then arrive at

f2M2P ]

z{) e H'(Q H'(I(L,p), D}, )0 (H' (I(m.p), D} ) & owﬂff’glpmm

Bop, ) (H'(T(m,p),D},) @ OPHT) )2 - Kjgn)).
Now choose a level-N test vector for f, denote as f . It comes with a specialization map
(3.7) mp: HY(T(1,p), D, )(1) = TY.
Under the natural maps induced by (3.6) and (3.7), the image of Zf}s) is then
Zfi) € H1 (Qa T}/ Ko (Indgl 0(51#}0,1)_1 [IH;(L]?] ﬂrylzil]])@O[Dm] (Ind22 O(ﬁzwo,z)_l [QH,L(LZ;)] [[ng]])(il - K’;gh)) .
We first follow (3.3) and then apply the diagonal map e o w in Proposition 3.1.1, this induces the class
(3.8) 2 e H' (K3, T} (1 - k/2) @0 Indj, Ao (@i oy w0 2RES D26 (1= (k + k2) /2)).
Here, for i € {1,2}, we identify I'; = Gal(K; , /K;) with the anti-diagonal in (1 + pZy) x (1 + pZ,) ~
Ogi),pi X (’)gj’ﬁi via the geometric normalised Artin map, and define
Kaci U7 = 2, (L+p) % (1+p)?) = (1+p).

We then identify the anticyclotomic Z7 extension '™ = Gal(K, . /Ko) of Ky with FKl X FK2 via the
following diagram:

(3.9)
1 1 1 1 1+pZ, 1+pZ, 14+-pZ, 1+pZ, o~
(O, Of ) % O, % O ) B e
lNorm i
1 1 1 1 14+-pZ, 1+pZ, 1+pZ, 14+-pZ, ~
(O%E,Pl X Og(z,m) (Og(; P2 X Oﬁ(g P2) e c)ilag(g £ ) Ll 3;; = ZP X ZP
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Let A~ = Z,[I'"] and define further kq. : I'™ — A where
(L+p) "2 A+ p)"2 A +p) 72 (14 ) %) = [(L+p), (1 +p)].
Given an O-lattice T inside a Gi,-representation V', Shapiro’s lemma allows us to write
H' (Ko, TéoMo (k') = Hyy, (Ko[p™], T),
where H, (Ko[p™=],T) := lim H'(Ko[p5p3], T) with limit under the corestriction maps. Then the image

of ZL?;) in (3.8) under Shapiro’s lemma is an Iwasawa cohomology class

(3.10) Z,, € HL, (Kolusp™), TY (1 — k/2) @ 97 g 'R PRE D2 (1 — (ky + ko) /2))

ac,

for the conjugate self-dual representation T’ }/ (1 — k/2) twisted by the Hecke character
X1 = gy NI (katha) /2,
where ¥ is anticyclotomic and of infinity type (corresponding to the order (P, P2, P3, Py) or (1,73, T2, 71)):

2—ki—ky ki+ka—2 ki —ky ko— k1
2 ’ 2 o272 '

Denote by
(3.11) Try=T7(1—k/2)@x "

Following the proof of Theorem 3.1.4 and invoking [Rub00, Thm 6.4.1] to go from a collection of
Iwasawa cohomology classes for the anticyclotomic twist, we thus arrive at the proof for the wild norm
relation, which is formulated inside the following theorem.

Theorem 3.2.1. Suppose p { 6hg, and f is non-Eisenstein modulo B. Let uz € N and denote m =
Nk, q(us). Then there exists a collection of Iwasawa cohomology classes

Zf x,us € Hllw (KO [3p™], Tﬁx)

such that for every split prime A3 of Ok, of norm £, where € splits in Ky, with (¢,mp) =1 we have the
norm relation [ |
Kolps A
NOTng[iz] ’ (Zf’XJJ«z rs) = Pr, (Fr0b£4)(zf;x~,#3)v

where Pp,(X) = det(1 — X - Frobg, | (Tr)Y(1)).
4. ANTICYCLOTOMIC EULER SYSTEMS IN THE SENSE OF JETCHEV-NEKOVAR-SKINNER

In this section, we show that the classes constructed in Theorem 3.2.1 land in certain Selmer groups
defined by Greenberg [Gre94]. This allows us to identify our classes as an anticyclotomic Euler system
in the sense of Jetchev—Nekovai—Skinner [JNS] and uses that to obtain arithmetic consequences.

Keeping the setup at the start of Section 3, we assume further that f is a p-ordinary newform of even
weight k£ > 2 with p { Ny.

4.1. Selmer groups. Let x be an anticyclotomic Hecke character of Ky of infinity type (—a,a,—b,b)
for some integers a,b > 0. We will focus on the conjugate self-dual Gx,-representation

Vi =V/(1—k/2)@x .

Definition 4.1.1. For each prime P € {Py, P2, P3, P4} of Kq above p, we fix a G, ,-stable subspace
F5(Vix) C Vi and denote

Tp (Vi) = Vf,x/yg(vf,x)
Let L be a finite extension of Ko. The Greenberg Selmer group Sel (L, Vy,, ) attached to F = {77 (Vi) }pip
is defined by

HY(L
(4.1) Selg (L, Vi) == ker{Hl(L, Vi) =[] (“JV’”X)}

H?(vavf,x)
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where w runs over the finite primes of L, and the local conditions are given by
ker{Hl(Lw,Vf,X) — Hl(L,‘jf,Vf,X)} if wtp,
ker{ H'(Ly, Vi) = H' (Lw, Z5 (Viy))} ifw|P|p.

We fix a lattice Ty, C Vi. Let Hi (Ly, Tt ) be the inverse image of HY (L, Vy,) under the natural
map

Hxlg.(Lu“ VfﬁX) = {

HY(Lu, Ty.x) = H (Lu, Viy)-
This then defines Sel#(L, Ty,y) as in (4.1). For any Z2-extension Lo, = U,.s Lr,s of L, we put

Selg (LOO, TﬁX) = ]&1 Selgj (th, TﬁX)?

where the inverse limit is taken with respect to the corestriction map. We also put Selz (Lo, Vi) =
Selz (Lo, Ty ) ®z, Qp. Note that this group is independent of the chosen lattice 77 .

Definition 4.1.2. We also define the Bloch-Kato Selmer group Selpk (L, Vy ) following [BIC90]:

1(Lw’ Vﬁx) }

H
SelBK(L, vaX) = ker{Hl(L, Vf»X) — H m
w f wH X

where the local conditions are given by
H}(va nyx) = ker{Hl(Lw, nyx) — Hl(LEJrv Vf?X)}’
at primes w 1 p, and the crystalline condition at primes w | p:
H}(Lwa Vix) = ker{Hl(Lw, Vix) = H' (L, Vix ® BcriS)}

with B,s being Fontaine’s crystalline period ring. The local conditions H} (L, Tf) C HY Ly, Ts )
are defined by propagation similarly.

Besides the crystalline condition, there are three local conditions at primes P | p that we will be
interested in:
(1) The strict condition:
7. 7—3Ir (Vf,x) =0
(2) The relaxed condition:
Tp (Vix) = Vi
(3) The ordinary condition, corresponding to the fact that the restriction of Vy , to Gq, is reducible
(see equation 2.1):
g\;(vf,x) = VfTX = va’Jr(l —k/2)® Xﬁ1

Definition 4.1.3. Denote by Sel, s..5(Ko, V) the subgroup of H!(Ky, V) where classes are unramified
at all primes v { p; and they satisfy the conditions «, 8, v, 0 at Py, Pa, Ps3, P4 respectively, where
a, B,7,8 € {rel,str,ord}, and these conditions correspond to the relaxed, strict, and ordinary condition
respectively.

We will now compute the explicit local conditions for the Bloch-Kato Selmer group. Here we shall
adopt the convention that the p-adic cyclotomic character has Hodge—Tate weight —1. Thus, since x has
infinity type (—a,a,—b,b), the p-adic avatar of x has Hodge-Tate weight a,—a,b, —b at P1, P2, P3, Py
respectively.

Lemma 4.1.4. Assume that a > b. For any finite extension L of K we have
Selord,ord,ord,ord (Ly V) if k> 2a+2,

Selpk (L, Vix) = { Selrelstrordord (L, Viy)  if 204+2 <k <2a+2
Selvel str,retstr (L Vi) if k< 2b+ 2.
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Proof. By the Panchiskin condition [BK90, Thm 4.1(ii)] (see also [Nek00, (3.1)-(3.2)] and [F1a90, Lem. 2,
p. 125]), for every prime w|P|p of L/Ky/Q we have

Hi(Luw, Vi) = im{H" (Lo, Filp (V) = H (Lw, Vix) },

where F il%;(Vf,X) C Vi, is a Gg,-stable subspace (assuming it exists) such that the Hodge-Tate weights
of Filp(Vy ) (resp. Vi, /Filp(Vyy)) are all < 0 (resp. > 0).

Now, by computing the Hodge—Tate weights table of fox and Vfo = Vin/ fox at the primes of Ky
above p:

Vfo Vfix

HT weight at P; | —a —k/2 | —a—1+k/2
HT weight at P2 | a—k/2 | a—1+k/2
HT weight at Ps | —b—k/2 | =b—1+k/2
HT weight at Py | b—k/2 | b—1+k/2

we obtained the equalities in the lemma. O
Fix a choice of Galois stable subgroups .7 = {.#} (V}y)}p, and let
Ayx = Homg, (T}, pp=)-
Define the associated dual Selmer group Selg-(L, Ay ) by
H (L, Arx)
H.(Lu, A x) }
where HY.(Ly, Af ) is the orthogonal complement of HY (L, T}, ) under local Tate duality
HY (Lo, Tty ) x H (Luy Ag ) = Qp/Zy.

Selz- (L, Ay ) = ker{Hl(L,Af,X) -1]

One can then compute that:

(1) The dual Selmer group of Selrel str,ord,ord (L, Tf,y) consists of classes that are unramified outside
p and have the strict, relaxed, ordinary, ordinary condition at Py, Po, P3, P4 respectively. Under
Definition 4.1.3, this can be denoted as Selgiy rel,ord,ord (L; Ay )-

(2) The dual Selmer group of Selord,ord,ord,ord (L, s,y ) consists of classes that are unramified outside
p, and land in the image of the natural map

H'(Ly, 75 (Ag) = H (Lu, Apy), T3 (Agy) = Homg, (Fp (Tr,x), bp=),
for w|P|p. Under Definition 4.1.3, this can be denoted as Selord,ord,ord,ord (L, A,y )-

4.2. Local conditions at p of the Euler system. Recall from Theorem 3.2.1 that we have classes

Zfx.ps € Hy, (Ko [1sp™], Ty ),
where Ty, = TY(1 - k/2) @ x " and x ' = Oy Ly NI (katka) /2.
Proposition 4.2.1. Suppose p t 6hg, and f is non-Eisenstein modulo B. Let us € N (taken from

Section 3.0.1) run over squarefree product of prime ideals of A3 € L with m = N, q(p3) coprime to p.
The class z .., of Theorem 3.2.1 satisfies

Zf s € Selrel,str,ord,ord(KO [M3poo]an,x)~

Proof. By [BSV22, Cor.8.2] and [CD23, Sec.4.1], the class zy ., lands in the balanced Selmer group
Selbal(Q, VT), where the balanced local condition at p upon specialised to f is given by

FyNVEH ) = (TY (1= 1) @ &7 00,67 ) @ (T T (1 — 1) @ & Mg, & °05,)

4.2 c-ee, £ 1
(4.2) @(va’+(l—r)@fl_c\IlCTlfz_l‘I/Tz)'
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Put \N/(Bl = T}’(l—r)@é;liTlgglilTQ then Shapiro Lemma tells us that H!(Q, V]LQl) ~ H(Ky, \NITQI),
see (6.10). Following [CD23, Sec. 5.3], the local condition ﬂz?al(VTQl) cutting out the specialised balanced
Selmer group at p corresponds to

FRNVE lew,) =TY (1= k/2) @ &7 0p, & 1,
(43) TR (Vo low,) =0
TRV New,) =T (1 k/2) @ &0, & 1,

TRV lar,) =T (1= k/2) ® & 1 p, TS, .

Hence the class zy ., satisfies the relaxed-strict-ordinary-ordinary condition at the primes above p.
On the other hand, at the primes w { p, because Vy , is conjugate self-dual and pure of weight —1, we
see that

H(Koluspip3lu, Vi) = H? (Koluapip3lu, Vi) = 0
for all 7, s, and therefore
H' (Kolpspp3lu, Vix) =0
by Tate’s local Euler characteristic formula. This implies the torsionness of H'(Ko[usp5pslw, T,y ), and
one has the following inclusion:

resy (Zf,x,us) € lgl H} (Kolpspsp3luws Trx),

.8
which concludes the proof. O
4.3. Applying the general machinery. We show some arithmetic applications by invoking the gen-
eral Euler system machinery of Jetchev—Nekovai—Skinner [JNS]. These results will be used to deduce
the Bloch—Kato conjecture and the anticyclotomic Iwasawa main conjecture by exploiting the relation
between our Euler system classes and special values of complex and p-adic L-functions via an explicit
reciprocity law.
For every ideal u3 € N, denote by
Zf.x, 13 € Selrel,str,ord,ord(KO [ﬂS]an,x)

the image of z¢ ., from Theorem 3.2.1 under the projection

Selrel,str,ord,ord(KO [H3poo], Tf,x) — Selrel,str,ord,ord(KO [,u3]7 Tf,x)-

And denote the base class
Zfx 1= COTK 1]/ Ko (2£,x,1) € Selrel str,ord,ord (Ko, Tf,x)-
Theorem 4.3.1. Assume that f is not of CM-type, non-Eisenstein at B, and that p 1 6hg,. One has:
Zfy 70 = Selrelstr,ord,ord (K0, Vi) s one-dimensional.
Proof. Combining Theorem 3.2.1 and Proposition 4.2.1, the system of classes
(4.4) {25 xms € Selrerstr.ord,ord(Kolpa), Try) = p3 € N}

forms an anticyclotomic Euler system in the sense of Jetchev—Nekovar—Skinner [JNS] for the relaxed-
strict-ordinary-ordinary Greenberg Selmer group.
Under the assumption that f is not of CM-type, the following properties (i)—(iii) follow from Momose’s
big image results [Mom8&1] as in [L1.Z15, Prop. 7.1.4]:
(i) V7, is absolutely irreducible;
(ii) There is an element 0 € Gk, fixing Ko[1]Ko(tpee, ((’)IX{O)I/pOC) such that Vi, /(o — 1)V is
one-dimensional;
(iii) There is an element v € Gk, fixing Ko[1]Ko(pipes, (le([))l/p“) such that Vf’;l =0.
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Hence the nonvanishing of z¢, implies the one-dimensionality of Selrel str,ord,ord (K0, Vf,x) by the general
machinery of [JNS]. O

Recall that K, is the anticyclotomic Z2-extension over Ko and Ay = Z,[Gal(K; . /K)]. Let zj 1
be the Ay -adic class of Theorem 3.2.1 of conductor p3 = (1), and put the Iwasawa-theoretic base class
Zfy = CorKg[l]/Ko (Zf,x,(l)) S Selrel,str,ord,ord(K&wy Tf,x)-

Note that by Proposition4.2.1, one has
Zfy € Selrel,str,ord,ord (K()_,oov Tf,x)~

Definition 4.3.2. We say that f has big image at 9P if the image of Gq in Auto(T}') contains a conjugate
of SLy(Z,).

Remark 4.3.3. By a theorem of Ribet [Rib85], if f is not of CM-type then it has big image for all but
finitely many primes of L.

Denote by
Xt relord,ord (Kg oos Af.x) = Homz, (1im Selser relord.ord (Ko[P5P5], Arix): Qp/Zp)-

One then has a divisibility towards an anticyclotomic Iwasawa main conjecture ‘without L-functions’
as follows:

Theorem 4.3.4. Assume that f is not of CM-type, has big image at B, and that p { 6hk,. If 25, is
non-torsion, then:

(1) Xstr,rel,ord,ord(K&m, Afy) and Selrel’str,ord,ord(K&m,Tf_,X) both have A;(o -rank one.
(2) And we have the divisibility

_ Selrel,str,ord,ord(K()_ 7Tf,x) 2
ChaI'A— (Xstr,rel,ord,ord(KO 00 Af,x)tors) D) ChaI"A— ( — - >
Ko ’ Ko AKO CZf oy
in Ag, -
Here, the subscript tors denotes the Ay -torsion submodule.

Proof. Combining Theorem 3.2.1 and Proposition4.2.1, the system of classes

(45) {Zf,x,ug, S Selrel,str,ord,ord(KO[USpOO]aTﬁX) Tops € N}

forms a Ax -adic anticyclotomic Euler system in the sense of Jetchev-Nekovar-Skinner for the relaxed-
strict-ordinary-ordinary Selmer group.
Under the assumption that f has big image at 3, the following properties hold (see [LLZ15, Prop. 7.1.6])

(1) Ty = Tt /BTy is absolutely irreducible;
(ii) There is an element o € G fixing K[1]K (pp=, (O%)/P7) such that Ty, /(0 — 1)T} is free of
rank 1 over O;
(iii) There is an element v € Gy fixing K[1]K (up=, (O5)Y/P7) and acting as multiplication by a
scalar a, # 1 on Ty ;

and so the non-torsionness of zy , implies the conclusions by the general machinery of [JNS]. O

5. TRIPLE PRODUCT p-ADIC L-FUNCTION AND SELMER GROUP

Here, we will recall some conventions on Hida families, triple product p-adic L-function and Selmer
group following [Hsi21].
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5.1. Hida families. We follow the convention of [Hsi21, §3.1]. Let O be the ring of integers of a finite
extension of Q,. Let I be a normal domain, finite flat over the Iwasawa algebra

A= O[1+pZ,].
Let N be a positive integer primes p and x : (Z/NpZ)* — O* be a Dirichlet character. Denote by
S°(N,x,T) C I[q] the space of ordinary I-adic cusp forms of tame level N and branch character x.
Let f{f C Specl(Q,,) be the set of arithmetic points of I, which consists of the ring homomorphisms
@ : T — Q,, such that for some kq € Z> called the weight of Q and eg(2) € fipe,

Qli4pz, 12— 2" eg(2).
We say that f = > 7 | a,(f)q™ € S°(N, x,I) is a primitive Hida family if the specialization f¢ for every
Qe %f gives the g-expansion of an ordinary p-stabilised newform of weight kg and tame conductor N.
Let X¢' C Spec ]I(Qp) be the set of ring homomorphisms ¢ as above with kg € Z>q such that fq is the

g-expansion of a classical modular form.
Given f a primitive Hida family of tame conductor N, one can associate a Galois representation

pPr - GQ — Aut]](Vf) ~ GLQ(H),

where the determinant of pg is x1 - €cye, see [Hsi2l, §3.2]. By [Wil88, Thm. 2.2.2], the restriction of Vi
to Gq, is reducible and one has a short exact sequence

0= VS = Vy =V =0

Here the quotient Vf_ is free of rank one over I, with Gq, acting via the unramified character sending
an arithmetic Frobenius FI“Ob;l to ap(f). Let T(N,I) be the Hecke algebra acting on €, S°(N, x, ),
where x runs over the characters of (Z/NpZ)*. There is a I-algebra homomorphism attached to f

Ap : T(N,I) =T
that factors through a local component Ty,. Following [Hid88], we define the congruence ideal C(f) of f
by
C(f) := Ag(Annt, (ker Af)) C L

Under the assumption that the residual representation py is absolutely irreducible and p-distinguished,
Wiles [Wil95] and Hida [Hid88] prove that C(f) is generated by a nonzero element ny € I.

5.2. CM Hida families revisited. We explicitly construct CM Hida families, following the exposition
in [Hsi21, §8.1]. Let K be an imaginary quadratic field of discriminant —Dg < 0, and suppose that
p = pp splits in K, with p the prime of K above p induced by our fixed embedding 1, : Q — Q,,.

Let Ko be the Z2-extension of K. Let K(p>) be the maximal subfield of K, unramified outside p.
Put

Iy :=Gal(Ky/K) ~Z2, Ty :=Gal(K(p>)/K) ~ Z,.

For every ideal ¢ C Ok, recall that K. is the ray class field of K of conductor ¢. Using our notation,
K (p*°) is the maximal Zy-extension of K inside K. Denote by Art, the restriction of the Artin map to
K, with geometric normalisation. Then Art, induces an embedding 1+ pZ, — Ty, where we identified
Z; and OIX()J via ¢p. Let v, be the image of 1 + p hence it will be a topological generator of I'y.

For each variable S let ¥g : I'oo — O[S]* be the universal character given by

Vs(o) = (1+9)",
where [(0) € Z, is such that o|g~) = 'yf,(o). Now assume that ¢ is prime to p. Given a finite order
character £ : Gg — O of conductor dividing ¢, let

0c(S)(@) = 3 £0a)¥ils  (0a)g" /o € O[S][d],
(a,pc)=1 P
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where 0, € Gal(Kp~/K) is the Artin symbol of a. Then 0¢(S) is a Hida family defined over OS] of
tame level N /q(¢) Dk and tame character (0¥ )exw™!, where ¥ : G?Qb — G2 is the transfer map and
ex is the quadratic character corresponding to K/Q.

5.3. Triple products of Hida families. Let
F €SNy, xpIp), g€ 5 (Ngixglg), h €S (Np,xnIn)
be three primitive Hida families such that
(5.1) XfXgXh = w?® for some a € Z,
where w is the Teichmiiller character. Let
R =1;®0l,®0l,

be a finite extension of the three-variable Iwasawa algebra AR A& OA.
Let X} C Spec R(Q,) be the weight space of R given by

xh = {Q = (Q1.Q2.Qs) € X x X® x X® : ko, + kg, + kg, = 0 (mod 2)} .
One can then partition X5 = X1 1 fﬁ; U X% U Xh as follows:
(1) the set of balanced weights:
X ={Q e X} : ko, +kq, + kg, > 2ko, for alli € {1,2,3}},
(2) the set of f-unbalanced weights:
xf ={Qexy : kg, >kq, +ko,}
(3) the set of g-unbalanced weights:
X ={Qe X% : kg, > ko, + ks,
(4) the set of h-unbalanced weights:
Xh={Qe X} : ko, > ko, +kq,}-

Let V = VR0 Vy®o Vs be the triple tensor product Galois representation attached to (f,g,h). By
(5.1), one can decompose the determinant of V as det V = X?e.y.. Put

(5.2) vi=veaxl
This is a self-dual twist of V. For any Q@ = (Q1,Q2,Q3) € fffz, denote by VZ) the corresponding

specialisation.
For each prime /¢, let Ee(Vz?) be the epsilon factor attached to the local representation Vg\GQ[ (cf.

[Tat79, p.21]). We assume that for some Qe .’{fz, we have
(5.3) Eg(VZ?) = +1 for all prime factors £ of NyNyNp,.

Note that condition (5.3) is independent of @ (see [I1si21, §1.2]). Furthermore it implies that the sign of
the functional equation for the triple product L-function (with center at s = 0)

LV, s)

is +1 (resp. —1) for all Q € i‘{a UX% UXR (resp. Qe xbal).
Q1
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Theorem 5.3.1 (Theorem A in [Hsi21]). Let f, g, h be three primitive Hida families satisfying conditions
(5.1) and (5.3). Assume also that gcd(Ny, Ng, Ni) is squarefree, and the residual representation pyg is
absolutely irreducible and p-distinguished. Fix a generator ng of the congruence ideal of f. Then there
exists a unique element

‘i/ﬂp-fvn.f (f?gah) S R
such that for all Q = (Q1,Q2,Q3) € %{a of weight (k1, ke, ks) with eg, = 1 we have

fong 2 L(VT 0) Fidaval —1\2
(‘sz (f79ah)(Q)) ZFVTQ(O)'WW E(F) (Vg))' H (1+q )7,

q€¥exc

where:

° FVZQ (0) = 16(2W)*2klf(wg)F(u}Q+ 2 — ko — krg)F(wQ+ 1— k;Q)I‘(wQ+ 1— k),

and  wq = (ki +ka + k3 — 2)/2;
e (s, is the Hida canonical period
fO 2 / k1—1 / k1—2
Qp,, o= (=2v/=D)"*t. (LAY (1 - X-f(p)zp )(1 - %)7

Ha, G Yo

with f§, € Sk, (T'o(Ny)) the newform of conductor Ny associated with fq,, x; the prime-to-p
part of xf, and aq, the specialisation of a,(f) € ]IJT at Q1;

o & (g\f(VJr )) is the modified p-Fuler factor and Yex. is an explicitly defined subset of the prime
factors of 1 NyNygNy, [Hsi2l, p. 416].

5.4. Triple product Selmer groups. Recall from equation (5.2) that VI = V @ X~ is the self-dual
twist of the Galois representation associated to a triple of primitive Hida families (f, g, h) given (5.1).

Definition 5.4.1. Let
FRVH = (Vi V oV + Vi@V, Vil + ViV o) e X7,
and define the balanced local condition H}_,(Q,, V') by
Hia(Qp, V1) = im(HY(Qp, 7 (V1)) — HY(Q,, V).
Similarly, recall that
FIVH = (Vf oVyeW)ex!
and define the f-unbalanced local condition H}(Qp, ) by
H3(Qp, V1) i= im(HY(Qy, 7] (V1)) — HY(Q,, VT)).

Note that the maps appearing in these definitions are injective, so we can identify H1(Q,, V1) with
H'Y(Qp, Z; (V1)) for x € {bal, f}.

Definition 5.4.2. Let x € {bal, f}. Define the Selmer group Sel*(Q V1) by

b v#Ep

We call Selbal(Q7 VT) the balanced Selmer group and Self (Q, V) the f-unbalanced Selmer group.

Definition 5.4.3. Let AT = Homgz (VT j1p~) and let € {bal, f}. Define H(Q,, AT) c H'(Q,, AT) to
be the orthogonal complement of H.(Q,, V') under the local Tate duality

Hl(vaVT) X Hl(vaAT) = Qp/Zyp.
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Similarly as above, we then define the balanced and f-unbalanced Selmer groups with coefficients in Af
by
*(Q A1) — Lo AT s H(QpAT) At
Sel’(Q, A') := ker{H (Q,A") — QP,AT x ];[pH AT }

Let
X*(Qa AT) = Homzp (Sel*(Qv AT)? Qp/zp)
be the Pontryagin dual of Sel*(Q, AT).

6. ARITHMETIC APPLICATIONS

Finally, we obtain some arithmetic results from our constructed Euler system via results from Section
4 and the explicit reciprocity law.

6.1. Reciprocity law and Greenberg—Iwasawa main conjectures. Let (f, g, h) be a triple of primi-
tive Hida families as in §5.1 satisfying (5.1). Let N = lem(Ny, Ny, Nj). The big diagonal class constructed
in [BSV22, §8.1]
(6.1) K(f.g,h) € H(Q, VI(N)),
where VT(N) is a free R-module isomorphic to finitely many copies of VT, can be identified with classes
(1), &2 in equation (2.14), (2.15) respectively of [CD23]. The definition of the Selmer groups in §5.4

extends to VT(IV), and by [BSV22, Cor.8.2] we have x(f, g, h) € Sel®®(Q, VI(N)).

We define more Gq,-invariant subspaces of Vi
Fa(VH) = ViGoVi @oVii @ X771,

VIR =V @0V 0oV @ X7

(6.2) A A
VIt = ViGoVy @oVy @ X7,
VI9 = V&V, &0V, @ X7,
and obtain
(6.3) FrNVh ) ZiVH) 2 VI e VIt e VI

Assume that the congruence ideal C'(f) C Iy is principal, generated by the nonzero ng € Iy (this will
be satisfied when the residual representation py is absolutely irreducible and p-distinguished). One can
deduce from results in [KL.Z17] the construction of an injective three-variable p-adic regulator map with
pseudo-null cokernel:

h
(6.4) Log™ : HY(Q,, V§") = R,
see the explicit map in [CD23, §4.3.1] and the explanation in [BSV22, §7.3].
Let res,(k(f, g, h))s be the image of k(f, g, h) under the natural composition of maps:
a res h
(6.5) Sel™™(Q, V) — HY(Q,, 7y (V1)) = HY(Q,, 7 (V1) /.72 (V1)) = HY(Q,, V™),

where we first restrict at p and then project onto the first direct summand in (6.3). The following result
is an explicit reciprocity law that relates diagonal cycles with the triple product p-adic L-functions.

Theorem 6.1.1 (Theorem A in [BSV22]). Let (f,g,h) be a triple of primitive Hida families as in
Theorem 5.3.1. Then

Log™ (ves, (k(f,9,h))z) = 2™ (f,9,h).

Assume that the associated ring R is regular. Similar to [ACR21, §7.3], the following result can be
seen as the equivalence between two different formulation of the Iwasawa main conjecture in the style of
Greenberg [Gre94] for the p-adic deformation V1.

Proposition 6.1.2 (Proposition 4.3.3 in[CD23]). The following statements (1) and (I11) are equivalent:
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(D fpf’nf(f,g, h) is nonzero, the modules Sel¥ (Q, V1) and X¥(Q, At) are both R-torsion, and
charg (X7 (Q, A1) = (£ (f,9,h)?)

m R Xz, Qp.
(I1) x(f,g,h) is not R-torsion, the modules Sel”*(Q, V1) and XP*(Q, A1) have both R-rank one,
and

Selba1<Q, VT) ) 2
R-k(f,g,h)
in R ®z, Qp, where the subscript tors denotes the R-torsion submodule.

charR (Xbal (Q7 AT)tors) = CharR (

6.2. The triple product p-adic L-function and Selmer groups. Let f € Sy.(pNy) be a p-stabilised
newform, and suppose the residual representation p¢ is absolutely irreducible and p-distinguished. By
Hida theory, f is the specialisation of a unique primitive Hida family f € S°(Ny,I) at an arithmetic
point Q1 € %f[" of weight 2r. For i € {1,2} let f; C Ok, be an ideal coprime to pNy, & be ray class
characters of K; of conductors dividing f;. Let x¢, be the central character of &. We assume that

(66) X&1 €K1 X¢2€Ky = L,
and let
(6.7) g1 =0, (51) € O[Si]dl, g2 = 0¢,(S2) € O[S:][q]

be the CM Hida families attached to & and &s, respectively.
The triple (f, g1, g2) satisfies conditions (5.1) and the associated f-unbalanced triple product p-adic

L-function .pr’"f(f,gl, g2) is an element in R = [®oO[S1]®00O[Ss] ~ [[S, S2]. Let

(6.8) LI (.91, 92) € O[S, Sa]

be its image under the natural map I[S1, So] — O[S1, S2] defined by Q.
Write Vzgl for the specialisation of VT at Q. Let va be the Galois representation associated to f,
and recall that det(V}') = e2/-! in our conventions. Setting T; = v~'(1 4 5;) — 1 (i € {1,2}), we have

cyc

det(Vng ® Vh:rz) =Vp, Up, o7, and so

(6.9) VTQl = T}/ ® (Indgfflllln) ® (Ind%fgl\pn) ® Eé;CT(\II;ll/2QJ;21/2 o ¥)
~ Ty (1-r) @ IndR & b, &5 1,

where T}/ is a Gq-stable O-lattice inside va. In particular, we get
(6.10) HY(Q, V) ~ HY (Ko, TY (1 - ) ® &' U7, & ')
by Shapiro’s lemma.

Proposition 6.2.1. Via the isomorphism (6.10),
(1) the balanced Selmer group Selbal(Q,Vgl) can be rewritten as

Selbal(Qa VTQl) = Selrel,str,ord,ord(KOa T}/(l - T) ® gfllijTléz_llisz)a
the f-unbalanced Selmer group Se , can be rewritten as
2) the f-unbalanced Sel Self (Q, V], b
Self(Qa Vgl) >~ Selord,ord,ord,ord(Km T}/(l - 7“) (24 gflilTlg;l\ing)
(3) the h-unbalanced Selmer group Selh(Q,Vgl) can be rewritten as

Selh(Q7 VTQI) =~ Selrel,str,rel,str(K07 T}/(l - ’I") & g]jlli/Tl gglisz)'
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Proof. For the balanced case, see Proposition 4.2.1. For the f-unbalanced case, note that
FIVE) = (T QA=) @& U, & o) @ (T (1 —r) @ & 10, £, °05,)
BT (1= r) @ §°0, & "on,) & (T)77 (1= 7) @ &0, &0, ).

and the result follows. The h-unbalanced case can be obtained in a similar manner. O

(6.11)

As a consequence we also obtain the following isomorphisms for the Selmer groups with coefficients in
ATQ1 = Homg, (VTQ1 , bpe<) by local Tate duality. Let Ay(r) = Homgz, (T} (1 — 1), fipe<).

Corollary 6.2.2. We can identify the balanced Selmer group Sel”™ (Q, A ) as
Selbal(Qa AJle) x~ Selstr,rcl,ord,ord(KOa Af (7“) & 51@;1152\13%21),
the f-unbalanced Selmer group Self(Q, Al ) as
Self (Q, AL),) ~ Selord ord ord.ord (Ko, Af (r) @ & U1 U7},
and the h-unbalanced Selmer group Selh(Q, Al ) as

Selh(Q7 Azgl ) ~ Selstr,rel,str,rel(KOu Af (T) & él \i;lng \il;21)~

6.3. On the Bloch—Kato conjecture in rank 0. Our first applications is the Bloch—Kato conjecture
in analytic rank zero for the conjugate self-dual G'x,-representation Vi, = V(1 —7) ® x L

Assumption 6.1. We assume that the anticyclotomic Hecke character y over Kj can be decomposed
as:

X = 1pp Nk k=22
where

(1) 1 is a Hecke character of K of infinity type (1 — k1,0), with k; > 1, and modulus f;.
(2) 1 is a Hecke character of K5 of infinity type (1 — k2,0), with k2 > 1, and modulus f5.

- N . ,
(3) 9y is the Hecke character of Ky, obtained by composing AIX(O fork, Alx(i i, C for each

ie{l,2}.
(4) By swapping K; and K, we may assume that ko > k.

In this scenario, the infinity type of x (corresponding to the order (P, P2, Ps3, Py) or (1,73,72,71)) is
(2—k1—k2 ki+ ko —2 ki — ko k2—k1>

2 ’ 2 o272
Theorem 6.3.1. Let f € Si(Io(pNy)) be a p-ordinary p-stabilised newform of weight k = 2r > 2 which
is old at p. Let x be an anticyclotomic Hecke character of K¢ as in (6.1). Assume that:
(1) Either k > ky + ko if ky — k1 > k;
(2) NfOg, =ntn~ wheren™ (respectively n™ ) is divisible only by primes which are split (respectively
inert) in Ko/Ks and n~ is a squarefree product of an even number of primes.
(3) py ts absolutely irreducible;

(4) (pNs,Normp, q(f1)Normg, q(f2) Drk,) = 1;
(5) pt6hgk,, the class number of Ko;

then we have the following implication
L(f/KO? X,T) # 0 — SelBK([(O7 Vf’X) = 0

In other words, the Bloch-Kato conjecture holds in analytic rank zero for Vy .
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Proof. We consider the CM Hida families
92051(51)7 h:952(52)7

that pass through 6y, and 6, respectively. Note that the triple (f,g1,g2) satisfies (5.3). Then the
isomorphism (6.9) of the associated Vzh together with the specialization Q; corresponding to 6y, and
0y, show that
L(VL,,0) = L(f /Ko, x. 7).
By Theorem6.1.1 we then have

L(f/KOaX7T) 750 = resp(’%(f7g7h))f791 7&0

Note that from our construction, the class k(f, g, h) g, € Selrel str,ord,ord (Ko, V,y) is the base class of the
anticyclotomic Euler system

{Zf,x,;tg S Selrel,str,ord,ord(KO[m];Tf,x) Top3 € N}

of (4.4). By Theorem4.3.1, we conclude that the Selmer group Selyel str,ord,ord (K0, V,y ) is one-dimensional,
spanned by
Zfx = TR/ Ko (2fx1) = K(f,9,h) o,

If & > k1 + ko, since resp, (z7,,) # 0 by the reciprocity law, the vanishing of Selovd,ord,ord,ord (Ko, Vi.x)
then follows by a standard argument using Poitou-Tate duality (see [D022, §5.1.1]). This yields the result
by using the Lemma 4.1.4 for k > ki + ko to identify the latter group with Selgk (Ko, Vf.y).

If ko — k1 > k, similarly by using resp,(zf,) # 0 we obtain the vanishing of Selyel str relstr (Ko, Vi)
which is again the Bloch-Kato Selmer group Selgk (Ko, V,y) by Lemma 4.1.4 for ks — k1 > k. O

Remark 6.3.2. Let €(f, x) to be the sign of the functional equation for Vy . Then e(f,x) = [[ e(7x,, ®
Xv,1/2) over places v of Ky as a product of local root numbers. If v|n™ then e(mg, , ® xv,1/2) = +1
and if v|n~ then e(mgk, , ® Xy, 1/2) = —1. Therefore the contribution from the local places is +1 due to
assumption (2). At the infinity places,

1
Goo(ﬂ—Ko R X, 5) — k=14 (ki+k2=2)|+|k—1=(k1+k2—=2)|+|k—1+ (k2 —k1)|+|k—1—(k2—k1)|

+1 if k>(/€1+/€2—2)
=<1 if ke —ki<k<ki+k—2
+1 if k<ky—k.

Hence conditions (1) and (2) of Theorem 6.3.1 then imply that e(f,x) = 1.

6.4. On the Iwasawa main conjecture. Our second application is an evidence towards the anticy-
clotomic Iwasawa main conjecture for modular forms. Recall that we have an eigenform f of weight
k = 2r > 2 with trivial nebentypus and an anticyclotomic character x satisfying Assumption 6.1. Let

Af = Homg, (T}/(l -7 ® X_17/,Lpoo).

Theorem 6.4.1. Under the same assumption as in Theorem 6.3.1, we assume further that:

(1) py is p-distinguished,

(2) f has big image,

B)p>k-2.
If k > k1 + ko then Selord,ord,ord,ord (K, Af,y) 18 cotorsion over AI_(O. Furthermore, inside AI_(O ®z, Qp,
we have the following inclusion

CharA;(O (Selord,ord,ord,ord (K()_,oo? Af,x)v) o (zpfﬁﬂf (fv g1, 92)2)-
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Proof. Recall from Corollary 6.2.2 that we have
(6.12) Sel? (Q, AT) = Selord ord ord,ord (Ko oes A7 (1) ® X),
where AT = Homz, (VT fipe).
Note that from (6.8), Epf’"f(f, g1,92) is an element of O[S, S2]. We then identify AI_{0 ~ O[Sy, 52]

via the diagram (3.9). The p-adic L-function fpf’nf (f,91,92) is nonzero by [Hun17, Thm. C]. Note that
our assumption that k > k1 + ko ensures that we are in the critical specializations i.e. —k,/2 < m, < ky/2
for all o € 3, following the notation of op. cit.. Hence Theorem 6.1.1 implies that the class

K(faQ? h’) € Selrel,str,ord,ord(KOa T}/(l - 7") & gfl\i/ﬂé;l\iln)

is non-torsion. Since by construction k(f, g, h) is the base class of the A, -adic anticyclotomic Euler
system

{Zf,x,ug € Selrel,str,ord,ord(KO[M?)pOO];Tf,X) U3 € N}
n (4.5), the result follows immediately from Theorem 4.3.4 applied to

(6.13) Zf .\ 1= COT 1]/Ko (2. (1) = K(f, g, h),

the equivalence in Proposition 6.1.2, and the Selmer group isomorphism (6.12). (]

Remark 6.4.2. Inside Theorem 6.4.1, one can relate the RHS to the p-adic L-function of Wan [Wan15,
Thm. 86] and Hung [Hun17] under the assumptions of Fujiwara [Fuj06, Thm. 11.1,11.2] and Wan [Wan15,
Thm. 103]. The author expect the full Iwasawa Main Conjecture will then follow from the opposite
divisibility of Wan [Wan15] and the vanishing of the p-invariant of the p-adic L-function [Hunl17], which
is a generalization Skinner-Urban [SU14] and Vatsal [Vat03] respectively.

Remark 6.4.3. One expects a similar result that if ko —k1 > k then Selg rel str,rel (K5, A,y ) is cotorsion
over Ay together with the following inclusion inside A ®z, Qp,

Char/\;( (Selstr7rel7str,rel(K()joo7 Af,x)v) > (gphmh (fa 91792)2)'
0
The only missing ingredients are the non-vanishing of the p-adic L-function in this region.

6.5. On the Bloch—Kato conjecture in rank 1. Our last application is extracted from the proof of
Theorem 6.4.1. It provides result towards the Bloch-Kato conjecture in rank 1.

Theorem 6.5.1. Under the same assumption as in Theorem 6.4.1, if k1 +ko —2 >k > ko — k1 + 2 (this
induces L(f/K,x,r) =0), then
dimLm SGIBK(K(), Vf»X) Z 1.

Proof. The class z¢, € Selrel,str’ord,ord(Ko_’oo,vax) is non-torsion via the proof of Theorem 6.4.1. Fur-
thermore, zy¢,, is the base of a A;(O—adic anticyclotomic Euler systems as in (6.13) for the relaxed-strict-
ordinary-ordinary Selmer group. One then uses theorem 4.3.4 then implies that Selrel str ord,ord (Kq o0, T.x)

has Ay -rank 1. Invoking Mazur’s control theorem [JSW17] for the relaxed-strict part and [Gre99] for
the ordinary-ordinary part, we have that the natural map
(614) Selrel,str,ord,ord(Kojooa TﬂX)/(Vl,f - ]-7 Y2,— — 1) — Selrel,str,ord,ord(Koa Tf,x)

is injective with finite cokernel and hence the Selmer group Selyel str ord,ord (Ko, Tf,y) has positive O-rank.
The theorem then follows by Lemma 4.1.4, which computes the local conditions of the Bloch-Kato Selmer
group explictly. O

Remark 6.5.2. Note that by letting 27, € Selielstrord,ord (K0, T#,y) be the image of zy, under the
projection (6.14), such a class zy,, € Selpk (Ko, Vy,y) satisfies:

Zf x 7& 0 — diInL(43 SelBK(Ko, vaX) =1.
by Theorem 4.3.1.
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