
University of California

Los Angeles

Multigrid methods for solids simulation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Yongning Zhu

2010

c© Copyright by

Yongning Zhu

2010

The dissertation of Yongning Zhu is approved.

Achi Brandt

Stanley Osher

Demetri Terzopoulos

Joseph M. Teran, Committee Chair

University of California, Los Angeles

2010

ii

For my family, who offered me unconditional love and support throughout the

course of this thesis

iii

Table of Contents

1 Introduction . 1

1.1 Solids simulation . 1

1.1.1 Solids simulation in computer animation 2

1.1.2 Biomedical simulation and virtual surgery 4

1.2 Numerical difficulties . 5

1.2.1 Conjugate gradient method 5

1.2.2 Multigrid methods . 6

1.3 Thesis structures . 8

2 Related works . 11

2.1 Deformation models . 11

2.2 Discretizations . 16

2.3 Acceleration methods . 19

2.4 Constraints and collisions . 22

2.5 Mixed finite element . 24

2.6 Multigrid in computer graphics 27

3 Mathematics background . 28

3.1 Linear elaticity . 28

3.1.1 Discretization . 29

3.2 Multigrid correction scheme . 32

3.3 Multigrid methods for linear elasticity 35

iv

4 Augmented linear elasticity . 37

4.1 Finite difference discretization . 37

4.2 Distributive relaxation . 40

5 Boundary system and geometric coarsening 44

5.1 Domain description . 44

5.2 A general-purpose box smoother 46

5.3 A fast symmetric Gauss-Seidel smoother 47

5.4 Restriction and prolongation on staggered grid 55

6 Extended models and results . 59

6.1 Co-rotational linear elasticity . 59

6.1.1 Nonlinear iteration . 60

6.1.2 Distributive relaxation . 61

6.1.3 Interior discretization . 62

6.1.4 Boundary discretization 64

6.1.5 Distribution discretization 65

6.1.6 Coarsening . 65

6.2 Dynamic system . 66

6.2.1 Time integral . 66

6.2.2 Augmentation and distribution 68

6.2.3 Coarsening of the new system 70

6.3 Evaluation of solver performance 70

6.3.1 Discretization accuracy analysis 72

v

6.3.2 Animation tests . 81

6.3.3 Parallelization . 84

7 A second order mixed finite element method 91

7.1 Variational formulation for linear elasticity 92

7.2 Mixed finite element formulation 96

7.2.1 Discretization . 98

7.2.2 Implementation details . 103

7.2.3 Discrete geometric representation and cut cell integration . 107

7.3 Dirichlet boundary conditions . 109

7.3.1 Discretizing the Dirichlet problem 110

7.3.2 Constructing the null-space for the Dirichlet constraints . . 115

7.4 Multigrid . 118

7.4.1 Discretization hierarchy 120

7.4.2 Relaxation . 122

7.4.3 Approximated distributive relaxation 124

7.4.4 Higher-order defect correction 126

7.4.5 Boundary relaxation . 128

7.4.6 Boundary relaxation for the reduced system in Dirichlet

boundary condition case 129

7.4.7 Coarsening . 131

7.5 Numerical examples . 133

7.5.1 Discretization error . 135

vi

7.5.2 Multigrid efficiency . 136

8 Soft constraint system . 144

8.1 Soft constraint energy . 144

8.2 Coarsening of soft constraint operator 146

8.2.1 Galerkin coarsening . 146

8.2.2 Re-discretization and natural coarsening 147

8.2.3 Subsampling . 148

8.3 Examples and results . 149

8.3.1 Two-dimensional examples 149

8.3.2 Stiff constraint . 151

8.3.3 Collision . 152

9 Conclusion and future works . 155

9.1 Efficient boundary treatment . 155

9.2 Nonlinear hyperelastic solids . 157

9.3 Collision detection and stable solution 158

9.4 Adaptivity . 159

9.5 Parallel implementation for irregular models 159

vii

List of Figures

1.1 Low resolution vs high resolution 5

3.1 Staggering of variables in 2D and 3D 31

3.2 Discrete stencils for operators L1 and L2 of the PDE system . . . 33

3.3 Linear elasticity example: a deformed cubic elastic material 36

3.4 Comparison of multigrid convergence with different Poisson’s ratios 36

4.1 Placement of pressures . 39

4.2 Discrete stencils for operators in L̂ for φ1, φ2 and p variables . . . 40

4.3 Location of auxiliary variables and the distribution stencils - 2D . 42

4.4 Stencils of distributions - 2D . 43

5.1 Classification of cells,variables and equations near the boundary. . 45

5.2 Active cells of a discretized dragon model with 402K cells. 45

5.3 Distributive smoothing and box smoothing region 48

5.4 Stress equation and placements 50

5.5 Discrete stencils for linear augmented stress components 50

5.6 Boundary stress variables . 51

5.7 Grid coarsening. 56

5.8 Boundary discrepancies in the fine and coarse domains 58

5.9 Comparison of multigrid convergence with different Poisson’s ra-

tios using distributive relaxation 58

6.1 Simulation of a human character driven by a kinematic skeleton . 62

viii

6.2 Discrete stencils for linearized augmented stress components . . . 63

6.3 Discrete stencils for each RijFij from pressure equations 63

6.4 Comparison with alternative multigrid techniques 71

6.5 Convergence of a CG solver on finite difference or finite element

discretizations, with our proposed method 72

6.6 Illustration of the analytic deformation in our accuracy study . . 73

6.7 The three discretization methods in our comparative study 74

6.8 Traction boundary condition discretization 76

6.9 Discretization errors . 79

6.10 Convergence of different discretizations under refinement 80

6.11 Closeup of the elbow joint from figure 6.1 82

6.12 Comparison of trilinear and tricubic interpolation on a coarse sim-

ulation . 84

6.13 Volumetric partitioning using colored blocks in a 2D domain. . . . 85

6.14 Surface partitioning of 3D models into colored surface patches. . . 87

6.15 Parallel scaling on a Larrabee simulator for a number of different

configurations . 87

6.16 Single-core execution profiles . 88

6.17 Scaling performance of the linear elasticity multigrid solver on mul-

tiprocessor systems . 89

6.18 Quasistatic simulation of armadillo model with co-rotational linear

elasticity . 89

6.19 Dynamic simulation of an object impacting a face at high velocity 90

ix

6.20 Dynamic simulation of a soft elastic car model deforming under

kinematic constraints . 90

6.21 Embedded animation of a deformable dragon shaking his head,

using co-rotational linear elasticity and simulation of dynamics . . 90

7.1 Staggered grid finite element quadrangulation and embedded do-

main boundary. 100

7.2 Left: one interior pressure cell and the variables corresponding

to the 13 degrees of freedom of the elemental stiffness matrix by

taking integral over the pressure cell; right: four integral subcells

of the pressure cell and the variables that an integral over subcell

ω1 contributes to. 105

7.3 Global stiffness matrix stencils centered at an interior x variable(left),

y variable(middle) and p variable(right). 106

7.4 A zoom-in view of Figure 7.1(a). A levelset function is sampled on

a doubly refined grid(left); a segmented curve ∂Ωh is generated to

approximate the boundary of the geometric domain(right). 107

7.5 Boundary integration cells and aggregations 117

7.6 Cell aggregations. a) x component boundary cells and the first two

representative nodes and the incident y− cells of each representa-

tive node; b) all representative nodes for y component cells and

their incident cells, orphan cells will be attached to their nearest

neighbor cells; c) and d) final cell aggregations together with their

representative nodes for x and y grids. 119

7.7 Cell aggregations example . 120

7.8 Boundary band and distributive region. 123

x

7.9 Restriction operator stencils. 132

7.10 A keyhold domain and its deformation 134

7.11 A flower domain and its deformation. 135

7.12 A spiral domain and its deformation 136

7.13 Order of accuracy for the keyhole domain 137

7.14 Order of accuracy for the flower domain 138

7.15 Order of accuracy for the spiral domain 139

7.16 Multigrid V-(1,1) cycle residual convergence - periodic boundary

condition . 141

7.17 Multigrid V-(1,1) cycle convergence rates - flower domain 142

7.18 Multigrid V-(1,1) cycle residual convergence - flower domain . . . 143

8.1 Soft constraints samples . 149

8.2 Constraint coarsening test . 150

8.3 High stiffness difficulty . 152

8.4 Collision detection and resolved collisions between a deformable

sphere and an undeformable sphere 153

8.5 Two deformable objects colliding against each other. 154

xi

List of Tables

7.1 Multigrid V-(1,1) cycle asymptotic convergence rates 141

8.1 2D soft constraint multigrid convergence 151

xii

List of Algorithms

1 Multigrid Correction Scheme – V-(1,1) Cycle 33

2 Distributive Smoothing . 43

3 Construction of global stiffness matrix A from elemental Akp . . . 106

4 Aggregation Selection . 118

5 Multigrid defect correction . 119

6 Distributive Smoothing . 125

7 High Order Defect Correction Distributive Smoothing 127

8 Dirichlet boundary relaxation - vh 130

9 Dirichlet boundary relaxation - vh 130

10 Dirichlet boundary relaxation - uh 130

11 CoarseningTest . 147

xiii

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisors Achi Brandt

and Joseph Teran. Professor Achi Brandt taught me a lot about mathematics

methodology, especially multigrid methods. His research attitude has affected

me greatly. Professor Joseph Teran has continuously supported me. I owe him

many thanks for his dedication to my research. His talented ideas have inspired

me in many difficult situations. I would like to especially thank Dr. Eftychios

Sifakis for his most insightful instruction and for sharing his experience without

reservation.

I am grateful to Professor Andrea Bertozzi for admitting me to UCLA, which

offered me the great opportunity to work and study with excellent researchers. I

am also grateful to Professor Stanley Osher, Professor Demetri Terzopoulos, Pro-

fessor Christian Anderson and Professor Luminita Vese for their wonderful classes

and insightful instructions. I would like to particularly thank Dr. Andrew Selly

and Dr. Rasmus Tamstorf from Walt Disney Animation who game me a special

opportunity to learn about animation production and software development in

the animation industry. I would like to thank Maggie Albert and Martha Con-

treras for their assistance during my PhD program. I am also indebted to many

of my colleagues for supporting me. Jefferey Hellrung has helped me a lot with

using Boost. Alejandro Cantarero has shared many insightful thoughts with me.

Numerous other collaborators offered critical support at the most difficult times

in this process.

I would also like to express my sincere gratitude to my friends in the UCLA

Mathematics Departments, including Yifei Lou, Yan Wang, Mi Youn Jung, Yanghong

Huang, Bin Dong, Xiaoqun Zhang, Alex Chen, Ming Yan, Jinjun Xu, Yu Mao,

Rongjie Lai and many other friends who have helped and supported me.

xiv

Chapter 3 to 6 is a version of Zhu, Y., Sifakis, E., Teran, J., and Brandt, A.

(2010). An efficient multigrid method for the simulation of high-resolution elas-

tic solids. ACM Transactions on Graphics, 29(2):118. I am grateful to the Intel

Microprocessor Research Lab and, in paricular, to Pradeep Dubey and Victor

Lee for their invaluable assistance in carrying out the parallel experiments in this

work, as well as their substantial material and scientific support. Special thanks

to Andrew Selle for his help with our audio-visual materials and his extensive con-

structive feedback. I and my collaborators Eftichios Sifakis, Joseph Teran were

supported in part by DOE 09-LR-04-116741-BERA, NSF DMS- 0652427, NSF

CCF-0830554, ONR N000140310071. I was also supported by an Intel Larrabee

Research Grant.

Lastly, I offer my gratitude and best wishes to many others who supported

me in all aspects during the completion of my PhD program.

Yongning Zhu

October 28, 2010

xv

Vita

1981 Born, Beijing, P. R. China.

2003 B.S (Mathematics), Peking University.

2005 M.S (Computer Science), University of British Columbia.

Publications

Y. Zhu, E. Sifakis, J. Teran and A. Brandt. An efficient multigrid method for

the simulation of high-resolution elastic solids. ACM Transactions on Graphics,

28:4, 2009.

Y.Zhu, Y. Wang, J. Hellrung, E. Sifakis and J. Teran. A second order virtual

node algorithm for nearly incompressible linear elasticity in irregular domains.

In preparation.

A. McAdams, Y. Zhu, A. Selle, R. Tamstorf, J. Teran and E. Sifakis. Inter-

active volumetric skin simulation for articulated characters. In preparation.

xvi

Abstract of the Dissertation

Multigrid methods for solids simulation

by

Yongning Zhu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2010

Professor Joseph M. Teran, Chair

The simulation of deformable solids is a traditional topic in mechanics. Recently,

deformable solids simulation has been widely used in computer animation, game

development and virtual surgery to generate realistic deformations. Numerous

methods have been developed to accelerate the simulation of realistic materials

with complicated geometries, dynamic effects, as well as under user interface

control and interaction with rigid bodies and fluids. Recently, there has been an

increasing interest in the application of multigrid methods to practical problems,

targeting interactive simulation with very high resolutions and with the help of

parallel computer implementations.

This thesis presents a multigrid framework for the simulation of high reso-

lution elastic deformable models. The framework incorporates several state-of-

the-art techniques from multigrid theory, while adapting them to the specific

requirements of graphics, animation and engineering applications, such as the

ability to handle elaborate geometry and complex boundary conditions. The

efficiency of the solver is practically independent of material parameters, even

for near-incompressible materials. The solver also supports the simulation of

co-rotational linear elasticity and dynamic systems. With optimization, the al-

xvii

gorithm achieves simulation rates as high as 6 frames per second on an 8-core

SMP for test models with 256K vertices, and 1.6 frames per second on a 16-core

SMP for a 2M vertex object.

To achieve higher-order accuracy solutions, we also present a cut cell method

for enforcing Dirichlet and Neumann boundary conditions with nearly incom-

pressible linear elastic materials in irregular domains. Virtual nodes on cut uni-

form grid cells are used to provide geometric flexibility in the domain boundary

shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-

type staggered grid with piecewise bilinear displacements centered at cell faces

and piecewise constant pressures at cell centers. These discretization choices

provide the necessary stability in the incompressible limit and the necessary ac-

curacy in cut cells. Numerical experiments suggest second order accuracy in L∞.

A geometric multigrid method is developed for solving the discrete equations

for displacements and pressures that achieves nearly optimal convergence rates

independent of grid resolution.

Finally, we propose a soft constraint model for controllable deformable solids

simulation and collision problems, and develop an efficient multigrid solver for

the constraint system.

xviii

CHAPTER 1

Introduction

The simulation of solids is an important problem and tool in computer animation,

physics, mechanical engineering and biomedical engineering. Deformable solids

simulation has been widely used to automate the generation of realistic visual

effects related to deformable solids, analyze mechanical systems, and facilitate

researchers in imitating and investigating biomedical systems. With increasingly

hardware performance, problems with higher resolutions are becoming increas-

ingly important. There has always been a need for simulation at interactive rates

with higher accuracy, which typically leads to a large numerical system where

the efficiency of traditional numerical methods is largely inadequate. Finding an

efficient numerical solver for high resolution solids simulation is an interesting

and challenging problem.

The theme of this thesis is efficient numerical methods for the simulation

of elastic solids. I present an efficient multigrid framework that supports the

dynamic simulation of very high resolution deformable solids with a wide range

of materials, and utilize it in several applications.

1.1 Solids simulation

A fundamental task of mechanical engineering is to understand the mechanical

properties of different materials and to design and control mechanical systems.

1

Within computational mathematics, numerical simulation offers an important

tool for predicting the performance of mechanical systems without real world

experiments, which may be expensive, dangerous or even impractical. Solids

simulation approximates the behavior of mechanical systems with computational

models, and thus can be used to compare existing models with experimental

results in order to develop more realistic models. Furthermore, solids simulation

helps researchers to foresee problems in control and design. The more accurate

the simulation, the better and more reliable are the conclusions that can be

offered to engineers.

In particular, the simulation of elastic materials is interesting for its broad ap-

plicability in architecture, manufacture, geophysics, material science and biomed-

ical engineering. In particular, elasticity simulation has recently been used to

generate realistic visual effects in computer animation, for motion pictures and

interactive games

1.1.1 Solids simulation in computer animation

Physics-based simulation of the governing partial differential equations (PDE)

of nonrigid solids has been particularly useful in computer animation due to its

reliable imitation of real world materials Terzopoulos et al. (1987); Terzopoulos

and Fleischer (1988a); Müller et al. (2002). Traditional animation requires highly

experienced artists to manually rig the deformation and interpolate keyframe

deformations to generate the animation. The more keyframes that are inserted,

the more accurately the deformation is controlled. However, the naturalness of

the animation depends critically on the expertise of the artist. A lot of hands-

on work is required and it is very difficult to repeat the process once a minor

modification is made to the model. Although procedural deformation techniques

2

are continuously being developed to target the automation of these tasks, it still

requires a lot of artistic skills and training to achieve natural dynamics.

Simulating virtual character flesh and tissues as an elastic material by solving

the governing equations of physics automatically generates deformations that are

consistent with the behavior of real world materials. Volumetric deformations

such as bulging and stretching are naturally resolved with a minimum amount

of manual effort. Also, when a very high resolution can be afforded, much more

interesting and compelling secondary visual effects can be generated with fine-

scale detail and complexity. The quest for visual realism has spawned an ever

growing interest in simulation techniques capable of accommodating larger and

more detailed models and generating visually realistic results.

Beyond simulation that exactly follows the physics rule of elastic materials,

generating physically plausible deformations under artists’ control is an equally

important problem in computer animation as discussed in Barzel et al. (1996). In

certain cases, special effects with physically unrealistic movements are required,

such as squeeze, squash and special deformations designed by artists. Moreover,

artists need to preview the deformation in order to better control the final re-

sults, hence accelerating the production of the animation. This requires a fast

simulation method capable of synthesizing very high resolution, high quality de-

formations, as well as the interactive simulation of reasonably detailed systems

with reliable and repeatable results.

Other than volumetric objects, the elastic simulation of lower dimensional

geometries, including curves and surfaces, is also very useful in animation, such

as cloth simulation Bridson et al. (2003); Choi and Ko (2005a); Goldenthal et al.

(2007) and hair simulation Selle et al. (2008). Techniques have been developed to

simulate facial expressions Terzopoulos and Waters (1990); Sumner and Popović

3

(2004); Sifakis et al. (2005). Solids simulation techniques have also been at the

heart of new techniques in image processing Terzopoulos and McInerney (1996);

Andersson et al. (2001), geoscience and material science.

1.1.2 Biomedical simulation and virtual surgery

With the development of increasingly practical and reliable solids simulation tech-

niques in computer animation, the simulation of complicated realistic materials

such as biomedical systems becomes more and more interesting Gourret et al.

(1989); Bro-Nielsen et al. (1998a); Lee et al. (2009). Traditional surgical training

and design depends on hands-on experience, which can be dangerous and expen-

sive. With the help of computer animation, a virtual surgery can be generated

that demonstrates the deformation of flesh and tissues under cutting, stretching

and suturing Wilhelms and Van Gelder (1997); Marescaux et al. (1998); Szekely

et al. (1998); Liu et al. (2003); Raghupathi et al. (2004); Lapeer et al. (2010).

When the generated animation is reliable enough, this technique can also be used

to plan novel surgeries, such as cleft lip and palate surgery Cutting et al. (2002).

In both computer animation and virtual surgery applications, the simulation

of materials that emulate the exact physical behavior of human tissue and flesh

are of substantial importance Bischoff et al. (2000); Teran et al. (2005a); Guo

et al. (2006). Furthermore, while simulating high accuracy and highly detailed

geometric models, virtual surgery needs to be operated at an interactive speed;

it needs to be combined with operations like cutting and suturing and to be

robust under drastic surgical manipulations Bro-Nielsen et al. (1998b); Cotin

et al. (2000); Berkley et al. (2004). These requirements make the numerical

problem in virtual surgery exceedingly challenging.

4

1.2 Numerical difficulties

High discretization resolution is required to generate accurate solutions and de-

tailed deformations. Figure 1.1 demonstrates two simulations of the same geomet-

ric model discretized under different resolutions. When a resolution of millions

degrees of freedom can be afforded, much more interesting visual effects can be

generated, such as fine scale wrinkling and intricate wave propagations.

Figure 1.1: Low resolution vs high resolution. Left: a simulation with 33K
degrees of freedom; right: the simulation of the same geometry model with 3M
degrees of freedom.

1.2.1 Conjugate gradient method

Unlike kinematic methods, a dynamic simulation often requires the solution of

a linear system. Traditional methods such as the Conjugate Gradient methods

(CG) are frequently used in computer graphics and engineering, and can generate

interactive simulation for problems whose number of degrees of freedom is in the

low thousands. However, this is far from satisfactory for applications like virtual

surgery.

Although the performance of computational hardware has been improved

5

drastically to support fast solution to higher resolution problems, the simula-

tion rate does not achieve a comparable improvement. In fact, one of the key

problems is that the efficiency of traditional numerical methods slows down sub-

stantially at such high resolutions. The efficiency of CG depends on the system

condition number. As the resolution increases, the condition number of the linear

system will also increase. The computational cost is typically O(N2), with N be-

ing the number of degrees of freedom. Notice that for 3D problems, N increases

cubically with resolution. As a consequence, the number of iterations required for

convergence increases to a prohibitively large number. Therefore, the efficiency

of the linear algebra solver becomes the bottleneck.

1.2.2 Multigrid methods

Multigrid methods are a class of fast iterative methods that are based on a hier-

archical discretization Brandt (1977a); Hackbusch and Trottenberg (1982). Ge-

ometric multigrid methods, based on a geometric multiresolution discretization,

are particularly popular due to their simple implementation. In geometric multi-

grid methods, a numerical solver is defined on each discretization level, which is

efficient in reducing error components within a particular frequency range. The

composite multigrid iteration over multiple discretization levels thus reduces er-

ror components of a broad range of frequencies equally efficiently. Therefore, its

efficiency is potentially independent of problem resolution. Typically, a carefully

designed multigrid solver can achieve an asymptotic convergence with 80% reduc-

tion of the residual per iteration. Therefore, multigrid methods have a linearly

increasing, i.e. O(N), complexity under refinement. Moreover, solutions at dif-

ferent levels of details can be monitored during the solution process, thus offering

richer information for design and control in animation production.

6

However, specific design is needed in order to achieve this theoretical efficiency

for practical problems. The efficiency of a geometric multigrid solver depends on

the compositive functioning of both an efficient single-level solver and the com-

plete covering of error components by the discrete solutions across the multiple

levels. The influence of the geometric discrepancy between different levels, the

accuracy of geometric coarsening and the efficiency of a single level solver needs

to be investigated for specific problems.

In particular, a typical difficulty arises when applying a general multigrid

problem to arbitrary boundary conditions. An inefficient boundary smoother

may reduce the convergence rate significantly. Although boundary regions are

asymptotically zero, in practical applications, they can by no means be ignored.

Moreover, for medium resolution problems, the extra effort on the boundary band

may increase the computation cost per iteration such that multigrid method can

be slower than traditional CG type methods.

Also, a multigrid method requires a single level solver that is efficient in

reducing oscillatory errors with frequency commensurate with the grid resolution,

thus the solver is also called a smoother. For elliptic equations, most iterative

solvers are good smoothers. However, for non-elliptic equations or problems that

are nearly non-elliptic, such as the near-incompressible elasticity problem, it is

tricky to find an efficient smoother. And the multigrid method fails to be efficient.

Unlike geometric multigrid methods, the algebraic multigrid methods, gen-

eralize the multilevel idea to general sparse linear algebra systems. Algebraic

multigrid methods can be conveniently defined on unstructured grids and ir-

regular problems. However, the nontrivial multiresolution discretizations and

the complicated relationship between different levels requires extra computation.

This drastically increases the complexity of each iteration, especially, when the

7

linear system needs to be frequently modified. Also, without grid regularity,

significant memory is required to represent the mesh topology.

Multigrid methods have been generalized to nonlinear problems. In contin-

uum mechanics simulations, nonlinear constitutive models account for important

effects. An intrinsically rotation invariant model has to be nonlinear, and the

force response under large deformations presents obvious nonlinear behavior.

An important feature of multigrid methods is the high parallelizability. Paral-

lelizing a numerical algorithms using multiple processors typically could increase

the efficiency of the existing numerical methods. Although a parallel implemen-

tation for general large scale sparse matrices have been well explored in Dongarra

and Kontoghiorghes (2001); Bolz et al. (2003); Hughes et al. (2007), the improve-

ment in efficiency from parallel implementation can be limited by the speed of

data transfer, the usage efficiency of the cached data and the complexity in devel-

oping a parallel instructions. The components of a multigrid method are typically

localized and simple operations. Thus, the implementation of a multigrid method

can easily be parallelized using a domain decomposition method.

1.3 Thesis structures

This thesis focuses on efficient multigrid methods for solids simulation that are

characterized by :

1. their efficiency for the dynamic simulation of linear and co-rotational elas-

ticity materials, for the entire range from compressible to highly incom-

pressible materials,

2. the accommodation of complicated geometry and boundary conditions,

8

3. the demonstrated uniform high efficiency for problem-sets with up to mil-

lions of degrees of freedom and the demonstrated favorable scalability,

4. implementability on multi-threaded SMP platforms,

We also introduce a second-order boundary discretization based on the mixed

finite element method. The discretized system can be solved efficiently using

multigrid methods. Our method can also efficiently resolve elasticity problems

with soft constraints Zhu et al. (2010).

This thesis is structured as follows. The next chapter presents a brief survey

of related works emphasizing solids simulation applications in computer graphics

and virtual surgery as well as existing numerical methods for acceleration. We

also discuss recent applications of multigrid methods and mixed finite element

methods and their advantages and disadvantages. Subsequently, we restate some

mathematical background about hyperelasticity, in particular linear elasticity,

as well as some existing discretization methods and linear algebra solvers. The

multigrid correction scheme is also briefly explained. In Chapter 4, an augmented

linear elasticity formulation is introduced with a finite difference discretization.

A distributive relaxation together with a full multigrid solver is designed based

on this discretization. In Chapter 5, we specifically discuss a new finite difference

boundary discretization that generates an efficient multigrid solver for practical

applications. We also investigate the accuracy of our method and discuss paral-

lel implementation and results. Following that, we introduce a new augmented

formulation for co-rotational elasticity and dynamic problems. In Chapter 7, a

mixed finite element method on a staggered grid is developed for the linear elastic-

ity problem, achieving a second-order accuracy for arbitrary geometric domains

even under high incompressibility. Finally, a soft constraint is incorporated to the

elasticity system, and a multigrid method is developed allowing us to efficiently

9

solve the constraint system and use that to resolve collision between deformable

solids.

10

CHAPTER 2

Related works

The deformation of elastic solids is an interesting topic in computer animation,

science and engineering. In this chapter, I will briefly introduce some previous

works on deformable solids, particularly in computer graphics, I will also intro-

duce some related work on the frequently used discretization methods for solids

simulation, existing challenges and difficulties and the acceleration methods. For

more complete reviews, please refer to Gibson and Mirtich (1997); Nealen et al.

(2006). In particular, I will introduce recent applications of multigrid methods

particularly in computer graphics. Finally, I will introduce some related works

on mixed finite element methods with emphasis on their advantages and major

challenges, as well as their applications in elasticity simulation.

2.1 Deformation models

In computer graphics, geometric deformation and physics-based simulation are

two important classes of deformation problems. In geometric deformation, the

solids or geometry mesh is deformed based on interpolations or according to geo-

metric features. Such deformation is not necessarily consistent to the deformation

of a practical volumetric material. Physics-based simulation, on the other hand,

solves for the deformation that fits real world materials, generating more realistic

effects.

11

Geometric deformation methods were developed earlier than physics-based

approaches. With a high controllability and a fast performance, geometric defor-

mation is still useful for many applications. Also, since its development benefitted

physics-based simulation, we will first review several geometric deformation works

that are related to physics-based simulation as well.

Geometric deformation: Free form deformation is a class of deformations

that can be represented by an interpolation among some control points using

Bernstein polynomials Barr (1981); Sederberg and Parry (1986); Singh and Fi-

ume (1998). Due to the fact that the free form deformation connects the spatial

deformation with a set of control points, which can be resolved with minimum

computational work, the free form deformation can be easily controlled by artists,

and are favorable in computer animation. Moreover, techniques have been devel-

oped to improve the performance and expand its applications. Hsu et al. (1992)

developed a method to optimize the control points directly from a deformed

mesh. And Rappoport et. al. propose a volume-preserving free-form deforma-

tion method in Rappoport et al. (1995). A space-warping method is introduced

Barr (1984); Milliron et al. (2002) in which more complex deformation can be

represented as a composition of rigid motion, tapering and bending.

Mass-spring models: Mass-spring models are a kind of physics-based meth-

ods for simulating deformable solids Platt (1992); Baraff and Witkin (1998);

Vassilev and Spanlang (2002). The motion of each mass point is driven by con-

nected spring forces. This model is useful in cloth simulation Baraff and Witkin

(1998), hair simulation Selle et al. (2008), facial modelling Terzopoulos and Wa-

ters (1990), and muscle simulation Nedel and Thalmann (1998). The implemen-

tation of a mass-spring model on the GPU is also investigated in Georgii and

Westermann (2005).

12

The mass-spring model, as an approximation to the elasticity of materials that

try to preserve their original shape, achieves visually realistic deformation with

fast simulation rate. However, mass-spring models suffer from instability issues

at high stiffness. Also, incompressible effects are not naturally resolved in mass-

spring systems. Techniques such as introducing volume preservation forces are

investigated to compensate, as was done for face simulation in Lee et al. (1995).

Although mass-spring model is generally not a continuum model, techniques are

developed to generate consistent solutions under refinement Hutchinson et al.

(1996); Debunne et al. (2000); Wu et al. (2001). Material mass and spring stiffness

needs to be adjusted and even that may not be sufficient to avoid artifacts under

refinement.

In general, the elasticity coefficients of the spring system are generated in an

intuitive way according to practical experiences.

Lagrangian mechanics: The simulation of deformable solids was originally

introduced to computer graphics by Terzopoulos et al. (1987); Terzopoulos and

Fleischer (1988a,b), where time dependent equations are developed based on

Lagrangian mechanics. Dynamic effects are naturally resolved by solving the

derived equations, and integrating the forces and velocities over time. With the

help of an implicit time integrator, the discretized system is stable even under

large time steps. A method based on Gauss’ principle of least constraint was also

introduced in Baraff and Witkin (1992), albeit by introducing a more complicated

system which is much less popular.

A feature of Lagrangian mechanics is its convenient combination with different

geometric models. The free-form deformation requires minimum computational

effort to generate natural dynamics Faloutsos et al. (1997). The Lagrangian

mechanics was also applied by NURBS geometry Terzopoulos and Qin (1994),

13

quadratic functions Baraff and Witkin (1992) and finite elements Capell et al.

(2002a).

Continuum mechanics constitutive models:

In continuum mechanics, the deformation is defined as a function of the ma-

terial coordinates. A strain is defined to measure the distortion of the defor-

mation, and the elasticity stress is dependent on the strain. As a consequence,

the elasticity force composed from the elasticity stress has an effect to reduce

the strain. The elasticity force generates the material acceleration, which formu-

lates a partial differential equation. The equation can be discretized to a finite

dimensional system, whose solution converges to the continuum solution under

refinement. Therefore, the continuous constitutive models are natural for mul-

tiresolution methods. Also, in continuum mechanics, the material parameters

can be estimated directly from its physics properties. Therefore, they simulate

the real world materials more accurately than mass-spring models and are also

more meaningful in engineering. For example, in Koch et al. (1996), the facial

geometry and material parameters are estimated from CT data.

The deformation distortion is evaluated by a metric of the Green strain tensor.

Picinbono et al. (2005); Barbič and James (2005), which is a nonlinear function,

leading to nonlinear equations to solve. The solution to these nonlinear equations

can be approximated by the solution of the linearized system at the current

solution Terzopoulos et al. (1987); Debunne et al. (2001). More accurate solutions

can be computed by solving a sequence of linearized systems using e.g. Newton-

Raphson method Teran et al. (2005b).

When the deformation is small, a linear strain is employed as a good approx-

imation to simplify the numerical problems. In a simplest constitutive model,

i.e. the linear elasticity model, the stress is a linear function of the linear strain,

14

and the solution well approximates small deformations James and Pai (1999);

Cotin et al. (1996). However, this approximation is not valid under large defor-

mation. As a consequence, the solutions suffer from obvious artifacts. Moreover,

linear elasticity does not keep an arbitrary constant rotation solution, which is

unacceptable in computer animation.

More accurate models for large deformations, are characterized by nonlin-

ear constitutive models (see Bonet and Wood (1997); Barbič and James (2005))

that are hard to solve Metaxas and Terzopoulos (1992); Terzopoulos and Witkin

(1988). Fortunately, efforts have been made to avoid these artifacts while making

use of the simplicity of linear elasticity. In Baraff and Witkin (1992), the authors

eliminate global rotation and compute linear elastic stress in the rotated local

coordinates, which leads to a simplified nonlinear model that avoids linear elas-

ticity artifacts. This idea is generalized to deformations with spatially varying

rotations, given prior information is available in Capell et al. (2002b). In par-

ticular, the authors designed a tool for users to paint the weights denoting the

influence of each kinematic bone on all control vertices. A rotated linear elastic

stress on each rotated coordinate is thus computed. The final results are blended

from resolved deformations under different rotational coordinates. Non-trivial

prior information is required, which will be more complicated for large models

and deformations with more details. Co-rotational elasticity, introduced in Müller

et al. (2002), further generalizes this idea by defining the continuous rotation field

from the rotation component of the deformation gradient via a polar decompo-

sition. It is a simple non-linear model that avoids linear elasticity artifacts and

maintains the constant rotation solution. No prior information is required, but a

nonlinear problem needs to be solved. Although co-rotational elasticity is not a

realistic model, it generates much better visual results without extensive increase

in computational effort, and the constant rotation solution is maintained, which

15

is desirable for computer animation Hauth and Strasser (2004); Müller and Gross

(2004); Georgii and Westermann (2008, 2006); Thomaszewski et al. (2006).

Furthermore, significant efforts have been made on the simulation of more

accurate hyperelasticity models, often characterized by their nonlinearity and

anisotropy Fung (1993); O’Brien and Hodgins (1999a); Cotin et al. (2002); Teran

et al. (2003); Müller et al. (2005b); Nealen et al. (2006). And Irving et al. (2004)

modifies the Neo-Hookean model by extending its definition to inverted elements,

and generates reasonable response even under extreme deformations with inverted

elements.

Incompressible materials are known to suffer from locking phenomena Hansbo

and Larson (2002). A volume preserving method is proposed by applying an

artificial gradient vector field in Irving et al. (2007). Also, incompatible modes

are introduced in Moita and Crisfield (1996) to avoid locking phenomena. And

discrete Galerkin method circumvents locking Kaufmann et al. (2009a), but at

the cost of at least a duplicated number of independent variables.

2.2 Discretizations

Finite difference methods: A differential operator in a PDE can be approx-

imated with a finite difference scheme. Finite difference methods were used in

the pioneering work of Terzopoulos et al. (1987) to discretize the elastic energy.

Although the generation of higher-order finite difference schemes and finite dif-

ference schemes on unstructured grid is nontrivial, the finite difference method is

favorable for structured grids and simpler geometric models due to the uniform

formulation and the saving in memory bandwidth.

Finite element methods: Finite element methods are one of the stan-

16

dard discretization methods in scientific computing and mechanical engineering,

in which the weak solutions are resolved in a finite dimensional solution space.

A good reference for finite element methods for the solution of continuum me-

chanical systems may be found in Bonet and Wood (1997). Finite elements are

typically mesh based methods, and tetrahedral meshes are among the most pop-

ular meshes for solids simulation Molino et al. (2003). The discrete system can

be computed by first integrating the weak formula on a element basis to form an

elemental system and then composing the elemental stiffness matrix to assemble

a global stiffness matrix. The derived system is naturally symmetric, thus it

can be solved using Conjugate Gradient methods. Other than using conformal

meshes, a fictitious domain method Quarteroni and Valli (1999); Börgers and

Widlund (1990) was used in Capell et al. (2002a), in which the geometric domain

is embedded in a finite element mesh to simplify the boundary discretizations.

Discontinuous Galerkin finite elements are recently attracting attention Kauf-

mann et al. (2009a), where the deformation is defined to be discontinuous. As

a consequence, it naturally resolves discontinuous solutions, and avoids locking

phenomena in near-incompressible cases. Although in discontinuous Galerkin

method, a larger linear system needs to be resolved, since the system is sparser

then regular finite elements, the numerical solver will also be more efficient. How-

ever, when rendering the solutions, a continuous surface needs to be generated

using e.g. moving-least-square methods.

Finite volume methods: Finite volume methods provide an intuitive and

convenient way to discretize the force equation with an arbitrary constitutive

model. Although in the case of using tetrahedron based piecewise linear so-

lutions, the finite volume method generates an equivalent discretization to the

finite element method Teran et al. (2003), it is generally different from finite

17

elements.

The previous three methods are typically mesh based methods. They generate

sparse matrices with fixed sparsity. However, when the mesh topology changes

such as with fractures, typically a remeshing is required Terzopoulos and Fleis-

cher (1988a); O’Brien and Hodgins (1999b). Efforts are made to handle cutting

problems by duplicating the elements to multiple partial elements in Sifakis et al.

(2007a). However, the cut mesh may generate an ill-conditioned system and

increase the problem complexity. Also, when the material is melting, demon-

strating features of a viscoelastic material, the deforming mesh undertaking a

large deformation and distortion may lead to ill-conditioned numerical systems.

Thus, the mesh based methods are suboptimal for such cases Platt and Fleischer

(1989).

Mesh free methods: Mesh free methods such as particle based methods are

advantageous in handling objects with frequently changing topology. However, it

is challenge to derive particle interaction to accurately mimic the material con-

stitutive models. Nontrivial design and specific choice of the particle interaction

force and smoothing kernels are required.

Desbrun et. al. extended the Smoothed Particle Hydrodynamics (SPH) for

the simulation of highly deformable materials using particle systems Desbrun

and Gascuel (1996). Particle based methods for the solution of partial differential

equations are also investigated in solids simulation in Pauly et al. (2002a); Müller

et al. (2004); Pauly et al. (2005). Materials are modeled as particles taking a vol-

ume space described by a smoothed kernel function. With this discretization, the

deformation gradients can be approximated using the moving least square formu-

lation, so that the stress and strain can be approximated for every particle. The

particle based geometry representation does not require a mesh topology, there-

18

fore, it naturally resolves topological changing. However, without a predefined

mesh topology, it requires a frequent update of the local particles information in

order to avoid an expensive particle-particle interaction. Also, the moving least

square method requires an matrix inversion for all particles, which is expensive.

Recently, Martin et al. (2010) developed a method, where by precomputing a

generalized element elaston, the elastic energy of rods, thin shells and solids can

be computed in a uniform formulation, leading to a uniform treatment of the

simulation for all three kinds of objects and their combinations.

2.3 Acceleration methods

Shape matching: Müller et al. (2005a) developed a simple imitation of de-

formable solids dynamics by estimating a rigid, linear or quadratic target defor-

mation from the current deformations, and apply a traction force on each particle

towards the targeting positions. This method is improved to a linear-time fast

implementation in Rivers and James (2007), generating nice visual effects at in-

teractive speed.

Modal analysis: Modal analysis pre-computes the singular value compo-

nents of a linear system. Instead of representing the deformations using local

deformation variables, the deformation is represented equivalently by the modal

coordinates, which keeps the amplitude of each component. The equations for the

deformations derive to an equivalent diagonal equation for the modal coordinates,

which is easy to invert.

One of the challenges in modal reduction lies on the difficulty of resolving

constraints. Each constraint system has a different set of modal coordinates,

which can be pre-computed if static. However, certain constraints such as contact

19

and collision requires a frequent update of the modal coordinates, which are

expensive. Also, for complex materials with large deformations, the deformation

is influenced substantially by the nonlinearity; therefore, a frequent linearization

and modal analysis is required. Choi and Ko (2005b) extended linear modal

analysis by tracking the local rotation tensor and applying modal analysis on the

local deformations, and they achieved interactive simulations with comparable

visual results as the co-rotational elasticity. Barbič and James (2005) shows that

by applying one Newton-Raphson iteration, the dynamic solution is good enough;

therefore, they applied modal analysis on the linearized system, and achieving

fast and realistic simulations for fully nonlinear models and generates nice visual

effects with large deformations on medium resolution problems.

Model reduction: Model reduction methods have been developed where

a few number of principle components of the possible deformations are pre-

computed, and a dynamic system can thus be derived for deformations of these

components only. With the help of a model reduction method, geometries with

several thousands degrees of freedom may be simulated at interactive speeds Zhou

et al. (1996); James and Fatahalian (2003); Barbič et al. (2009). The precom-

putation of the principle components analysis (PCA) requires an SVD, which is

very expensive. Moreover, for very high resolution problems, this is not even

applicable.

Hierarchical structure and adaptivity: Hierarchical structures have been

investigated in order to accelerate simulation speeds. A multigrid method is de-

veloped in Terzopoulos and Fleischer (1988b) for deformable solids simulation.

Finite elements with hierarchical structures are developed in Bank (1996); Krysl

et al. (2003) by refining the basis functions. Based on that, Debunne et. al.

developed a simple conforming, hierarchical, adaptive refinement methods to ob-

20

tain a reduction of up to 80% of the variables. This method is used for thin shell

and solids simulations in Debunne et al. (1999).

Uniformly refined discretizations lead to very large linear systems under high

resolution, while not all of them are necessary. Adaptively refined data structures

reduces the system complexity significantly without substantial reduction in the

simulation quality. With the development of multiresolution geometry modeling

Gortler and Cohen (1995), multiresolution discretizations especially with adap-

tively refined resolutions are applied to accelerate high quality simulations. In

Debunne et al. (2001), mutually independent volumetric meshes of multiple res-

olutions are generated for a single model, where only part of the fine meshes are

activated according to the local quality of simulation. Grinspun et. al. investi-

gate the adaptive refinement from a more fundamental approach, and introduce

a basis refinement method that can be generalized to high order finite elements

Grinspun et al. (2002); Capell et al. (2002a). Point-based geometry with mul-

tiple resolution modeling are also investigated in Pauly et al. (2002b). Otaduy

et al. (2007) proposed a multiresolution method to resolve elasticity problem with

collisions. Molino et al. (2003) developed a tetrahedron meshing with adaptive

refined elements; this meshing algorithm is then used in facial simulation Sifakis

et al. (2007b) with 85% of reduction of the mesh size.

Parallelization: With the development of parallel computer architectures,

many numerical methods can be accelerated with parallel implementation Don-

garra and Kontoghiorghes (2001); Bolz et al. (2003). The acceleration to solids

simulation is particularly investigated in Hughes et al. (2007); Thomaszewski

et al. (2007).

Recently, techniques for general purpose GPU implementation are rapidly

developing, and interest in their application to scientific computing is arising.

21

The power of massively parallel computing poses the problem of how to develop

numerical methods that make the best use of such architectures Sørensen and

Mosegaard (2006). Parallel algorithms are investigated for real time simulation

with mass-spring models Georgii et al. (2005); Tejada and Ertl (2005). Recently,

the implementation of multigrid methods using a finite element discretization and

co-rotational elasticity model is investigated in Dick et al. (2010).

2.4 Constraints and collisions

Controlling deformations is an important problem in computer graphics and en-

gineering. Collisions and contacts introduce interesting effects for deformable

solids, and they are often modeled as constraint problems. Efficient numerical

methods for constraint systems are particularly interesting in computer graphics

Platt (1992); Witkin and Welch (1990); Gissler et al. (2006).

Reduced coordinate methods: For simple constraints which enforce a set

of degrees of freedom, these variables can be eliminated from the system. A

discretization needs to be carefully defined so that the constraint condition and

corresponding variable can be easily eliminated. This method is extremely effi-

cient when the constraints are carefully designed as in Barbič and James (2005).

However, in more general cases, this method is not applicable.

Penalty methods: In penalty methods, an repulsive force is applied to

prevent violation of the constraints. Penalty methods are easy to implement and

accommodate to scenarios with frequently varying constraints Heidelberger et al.

(2004). Therefore, they are widely used in contact and collision problems. In

Terzopoulos et al. (1987), an exponential potential wall is employed to compute

collision forces near an object. Equivalently, a penalty force is applied to push

22

the solution away from non-admissible configurations. Although the solution

may not satisfy the constraint exactly, visually appealing results are generated.

However, when the object has a large velocity, the penalty force needs to be very

stiff to prevent the violation of constraints. Thus, the penalty methods require

a small discretization resolution in space and time to avoid unstable solutions,

which presents numerical inefficiency and difficulty.

Lagrange multipliers method: In more general cases, the constraints are

proposed as additional equations. Such constraints can be equally satisfied by ap-

plying generalized forces that do not change the system energy. By resolving the

state vector together with these extra forces, an augmented system is generated

with the additional force variables of typically the same number as the constraints

and additional constraint equations. These forces are also known as Lagrange

multipliers. The augmented system keeps the system symmetry and definiteness,

thus, the numerical algorithms for the original problems are typically applicable

to the constraint problems.Benzi et al. (2005). Lagrange multipliers are widely

used in motion control, collision and rigging problems Witkin and Welch (1990);

Metaxas and Terzopoulos (1992); Cohen (1992); Heidelberger et al. (2004).

Admissible subspaces: Many methods have been developed to resolve con-

straints accurately without directly incorporating constraint conditions in the

system. Typically, the path of approximated solution towards the solutions is

restricted or projected to the admissible subspaces either explicitly or implicitly

Müller et al. (2007). Baraff et. al. proposed a method in Baraff and Witkin

(1998) for cloth simulation, where by modifying the mass matrix, the change in

velocity is restricted to admissible variations.

A combination of previous methods are required for more complicated cases

Isaacs and Cohen (1987); Sifakis et al. (2005). In Baraff and Witkin (1992),

23

the collision force is directly computed at the time step when collision happens,

after which during the less drastic contact stage, the deformations are solved in

the admissible subspaces prescribed as a quadratic programming problem. A

semi-implicit collision solver in coupling with a deformable material simulation is

presented in Bridson et al. (2005); Irving et al. (2007), and combined constraint

methods are developed to implement physics-based rigging in Capell et al. (2002b,

2007).

2.5 Mixed finite element

The term “mixed finite element” was originally used in the 1960’s to describe sys-

tems, in which both stress and displacement are considered as primary variables.

In recent decades, theoretical investigations on its convergence, approximation

and stability have been established. Mixed finite element methods have also

been applied to fluid mechanics problems with both velocity and pressure as

the primary variables. We refer the reader to Arnold (1990) for an early review

of different variational principles, the concepts of convergence, approximability,

stability and their relations, and Brezzi and Fortin (1991) for a more detailed

introduction of mixed finite element methods,

Mixed finite element methods have been broadly applied to elasticity sim-

ulation, geophysics and mechanics simulations, semiconductor simulation and

computational fluid dynamics. They share many similar concepts and ideas, but

in this thesis, we will mainly discuss mixed finite element methods for elasticity

problems.

Traditional finite element methods directly solve for the displacement as the

fundamental unknowns. However, under certain circumstances, it may be bene-

24

ficial to simultaneously solve for dependent variables including displacement and

stress Arnold and Winther (2002) or pressure Stenberg and Suri (1996). There-

fore, stress-displacement and pressure-displacement formulations are developed

respectively. In both the mixed formulation and the primary formulation, a

unique problem is proposed in equivalent ways. However, the discretized nu-

merical problems may have different accuracy, numerical condition and stability.

With certain complications, we may benefit from the introduction of auxiliary

unknowns.

First, for some physics problems, stress and pressure may be more interest-

ing. For example, in the fracture problem, accurate approximation of stress is of

substantial importance Belhachmi and Tahir. Also, some of the interesting prob-

lems require the generation of higher-order finite element spaces or finite element

spaces that are hard to construct. For elasticity problems, the construction of an

incompressible deformation function space is not trivial. Some investigation of its

approximation, such as using a divergence free function space, can be found in Ye

and Hall (1997); Brenner et al. (2007); AlexanderLinke (2008); Wang et al. (2009).

Special treatment is required to construct such functional spaces. The compli-

cation may also be introduced due to the loss of robustness in certain extreme

situations. For the elasticity problem, at the incompressible limit, the stress will

diverge. And for near incompressible problems, it will be very large, leading to

a nearly singular problem that is unstable. Moreover, a locking phenomena is

observed at incompressible limit, and there can be a significant decrease in the

accuracy of the solution Babuška and Suri (1992). An investigation about the

stability of a mixed finite element method for the near-incompressible elasticity

can be found in Braess and Ming (2005). Similar issues are also observed in the

simulation of flow in porous media Arbogast et al. (1996), cartilaginous tissues

Kaasschieter et al. (2003) and semiconductor device modeling Chen et al. (1995);

25

Brezzi et al. (2005), and in geophysics Cai et al. (1997), where mixed formulations

are beneficial.

However, several difficulties are associated with mixed finite element methods.

First, linear systems with more degrees of freedom must be solved. Also, while

energy minimization problems often lead to positive definite algebraic equations,

a mixed finite element problem is often equivalent to a saddle point problem,

which leads to an indefinite system. As a consequence, traditional methods such

as Conjugate Gradient method and Gauss-Seidel method may fail to converge.

Kui et al. (1985) investigates a method to eliminate the additional degrees of

freedom while keeping the nice properties of the mixed formulation. Others have

investigated preconditioned Krylov subspace methods Vassilevski and Lazarov

(1996); Benzi and Golub (2005) and fast Uzawa algorithm Cao (2003); Brenner

(2009).

When applying mixed finite element methods to Stokes and Navier-Stokes

equations, an “inf-sup” condition or Ladyzhenskaya-Babuska-Brezzi condition

needs to be satisfied in order to keep the equation stable Arnold et al. (1984).

Consequently, when applying a low-order mixed finite element method, special

treatment is required to avoid instability. A number of authors have addressed

this issue in Boland and Nicolaides (1984); Girault and Raviart (1979); Nicolaides

and Wu (1996); Bochev et al. (2007). Han et. al. introduced a new mixed finite

element formulation for the Stokes equation Han and Wu (1998) and Navier-

Stokes equation Han and Yan (2008). In their work, the velocity components

and pressure are defined on a staggered grid as in the marker and cell method

(MAC). The relationship between their method and MAC is also investigated.

A stable mixed finite element method is developed for more general nonlinear

hyperelasticity models in Klaas et al. (1999).

26

2.6 Multigrid in computer graphics

Multigrid methods Briggs et al. (2000); Trottenberg et al. (2001) have been de-

veloped as a class of fast numerical solvers for elliptic equations, with the pioneer-

ing works from Brandt (1977b); Hackbusch and Trottenberg (1982). Algebraic

multigrid methods have been developed by generalizing the geometric multigrid

methods to arbitrary sparse matrices Brandt (1986). And the nonlinear multigrid

method is developed in Brandt (1973).

A multigrid method was originally used in Terzopoulos and Fleischer (1988b)

for deformable solids simulation in physics-based computer animation. Multigrid

methods were developed for deformable solids simulation Wu and Tendick (2004);

Georgii and Westermann (2006); Dick et al. (2008, 2010), thin shell simulation

Green et al. (2002), mesh edition Ni et al. (2004); Shi et al. (2006), image editing

Kazhdan and Hoppe (2008). The mapping of simple multigrid methods on the

GPU has also been investigated Goodnight et al. (2003); Bolz et al. (2003).

Multigrid methods for the solution of a mixed system are investigated in Hipt-

mair (1997); Arnold et al. (2000); Gopalakrishnan and Tan (2009). Distributive

relaxation was first introduced for fluid simulations in Brandt and Dinar (1978a),

and a theoretical analysis about convergence is established in Wittum (1989,

1990). A stable multigrid method for near-incompressible elasticity is introduced

in Wieners (2000). An efficient distributive relaxation and a multigrid method

for problems with dominating grad-div operators are developed and applied to

Stokes and poroelasticity problems in Gaspar et al. (2008); Oosterlee and Gaspar

(2008)

27

CHAPTER 3

Mathematics background

3.1 Linear elaticity

We represent the deformation of an elastic volumetric object using a deformation

function φ which maps any material point X of the undeformed configuration

of the object, to its position x in the deformed configuration, i.e. x = φ(X).

Deformation of an object gives rise to elastic forces Bonet and Wood (1997)

which are analytically given (in divergence form) as f = ∇TP or, component-

wise fi =
∑

j∂jPij where P is the first Piola-Kirchhoff stress tensor. The stress

tensor P is computed from the deformation map φ. This analytic expression is

known as the elastic constitutive equation. We will henceforth adopt the common

conventions of using subscripts after a comma to denote partial derivatives, and

omit certain summation symbols by implicitly summing over any right-hand side

indices that do not appear on the left-hand side of a given equation. Consequently,

the previous equation is compactly written fi = Pij,j. The constitutive equation

of linear elasticity is

P = 2µε+ λtr(ε)I or Pij = 2µεij + λεkkδij. (3.1)

In this equation, µ and λ are the Lamé parameters of the linear material, and

are computed from Young’s modulus E (a measure of material stiffness) and

28

Poisson’s ratio ν (a measure of material incompressibility) as µ = E/(2+2ν), λ =

Eν/((1+ν)(1−2ν)). Also, δij is the Kronecker delta, ε is the small strain tensor

ε = 1
2
(F + FT)− I or εij = 1

2
(φi,j + φj,i)− δij, (3.2)

and F is the deformation gradient tensor, defined as Fij = φi,j. Using (3.1,3.2)

we derive the governing equations

fi = µφi,jj + (µ+ λ)φj,ij = Lijφj. (3.3)

In this equation L = µ∆I+(µ+λ)∇∇T is the partial differential operator of linear

elasticity. A static elasticity problem amounts to determining the deformation

map φ that leads to an equilibrium of the total forces, i.e. Lφ+fext = 0, where

fext are the external forces applied on the object. For simplicity, we redefine

f = −fext and the static elasticity problem becomes equivalent to the linear

partial differential equation Lφ = f .

3.1.1 Discretization

We discretize the elasticity problem on a regular Cartesian lattice. Our de-

formable model is embedded in this lattice, similar to the approach of Rivers and

James (2007). Although an unstructured mesh provides more flexibility, we opted

for a regular grid for economy of storage. For example, storing the topology of a

tetrahedral lattice could easily require 4-5 times more than the storage required

for the vertex positions, taking up valuable memory bandwidth. Additionally,

the discrete PDE and transfer operators are uniform across regular grids, elimi-

nating the need for explicit storage. Although not used in this thesis, adaptivity

can also be combined with regular grids, see e.g. Brandt (1977a).

29

Finite element methods (FEM) are arguably the most common discretization

methods for elasticity applications in graphics (see e.g. O’Brien and Hodgins

(1999b)), and have been applied to hyperelastic simulations Irving et al. (2004).

Finite element methods automatically generate symmetric positive definite sys-

tems that can be solved using iterative solvers such as CG method or Gauss-Seidel

method. It is convenient to establish analysis for error estimation and proof of

stability of FEM, and it is also convenient for developing higher-order discretiza-

tions. FEM can naturally resolve irregular geometry defined on unstructured

grids, although with extra storage costs for the grid structure and indirect mem-

ory access.

Finite difference methods are another important discretization for the PDE

of elasticity Terzopoulos et al. (1987). Although, it can be difficult to discretize

boundary conditions and to achieve subgrid accuracy of the domain geometry.

For some applications we opted for a finite difference discretization defined on

uniform grid. A familiar practice in the field of computational fluid dynamics (e.g.

Harlow et al. (1965)). Although far less widespread for the simulation of solids,

this formulation was selected for reasons of efficiency and numerical stability.

Our method owes its good performance for highly incompressible materials to

a mixed formulation of elasticity (see Chapter 4). Although it is possible to com-

bine this formulation with finite elements (see e.g. Brezzi and Fortin (1991) and

Chapter 7), it is much simpler to implement it using finite differences. For regu-

lar lattices, both finite elements and finite differences are second-order accurate

discretizations away from the boundary, while both are susceptible to degrading

to first order near the boundaries as discussed in section 6.3.1. In addition, our

finite difference scheme leads to sparser stencils than finite elements: in our for-

mulation of 3D linear elasticity, each equation has 15 nonzero entries, while 81

30

entries are required by a trilinear hexahedral finite element discretization, and

45 for BCC tetrahedral finite elements. This translates to a lower computational

cost for a finite difference scheme. Finally, as part of our contribution we de-

rive a specific finite difference scheme that guarantees the same symmetry and

definiteness properties that are automatic with finite element methods.

Figure 3.1: Staggering of variables in 2D(left) and 3D(right). Equations L1,L2,L3

are also stored on φ1,φ2,φ3 locations respectively.

Use of staggered variables In a regular grid it would be most natural to

specify all components of the vector-valued deformation map φ at the same loca-

tions, for example at the nodes of the grid. However, for equation (3.3) doing so

may result in grid-scale oscillations, especially for near-incompressible materials.

This is qualitatively analogous to an artifact observed in the simulation of flu-

ids with non-staggered grids, where spurious oscillations may be left over in the

pressure field. For multigrid methods, such oscillatory modes are problematic, as

they may not respect the fundamental property of elliptic PDEs that a low resid-

ual implies a smooth error, requiring more elaborate and expensive smoothers to

compensate. We avoid this issue by adopting a staggered discretization (Figure

3.1), which is free of this oscillatory behavior. More specifically, φi variables are

stored at the centers of grid faces perpendicular to the Cartesian axis vector ei.

For example, φ1 values are stored on grid faces perpendicular to e1, i.e. those

parallel to the yz-plane. The same strategy is followed in 2D, where faces of grid

31

cells are now identified with grid edges, thus φ1 values are stored at the center

of y-oriented edges, and φ2 values at the center of x-oriented edges. We define

discrete first-order derivatives using central differences:

D1u[x, y, z] = u[x+1
2
hx, y, z]− u[x−1

2
hx, y, z]

D2u[x, y, z] = u[x, y+1
2
hy, z]− u[x, y−1

2
hy, z]

D3u[x, y, z] = u[x, y, z+1
2
hz]− u[x, y, z−1

2
hz],

where (hx, hy, hz) are the dimensions of the background grid cells. Second-order

derivative stencils are defined as the composition of two first-order stencils, i.e.

Dij = DiDj. An implication of these definitions is that the discrete first derivative

of a certain quantity will not be collocated with it. For example, all derivatives

of the form Diφi are naturally defined at cell centers, while D1φ2 is located at

centers of z-oriented edges in 3D, and at grid nodes in 2D. However, derivatives

are centered at the appropriate locations for a convenient discretization of (3.3).

In particular, all stencils involved in the discretization of equation Li are naturally

centered on the location of variable φi. Thus, the staggering of the unknown

variables implies a natural staggering of the discretized differential equations.

Figure 3.2 illustrates this fact in 2D, where the discrete stencils for the operators

L1 and L2 from (3.3) are shown to be naturally centered at φ1 and φ2 variable

locations, respectively.

3.2 Multigrid correction scheme

Multigrid methods are based on the concept of a smoother which is a proce-

dure designed to reduce the residual r=f−Lφ of the differential equation. For

example, in a discretized system, Gauss-Seidel or Jacobi iteration are common

32

Figure 3.2: Discrete stencils for operators L1(left) and L2(right) of the PDE
system (3.3). The red and green nodes of the stencil correspond to φ1 and φ2

values respectively. The dashed square indicates the center of the stencil, where
the equation is evaluated.

Algorithm 1 Multigrid Correction Scheme – V-(1,1) Cycle

1: procedure Multigrid(φ,f , L) . φ is the current estimate
2: uh ← φ, bh ← f . total of L+ 1 levels
3: for l = 0 to L− 1 do
4: Smooth(L2lh,u2lh,b2lh)

5: r2lh ← b2lh − L2lhu2lh

6: b2l+1h ←Restrict(r2lh), u2l+1h ← 0
7: end for
8: Solve u2Lh ← (L2Lh)−1b2Lh

9: for l = L− 1 down to 0 do
10: u2lh ← u2lh+Prolongate(u2l+1h)

11: Smooth(L2lh,u2lh,b2lh)
12: end for
13: φ← uh

14: end procedure

33

smoothers. An inherent property of elliptic systems is that when the magnitude

of the residual is small, the error e = φ−φexact is expected to be smooth Brandt

(1986). Smoothers are typically simple, local and relatively inexpensive routines,

which are efficient at reducing large values of the residual (and, as a consequence,

eliminating high frequencies in the error). Nevertheless, once the high frequency

component of the error has been eliminated, subsequent iterations are character-

ized by rapidly decelerated convergence. Multigrid methods seek to remediate

this stagnation by using the smoother as a building block in a multi-level solver

that achieves constant rate of convergence, regardless of the prevailing frequen-

cies of the error. This is accomplished by observing that any persistent lower

frequency error will appear to be higher frequency if the problem is resampled

using a coarser discretization. By transitioning to ever coarser discretizations

the smoother retains the ability to make progress towards convergence. The

components of a multigrid solver are:

• Discretizations of the continuous operator L at a number of different res-

olutions, denoted as Lh,L2h,L4h etc. (where the superscripts indicate the

mesh size for each resolution).

• Smoothing subroutine, defined at each resolution.

• Prolongation and Restriction subroutines. These implement an up-sampling

and downsampling operation respectively, between two different levels of

resolution.

• An exact solver, used for solving the discrete equations at the coarsest level.

As the coarse grid is expected to be small, any reasonable solver would be

an acceptable option.

34

Algorithm 1 gives the pseudocode for a V-(1,1) cycle of the Multigrid correction

scheme, which is the method used in this thesis.

3.3 Multigrid methods for linear elasticity

We present an application of general multigrid methods to a linear elasticity

problem. Consider a linear elasticity material with undeformed configuration

being a cubic domain [0, 1]3. We discretize linear elasticity using finite element

method defined on a BCC lattice generated from a regular grid of n3 defined

on the domain. The grid points are (ih, jh) with i, j ∈ {0, 1, ..., n − 1} and

h = 1/n. Let us consider a problem with fixed boundary conditions on the left

and right side of the cube, and free surface boundary conditions on the other

four sides, i.e. PN = 0, where N is the surface normal unit vector in undeformed

configuration (see Figure 3.3). We discretize the system using a piecewise linear

finite element method applied on the tetrahedral mesh. Each coarse grid problem

is defined by the same algorithm but discretized on a grid of (n/2)3. And we

apply full weighting restriction and bi-linear interpolation for prolongation. For

the relaxation, we choose a Gauss-Siedel relaxation in a lexicographical ordering,

and we applied 10 boundary relaxations near the domain boundary.

With a low compressibility of Poisson’s ratio being 0.2, we achieve a fast con-

vergence with a rate of 0.2. But for high incompressible material with Poisson’s

ratio being 0.49, the multigrid efficiency is substantially decreased. The asymp-

totic convergence rate is greater than 0.9. For the purpose of a clear demonstra-

tion, we rendered the deformed object with a cutaway at a center cross section

in Figure 3.4. The deformation is derived from the approximated solution after

5 multigrid V-(1,1) iterations with the same random initial guess and different

35

Figure 3.3: Linear elasticity example: a deformed cubic elastic material

Poisson’s ratios.

Figure 3.4: Comparison of multigrid convergence with different Poisson’s ratios.
We apply the same boundary condition and start with the same random ini-
tial guess and plot the deformed object after 5 multigrid V-(1,1) cycles. Left:
Poisson’s ratio is 0.2; right: Poisson’s ratio is 0.49.

36

CHAPTER 4

Augmented linear elasticity

A majority of elastic materials of interest to computer graphics (e.g. the muscles

and flesh of animated characters) and material science are ideally incompressible.

For a multigrid solver, naive use of standard smoothers (e.g. Gauss-Seidel) in the

presence of high incompressibility could lead to slow convergence or even loss of

stability.

In this chapter, we introduced an augmented linear elasticity system dis-

cretized with a finite difference method and a distributive relaxation as a sta-

ble solver and efficient smoother for the derived linear system. The relaxation

method is computationally inexpensive and leads to fast multigrid convergence

independent of material parameters.

4.1 Finite difference discretization

When the Poisson’s ratio approaches the incompressible limit ν → 0.5, the Lamé

parameter λ becomes several orders of magnitude larger than µ. As a conse-

quence, the dominant term of the elasticity operator L = µ∆I+(µ+λ)∇∇T is

the rank deficient operator (µ+λ)∇∇T ; thus L becomes near-singular. More

37

specifically, we see that any divergence-free field

φ =

 cos kx sin ky

− sin kx cos ky

 (4.1)

will be in the null-space of the dominant term, i.e. λ∇∇Tφ = 0. Thus, a

solution to the elasticity PDE Lφ = f could be perturbed by a divergence-

free displacement of substantial amplitude, without introducing a large residual

for the differential equation. These perturbations can be arbitrarily oscillatory

with large number of k, and lead to high-frequency errors that the multigrid

method cannot smooth efficiently or correct using information from a coarser grid.

Fortunately, this complication is not a result of inherently problematic material

behavior, but rather an artifact of the form of the governing equations. Our

solution is to reformulate the PDEs of elasticity into an equivalent system, which

does not suffer from the near-singularity of the original. This stable differential

description of near-incompressible elasticity is adapted from the theory of mixed

variational formulations Brezzi and Fortin (1991). We introduce a new auxiliary

variable p (which we call pressure) defined as p = −(λ/µ)∇Tφ = −(λ/µ)divφ.

We can write

Lφ = µ(∆I + ∇∇T)φ+ λ∇(∇Tφ)

= µ(∆I + ∇∇T)φ− µ∇p. (4.2)

Thus, the equilibrium equation Lφ = f is equivalently written as

 µ(∆I+∇∇T) −µ∇

µ∇T µ2

λ

 φ

p

 =

 f

0

 . (4.3)

38

Figure 4.1: Placement of pressures in 2D (left) and 3D (right).

Let us define L̂ to denote the augmented differential operator, define φ̂ = (φ, p) to

denote the augmented unknowns and define f̂ = (f , 0) to denote the right-hand

side vector. Then the augmented system is equivalently written as L̂φ̂ = f̂ . The

top equation of system (4.3) follows directly from equation (4.2), while the bottom

is the definition of pressure p. Conversely, the original differential equation (3.3)

can be obtained from (4.3) by simply eliminating the pressure variable. Thus

the augmented differential equation system of (4.3) is equivalent to the governing

equations of linear elasticity. The important consequence of this manipulation is

that this new discretization is stable, in the sense that the system can be smoothed

with standard methods without leaving spurious oscillatory modes. This property

can be rigorously proved via Fourier analysis; we can verify however that as λ

tends to infinity, the term µ2/λ vanishes, and the resulting limit system is now

non-singular. In section 4.2 we describe a simple smoother, specifically tailored

to equation (4.3). The newly introduced pressure variables are also discretized

on an offset Cartesian lattice, with pressures stored in cell centers (see Figure

4.1). Pressure equations are also cell centered. As was the case with the non-

augmented elasticity equations, the staggering of deformation (φ) and pressure

(p) variables is such that all centered difference discrete operators are well defined

where they are needed, and the componentwise stencil of each operators in L̂is

demonstrated in 4.2.

39

Figure 4.2: Discrete stencils for operators in L̂ for φ1, φ2 and p respectively in
the left, middle and right figures.

4.2 Distributive relaxation

The discretization of system (4.3) yields a symmetric, yet indefinite matrix (dis-

crete first order derivatives are skew-symmetric). Although this system has the

stability to admit efficient local smoothing, the convergence of the solution cannot

be accomplished with a standard Gauss-Seidel or Jacobi iteration. Additionally,

for a differential equation such as (4.3) exhibiting nontrivial coupling between

the variables φ1, φ2, φ3 and p, a smoothing scheme which smoothes a given equa-

tion by updating several variables at once is often the optimal choice in terms of

efficiency Trottenberg et al. (2001). The technique we use in our formulation is

the distributive smoothing approach. This technique was applied to the Stokes

equation in Brandt and Dinar (1978b) while Gaspar et al. (2008) discussed its

application to linear elasticity. Consider the change of variables

 φ

p

 =

 I −∇

∇T −2∆

 ψ

q

 or φ̂ = M̂ψ̂, (4.4)

where ψ̂ = (ψ, q) is the vector of auxiliary unknown variables, and M̂ is called

the distribution matrix. Using the change of variables of equation (4.4), our

augmented system L̂φ̂ = f̂ is equivalently written as L̂M̂ψ̂ = f̂ . Composing

40

the operators L̂ and M̂ yields

L̂M̂ =

 µ∆I 0

µ(1 + µ
λ
)∇T −µ(1 + 2µ

λ
)∆

 . (4.5)

That is, the composed system is lower triangular, and its diagonal elements are

simply Laplacian operators. This system can be smoothed with any scheme that

works for the Poisson equation, including the Gauss-Seidel or Jacobi methods. In

fact, the entire system can be smoothed with the efficiency of the Poisson equa-

tion, following a forward substitution approach, i.e. we smooth all ψ1-centered

equations across the domain first, followed by sweeps of ψ2, ψ3, and q-centered

equations in sequence. After we solved ψ and q, we can resolve the solution by

substituting into (4.4).

In implementation, we first discretize the auxiliary variable and the distri-

bution matrix. In accordance with our staggered formulation, the components

ψh1 , ψ
h
2 , ψ

h
3 of the auxiliary vector ψh will be collocated with φh1 , φ

h
2 , φ

h
3 respec-

tively, while qh and ph values are also collocated (see Figure 4.3 for 2D case).

We further discretize the distribution matrix using a centered finite difference

scheme. It is important to notice that while L̂M̂ is an lower triangular differen-

tial operator matrix, L̂M̂, i.e. the discrete matrix is also block lower triangular,

hence can be solved using forward substitution.

More importantly, in practice, we do not necessarily build the auxiliary vari-

ables (ψ, q). Consider the Gauss-Seidel iteration for the discretized system L̂φ̂ =

f̂ : At every step, we calculate a point-wise correction to the variable φ̂i, such

that the residual of the collocated equation L̂i will vanish. That is, we replace

41

Figure 4.3: Location of auxiliary variables and the distribution stencils - 2D.

variable φ̂i with ûi + δ (or φ̂ with φ̂+ δei) such that:

eTi (f̂ − L̂(φ̂+ δei)) = 0⇒ (eTi L̂ei)δ = eTi (f̂ − L̂φ̂).

The last equation is equivalent to L̂iiδ = rold
i or δ = rold

i /L̂ii, where L̂ii is the i-th

diagonal element of the discrete operator and rold
i denotes the i-th component

of the residual. In an analogous fashion, a Gauss-Seidel step on the distributed

system L̂M̂ψ̂ = f̂ amounts to changing ψ̂i into ψ̂i + δ (or ψ̂ into ψ̂ + δei) such

that the i-th residual of the distributed equation is annihilated

eTi (f̂ − L̂M̂(ψ̂ + δei)) = 0⇒ eTi (f̂ − L̂(φ̂+ δM̂ei)) = 0

⇒ (eTi L̂M̂ei)δ = eTi (f̂ − L̂φ̂)⇒ δ = rold
i /(L̂M̂)ii.

In this derivation, the auxiliary vector ψ̂ is only used in the form M̂ψ̂ which

is equal to the value of the original variable φ̂. Thus, after the value of δ has

been determined, φ̂ is updated to φ̂ + δM̂ei (see Figure 4.4 for a 2D exam-

ple). The computational cost of distributive smoothing is comparable to that of

simple Gauss-Seidel iteration, yet it allows efficient smoothing of the linear elas-

ticity equations independent of Poisson’s ratio. We summarize the distributive

smoothing process in Algorithm 2.

42

Figure 4.4: Stencils of distributions - 2D. Top: to the left is a δ-correction applied
on the auxiliary variables ψ̂; to the right is an equivalent distributive correction
applied on the original variables φ̂. Bottom: distribution stencils for each cor-
rection applied on ψ1(left top), ψ2(left bottom) and q(right), i.e. the stencils of
mT
i = eiM̂ in Algorithm 2 where the i-th variables are ψ1, ψ2 and q respectively.

Algorithm 2 Distributive Smoothing

1: procedure DistributiveSmoothing(L̂,M̂,φ̂,f̂)
2: for v in {φ̂1, φ̂2, φ̂3, p} do . Must be in this exact order
3: for i in Lattice[v] do . i is an equation index
4: r ← f̂i − L̂i · φ̂ . L̂i is the i-th row of L̂
5: δ ← r/(L̂M̂)ii
6: φ̂ += δmT

i . mi is the i-th row of M̂
7: end for
8: end for
9: end procedure

43

CHAPTER 5

Boundary system and geometric coarsening

The previous sections did not address the effect of boundaries, instead focusing

on the treatment of the interior region. The efficiency of the interior smoother

can be evaluated using a periodic domain. In fact, it is known Brandt (1994) that

a boundary value problem can be solved at the same efficiency as a periodic prob-

lem, at the expense of more intensive smoothing at the boundary. In theoretical

studies, the computational overhead of this additional boundary smoothing is

often overlooked, as the cost of interior smoothing is asymptotically expected to

dominate. Nevertheless, practical problem sizes may never reach the asymptotic

regime and slow, generic boundary smoothers can pose a performance bottleneck.

In this section, we develop a boundary discretization strategy, including a novel

treatment of traction boundary conditions, that facilitates the design of efficient

and inexpensive boundary smoothers.

5.1 Domain description

Our geometrical description of the computational domain is based on a partition-

ing of the cells of the background grid (Figure 5.1). Initially, cells that have an

overlap with the simulated deformable body are characterized as interior cells,

otherwise they are designated exterior cells. Additionally, any cell can be user-

specified to be a constrained (or Dirichlet) cell, overriding any interior/exterior

44

designation this cell may otherwise carry. Dirichlet cells practically correspond

to kinematically constrained parts of the object. This classification into interior,

exterior and Dirichlet cell types provides an intuitive way to specify the degrees

of freedom of our problem, and define their associated equations. We categorize

discrete variables and equations as follows:

Figure 5.1: Classification of cells,variables and equations near the boundary.

Figure 5.2: Active cells of a discretized dragon model with 402K cells.

• Interior variables and equations. Any of the variables φ1, φ2, φ3 or p located

strictly inside the interior region (i.e. either on an interior cell center, or

45

on the face between two interior cells) is designated an interior variable.

For every interior variable, we label its collocated equation from (4.3) as

an interior equation and we include this equation as part of our discrete

system. Locations of interior variables and equations are depicted as red

dots in figure 5.1.

• Boundary variables and equations. Certain interior equations (near the

boundary) have a discrete stencil that extends onto variables that are not

interior variables themselves. We label these as boundary variables. More

specifically, a boundary variable is designated a Dirichlet boundary variable

if it touches a Dirichlet cell (either inside or on the boundary of one), oth-

erwise it is designated a traction boundary variable. Dirichlet and traction

boundary variables are depicted as green and blue dots respectively, in fig-

ure 5.1. Similar to interior variables, for every boundary variable we add a

boundary equation (or boundary condition) to our discrete system, in order

to have the same number of equations as unknowns. Dirichlet variables are

matched with a boundary condition of the form φ(X) = c, while traction

variables are associated with a condition of the form P(X)N = t, where

N is the surface normal (t = 0 corresponds to a free boundary).

• Variables that have not been designated interior or boundary are labeled

inactive and can be ignored (depicted as dashed circles in figure 5.1). No

equation is added to our system for these inactive grid locations.

5.2 A general-purpose box smoother

Although a well-posed system can be constructed as described, the distributive

smoothing scheme is not valid near the boundary, as the distribution extends

46

outside the domain. In such situations a box smoother Brandt and Dinar (1978b)

is a broadly applicable solution. This process amounts to collectively solving a

number of equations in a subdomain, simultaneously adjusting the values of all

variables within. Our complete smoothing procedure starts with a boundary box

smoothing sweep, proceeds with interior distributive smoothing and finishes with

a last boundary pass. An interior equation is smoothed distributively if the stencil

of its respective equation in the composed system (L̂M̂)ψ̂ = f̂ only includes

interior variables, as illustrated in Figure 5.3 (left). For the boundary, we use

overlapping boxes that are two grid cells wide, and centered at the outermost layer

of interior cells, as seen in Figure 5.3 (right). In our experiments the box smoother

performed very well, generally achieving near-optimal efficiency for the entire

multigrid scheme. In practice, however, this good convergence behavior came at

the cost of an enormous computational overhead. This added cost stems from the

need to solve a coupled linear system within each box. The computational effort

spent on boundary smoothing was often two orders of magnitude more than the

cost of interior smoothing on models with tens of thousands of vertices; although

the interior cost scales with volume and the boundary cost scales with surface

area, even with million-vertex models the cost of the boundary smoother would

still dominate by a factor of 10. We address this issue in the next section by

designing an effective, yet simple and inexpensive boundary smoother.

5.3 A fast symmetric Gauss-Seidel smoother

We propose a novel formulation that enables equation-by-equation smoothing

that is both efficient and inexpensive. The main obstacle to efficient equation-

by-equation boundary smoothing schemes, is lack of symmetry, definiteness or

diagonal dominance. Additionally, discretizations of the boundary conditions

47

Figure 5.3: Left: Extent of distributive smoothing (interior region), Right:
Boundary region with some boxes used by the box smoother.

(especially traction) can easily result in loss of symmetry. An alternative local

smoother is the Kaczmarz method Trottenberg et al. (2001), which does not

require symmetry or definiteness; we have nevertheless found it to converge ex-

tremely slowly, requiring a very large number of iterations. Our solution stems

from a new perspective of the constitutive equations and the boundary conditions.

We will show that it is possible to construct a symmetric negative definite

discretization that uses only interior variables (as defined in section 5.1). First,

we revisit the constitutive equation of linear elasticity (3.1). The scalar coefficient

tr(ε) appearing in equation (3.2) is equivalently written as tr(ε)=
∑

i εii=
∑

i φi,i−

d, where d=tr(I) equals the number of spatial dimensions. Similarly, the last

equation of system (4.3) is equivalent to −(µ/λ)p = ∇Tφ =
∑

i φi,i. Thus, we

have tr(ε) = −(µ/λ)p− d, and equation (3.1) becomes

P = µ(F + FT)− µpI− (2µ+ dλ)I. (5.1)

The difference between equations (3.1) and (5.1) is that the original definition of

stress is physically valid for any given deformation field φ while the formulation of

equation (5.1) will correspond to the real value of stress only when the augmented

system (4.3) is solved exactly. In detail, the diagonal and off-diagonal components

48

of the stress tensor P are given as:

Pii = 2µφi,i − µp− (2µ+ dλ)

Pij = µ(φi,j + φj,i). (i 6=j).

The finite difference approximations of these stress values are:

Pii(X) = 2µ
φi(X+hi

2
ei)− φi(X−hi

2
ei)

hi

−µp(X)− (2µ+ dλ) (5.2)

Pij(X) = µ

[
φi(X+

hj
2
ej)− φi(X−hj

2
ej)

hj

+
φj(X+hi

2
ei)− φj(X−hi

2
ei)

hi

]
. (5.3)

The staggering of the position and pressure variables implies a natural placement

of the stress values, in accordance with equations (5.2) and (5.3) (see Figure

5.5 for 2D case). Diagonal stress components are always located at cell centers,

while off diagonal components Pij(i 6= j) are node-centered in 2D and edge-

centered in 3D (see Figure 5.4, right). In a fashion similar to our classification

of variables and equations, we label stresses as interior if their discrete stencils

(defined in equations (5.2) and (5.3)) contain only interior or Dirichlet variables,

while boundary stresses include at least one traction boundary variable in their

stencil. Interior and boundary stresses are depicted in green and red, respectively,

in figure 5.6 (left).

We can verify that the position equations L1,L2,L3 of system (4.3) are equiva-

lent to the divergence form L̂iφ̂=∂jPij, where P is now given by the new definition

49

Figure 5.4: Left: Equations L1,L2 expressed as divergence stencils. Right: Place-
ment of the components of stress tensor P in 3D.

Figure 5.5: Discrete stencils for linear augmented stress components. Left: P11;
middle: P22; right: P12 = P21.

of equation (5.1). The discrete stencils for these equations can be constructed

as a two-step process. First, we construct a finite difference discretization for

each equation fi = ∂jPij, treating every value Pij appearing in this stencil as a

separate variable:

fi(X) =
d∑
j=1

Pij(X+
hj
2
ej)− Pij(X−hj

2
ej)

hj
, (5.4)

see figure 5.4 (left) for a visual illustration of this divergence stencil in 2D. As a

second step, we replace the stress values Pij in equation (5.4) using either a finite

difference approximation, or a boundary condition. Each of the stress values

Pij (4 stresses in 2D, 6 in 3D) can either be an interior or a boundary stress.

For all interior stresses, we simply substitute the appropriate finite difference

50

Figure 5.6: Left: Stress variables used in the divergence form of certain interior
equations. Boundary stress variables are colored red, interior stresses are green.
All boundary stresses can be set to a specific value using a traction condition
from a nearby boundary. Right: Interior and boundary gradients used in pressure
equations.

stencil, from equation (5.2) or (5.3). For boundary stresses, instead of computing

them using a finite difference, we assume that their value is known by virtue

of a traction boundary condition, thus this value can be simply substituted in

equation (5.4). The assumption that every boundary stress is determined by a

traction boundary condition is justified as follows:

• Stress variables of the form Pij(i 6= j) are centered on grid edges in 3D (see

Figure 5.4, right) and on grid nodes in 2D. This stress variable appears in

the finite difference approximation of the term ∂jPij in the interior equation

L̂i. Let X∗ be the location where equation L̂i is centered. The stress

variable Pij is located one half of a grid cell away from X∗, along the

direction ej. Without loss of generality, assume Pij is located at X∗+
hj
2
ej.

Pij neighbors exactly four cells; out of those, the two centered at X∗± hi
2
ei

are interior cells, since we assumed that L̂i was an interior equation. The

two other neighbor cells of Pij are centered at X∗ ± hi
2
ei + hjej. We can

verify that if those two cells were interior or Dirichlet, Pij would have been

51

an interior stress. Thus, Pij is a boundary stress and one of the cells

centered at X∗ ± hi
2
ei + hjej must be exterior. This means that Pij is

incident on a traction boundary face perpendicular to the direction ej, and

there exists a traction condition Pej = t that specifies a value Pij = ti for

this component of the stress. For a free boundary we simply have Pij = 0.

• Stress variables of the form Pii are located at cell centers, and appear in the

finite difference approximation of ∂iPii in the interior equation L̂i. Similar

to the previous case, Pii is located one half grid away from the location X∗

of L̂i along the direction ei. Without loss of generality, assume Pii is located

atX∗+hi
2
ei. From (5.2) we see that the stencil for Pii contains the variables

φi(X
∗), p(X∗+hi

2
ei) which are both interior (since L̂i is interior) and the

one additional variable φi(X
∗+hiei). Pii would be a boundary stress only

if φi(X
∗+hiei) was an exterior variable; in this case Pii would have been

“near” (specifically half a cell away from) a traction boundary face normal

to ei. Once again, we will use the traction condition associated with this

boundary to set Pii = ti (or Pii = 0 for a free boundary). The subtlety of

this formulation is that the stress variable Pii is not located exactly on the

boundary; nevertheless the discrete stencil for Pii is still a valid first-order

approximation of the Pii at the boundary.

In summary, we have justified that all boundary stress variables can be elim-

inated (and replaced with known constants) from the divergence form of interior

position equations. Notably, for equations that are far enough from the traction

boundary (specifically, those that do not require any boundary stresses in equa-

tion (5.1)), this process yields exactly the same results as the direct discretization

of system (4.3). A similar treatment is performed on the discretization of the pres-

sure equation L̂p=µ
∑

i Fii + µ2

λ
p. Similar to stresses, the deformation gradients

52

Fii are also characterized as interior or boundary, based on whether they touch

traction boundary variables. Since Pii = 2µFii−µp− (2λ+ dµ), we observe that

Fii is boundary if and only if the stress Pii is boundary (see figure 5.6, right). For

such boundary gradients or stresses we can use the traction condition Pii = ti

to eliminate Fii from the pressure equation. This is accomplished by replacing

L̂p ← L̂p−1
2
(Pii − ti) for every boundary gradient Fii.

Our manipulations effectively remove all traction boundary variables from the

discretization of the interior equations. For every Dirichlet boundary variable,

we assume a Dirichlet condition of the form φi = ci is provided. Thus, we can

substitute a given value for every Dirichlet variable in the stencil of every interior

equation that uses it. As a result, our overall discrete system can be written as

L̂∗φ̂
∗

= f̂ − f̂D = f̂
∗
, where φ̂

∗
only contains interior variables, and f̂

D
results

from moving the Dirichlet conditions to the right-hand side. The discrete system

matrix L̂∗ has as many rows and columns as interior variables, and will differ from

L̂ near the boundaries, as it incorporates the effect of the boundary conditions.

An analysis of our formulation can verify that L̂∗ has the form

L̂∗ =

 Lφ G

GT Dp

 . (5.5)

In this formulation Lφ is symmetric, negative definite, and Dp is a diagonal matrix

with positive diagonal elements. As a final step, we define the substitution matrix

Û

Û =

 I −GD−1
p

0 I

 ,

53

and use it to pre-multiply our equation as

ÛL̂
∗
φ̂
∗

=

 Lφ −GD−1
p GT 0

GT Dp

u∗ = Ûf̂
∗
. (5.6)

The derived equation is lower triangular, therefore, we can first relax the equation

Lunaugu = f unaug, where Lunaug , Lφ −GD−1
p GT , and then substitute in to the

second equation in (5.6) to resolve p. Lunaug is essentially a symmetric and negative

definite discretization of our non-augmented system (3.3) and can be smoothed

via Gauss-Seidel iteration. The boundary and interior regions are smoothed in

separate sweeps; during the sweep of the boundary smoother, all interior variables

not being smoothed are effectively treated as Dirichlet values. The boundary

smoother is confined in a narrow region between boundary conditions (variables

of this narrow band are depicted in red in Figure 5.3, right). This narrow support

of the boundary smoother has a strong stabilizing effect, and compensates for any

difficulties encountered with near-incompressible materials. In practice, we found

that 2 Gauss-Seidel boundary sweeps for every sweep of the distributive interior

smoother are sufficient for Poisson’s ratio up to ν = .45, while 3-4 Gauss-Seidel

sweeps suffice for values as high as ν = .495. Finally, we note that Gauss-Seidel

is not the only option for smoothing the discrete system derived in this section;

in fact it is even possible to use a distributive smoother as in Algorithm 2, taking

care to restrict the distribution stencil to active variables.

After completing the smoothing process, we need to update the values of the

pressure and traction boundary variables that were previously annihilated. Since

the lower right block of equation (5.6) is diagonal, all pressure equations can

be satisfied exactly via a simple Gauss-Seidel sweep. Similarly, the boundary

traction variables can be updated using the traction conditions Pij = ti in a

54

simple back-substitution step, first updating variables on faces between interior

and exterior cells, and then variables located at half-cell distance away from the

interior region. Notably, at the end of the process all boundary conditions are

satisfied exactly (i.e. they will have zero residuals), which simplifies our inter-grid

transfers discussed next.

5.4 Restriction and prolongation on staggered grid

We designed the Restriction (R) and Prolongation (P) operators employed by

algorithm 1 aiming to keep implementation as inexpensive as possible, while

conforming to the textbook accuracy requirements for full multigrid efficiency

(see Trottenberg et al. (2001)). We define the following 1D averaging operators

B1u[x] = 1
2
u[x−h

2
] + 1

2
u[x+h

2
]

B2u[x] = 1
4
u[x−h] + 1

2
u[x] + 1

4
u[x+h]

B3u[x] = 1
8
u[x−3h

2
] + 3

8
u[x+h

2
] + 3

8
u[x−h

2
] + 1

8
u[x+3h

2
].

The restriction and prolongation operators will be defined as tensor product sten-

cils of the preceding 1D operators as

R1 = B2 ⊗ B1 ⊗ B1 PT1 = 8 B2 ⊗ B3 ⊗ B3 (5.7)

R2 = B1 ⊗ B2 ⊗ B1 PT2 = 8 B3 ⊗ B2 ⊗ B3 (5.8)

R3 = B1 ⊗ B1 ⊗ B2 PT3 = 8 B3 ⊗ B3 ⊗ B2 (5.9)

Rp = B1 ⊗ B1 ⊗ B1 PTp = 8 B1 ⊗ B1 ⊗ B1, (5.10)

where Ri,Pi are the restriction and prolongation operators used for variable ui,

respectively, and Rp,Pp are the operators used for the pressure variables. Our

55

restriction and prolongation are not the transpose of one another (as commonly

done in other methods) but this practice is not unusual or problematic, see e.g.

Brandt (1977a). Our domain description for the finest grid was based on a

partitioning of the cells into interior, exterior and Dirichlet. The coarse grid is

derived from the natural 8-to-1 coarsening of the Cartesian background lattice.

Furthermore, a coarse cell is designated a Dirichlet cell if any of its eight fine sub-

cells is Dirichlet. If any of the fine sub-cells are interior and none is Dirichlet, the

coarse cell will be considered interior. Otherwise, the coarse cell is exterior. Thus,

the coarse active domain is geometrically a superset of the fine, while its Dirichlet

parts are extended (see Figure 5.7). Despite this geometrical discrepancy, which

is no larger than the grid cell size, we were still able to obtain a highly efficient

multigrid scheme as described next.

Figure 5.7: Grid coarsening.

In general, if a smoother leaves a residual on the boundary conditions, this

residual has to be restricted to a coarse grid boundary equation. In our treat-

ment of boundary conditions, we effectively forced all boundary conditions to be

satisfied exactly after every application of the smoother, thus all coarse bound-

ary conditions will be homogeneous ; for Dirichlet equations they will have the

form u2h
i = 0 (i.e. the coarse grid incurs no correction), while traction equations

will be of the form P̂ 2h
ij = 0, where P̂ = µ(F + FT) − µpI is the homogeneous

56

part of P. We also note that, due to the possible geometrical change of the

Dirichlet region, certain coarse Dirichlet equations will be centered on locations

that were interior in the fine grid (shown as red dots in Figure 5.8, right). The

fine grid interior equations (red dots in Figure 5.8, left) that would restrict their

residuals onto these (now Dirichlet) coarse locations, will not have their residuals

well represented on the coarse grid. We compensate for this inaccuracy by per-

forming an extra 2-3 sweeps of our boundary Gauss-Seidel smoother over these

equations, driving their residuals very close to zero, just prior to restriction. A

similar inaccuracy may affect the prolongation of the correction: as we previously

mentioned, the active region may have extended more in the coarse grid, com-

pared to the fine. This discrepancy may introduce inaccuracies in the coarse grid

solution near such relocated boundaries. Again, we compensate by performing

an additional 2-3 Gauss-Seidel smoother sweeps on the locations of the fine grid

that prolongate corrections from such relocated boundary variables (depicted as

green circles in Figure 5.8, left). This simple treatment proved quite effective to

guarantee a good coarse correction despite the small geometrical discrepancies of

the two domains.

We apply this method on the same cubic domain example in section 3.3, and

achieved a consistent convergence rate of smaller than 0.28 for Poisson’s ratio

from 0.2 to 0.49 (see Figure 5.9).

57

Figure 5.8: Boundary discrepancies in the fine (left) and coarse (right) domains.
On the right, red dots indicate locations containing Dirichlet conditions on the
coarse grid, but interior equations on the fine grid. On the left, red dots indicate
interior equations that would restrict residuals on one or more locations occu-
pied by Dirichlet conditions on the coarse grid; those restricted residuals will be
replaced with zero. Green circles indicate fine interior variables that prolongate
their correction from boundary coarse variables.

Figure 5.9: Comparison of multigrid convergence with different Poisson’s ratios
using distributive relaxation. We apply the same boundary condition and start
with the same random initial guess and plot the deformed object after 5 multigrid
V-(1,1) cycles. Left: Poisson’s ratio is 0.2; right: Poisson’s ratio is 0.49.

58

CHAPTER 6

Extended models and results

The linear elasticity model is appropriate for small deformation problems, how-

ever, it is not rotation invariant. Under large deformation, obvious artifacts are

observed. In this chapter, a co-rotational elasticity model which is frequently used

in graphics applications is considered. This is a non-linear model. We linearize

the problem, and define a similar augmentation and distributive relaxation. An

efficient multigrid solver is developed for the linearized problem, and extended to

dynamic problem as well.

6.1 Co-rotational linear elasticity

In the large deformation regime, and in the presence of large rotational deforma-

tions, the linear elasticity model develops artifacts such as volumetric distortions

in parts of the domain with large rotations. We provide an extension to the co-

rotational linear elasticity model, which has been used in slightly different forms

by a number of authors in computer graphics Müller et al. (2002); Hauth and

Strasser (2004); Müller and Gross (2004), and has also used with finite elements

and multigrid by Georgii and Westermann (2006, 2008). The co-rotational for-

mulation extracts the rotational component of the local deformation at a specific

part of the domain by computing the polar decomposition of the deformation

gradient tensor F = RS into the rotation R and the symmetric tensor S. The

59

stress is then computed as P = RPL(S), where PL denotes the stress of a lin-

ear material, as described in equation (3.1). Thus, the co-rotational formulation

computes stresses by applying the constitutive equation of linear elasticity in a

frame of reference that is rotated with the material deformation as follows:

P = RPL(S) = R
[
2µ(RTF−I) + λtr(RTF−I)I

]
= 2µ(F−R) + λtr(RTF−I)R

= 2µF + λtr(RTF)R− (2µ+ dλ)R

= 2µF− µpR− (2µ+ dλ)R, (6.1)

where the last form of the stress in equation (6.1) results from introducing an

auxiliary pressure variable p=−(λ/µ)tr(RTF) similar to the augmentation used

for linear elasticity in section 4.1. As before, the augmented position equations

are defined as ∂jPij=fi. Combining with the pressure equations and rearranging

we get  2µ∆I −µ(∇TRT)T

µ(R∇)T µ2

λ

φ
p

=

f−(2µ+dλ)∇ ·R

0

 . (6.2)

The notation for the off-diagonal blocks of the matrix in equation (6.2) was

used to indicate whether the operators ∇,∇T operate or not on the rotation

matrix R. In index form, these operators equal [µ(∇TRT)T]i = µ∂jRij, and

[µ(R∇)T]i = µRij∂j respectively.

6.1.1 Nonlinear iteration

In contrast with the equations of linear elasticity, equation (6.2) is a nonlinear

PDE, since both the operator matrix and the right hand side vector contain

the rotation matrix R which depends on the current deformation φ itself. We

60

highlight this fact by writing this system as L̂[φ̂]φ̂=f̂ [φ̂]. Nevertheless, for the

purposes of a multigrid scheme it is possible to treat system (6.2) as a linear

equation, by freezing the values of L̂ and f̂ for the duration of a V-cycle, and

updating them after a better solution to this frozen coefficient system has been

obtained. In an iterative fashion, we obtain the (k+1)-th approximation to the

solution of the linear system by executing one V-cycle on the constant coefficient

system L̂[φ̂
k
]φ̂

k+1
=f̂ [φ̂

k
] (or quasi-linear form) of equation (6.2) in this context.

6.1.2 Distributive relaxation

We generalize the distributive smoothing approach to the quasi-linear equation

(6.2). In this case, the distribution matrix is

M̂ =

 I −(∇TRT)T

0 −2∆

 . (6.3)

Then, the distributed operator L̂M̂ becomes

L̂M̂ =

 2µ∆I 2µ
[
(∇TRT)T∆−∆(∇TRT)T

]
µ(R∇)T −µ(1 + 2µ

λ
)∆

 . (6.4)

The top right block of L̂M̂ would be equal to zero if R is a spatially constant

rotation, but not in the general case. However, near a solution where the rotations

are expected to be smooth, this value is effectively zero, and L̂M̂ becomes a

triangular matrix, similar to the linear case. Effectively, even if the distributed

system is near-triangular, a Gauss-Seidel algorithm will still be an acceptable

smoother. In practice we found distributive Gauss-Seidel to be a good smoother

for the quasi-linear problem at all times, although the convergence rates were

61

Figure 6.1: Simulation of a human character driven by a kinematic skeleton. The
high-resolution rendering surface is seen in the left, while the simulation lattice
is depicted on the right (resolution: 142K nodes, grid spacing 9mm).

slightly lower away from the solution.

6.1.3 Interior discretization

Discretization complications are introduced due to the fact that pressures are

now multiplied by the non-diagonal matrix R in the augmented stress definition

(6.1).

First of all, the deformation gradient matrix F is estimated at each cell center.

Notice that the diagonal components of F are naturally defined with a centered

difference scheme, while the off diagonal components are naturally defined on

grid cell corners in 2D and edge centers in 3D. Thus, we take an average of the 4

off diagonal components to approximate F at cell centers. A polar decomposition

is thus applied on this matrix to generate the frozen coefficients R at each cell

62

center.

Thus, the diagonal stresses Pii can be discretized using a centered difference

scheme on φ, and the coefficient for p uses the current approximation of R (see

Figure 6.2 for 2D case). However, off diagonal stresses Pij (i 6= j) require an edge

centered pressure value (or corner centered value in 2D case). We compute the

needed pressure value by averaging the four neighboring pressures.

Finally, pressure equations are written as µRijφi,j + (µ2/λ)p = 0, indicating

that all gradient values φi,j are needed at a cell center. The stencil for diagonal

gradients are again naturally defined at cell centers. The stencil for off-diagonal

gradients will be averaged from the four neighboring edge centers, where they are

naturally defined (see Figure 6.3 for 2D case).

Figure 6.2: Discrete stencils for linearized augmented stress components. From
left to right are the stencils for P11, P22, P12 and P21.

Figure 6.3: Discrete stencils for each RijFij from pressure equations. Left: diag-
onal components RiiFii; right: off diagonal components RijFij(i 6= j).

63

6.1.4 Boundary discretization

In co-rotational elasticity case, we discretize our domain in exactly the same way

as the linear elasticity case by rasterizing the domain into voxellized cells.

We first update F at all active cell centers. When the cell is near domain

boundary, we compute the deformation gradient F by take an average among

available F from a wider range of neighboring cells. Thus, R can be computed

from F at each active cell center.

For the purposes of boundary smoothing, we again derive a symmetric def-

inite discretization where Gauss-Seidel can be used. Following section 9.1, in

the discrete form of stress divergence equation L̂iφ̂=∂jPij introduced in (5.4),

any exterior stress components are eliminated from the divergence stencil using

an appropriate traction equation. If the stress component to be eliminated is a

diagonal component, then the same boundary variable is eliminated as in linear

elasticity case. If the stress component to be eliminated is an off diagonal com-

ponent Pij, that implies at least one among the 4 neighboring cells to the edge

where Pij locates is empty. Fortunately, in this case, Pji is either also going to be

eliminated, when the edge is an actual edge of the active domain, or not involved

in any interior equations, when the edge is not an actual edge of the active do-

main, but rather the domain boundary is flat when passing the edge. Therefore,

the coefficient Rij is never going to be required in an empty cell. Also, R in

Dirichlet region can be precomputed according to the fixed deformation defined

in Dirichlet cells.

Near the boundary, the pressure equations may also require external vari-

ables. We designed a discretization that leads to a symmetric discretization of

L̂. When computing RijFij, if this stencil locates at an edge center, where the

collocated Pij is to be eliminated, then we will freeze the value RijFij to the cur-

64

rent approximation that is already computed when updating R. Thus, this value

will be moved to the right hand side and will not involve in the linear system.

We verified that the derived system is symmetric with the form of (5.5). Thus,

the same technique of unaugmentation is applied. Finally, we relax (5.6) in the

boundary band.

6.1.5 Distribution discretization

By comparing the distribution matrix (6.3) and the augmented system (6.2), we

discretize the distribution matrix by

M̂ =

 I 1
µ
G

0 −2Mp

 , (6.5)

where Mp is the 5 point stencil of Laplacian operator. As we discussed, this

discretization derives to an approximate lower triangular matrix L̂M̂. And the

efficiency of the derived distributive relaxation is verified by numerical tests.

6.1.6 Coarsening

The coarse grid correction satisfy equation L̂δφ̂ = f̂ − L̂φ̂
current

. This equation

may be discretized in the same way on a coarser grid. However, we need the

estimated coefficients R defined on coarse grid cell centers. We simple average

the rotation vectors from the active cells among the 4 subcells by doing spherical

linear interpolation between each pair of rotations. We use the same restriction

and prolongation as in linear case, and achieve similar convergence rates, which

will be discussed in section 6.3.

65

6.2 Dynamic system

The static formulation of elasticity disregards any dynamic effects. Our method,

however, can easily accommodate the simulation of dynamic deformation; the

effect of inertia actually improves the conditioning of the discrete equations.

The dynamic system is represented with the following time-dependent equa-

tion

∂

∂t

 φ

v

 =

 v

1
ρ
(f internal(φ,v) + f external)

 ,

where f internal(φ,v) is the internal forces density. Here, we consider a damped

elasticity force. And f external the external force density like gravity.

6.2.1 Time integral

Implicit time integral presents high stability. We use a Backward Euler method,

which allows simulation with large time steps.

1

δt

 φk+1 − φk

vk+1 − vk

 =

 vk+1

1
ρ
(f internal(φ

k+1,vk+1) + fk+1
external)

 ,

i.e.  φk+1 = φk + δtvk+1

vk+1 = vk + δt
ρ

(f internal(φ
k+1,vk+1) + f external)

.

The internal force is composed of the elastic force and the damping force.

Previously, we developed augmented discretizations for the linear elasticity and

co-rotational elasticity forces. fhelasticity(u
h) = Lhuh − fh. In linear case, Lh is a

66

constant linear operator, and in co-rotational case, at each nonlinear iteration, Lh

is also a frozen coefficient linear operator. Since it is hard to control dynamic ef-

fects with purely numerical damping, we also considered explicit Rayleigh damp-

ing. In Rayleigh damping, the damping force depends linearly on the velocity

and
∂f

∂v
= γ

∂f

∂φ
,

i.e. f damping(v) = γLv.

By applying the backward Euler method, we have,

 φk+1 = φk + δtvk+1

vk+1 = vk + δt
ρ

(Lφk+1 + γLvk+1 − f)
.

By multiplying (I − δtγ
ρ

L) on both sides of position equation, and rearranging

vk+1 related terms, we have

⇒

 (I− δtγ
ρ

L)φk+1 = (I− δtγ
ρ

L)φk + (I− δtγ
ρ

L)δtvk+1

(I− δtγ
ρ

L)vk+1 = vk + δt
ρ

(Lφk+1 − f)
.

By eliminating vk+1 from the position equation, we have

(I− δtγ

ρ
L)φk+1 = (I− δtγ

ρ
L)φk + δtvk +

δt2

ρ
(Lφk+1 − f)

⇒ (I− δt

ρ
(γ + δt)L)φk+1 = (I− δtγ

ρ
L)φk + δtvk − δt2

ρ
f

⇒ (L− ρ

δt(γ + δt)
I)φk+1 = − ρ

δt(γ + δt)
(φk + δtvk − δtγ

ρ
Lφk − δt2

ρ
f).

In the special case of zero damping, the equation simplifies to

(L− ρ

δt2
)φk+1 = − ρ

δt2
(φk + δtvk) + f .

67

In either case, the equation for φk+1 is (L− sI)φk+1 = f(φk), where s = ρ
γδt+δt2

is a constant scalar. Therefore, the system matrix will be modified by adding

a scalar matrix. A modified augmentation is proposed to resolve both dynamic

problem and quasi-static probem.

6.2.2 Augmentation and distribution

In previous quasi-static linear elasticity and co-rotational elasticity cases, the

original problem Lu = f is augmented to the following problem

 Lφ G

GT Dp

 φ

p

 =

 f

0

 ,

and a change of variable is introduced

 φ

p

 =

 I 1
µ
G

0 Mp

 ψ

q


to obtain an exact or approximated triangular system:

 Lφ G

GT Dp

 I 1
µ
G

0 Mp

 ψ

q

 =

 Lφ
1
µ
LφG + GMp

GT 1
µ
GTG + DpMp

 ψ

q

 =

 f

0

 .

In linear elasticity case, the top right block 1
µ
LφG+GMp = 0, and in co-rotational

elasticity case, 1
µ
LφG + GMp ≈ 0.

For the dynamic system, if we introduce the same pressure, then the aug-

68

mented system

 Lφ − sI G

GT Dp

 φ

p

 =

 f

0


is again symmetric indefinite and can be triangularized with a modified change

of variable  φ

p

 =

 I 1
µ
G

0 Mp + s
µ
I

 ψ

q

 .

In fact, the derived system

 Lφ − sI G

GT Dp

 I 1
µ
G

0 Mp + s
µ
I

 ψ

q


=

 Lφ − sI 1
µ
LφG + GMp

GT 1
µ
GTG + DpMp + s

µ
Dp

 ψ

q

 =

 f

0

 .

has the same upper triangular block which is exactly or approximately zero. No-

tice that the derived system for q is an approximation to −µ(1 + 2µ
)
λ∆ + κI

where κ is a constant scalar and κ > 0. Therefore, a Gauss-Seidel relaxation is

even more efficient on relaxing that system. Therefore, by modifying the distri-

bution matrix for pressure variable with an additional constant on the diagonal

element, we derive a valid distributive relaxation, which should have the same

or better smoothing effect as the quasi-static case. At the limit of δt→∞, this

formulation naturally merges to the quasi-static case.

69

6.2.3 Coarsening of the new system

Since the additional term is a scaled identity, and RP ≈ I, the same scaling

identity is a good approximation for its corresponding coarse term. Also, scalar

matrix is a localized equation; it can be solved by substitution. So the smaller the

time step is, the larger D is, hence the faster the convergence we could expect.

6.3 Evaluation of solver performance

We first compare the performance of our method with a Conjugate Gradients

(CG) solver, as illustrated in Figure 6.5. The left figure plots the reduction of

the residual for our synthetic test model: a rectangular elastic box under mixed

boundary conditions (also depicted in figure 6.14, on the right). We use CG

to solve the symmetric, definite system resulting from the discretization of the

(non-augmented) PDE (3.3) using finite differences on staggered grids of sizes

323 and 643, for two different values of Poisson’s ratio ν. We observe that, after

some initial progress, the convergence of CG slows down significantly. This dete-

rioration is more pronounced on cases with more degrees of freedom, and higher

incompressibility (which are the focus points of our method). Replacing the finite

difference discretization with trilinear, hexahedral finite elements (middle plot)

still exhibits the same stagnation, particularly for the more incompressible case.

Our method (right plot), exhibits a practically constant convergence rate all the

way until the error is at the levels of the floating point round-off threshold.

We subsequently compare our method with other multigrid techniques (i.e.

using different relaxation or discretization approaches), in Figure 6.4. As a gen-

eral comment, all methods evaluated here were able to achieve convergence rates

that are largely independent of the model resolution (in contrast with CG). As a

70

Figure 6.4: Comparison with alternative multigrid techniques. Convergence rate
is defined as the asymptotic residual reduction factor: |rk+1|/|rk|

.

point of reference we include the convergence rate of 0.19 of a periodic 3D Pois-

son problem with lexicographical Gauss-Seidel smoothing. We first experimented

with a staggered finite difference discretization of equation (3.3) which did not

however employ the augmentation of section 4.1. We observe that the conver-

gence rate is deteriorating with higher incompressibility, to reach a value of 0.9

for a material with ν = 0.49. A similar behavior is observed with a tetrahedral

finite element discretization, used in place of finite differences. These results are

compatible with the findings of Griebel et al. (2003) who observe similar problems

with near-incompressibility even for AMG solvers. Our method exhibits conver-

gence rates of 0.26-0.28 even for highly incompressible materials. Apart from the

convergence experiments performed on our synthetic elastic box example, figures

6.4 and 6.5 include experiments performed on irregular geometries such as the

armadillo model of figure 6.18 and the human character of figure 6.1. We further

discuss the convergence rates and run times of these irregular models in section

6.3.2.

71

Figure 6.5: Comparison of a CG solver on finite difference (left) or finite element
(middle) discretizations, with our proposed method (right)

6.3.1 Discretization accuracy analysis

Our method simulates objects of irregular shapes by embedding them in regular

Cartesian lattices. Embedded simulation has been a popular method for physics-

based animation, using either Cartesian lattices Müller et al. (2005b); Rivers and

James (2007) for simplicity and efficiency, or tetrahedral embedding meshes for

applications such as biomechanics Lee et al. (2009) and fracture modeling Molino

et al. (2004). Although embedded models are computationally efficient and easy

to generate, conforming meshes generally approximate the surface geometry of a

model better than embedded models of comparable resolution. Several authors

have proposed methods to compensate for this effect, for example by resolving

collision and surface dynamics at a sub-element level Sifakis et al. (2007b) or

72

using an alternative interpolation method to generate the embedded surface for

rendering Kaufmann et al. (2009b). In this section we evaluate the accuracy of

our embedded method against a conforming discretization, and also compare our

finite-difference method to an embedded discretization using finite elements.

For our accuracy analysis, we construct a 2D elasticity problem with an ana-

lytically known solution. Our testing model is the disc

D =
{

(x, y) : (x− 0.5)2 + (y − 0.5)2 ≤ 0.252
}

and is deformed according to the deformation function φ(X)=(φ1, φ2) defined as

(φ1(x, y), φ2(x, y)) =
2x√
π

(
cos
(πy

2

)
, sin

(πy
2

))
. (6.6)

We assume a linear elastic material. We substitute this analytic form of the

deformation function φ into the linear elasticity equations (3.3) to obtain the

analytic expression of the elastic forces f . We treat two quadrants of the outline

of D (the thick shaded curves in figure 6.6) as Dirichlet boundary conditions,

while the rest of the boundary (the two unshaded quadrants of the outline) are

treated as traction boundaries. We analytically compute the traction value along

Figure 6.6: Illustration of the analytic deformation in our accuracy study. The
thick shaded boundary sections indicate Dirichlet boundary conditions. The un-
deformed object is depicted on the left, the deformed state on the right.

73

the circular boundary of D as t = PN where the stress P is computed from

equation (3.1) and N is the outward pointing normal. Despite its geometric sim-

plicity, this test problem highlights certain challenges related to embedding and

discretization, especially for large values of Poisson’s ratio, since the deformation

prescribed in equation (6.6) incurs substantial change of volume in different parts

of the domain (as seen in figure 6.6) giving rise to large elastic forces. We compare

our embedded finite difference discretization with two finite element discretiza-

tions, one defined on a conforming tessellation of D, and one using an embedding

triangular mesh, as illustrated in figure 6.7.

Since our test problem involves non-zero traction conditions on the embed-

ded boundary (in contrast with our other examples in this thesis which use free

boundaries, with zero traction) we need to treat this traction condition properly

for the embedded finite element or finite difference grids. For these embedded

discretizations, we start by approximating the circular boundary of D (the green

curve in figure 6.7) with a polygonal curve. We subsequently compute a force for

each segment of this polygonal curve that falls within the part of the boundary

where traction conditions are given. This force is computed from the traction

value as f = l·t where l is the length of the segment. We distribute half of this

Figure 6.7: The three discretization methods in our comparative study. Left:
A conforming tessellation, discretized with the finite element method. Middle:
An embedded finite element discretization on a triangular mesh. Right: Our
staggered finite difference method based on a Cartesian background lattice.

74

force to each endpoint of the segment; the traction condition is thus converted

into individual forces on the vertices of the embedded boundary. Finally, we

remap these forces from the polygonal boundary curve back to the degrees of

freedom of the embedding simulation mesh. For a triangular embedding, this

is accomplished by simply distributing the force from a vertex of the embedded

boundary to the three vertices of its containing simulation triangle, weighted by

the barycentric weights of the boundary location in the triangle (see figure 6.8,

left). In our staggered, Cartesian embedding the x and y coordinates are embed-

ded in two non-collocated lattices; thus, we distribute the x component of the

force (denoted as f1 in 6.8, right) to φ1 grid locations, weighted by the bilinear

embedding weights of the boundary location in this grid, while the y component

of the force (denoted as f2) will be similarly distributed to φ2 grid locations. Af-

ter this remapping, traction forces that have been mapped to locations of interior

variables are scaled by 1/h2 (to remove the area weighting and convert them to

force densities, as in the PDE form of elasticity) and then added to the right

hand side of the discrete equation Lφ = f , while forces mapped to boundary

variable locations are converted back into traction conditions on the faces of the

embedding grid as ti = fi(N · N ′)/h, where N is the normal to the embedded

boundary and N ′ is the normal to boundary face of the embedding grid. Notably,

for free (zero-traction) boundaries, this treatment simply reduces to the method

described in section 9.1.

Figure 6.10 illustrates the accuracy of the different discretization methods

in our test, for different resolutions and degrees of incompressibility. Figure 6.9

plots the maximum error in the computed discrete solution under different levels

of refinement. Since a discretization with order of accuracy equal to κ bounds

the error as |e| = O(hκ) and h ≈ N−1/2 where N is the number of vertices in

a uniform discretization, the asymptotic order of accuracy is approximated as

75

Figure 6.8: Left: Boundary traction forces are barycentrically distributed to the
vertices of a triangular embedding mesh. Right: In our staggered discretization,
each component of the traction force is bilinearly distributed to the grid locations
of the respective (staggered) variable.

κ ≈ −2 log |e|/ logN =−2m, where m is the slope of the doubly-logarithmic plot

of figure 6.9. We emphasize that the order of accuracy assessed in this section

is completely independent of the convergence rate of the solver used for each

discretization (see section 6.3). The discrete problems formulated in this section

were solved to full convergence with an appropriate solver (multigrid or conjugate

gradients). Our findings are summarized as follows:

• Although the different discretizations under consideration start with differ-

ent levels of error for a base resolution, this error is asymptotically reduced

at comparable rates under refinement. We estimated an asymptotic order

of accuracy between 1.15−1.25 from the tests plotted in figure 6.9. This

approximate first-order accuracy is to be expected both from our finite dif-

ference scheme (due to the first-order treatment of the boundary) and the

finite element discretizations (due to the use of first-order linear triangle

elements, see e.g. Hughes (1987)).

• The conforming discretizations produced lower errors than both the finite

difference, and finite element based embedded discretizations. For materi-

76

als with low Poisson’s ratio, our proposed embedded method would require

approximately 10−20 times more degrees of freedom to match the accu-

racy of the conforming discretization. For near-incompressible materials

this discrepancy is smaller, with our embedded method requiring approxi-

mately one extra grid refinement to reach the accuracy of the conforming

method. Of course, a comparison of the degrees of freedom necessary for

a given measure of accuracy does not necessarily reflect the computational

cost of each approach. Our method typically leads to significantly reduced

run times compared to conforming tetrahedral FEM models with the same

number of degrees of freedom, due to the regularity of the discretization,

convergence efficiency of the multigrid solver and improved numerical con-

ditioning from our treatment of near-incompressibility. These performance

benefits are less evident for low-resolution models (with up to a few thou-

sand of degrees of freedom) where a conforming model, if available, may

offer better accuracy per computation cost. For large models such as the

ones demonstrated in our examples in section 6.3.2 our method can signif-

icantly outperform conforming tetrahedral meshes for the same degree of

accuracy, even if our method requires a higher number of degrees of free-

dom to achieve the same accuracy. Finally, generating a good conforming

tetrahedral model for detailed geometries such as those in figures 6.19 and

6.21 is a nontrivial meshing task which is not necessary in our embedded

scheme.

• We also observe a tendency for the error on the embedded discretizations to

be more oscillatory near the boundary, compared to the conforming case.

These embedding artifacts are typically less pronounced with our method

than with an embedded finite element approach on near-incompressible

77

materials (see figure 6.10), they are attenuated under refinement and can

be significantly reduced in practice by slightly padding the embedding mesh

outwards, typically by as little as one layer of cells (see figure 6.11).

• Our method matches or exceeds the accuracy of the embedded finite element

discretization in our tests. The two embedded methods yield comparable

accuracy for materials with low Poisson’s ratio, especially in the asymp-

totic limit. For modest to high degrees of incompressibility, our method is

noticeably more accurate and less prone to embedding artifacts than the

embedded finite element discretization at the same resolution. Finally, our

method performs similarly for materials of low and high incompressibility,

although the embedded boundary surface tends to be slightly smoother for

compressible materials.

Two important caveats should also be mentioned: The circular elastic body

in our test had a smooth boundary surface which was well approximated by

conforming tesselations even at low resolutions. Highly detailed models with in-

tricate features (see e.g., figures 6.19 and 6.21) would incur significantly higher

approximation errors for a conforming tesselation that does not descend to the

resolution level necessary to resolve all the geometric detail. Secondly, in our

embedded examples we used the analytic expression of the deformation field in

equation (6.6) to specify Dirichlet boundary conditions directly on the vertices

of the embedding meshes. This can be an acceptable practice for applications

such as skeleton-driven characters, where kinematic constraints have a volumetric

extent and can therefore be sampled at the locations of the simulation degrees

of freedom. However, when Dirichlet conditions need to be specified at sub-grid

locations and extrapolating these constraints to simulation vertices is not con-

venient, conforming meshes that resolve the constraint surface would be at an

78

1E-03

1E-02

1E-01

So
lu
ti
on

 e
rr

or

1E-04

10 100 1000 10000 100000
Number of vertices

Conforming FEM (ν=0.49) Embedded FEM (ν=0.49) Embedded FD (ν=0.49)

Conforming FEM (ν=0.2) Embedded FEM (ν=0.2) Embedded FD (ν=0.2)

Figure 6.9: Plots of the maximum solution error for various discretizations. Solid
lines indicate near-incompressible material parameters while dashed lines corre-
spond to low Poisson’s ratio. In this doubly-logarithmic plot, a slope of −0.5
indicates a first-order accurate method. The asymptotic order of accuracy ob-
served from all six experiments ranges between 1.15−1.25.

advantage. In future work we will investigate adding embedded soft-constraints

in our framework (see e.g. Sifakis et al. (2007b)) to provide this additional flexi-

bility. Finally, in our tests we considered discretizations of approximately uniform

density (even when the mesh topology was irregular). It is also possible to use

an adaptive discretization, either in the form of an adaptive conforming tessel-

lation or an adaptive finite difference scheme (see e.g. Losasso et al. (2004)).

In fact, there are well established multigrid methods that operate in conjunc-

tion with adaptive discretizations Brandt (1977a), and we believe the elasticity

solver proposed in this thesis can be similarly applied to adaptive (e.g. octree)

discretizations. We defer this extension to future work, along with a principed

comparative evaluation of different adaptive discretization schemes for elasticity,

especially in light of the nontrivial implications adaptivity may have on accuracy,

79

ν = 0.49ν = 0.2

ν = 0.45ν = 0.2

ν = 0.49ν = 0.2

ν = 0.49ν = 0.2 ν = 0.49ν = 0.2

ν = 0.49

Figure 6.10: Convergence of different discretizations under refinement. The ana-
lytic solution is depicted in green, the discrete solution in red. The Poisson’s ratio
(ν) used for each experiment is given. Top row: A finite element discretization
on a conforming triangle mesh. Compressible (ν=0.2) and near-incompressible
(ν=0.49) cases are shown. Second and third row: Embedded finite element sim-
ulation on a triangle mesh. An additional case of moderate incompressibility
(ν=0.45) is illustrated. Bottom row: Our embedded finite difference method.
Note that both the embedded boundary and the background lattice are inde-
pendently interpolated from the staggered deformation variables (not pictured).
Also, the resolution in the rightmost column corresponds to approximately the
same number of degrees of freedom for all discretizations.

80

numerical conditioning and potential for parallelization.

6.3.2 Animation tests

In addition to our comparative benchmarks, we tested our method on models

with elaborate, irregular geometries. Figure 6.1 demonstrates the simulation of

flesh of a human character with key-framed skeleton motion. The model was

simulated at 2 resolutions yielding V-cycle times of 0.62sec for a 142K vertex

model (pictured in figure 6.1), and 3.48sec for a larger resolution with 1.15M

vertices (figure 6.11, right). The convergence rate for this example, as seen in

Figures 6.5(right) and 6.4, was slightly better than our synthetic box examples

at 0.24. We attribute this result to the extensive Dirichlet regions throughout

the body induced by the kinematic skeleton, which stabilize the model and allow

for highly efficient smoothing. In contrast, the armadillo model of figure 6.18

is very weakly constrained, with Dirichlet regions defined only over the hands

and feet (see also Griebel et al. (2003) for a discussion of sub-optimal smoothing

performance with dominating traction boundaries). In this model with exten-

sive zero-traction boundary conditions, our method exhibited convergence rates

between 0.21-0.35 for the first 7-8 V-cycles after a large perturbation; at that

point the residual had been reduced by four orders of magnitude and the model

had visually reached convergence after just the first few iterations. Subsequent

V-cycles would ultimately settle at an asymptotic rate of 0.62 which could be im-

proved by increasing the intensity of the boundary smoother, although this was

not pursued since the model was already well converged and the extra smooth-

ing cost would not be practically justified. With typical incremental motion of

the boundary conditions, 1-2 V-cycles per frame would be enough to produce a

visually converged animation.

81

Figure 6.11: Closeup of the elbow joint from figure 6.1. Left: Grid spacing
9mm (142K vertices). Embedding artifacts are visible on the surface. Middle:
Padding the embedding cage with one additional layer of cells visibly reduces the
artifacts. Right: Surface artifacts are outright reduced using a higher resolution
embedding cage (4.5mm spacing, 1.15M vertices).

Figure 6.4 also reports the convergence rates for the armadillo model of figure

6.18 simulated using co-rotational linear elasticity. Since the coefficients of the

discrete system vary with the current configuration, the convergence rate is also

variable. Additionally, the residual of the quasi-linearized system will differ from

its actual non-linear counterpart; this discrepancy will also depend on whether

the quasi-linearization process is close to convergence. The rates reported are

typical of the animations shown, assuming 2 V-cycles per frame, and update of

the quasi-linearization every 5 V-cycles. The average run time was 5.1sec per

V-cycle, 10.2sec/frame (with 2 V-cycles). For comparison, we also simulated the

82

tetrahedral armadillo model of Teran et al. (2005b) using the quasistatic solver

described in their paper. This tetrahedral model contains 380K tets and 76K

vertices, thus contains approximately one quarter of the degrees of freedom of

our embedded model in figure 6.18. For a Poisson’s ratio of 0.4 each Newton-

Raphson iteration (which includes a CG solve) required approximately 8.7sec

while 5 Newton iterations per frame were required for acceptable convergence,

leading to an approximate cost of 43.5sec/frame.

We also demonstrate examples of fully dynamic simulation. In figure 6.20, a

43K vertex car model is simulated using the static elasticity equations, as well

as the dynamic scheme of section 6.2. As expected, the convergence rate for the

Backward Euler system was significantly faster than our static problem (due to

the addition of the identity term in the system matrix). Using a time step ∆t

equal to the frame time, our observed convergence rate was 0.08. Figure 6.21

illustrates the dynamic simulation of an elastic dragon figurine. The embedding

grid has 402K cells/voxels (see Figure 5.2) and simulation cost is 8.2sec/frame.

Figure 6.19 illustrates a high-velocity impact of a rigid body on a face model. The

embedding grid contains 915K cells/voxels and simulation cost is 21sec/frame.

We note that no explicit collision handling was performed for this example; in-

stead, the degrees of freedom of the face that came in contact with the impacting

object were kinematically prescribed to move with it for the duration of the im-

pact. For these dynamic simulations just a single V-cycle per frame was sufficient,

due to the better conditioning of the Backward Euler equations. Additionally,

figure 6.16 provides a detailed breakdown of the execution cost of the individual

subroutines on some of our benchmarks.

Finally, we note that usual trilinear interpolation would infrequently give rise

to visual artifacts. Such artifacts would surface in simulations where the resolu-

83

Figure 6.12: Comparison of trilinear (left) and tricubic interpolation (right) on a
coarse simulation. The embedding grid includes only 11K cells.

tion of the embedding grid was substantially coarser than that of the embedded

surface (see, e.g. figure 6.12) and in conjunction with very extreme deformation.

Since trilinear interpolation does not produce continuous derivatives, surface nor-

mals would exhibit visible discontinuities in these cases. We found that using

tricubic interpolation as in Lekien and Marsden (2005) effectively eliminates this

problem, as seen in figure 6.12. Notably, their method is based on evaluating

higher-order derivatives at the nodes of the interpolation lattice, a process that

is trivially implemented with finite differences in our regular discretization.

6.3.3 Parallelization

Our discretization of elasticity and the multigrid solver proposed in this thesis

possess a number of characteristics that favor parallelism and scalable perfor-

mance. The use of regular grids promotes locality, allows operations such as

smoothing and transfer between grids to be implemented as streaming operations

and allows for easy domain partitioning based on the background grid. Indirect

84

memory access is avoided since we do not use an explicit mesh to represent the

simulated model. In addition, the regularity of the discrete equations enables a

compact storage of the matrix in our linear system. For example, in the case of

linear elasticity, all interior equations use the same stencil, thus there is no need

to store a separate equation per grid location; this allows for a small memory

footprint, even for large domains (see figure 6.17). In the case of co-rotational

linear elasticity, only the rotation field needs to be stored and updated on the

grid, while the system matrix can be built on-the-fly. We evaluated the potential

of our algorithm for parallel performance by multi-threading a specific test prob-

lem on shared memory platforms. In this section we describe our parallelization

methodology and present performance measurements.

Figure 6.13: Volumetric partitioning using colored blocks in a 2D domain.

Parallelization of the components of the multigrid solver is based on an ap-

propriate domain decomposition. Operations such as the interior (distributive)

smoother, the computation and restriction of residuals, and prolongation of the

85

coarse-grid correction are performed throughout the volumetric extent of the

simulated model. Consequently, these subroutines require a volumetric parti-

tioning of the simulation domain. This is simply accomplished by partitioning

the background cartesian grid into rectangular blocks, as depicted in the two-

dimensional illustration of figure 6.13, which can then be processed by separate

threads. However, operations such as the smoother incur data dependencies be-

tween neighboring blocks. In lieu of locking, we employ a coloring of the blocks

(4 colors are used in the two-dimensional example of figure 6.13, 8 colors would

be used in 3D) such that no two blocks of the same color are neighboring. All

blocks of the same color can be processed in parallel without data dependencies,

while different color groups are processed in sequence. The optimal block size

depends on the desired number of blocks per color group (to allow simultaneous

use of more processing threads) and the properties of the memory subsystem.

For example, rectangular blocks of 16 × 8 × 8 cells will align well with 512-bit

cache lines (16 × 4-byte floats) while providing a few tens of blocks per color for

problems in the order of 105 nodes.

Additionally, the rectangular shape of these blocks simplifies their traversal,

as this can simply be performed with a triple loop over fixed index ranges. Such

static loops yield improved cache and prefetching performance, and facilitate

vectorization (either explicitly or as a compiler optimization). Care needs to be

taken for blocks that include the domain boundaries, since some of their cells are

outside the active simulation domain. In order to retain the benefits of traversing

the block with a static triple loop, we perform the operation in question (i.e.

smoothing, residual computation, inter-grid transfer) for all cells of a block, but

only write the output of this operation conditionally on the value of a bitmap that

indicates active/inactive grid locations. Finally, there are certain subroutines of

our multigrid solver (e.g. boundary smoothing) that operate on a band around

86

the surface of the object. Since a volumetric partitioning could be inefficient and

unbalanced for these operations, we perform a separate partitioning of the surface

of the object. A chromatic grouping of these surface partitions is precomputed,

as seen in figure 6.14, to allow all blocks within a color group to be processed in

parallel without locking.

Figure 6.14: Surface partitioning of 3D models into colored surface patches.

Figure 6.15: Parallel scaling on a Larrabee simulator for a number of differ-
ent configurations. NcMt indicates a simulated platform with N cores and M
threads/core. Prolongation/restriction were serialized on grids 323 and smaller.
“Core 2” indicates the speedup of a single-threaded execution on an Intel Core 2
processor at the same clock frequency as the simulated platform.

We evaluated the potential of our algorithm for parallel performance using a

87

Figure 6.16: Single-core execution profiles. (*) The cost of the operator update
was amortized based on 1 update every 5 V-cycles

multi-threaded version of our solver on the following shared-memory platforms:

An 8-core SMP workstation with 3.0GHz Intel X5365 Xeon processors, a 16-core

SMP server with 2.93GHz Intel X7350 CPUs, and a cycle-accurate performance

simulator for the x86-based many-core Intel architecture codenamed Larrabee.

Our benchmarks were based on our synthetic elastic box example, under high

incompressibility (ν = .48), with mixed boundary conditions and at resolutions

ranging from 323 to 2563 vertices. Figure 6.17 illustrates the speedup of our

benchmarks, and associated working set sizes, on the 8- and 16-core SMPs. Fig-

ure 6.15 illustrates the speedup of individual subroutines on the Larrabee simu-

lator, for two different problem sizes and at configurations up to 32 cores, with 4

threads/core. We note that the utilization of more than 1 thread per core does not

increase the computational bandwidth (instructions are sequentially dispatched

from different threads), but serves to hide instruction and memory latencies. Al-

though we did not exploit the SIMD capacity of Larrabee in this experiment, the

88

memory utilization was at a low 0.5GB/Gcycles per core, demonstrating there is

a substantial memory bandwidth margin to allow vectorization to further improve

the performance of our solver.

Figure 6.17: Scaling performance of the linear elasticity multigrid solver on mul-
tiprocessor systems (Intel X5365: 3.0Ghz, 8-core, 32GB RAM, Intel X7350:
3.0Ghz, 16-core, 32GB RAM). Measurements correspond to complete V-cycle
times in seconds

Figure 6.18: Quasistatic simulation of armadillo model with co-rotational linear
elasticity. Resolution: 302K cells.

89

Figure 6.19: Dynamic simulation of an object impacting a face at high velocity.
Modeled as a thick layer of flesh (no skull) using co-rotational linear elasticity.
The embedding simulation cage contains 915K cells. The high-resolution embed-
ded surface contains 10.1M triangles.

Figure 6.20: Dynamic simulation of a soft elastic car model deforming under
kinematic constraints, using linear elasticity. Resolution: 43K cells.

Figure 6.21: Embedded animation of a deformable dragon shaking his head,
using co-rotational linear elasticity and simulation of dynamics. The embedded
surface contains 7.2M triangles, while the simulated embedding cage has 402K
cells (closeup pictured on the right).

90

CHAPTER 7

A second order mixed finite element method

In previous chapters, we developed a finite difference discretization and an ef-

ficient multigrid solver for linear elasticity problems with mixed boundary con-

ditions. In the interior region, the discretization has a second order truncation

error. Due to the inaccuracy in boundary discretizations, we achieve a first order

accuracy in the solution. A first order accuracy in solution leads to a zeroth order

accuracy in the stress. However, in cracking and fracture problems, an accurate

stress estimation is of substantial importance. Also, a higher-order discretization

leads to much more accurate solution without a significant increase in the prob-

lem set to resolve, hence leading to improvement of visual effects at a similar

computation cost to afford.

While we can develope higher-order finite difference boundary discretization,

it is tricky to achieve a symmetric discretization. Therefore, a lot of efficient

linear algebra methods for symmetric systems do not apply. On the other hand, a

finite element method naturally generates a symmetric system from a self-adjoint

differential operator and maintains the operator’s definiteness. Also, for coercive

operators, it is easy to show that higher-order accuracy may naturally be achieved

when discretized with higher-order finite elements. Moreover, the augmentation

techniques introduced for stabilizing the near incompressible system is naturally

derived using a mixed finite element method, which can be derived from a saddle

point problem that is equivalent to the minimization of linear elasticity energy.

91

Therefore, we consider the finite element approach.

The staggered grid has been favorable in fluid simulation due to the sparsity

and stability. The use of staggered grid in solids simulation is however not a

standard. Low order finite element discretization of linear elasticity is known

to be unstable for Stokes’ equation. We choose a finite element space defined

on a staggered grid, which is proved to be stable for Stokes’ equation. We dis-

cretize the geometric domain by embedding it in a regular staggered grid. A

Neumann boundary condition is naturally resolved. Also, a weak formulation for

the Dirichlet boundary condition is developed.

We follow the idea of distributive relaxation and develop an efficient multigrid

method. We solved a variety of problems, and verified the second order accuracy

of the discretization.

7.1 Variational formulation for linear elasticity

We consider the two-dimensional linear elasticity problem defined on an arbitrary

domain Ω.

−∇ · σ(u) = f in Ω (7.1)

u|Γd
= u0 on Γd (7.2)

(σ(u) · n)|Γn = g on Γn, (7.3)

where u = φ−I : Ω ⊂ R2 → R2 is the displacement, σ is the Cauchy stress tensor.

and f is the elasticity force or the negated external force. u0 is a prescribed

Dirichlet boundary condition, and g is the vector valued surface traction. In

92

linear elasticity, the stress σ(u) depends linearly on the Cauchy strain ε(u):

ε(u) =
∇u+ (∇u)T

2
(7.4)

σ(u) = 2µ ε(u) + λ tr ε(u) I (7.5)

= µ (∇u+ (∇u)T) + λ (∇ · u) I. (7.6)

Therefore, the displacement satisfies the same equation as the deformation func-

tion in linear elasticity case with a different right hand side, and the equations of

linear elastic equilibrium can be equivalently written as

− (µ∆I + (λ+ µ)∇∇T)u = f in Ω (7.7)

u|Γd
= u0 on Γd (7.8)

µ(un +∇(u · n)) + λ(∇ · u)n|Γn = g on Γn. (7.9)

A weak form for this PDE can be derived by taking an inner product with an

arbitrary vector valued function v ∈ V0 = (H1
0,Γd

(Ω))2

∫
Ω

(∇ · σ(u)) · v dx =

∫
Ω

f · v dx. (7.10)

By applying the divergence theorem to the left hand side, we have

∫
Ω

(∇ · σ(u)) · v dx =

∫
Ω

σ(u)ij,jvi dx =

∫
Ω

(σ(u)ijvi),j − σ(u)ijvi,j dx

=

∫
∂Ω

σ(u)ijvinj ds−
∫

Ω

σ(u)ijvi,j dx

=

∫
∂Ω

(σ(u) · n) · v ds−
∫

Ω

σ(u) : (∇v)T dx

=

∫
Γn

g · v ds−
∫

Ω

σ(u) : (∇v)T dx. (7.11)

93

By the definition and the symmetry of σ(u),

∫
Ω

σ(u) : (∇v)T dx

=

∫
Ω

µ(∇u+ (∇u)T) : (∇v)T + λ(∇ · u)(∇ · v) dx

=

∫
Ω

µ

2
(∇u+ (∇u)T) : (∇v + (∇v)T) + λ(∇ · u) (∇ · v) dx

=

∫
Ω

2µε(u) : ε(v) + λ(∇ · u) (∇ · v) dx.

Substituting into (7.10) and (7.11), we have the following variational form:

find u ∈ H1(Ω)×H1(Ω),u|Γd
= u0, such that∫

Ω

2µ

(
∇u+∇uT

2

)
:

(
∇v +∇vT

2

)
+ λ(∇ · u)(∇ · v) dx

= −
∫

Ω

f · v dx+

∫
Γn

g · v ds ∀v ∈ H1
0,Γd

(Ω)×H1
0,Γd

(Ω). (7.12)

This problem is equivalent to the following energy minimization problem de-

fined over the domain V = {u ∈ (H1(Ω))2 : u|Γd
= u0}.

inf

u ∈ (H1(Ω))2

u|Γd
= u0

{∫
Ω

(
µ

∣∣∣∣∇u+∇uT

2

∣∣∣∣2
F

+
λ

2
(∇ · u)2

)
dx

+

∫
Ω

f · u dx−
∫

Γn

g · u ds
}
. (7.13)

When supporting irregular domain geometries, a natural choice for the numer-

ical approximation of these equations is the finite element method (FEM) with

unstructured meshes that conform to the geometry of ∂Ω. However, meshing

complex geometries can prove difficult and time-consuming when the boundary

frequently changes shape. This task is even more difficult when using the more

94

elaborate element types seen in mixed FEM formulations. Mixed formulations

are typically necessary for stability with the nearly incompressible materials we

consider here. In many applications, such as shape optimization for elastic mate-

rials, it is necessary to change the geometry of the domain at each iteration of a

simulation. In such cases, frequent unstructured remeshing can be prohibitively

costly (especially in 3D). Also, many numerical methods, such as finite differences,

do not naturally apply to unstructured meshes. These concerns motivated the

development of “embedded” (or, “immersed”) methods that approximate solu-

tions to (7.7) on Cartesian grids or structured meshes that do not conform to the

boundary. Retention of higher-order accuracy in L∞-norm with such embedding

strategies is an ongoing area of research.

With these concerns in mind, we introduce a second order virtual node method

for approximating the equations of linear elastic equilibrium with irregular em-

bedded Neumann and Dirichlet boundaries on a uniform Cartesian grid. We

use a regular grid because it simplifies the implementation, permits straightfor-

ward Lagrange multiplier spaces for Dirichlet constraints and naturally allows for

higher-order accuracy in L∞. The method is most suited for problems like level

set-based shape optimization where the geometry of the domain is frequently

changing and constant remeshing is a clearly inferior alternative to embedding.

Also, we allow for nearly incompressible materials by introducing pressure as an

additional unknown in a mixed variational formulation. Our discretization of

this variational formulation is then based on a MAC-type staggering of x and y-

component displacements with pressures at cell centers. Our approach combines

piecewise bilinear interpolation of displacement components with the addition of

“virtual” nodes on cut cells that accurately account for the irregular shape of

the geometry boundary. The variational nature of the method naturally enables

symmetric numerical stencils at the boundary. We use Lagrange multipliers to

95

enforce embedded Dirichlet conditions weakly. In the general case, our choice

of Lagrange multiplier space admits an efficient means for smoothing boundary

equations in our geometric multigrid method for solving the discretized equa-

tions. Numerical experiments indicate second order accuracy in L∞ independent

of Poisson’s ratio, domain geometry or boundary condition type.

7.2 Mixed finite element formulation

In augmented linear elasticity, we introduce a pressure variable to achieve a sta-

ble numerical system for the near-incompressible linear elasticity problem, and

the weak formulation for augmented linear elasticity can be derived via many ap-

proaches. Duality formulations allow a natural extension to more general cases,

and we will follow Brezzi and Fortin (1991) in this approach.

We start with the following equality.

λ

2

∫
Ω

p2 dx = sup
q∈L2(Ω)

∫
Ω

pq dx− 1

2λ

∫
Ω

q2 dx, ∀p ∈ L2(Ω).

First, let us denote p = −∇ · v, and apply change of variable to replace q with

µp. Substituting into (7.13) for the term λ
2

∫
Ω

(∇ · v)2 dx, we achieve the follow-

ing saddle point problem, which has exactly the same solution u as the linear

elasticity energy minimization problem.

inf

u ∈ (H1(Ω))2

u|Γd
= u0

sup
p∈L2(Ω)

{
∫

Ω

(
µ

∣∣∣∣∇u+∇uT

2

∣∣∣∣2
F

− µp(∇ · u)− µ2

2λ
p2

)
dx

+

∫
Ω

f · u dx−
∫

Γn

g · u ds }. (7.14)

96

The equilibrium solution to this problem is also the solution of the following

weak problem:

Find (u, p) ∈ H1(Ω)×H1(Ω)× L2(Ω),u|Γd
= u0, such that∫

Ω

2µ

(
∇u+∇uT

2

)
:

(
∇v +∇vT

2

)
− µp(∇ · v) dx

= −
∫

Ω

f · v dx+

∫
Γn

g · v ds ∀v ∈ H1
0,Γd

(Ω)×H1
0,Γd

(Ω) (7.15)∫
Ω

(
−µq∇ · u− µ2

λ
pq

)
dx = 0 ∀q ∈ L2(Ω). (7.16)

Notice that this weak problem is consistent with the augmented linear elas-

ticity. By introducing p = −λ/µ∇ · u, and replace the regular stress with an

augmented stress σ(u) = µ (∇u + (∇u)T) − µ p I, which is equivalent to the

linear elasticity stress when p = −λ/µ∇ · u, we derive the augmented linear

elasticity problem.

µ(∆I +∇∇T)u− µ∇p = f in Ω (7.17)

µ∇ · u+
µ2

λ
p = 0 in Ω (7.18)

u|Γd
= u0 on Γd (7.19)

µ(un +∇(u · n))− µpn|Γn = g on Γn. (7.20)

By taking inner product of (7.17) with an arbitrary test function v ∈ H2
0,Γd

and integrating over domain Ω, we obtain the first equation in (7.14). By mul-

tiplying (7.18) with q ∈ L2(Ω) and integrating over Ω, we obtain the second

equation in (7.14).

97

7.2.1 Discretization

We discretize this variational formulation using a mixed finite element method

defined on a MAC-type staggered grid. Han et. al. demonstrated the stability

and optimal convergence of this formulation applied to the Stokes equations on

a square domain Han and Wu (1998). We generalize this approach to the case

of nearly incompressible linear elasticity in embedded domains. We approximate

the Sobolev space V with a finite element subspace V h, where each displace-

ment component of a function in V h is represented as a piecewise bilinear scalar

function defined on a staggered quadrilateral grid (see Figure 7.1). To be more

specific, consider the staggered grids:

We approximate the Sobolev space V with a finite element subspace V h, where

each component of V h is approximated by a piecewise bi-linear finite element

space defined on a staggered quadrilateral grid, as demonstrated in Figure 7.1.

To be more specific, consider the staggered grids

Gxh = {(ih, (j − 1/2)h) : (i, j) ∈ Ix ⊂ Z2}

Gyh = {((i− 1/2)h, jh) : (i, j) ∈ Iy ⊂ Z2}.

Here, h is the discrete spacing between grid points. Furthermore, we use the

following notation to denote quadralaterals defined by these grids:

T xij = {(x, y) : ih < x < (i+ 1)h), (j − 1/2)h < y < (j + 1/2)h)}

T yij = {(x, y) : (i− 1/2)h < x < (i+ 1/2)h), jh < y < (j + 1)h)}.

The sets Ix and Iy used in the definition of grids Gxh and Gyh are defined as the

collection of vertices incident on some quadralateral T xij or T yij respectively whose

98

intersection with the domain Ω is non-empty. In other words, Ix and Iy are the

sets of vertices in the staggered lattices that are at most a distance of h away

from Ω. Henceforth, we will use

T xh = {T xij : T xij ∩ Ω 6= ∅}

and

T yh = {T yij : T yij ∩ Ω 6= ∅}

to denote the collection of x and y grid quadralaterals that intersect (or embed)

the domain Ω. We construct two subspaces of H1(Ω) based on these quadrangu-

lations respectively:

V h
x = {vh ∈ C(0)(Ω) : vh|Tx

ij
∈ Q1(T xij) ∀T xij ∈ T xh s.t. T xij ∩ Ω 6= ∅}

V h
x = {vh ∈ C(0)(Ω) : vh|T y

ij
∈ Q1(T yij) ∀T yij ∈ T

y
h s.t. T yij ∩ Ω 6= ∅}.

For simplicity of notation in subsequent equations we will also use mappings

η1 : I1 = {1, 2, ..., Nx} → Ix and η2 : I2 = {1, 2, ..., Ny} → Iy to associate

each x and y grid vertex with a unique integer between 1 and Nx and 1 and Ny

respectively. With this convention, any approximated solution u ∈ V h
x × V h

y can

be expressed as

u(x) =


∑
k1∈I1

u1k1N1k1(x)∑
k2∈I2

u2k2N2k2(x)

 , (7.21)

where N1k1 and N2k2 are the commonly used piecewise bilinear interpolating

functions associated with nodes k1 and k2 respectively in T xh and T yh . Our discrete

99

equations for the approximate solution u can thus be seen to be over Nx + Ny

unknowns.

(a) T ph (b) T xh (c) T yh

Figure 7.1: Staggered grid finite element quadrangulation and embedded domain
boundary.

We additionally approximate the space for pressure Vp = L2(Ω) with a piece-

wise constant finite element space V h
p defined on a quadrangulation T ph over the

primary grid (or henceforth, the pressure grid) Gph:

Gph = {((i+
1

2
)h, (j +

1

2
)h) : (i, j) ∈ Ip ⊂ Z2}

T pij = {(x, y) : ih < x < (i+ 1)h, jh < y < (j + 1)h}

T ph = {T pij : T pij ∩ Ω 6= ∅}

V h
p = {ph ∈ L2(Ω) : ph|T p

ij
∈ P0(T pij) ∀T pij ∈ T

p
h s.t. T pij ∩ Ω 6= ∅}

The grid Gph is a cell-centered grid (as opposed to node-centered grids Gxh and

Gyh). That is, we assume that pressure variables live at the cell centers of this

grid. In other words, there is one pressure variable located in each T pij ∈ T
p
h .

Ip is defined similarly to Ix and Iy, however here it refers to the collection of

cell centered indices in the grid Gph whose associated quadralaterals T pij have a

non-zero intersection with Ω. For the sake of simplicity in subsequent equations,

100

we again use a mapping η3 : I3 = {1, 2, ..., Np} → Ip to associate each cell in the

pressure grid with a unique integer between 1 and Np. Thus, any approximated

solution of pressure has the following representation:

p(x) =
∑
k3∈I3

pkpχT p
kp

(x) (7.22)

where χT p
kp

(x) is the characteristic function for the quadralateral T pkp . That is,

χT p
kp

(x) =

 1, x ∈ T pkp
0, x /∈ T pkp

We choose test functions v(x) = Nmkm(x)em,m = 1, 2 and substitute the finite

element discretization (7.21),(7.22) into each term in the mixed variational form

(7.15),

2µ

∫
Ω

∇u+ (∇u)T

2
:
∇v + (∇v)T

2
dx

= µ

∫
Ω

∇u : (∇v + (∇v)T) dx

= µ
∑

i,j∈{1,2}

∫
Ω

ui,j(vi,j + vj,i) dx = µ
∑

i,j∈{1,2}

∫
Ω

ui,j(Nmkm,j(x)δmi +Nmkm,i(x)δmj) dx

= µ
∑
i∈{1,2}

∫
Ω

 ∑
j∈{1,2}

ui,jNmkm,j(x)δmi + ui,mNmkm,i(x)

 dx

= µ
∑
i∈{1,2}

∑
ki∈Ii

∫
Ω

uiki

 ∑
j∈{1,2}

Niki,j(x)Nmkm,j(x)δmi +Niki,m(x)Nmkm,i(x)

 dx

= µ
∑
i∈{1,2}

∑
ki∈Ii

uiki

δmi ∫
Ω

∑
j∈{1,2}

Nmki,j(x)Nmkm,j(x) dx+

∫
Ω

Niki,m(x)Nmkm,i(x) dx



101

−µ
∫

Ω

p∇ · vdx = −µ
∑
kp∈Ip

pkp

∫
T p
pk
∩Ω

Nmkm,m(x)dx∫
Ω

f · v dx =

∫
Ω

fmNmkm(x) dx∫
Γn

g · v ds =

∫
Γn

gmNmkm(x) ds

We can also choose v = 0 and q(x) = χT p
kp

(x) to derive the pressure equations:

−µ
∑
ki∈Ii

uiki

∫
T p
kp
∩Ω

Niki,i(x) dx− µ2

λ

∑
kp∈Ip

pkp

∫
T p
kp
∩Ω

1 dx = 0

Since the variational form is derived from an energy minimization problem, the

discretized linear system can trivially be seen to be symmetric. Specifically, if we

take the convention that uh ∈ RNx+Ny is our vector of displacement unknowns

(where we assume that x degrees of freedom are ordered first and y second)

and ph ∈ RNp is the vector of pressure unknowns, then our system over the

N = Nx +Ny +Np is of the form:

 Lh
u GhT

Gh Dh
p

 uh

ph

 =

 fh

0

 or L̂hûh = f̂
h

(7.23)

where ûh = (uh, ph) and f̂
h

= (fh, 0). Furthermore, our use of regular grids gives

the discrete equations a finite difference interpretation. If we scale the system by

− 1
h2 , each block in the discrete system approximates the corresponding differential

operator in (7.17), i.e. (7.23) discretizes the following equation:

h2

 −µ(∆ +∇∇T) µ∇

−µ∇T −µ2

λ

 u

p

 =

 −fh2

0

 (7.24)

The linear system is the Hessian matrix of a saddle point problem, therefore

102

although the discretized system is symmetric but indefinite. In fact, the first

diagonal block Lh
u is negative definite, and the other diagonal block is positive

definite.

7.2.2 Implementation details

For ease of implementation, we perform the integrations involved in the discrete

equations in an element-by-element fashion. Each area integral is represented as

a sum of integrals over spatially disjoint elements whose union is the embedded

domain. Specifically, we individually address the integration over the intersection

of each quadralateral of the pressure grid with the embedded domain T pkp ∩ Ω:

∫
Ω

Nmki,j(x)Nmkm,j(x) dx =
∑
kp∈Ip

∫
T p
kp
∩Ω

Nmki,j(x)Nmkm,j(x) dx

∫
Ω

Niki,m(x)Nmkm,i(x) dx =
∑
kp∈Ip

∫
T p
kp
∩Ω

Niki,m(x)Nmkm,i(x) dx

∫
Ω

Nmkm(x) dx =
∑
kp∈Ip

∫
T p
kp
∩Ω

Nmkm(x) dx

∫
Γn

Nmkm(x) ds =
∑
kp∈Ip

∫
T p
kp
∩Γn

Nmkm(x) ds.

In the interior, this simply amounts to evaluating the same integrals over each

full quadralateral T pkp . However, at the boundary, care must be taken to respect

the material region alone when the intersection between the pressure cells and

the embedded domain is non-trivial. In either of the boundary, or interior cases,

there will be 13 degrees of freedom involved in the integration over such a pressure

cell. This is because the staggering of variables leads to 13 interpolating functions

supported over a given pressure cell (6 x-components, 6 y-components and one

103

pressure). In other words, we express the matrix (or stiffness matrix) in our

discrete system as a sum of 13×13 element stiffness matrices Akp . Furthermore,

we break the integrals involved in a given element T pkp up into four subintegrals

over the subquadrants (ω1, ω2, ω3, ω4) of T pkp (see Figure 7.2. This is because the

integrands are all smooth over these regions. Notably, they are quadratic and we

simply preform these integrations analytically. The elemental stiffness matrix is

accumulated from the following sub-stiffness-matrices Akp = A
kp
ω1 + A

kp
ω2 + A

kp
ω3 +

A
kp
ω4 . For example, A

kp
ω1 involves x1, x2, x3, x4, y7, y8, y10 and y11 as demonstrated

in Figure 7.2 right), therefore, it only has non-zero values on rows and columns

involving these degrees of freedom. If we order the 13 nodes with indices shown

in Figure 7.2 left, then

On the interior of the domain, where T pkp ∩ Ω = T pkp , the sum of these four

104

subintegrals is always the same:

Akp =



µ



1
4 0 0 − 1

4 0 0 9
64−

3
32−

3
64

3
64−

1
32−

1
64

0 1
4 −

1
4 0 0 0 3

64
3
32−

9
64

1
64

1
32−

3
64

0 − 1
4

3
2 −1 0 − 1

4−
3
32

1
16

1
32

3
32−

1
16−

1
32

− 1
4 0 −1 3

2 −
1
4 0− 1

32−
1
16

3
32

1
32

1
16−

3
32

0 0 0 − 1
4

1
4 0− 3

64
1
32

1
64−

9
64

3
32

3
64

0 0 − 1
4 0 0 1

4−
1
64−

1
32

3
64−

3
64−

3
32

9
64

9
64

3
64−

3
32−

1
32−

3
64−

1
64

1
4 0 0 0 − 1

4 0

− 3
32

3
32

1
16−

1
16

1
32−

1
32 0 3

2 0 − 1
4 −1 − 1

4

− 3
64−

9
64

1
32

3
32

1
64

3
64 0 0 1

4 0 − 1
4 0

3
64

1
64

3
32

1
32−

9
64−

3
64 0 − 1

4 0 1
4 0 0

− 1
32

1
32−

1
16

1
16

3
32−

3
32 −

1
4 −1 − 1

4 0 3
2 0

− 1
64−

3
64−

1
32−

3
32

3
64

9
64 0 − 1

4 0 0 0 1
4



−µh



− 1
8

1
8

− 3
4

3
4

− 1
8

1
8

− 1
8

− 3
4

− 1
8

1
8

3
4

1
8


−µh

(
− 1

8
1
8 −

3
4

3
4 −

1
8

1
8 −

1
8 −

3
4 −

1
8

1
8

3
4

1
8

)
−µ

2

λ h
2



. (7.25)

The global stiffness matrix generated from Akp has a stencil shown in Figure 7.3.

Figure 7.2: Left: one interior pressure cell and the variables corresponding to the
13 degrees of freedom of the elemental stiffness matrix by taking integral over the
pressure cell; right: four integral subcells of the pressure cell and the variables
that an integral over subcell ω1 contributes to.

However for boundary cells where T pkp ∩ Ω 6=T pkp , we have to perform the in-

tegrations involved in each of A
kp
ωi carefully taking into account the boundary

105

geometry. We discuss this in the next section. First however, we summarize the

process of constructing the global stiffness matrix A from each of 13×13 element

stiffness matrices Akp .

We construct the global stiffness matrix from elemental stiffness matrices Akp

explained in Algorithm 3, and the derived global stiffness matrix generated from

Akp has a stencil shown in Figure 7.3

Algorithm 3 Construction of global stiffness matrix A from elemental Akp

1: A← 0
2: for kp = 1 to Np do
3: if T pkp ∩ Ω = T pkp then . Interior cell: use precomputed Akp

4: Use Akp from equation (7.25)
5: else . Boundary cell: compute Akp from A

kp
ωi

6: Perform integration over each subquadrant ωi to compute A
kp
ωi

7: Akp = A
kp
ω1 + A

kp
ω2 + A

kp
ω3 + A

kp
ω4

8: end if
9: for ip = 1 to 13 do

10: i = mesh(kp, i
p) . The mesh maps the 13 degrees of freedom involved in Akp

to their position in a global array

11: for jp = 1 to 13 do
12: j = mesh(kp, j

p)

13: Aij+ = A
kp
ipjp

14: end for
15: end for
16: end for

Figure 7.3: Global stiffness matrix stencils centered at an interior x variable(left),
y variable(middle) and p variable(right).

106

7.2.3 Discrete geometric representation and cut cell integration

(a) (b)

Figure 7.4: A zoom-in view of Figure 7.1(a). A levelset function is sampled on
a doubly refined grid(left); a segmented curve ∂Ωh is generated to approximate
the boundary of the geometric domain(right).

We discretize the domain Ω by embedding it in a regular grid. Specifically,

we use a signed distance level set function defined over a doubly refined subgrid:

Gφ = {(ih/2, jh/2)}.

This doubly refined subgrid is thus a superset of all grid nodes in the x, y and p

grids. The signed distance values at the nodes of the doubly refined grid Gφ are

used to determine the points of intersection between the zero isocontour and the

coordinate axes aligned edges of Gφ. The boundary of Ω is then approximated

by a segmented curve ∂Ωh connecting these intersection points. The geometric

domain is then approximated within the region enclosed by ∂Ωh (see Figure 7.1).

Near the boundary, the domain within each subgrid cell is approximated by a

polygon determined from the boundary edges of the subgrid cell and by straight

lines that connect boundary intersection points as demonstrated in Figure 7.1.

107

Thus we can think of our discrete domain as a union of doubly refined uncut

quadralaterals on the interior and cut, polygonal regions contained in doubly

refined quadralaterals on the boundary (see Figure 7.4).

This partitioning of the domain into doubly refined quadralaterals naturally

supports our integration conventions needed for the matrices A
kp
ωi discussed in the

previous section. The integrals needed for these matrices are evaluated trivially

when ωi is not cut. However when ωi is cut by the boundary, we can still perform

the integrations analytically following ideas from the recent cut cell approach in

Bedrossian et al. (2010). The integrands of each term in the matrices A
kp
ωi are

polynomials in x and y of degree 2. That is, each integral is of the form:

∫
ωi∩Ω

ax2 + bxy + cy2 + dx+ ey + fdx.

Our level set based representation of the geometry means that the domain of

integration ωi ∩ Ω is polygonal. In other words, we need to evaluate a second

order polynomial over a polygonal domain. This task can be done trivially by

noting that

∫
ωi∩Ω

ax2 + bxy + cy2 + dx+ ey + fdx

=

∫
ωi∩Ω

∇ ·

 ax3

3
+ bx2y

2
+ cxy2 + dx2

2
+ exy + fx

0

 dx.

That is, because ωi ∩ Ω is polygonal and our integrand can be expressed in terms

of the divergence of a cubic function, application of the divergence theorem yields

108

the easily evaluated forumula:

∫
ωi∩Ω

∇ ·

 ax3

3
+ bx2y

2
+ cxy2 + dx2

2
+ exy + fx

0

 dx

=

N∂(ωi∩Ω)∑
s=1

n1(s)

∫
∂(ωi∩Ω)s

(
â(s)t3 + b̂(s)t2 + ĉ(s)t+ d̂(s)

)
dt.

Here, the N∂(ωi∩Ω) is the number of line segments in the boundary of the polygonal

domain, ∂(ωi ∩ Ω)s is the s-th segment in the polygonal boundary, n1(s) is the x

component of the outward normal to the s-th segment and â(s), b̂(s), ĉ(s), d̂(s) are

the cubic coefficients arising in the boundary integrals over each segment. Again,

each term in the sum can be evaluated analytically. This careful treatment of

the integrals arising in each A
kp
ωi is the key to obtaining second order accuracy in

L∞.

7.3 Dirichlet boundary conditions

We have thus far assumed that our solution satisfies the Dirichlet boundary con-

ditions and that our test functions vanish on the Dirichlet boundary. However,

because we use a regular grid that does not conform to the actual domain, it is

not convenient to directly define a finite element space with a specific value at

the irregular boundary. Instead, we can enforce these conditions weakly using

109

the following variational problem:

find (u, p) ∈ H1(Ω)×H1(Ω)× L2(Ω), such that∫
Ω

2µ

(
∇u+∇uT

2

)
:

(
∇v +∇vT

2

)
+ µp(∇ · v) dx

= −
∫

Ω

f · v dx+

∫
∂Ω

g · v ds ∀v ∈ H1
0,Γd

(Ω)×H1
0,Γd

(Ω) (7.26)∫
Ω

(
−µq∇ · u− µ2

λ
pq

)
dx = 0 ∀q ∈ L2(Ω) (7.27)∫

Γd

u ·w ds =

∫
Γd

u0 ·w ds ∀w ∈ (H−1/2(Γd))
2. (7.28)

Here, we introduce the Dirichlet condition as a constraint. Specifically, we

require that the L2 inner product of the solution and an arbitrary function

w ∈ (H−1/2(Γd))
2 is the same as the inner product of the Dirichlet data u0

with w. This makes the problem a constrained minimization.

7.3.1 Discretizing the Dirichlet problem

In order to discretize the Dirichlet condition in the weak formulation, we ap-

proximate (H−1/2(Γd))
2 using a subspace Λh

x ×Λh
y = P0(T x ∩ Γhd)× P0(T y ∩ Γhd),

which is composed of piecewise constant functions over x and y component grid

cells that intersect the Dirichlet boundary. Here we use Γhd to denote the por-

tion of ∂Ωh over which the Dirichlet constraint is being enforced. We call any

x or y cell T i with T i ∩ ∂Ωh 6= ∅ a boundary cell. The superscript i is used

to denote whether the cell is in the x or y grids with i = 1 signifying an x cell

and i = 2 signifying a y cell. We use wT i = χT i(x)ei as the basis functions for

Λh
x×Λh

y = P0(T x∩Γhd)×P0(T y ∩Γhd). Here, χT i(x) is the characteristic function

110

of the cell T i:

χT i(x) =

 1, x ∈ T i

0, x /∈ T i.

Note that we have one basis function per boundary x or y cell. If we use Nxd

and Nyd to denote the number of x and y boundary cells respectively, we can see

that the dimension of the space Λh
x × Λh

y is Nxd +Nyd.

With this approximation, the Dirichlet boundary condition constraint can

be expressed as a linear system Bhuh = uh0 (Bh ∈ R(Nxd+Nyd)×(Nx+Ny), uh0 ∈

R(Nxd+Nyd)) where each equation enforces an integral constraint over the intersec-

tion of the discrete boundary Γhd with some x or y boundary cell T i:

∑
ki∈Ii

uiki

∫
T i∩Γh

d

Niki(x) ds =

∫
T i∩Γh

d

u0i(x) ds,

where u0 = (u01, u02). In practice, we evaluate the integral for a given boundary

cell T i over the portion of the Dirichlet boundary curve T i ∩ Γhd from the four

subquadraterals of T i arising from the doubly refined grid (as discussed in section

). This is simple because in each of these subquadralaterals Γhd is just a single

line segment. We use the following approximation for the right hand side terms

in the constraint system:

∫
T i∩Γh

d

u0i(x) ds =
4∑
j=1

∫
ωi
j∩Γh

d

u0i(x) ds ≈
4∑
j=1

u0i(c(ω
i
j ∩ Γhd))

∫
ωi
j∩Γh

d

1 ds,

where ωij is one of the four subquadralaterals of the cell T i and c(ωij ∩Γhd)) is the

midpoint of the segment ωij ∩ Γhd . We use the same treatment for the entries in

111

the matrix on the left hand side:

∫
T i∩Γh

d

Niki(x) ds =
4∑
j=1

∫
ωi
j∩Γh

d

Niki(x) ds.

We note that the integrand here is simply an x or y bilinear interpolating function.

Therefore, the four terms in the sum can be evaluated analytically because they

are simply quadratics in any linear parameterization of a given boundary segment

ωij ∩ Γhd .

The discrete constrained minimization problem can be solved using a La-

grange multiplier method resulting in the following KKT system:


Lh
u GhT BhT

Gh Dh
p 0

Bh 0 0



uh

ph

λh

 =


fh

0

uh0

 . (7.29)

There is one Lagrange multiplier degree of freedom per Dirichlet constraint. In

other words, λh is in R(Nxd+Nyd). When we consider boundary equations in the

sections that follow, we temporarily eliminate pressure variables ph with the

following substitution Lh = Lh
u −GhT (Dh

p)
−1Gh:

 Lh BhT

Bh 0

 uh

λh

 =

 fh

uh0

 . (7.30)

This system is extremely ill-conditioned for nearly incompressible materials, how-

ever it will simplify the exposition of the forthcoming discussion of Dirichlet

boundary condition treatment. Furthermore, when performing equation relax-

ation in our multigrid solver, we temporarily perform this elimination when treat-

ing equations near the boundary of the domain. Before discussing our geometric

112

multigrid solution approach for these systems of equations, we would like to first

discuss some important aspects of the Dirichlet system. Our treatment of the

Dirichlet condition is somewhat nonstandard and we list here a few important

details related to the constraint matrix Bh.

1. Bh consists of two decoupled blocks. There is one block for the x boundary

equations and one for the y equations. The only non-zero columns of Bh

are associated with nodes that are incident on an x or y boundary cell.

Therefore, for sufficiently interior degrees of freedom, the KKT system is

exactly the same as (7.24) or (5.6). That is, although the constraint matrix

is in R(Nxd+Nyd)×(Nx+Ny), it really only acts on a small subset of the Nx+Ny

displacement degrees of freedom.

2. Bh ∈ R(Nxd+Nyd)×(Nx+Ny), where (Nxd + Nyd) < (Nx + Ny). However, it

can be shown that Bh has full row rank. We refer the reader to the work

Bedrossian et al. (2010) for a more detailed discussion of why this is so.

3. Our numerical linear algebra approach to the problem is based on the con-

struction of a matrix Zh ∈ R(Nx+Ny)×((Nx+Ny)−(Nxd+Nyd)) (of full column

rank) whose columns span the kernel space of Bh. Since Bh has full row

rank, there exists column permutation Q, such that BhQ = [Bm|Bn−m],

where Bm ∈ R(Nxd+Nyd)×(Nxd+Nyd) is non-singular and

Bh =

 Bx 0

0 By

 ,

where Bx ∈ RNxd×Nx and By ∈ RNyd×Ny . However, it can be shown that Bh

has full row rank. We refer the reader to the work Bedrossian et al. (2010)

for a more detailed discussion of why this is so.

113

4. Our numerical linear algebra approach to the problem is based on the con-

struction of a matrix Zh ∈ R(Nx+Ny)×((Nx+Ny)−(Nxd+Nyd)) (of full column

rank) whose columns span the kernel space of Bh. Since Bh has full row

rank, there exists column permutation P , such that BhP = [Bm|Bn−m],

where Bm ∈ R(Nxd+Nyd)×(Nxd+Nyd) is non-singular and

Bm−n ∈ R(Nxd+Nyd)×((Nx+Ny)−(Nxd+Nyd)). With this permutation, we can

construct a so called fundamental basis for the null-space of Bh:

Zh =

 −B−1
m Bn−m

I

 . (7.31)

5. The vector

ch =

 B−1
m u

h
0

0

 (7.32)

satisfies BhPch = uh0 . Therefore, all solutions uh can be expressed as

uh = P(ch + Zhvh) with vh ∈ R((Nx+Ny)−(Nxd+Nyd)).

6. Our construction of a null-space for the Dirichlet constraint allows us to

eliminate the Lagrange multipliers. Substituting uh = P(ch + Zhvh) in

(7.30), we have

LhP(ch + Zhvh) + BhTλh = fh

Left multiplying this equation with (PZh)T , and applying the property

BhPZh = 0, we have

(PZh)TLhPZhvh + (BhPZh)Tλh = (PZh)T (fh − LhPch)

114

(ZhTPTLhPZh)vh = (PZh)T (fh − LhPch). (7.33)

That is, if we can solve vh from the reduced system (7.33), then the KKT

system solution can be reconstructed with uh = P(ch+Zhvh). Without loss

of generality, we assume the variables to be reordered such that P = I. We

will make use of this property in the smoother for our geometric multigrid

method.

7.3.2 Constructing the null-space for the Dirichlet constraints

Our treatment of the Dirichlet conditions is based on our ability to construct a

null-space Zh satisfying BhZh = 0 and a special solution ch satisfying Bhch = uh0 .

The main issue we will discuss now is how to a find fundamental basis Zh that

produces a numerically well-conditioned system of equations. This topic was

originally discussed in the work of Bedrossian et al Bedrossian et al. (2010).

However, we found that in our case of nearly incompressible materials, an even

more aggressive approach is needed. Bedrossian et al first suggested an ordering

for the boundary integral equations and incident boundary nodes that led to

a readily inverted upper triangular Bm. However, they showed that although

this construction was straightforward, the conditioning of this Bm deteriorated

exponentially in the discretization resolution and was thus not practical. They

then showed that it is possible to derive a diagonal Bm with a slight modification

to the definition of the constraints. Specifically, they showed that an aggregation

scheme where cells of a “double-wide” grid were used to define the extent of the

line integral constraints led to a diagonal Bm. This was done by choosing the

center node of the 9 nodes incident on the four original cells in the “double-wide”

cell as the representative node in the permutation of columns in Bh. In other

115

words, the center node of the four aggregated cells was given the same index as

the row associated with the constraint over those cells. This aggregation of cells is

equivalent to replacing a collection of rows in the original, “single-wide” Bh with

the sum of the collection of rows. The choice of which rows to sum together is

determined by the “double-wide” cell they belong to. Since no aggregated rows

have a non-zero entry associated with the center node of any other aggregate,

the Bm is diagonal and thus Zh is trivially constructed. This aggregation can

equivalently be seen as using a subspace Λ2h
x × Λ2h

y ∩H−1/2(Γd) that is based on

a coarsened grid. Remarkably, this process does not affect the L∞ convergence

behavior of the scheme. Unfortunately, while the reduced system in Bedrossian

et al. (2010) had a satisfactory condition number for the Poisson equation with

an incomplete Choleksy preconditioned conjugate gradient solver, we found that

this was not the case for nearly incompressible linear elasticity and geometric

multigrid. Specifically, the conditioning of the equations at the boundary was

poor enough to make the treatment of boundary regions prohibitively costly

when performing the smoothing operations used in geometric multigrid. Figure

7.5 illustrated the difference between boundary integral enforced over single cells

and over a cell aggregation. The gray domain illustrates the domain of active

primal cells. The blue grid is the y variable node grid. The dashed red line

indicates integral region of a boundary equation, which has nonzero entries on

variables located at the blue circles both hollow and solid. And the solid circle

in the right image is the representative node of the illustrated cell aggregation.

We propose a new boundary integral constraint aggregation that allows us to

generate a diagonal Bm and a better-conditioned reduced system. We note that

the elements of the original Bh are scaled by a segment length; therefore, a very

small segment (associated with a node that is far from the boundary) will generate

very small diagonal elements for a Bm arising from aggregation. We found this

116

Figure 7.5: Boundary integration cells and aggregations. Left: each boundary
equation enforces the boundary integral within a single cell; right: each boundary
equation enforces the boundary integral within an aggregation of cells.

to be a source of the suboptimal conditioning. We propose a modification to

the aggregation process that is designed to provide larger diagonal entries in

subsequent Bm. We first define the weight of each node to be the sum of the

column in the original, “single-wide” Bh. This weight is the diagonal entry in

Bm that would arise from an aggregation of the four cells centered around the

node. To increase the diagonal entries in the final Bm, we simply select four

cell aggregates such that the associated representative nodes will be chosen in

descending order of the total weight of each node. After we choose a node to define

a four cell aggregate, the nine nodes incident on the four cells are eliminated from

consideration. This process of prioritizing the aggregation rather than inheriting

it from the coarse grid has a drawback. There may be some rows that are never

added to an aggregate region. For these rows, it may be impossible to choose a

representative node. We resolve this by aggregating such a row into a spatially

adjacent aggregate. In practice, we also found that limiting representative nodes

in the aggregation to ghost nodes (i.e. those geometrically outside the domain Ω)

gave even better conditioning. We briefly summarize this process in Algorithm

117

4.

Algorithm 4 Aggregation Selection

1: procedure AggregationSelection(Bx, By)
2: for v in {1, 2} do
3: aggregation cells list Aggrv = {}
4: aggregation representative list Repv = {}
5: set all active nodev variables and all integral cellsv active
6: row weight sum wi ←

∑
j Bv

ij

7: Sort w in a decreasing order
8: for wj in w do
9: if nodevj is active then

10: Repv ← Repv ∪ {j}
11: Aggrv ← Aggrv ∪ {c for all cellc adjacent to nodevj}
12: deactivate all cells adjacent to nodevj
13: deactivate all nodes adjacent to nodevj
14: end if
15: end for . Now every ghost node belongs to at least one aggregation
16: for all boundary cellvi do
17: if celli is inactive then
18: Find the closest aggregation of cellvi Aggrvk
19: Aggrvk ← Aggrvk ∪ {i}
20: end if
21: end for . Pickup orphans
22: end for
23: end procedure

7.4 Multigrid

We develop an efficient multigrid solver for the discrete systems produced by our

method. Our method is purely geometric, and based on the Multigrid Correction

Scheme (see Algorithm 5). The framework admits a simple implementation, how-

ever special care is needed to retain near-textbook multigrid convergence rates,

especially in the presence of highly irregular domains or nearly incompressible

materials. The sections that follow will detail the key components of our multi-

118

(a) (b) (c)

Figure 7.6: Cell aggregations. a) x component boundary cells and the first two
representative nodes and the incident y− cells of each representative node; b) all
representative nodes for y component cells and their incident cells, orphan cells
will be attached to their nearest neighbor cells; c) and d) final cell aggregations
together with their representative nodes for x and y grids.

grid solver: a hierarchy of discretizations, a smoothing procedure, and appopriate

transfer operators (i.e. restriction and prolongation) between levels of the hier-

archy. Although our design decisions include certain common practices, these

components have been significantly customized to fit the needs of the specific

discretization being followed, and facilitate both convergence and computational

efficiency even near the incompressible limit.

Algorithm 5 Multigrid defect correction

1: procedure V-Cycle(L̂h,ûh,f̂
h
)

2: if problem at low resolution and easy to solve then

3: ûh ← (L̂h)−1f̂
h

and return;
4: end if
5: PreRelaxation(L̂h,ûh,f̂

h
)

6: Restriction: f̂
2h
← R(f̂

h
− L̂hûh)

7: V-Cycle(L̂2h,û2h,f̂
2h

)
8: Prolongation: ûh ← ûh + Pû2h

9: PostRelaxation(L̂h,ûh,f̂
h
)

10: end procedure

119

Figure 7.7: Cell aggregations of an example domain for both x(left) and y(right)
variables.

7.4.1 Discretization hierarchy

We consider a hierarchy of resolutions, each corresponding to a discretization on

a progressively larger grid size. In particular, we employ a grid step of h on the

finest level of the hierarchy (numbered as level zero), followed by discretizations

with grid step sizes of 2h, 4h, . . . , 2Lh, for a total of L + 1 hierarchy levels. In

detail, the hierarchy is constructed as follows:

• At every level of the hierarchy, say the l-th one, we define the background

grids Gx
2lh
,Gy

2lh
,Gp

2lh
corresponding to the x-, y-, and p-variables respectively.

• A level set function is computed over the respective doubly-refined subgrids

Gφh ,G
φ
2h,G

φ
4h, . . . for each level. Obviously, coarser levels may fail to resolve

certain high-frequency features of the domain geometry, leading to possible

discrepancies between the discrete systems at various levels, which will be

further addressed in our discussion of the smoother and transfer operators.

• Using the level set values associated with a given grid, we generate the

discrete domains T x
2lh
, T y

2lh
, T p

2lh
, and allocate the unknown arrays u2lh and

120

p2lh as well as the right-hand sides f 2lh and f 2lh
p of the respective equations.

Note that, although at the finest level of the hierarchy we have used fhp = 0

by virtue of our discretization, the right hand side f 2lh
p for coarser levels

(l ≥ 1) will generally be nonzero in the Multigrid Correction Scheme (see

Algorithm 5).

Multigrid method is based on a hierarchical discretization. On each level l, we

first rasterize our domain into regular cells with h = 2−l, and define a staggered

discretization on Gxh , Gyh and Gph. Based on the levelset function values sampled

on the grid node points of a doubly refined grid, a geometric discretization of the

domain is defined (see Figure 7.1 top right). The active degrees of freedom and

the corresponding right hand side values are thus defined on the nodes of x−, y−

and p− cells that overlap with the discretized domain Ωh, i.e. the nodes of the

dashed line cells in Figure 7.1 bottom and the nodes of the thicker line cells in

Figure 7.1 top left.

When there is a Dirichlet boundary condition, a constraint matrix Bh is de-

fined for each level, enforcing the integral of x or y displacement components

along the discretized domain boundary ∂Ωh of the current level and within each

cell aggregation (each cell group with the same color in Figure 7.6) precomputed

on the same level, to be the same as that of the Dirichlet values for the corre-

sponding displacement component. Each of such constraints (or cell aggregations)

corresponds to one Lagrange multipliers. In the fundamental basis method, we

eliminate these multipliers by solving for the fundamental basis coefficients vh in

ch + Zhvh. By definition of ch (7.32) and Zh (7.31), there is a one-to-one map-

ping between vh components and active x and y degrees of freedom that are not

aggregation representatives. Thus, the reduced system 7.33 is defined on these

degrees of freedom only. Due to the fact that the reconstructed uh = ch + Zhvh

121

satisfy the constraints automatically, we do not need to restrict any residual for

the constraint system, i.e. on coarser level, the Dirichlet boundary constraint

values are always zero. Also, λh do not need to be solved, therefore, we do not

need to record their values, nor prolongate their corrections. When we restrict

the residuals of the governing equation, i.e. rh = fh−Lhuh−BhTλh, we restrict

zero for all equations that will need a λh value. In another word, we restrict zero

residuals from equations involving boundary nodes, i.e. the nodes in Figure 7.6

cells. Thus, a single level discretization is defined for all levels with powers of 2

resolutions.

7.4.2 Relaxation

The interior equations are uniform and have the same properties, while near

the boundary, the equations have very different stencils. We distinguish the

interior equations and boundary equations, and apply different relaxations on

them. First, we recognize cells that are outside any 5× 5 box centered at certain

exterior cells, illustrated in Figure 7.8 right. For equations that are incident

to these cells, a distributive interior relaxation is applied. Then, we recognize

cells that are active cell and within a 9 × 9 box centered at some exterior cells,

illustrated in Figure 7.8 left. We apply a different boundary relaxation within this

boundary band. In each single level relaxation, we first sweep over the boundary

band, and apply a few iterations of boundary relaxations, then apply one iteration

of interior relaxation followed by another few iterations of boundary relaxations.

The efficiency of a multigrid method is closely related to the smoothing ef-

ficiency of a single level relaxation. With the Poisson’s equation, simple Jacobi

or Gauss-Seidel will typically suffice as an efficient smoother. These techniques

122

(a) Boundary band pressure cells and
boundary variables

(b) Distributive pressure cells and vari-
ables relaxed using distributive relax-
ation

Figure 7.8: Boundary band and distributive region.

efficiently reduce the high-frequency component of the error and make it pos-

sible for a coarse grid to provide a meaningful correction to a finer grid. This

property is fundamentally important for the efficiency of the geometrically hierar-

chical approach to solving the equations. Unfortunately, the equations of nearly

incompressible linear elasticity with augmented pressure require more care than

the comparably simplistic discrete Poisson equation. Although our system is not

symmetric positive definite, we can modify the equations to a more convenient

form as in Zhu et al. (2010) to design a proper geometric multigrid smoother.

We confirm that a change of variables leads to approximately block triangulate

the discrete system with each diagonal block being a symmetric semi-definite

discretization of Poisson. Our smoother is then constructed to be an emulation

of the Gauss-Seidel relaxation applied on each block.

123

7.4.3 Approximated distributive relaxation

We follow the idea in Zhu et al. (2010) and develop a distributive relaxation.

First, we apply a change of variable:

 u

p

 =

 I −∇

∇T −2∆

 v

q

 or û = M̂v̂ (7.34)

and substitute into (7.7) to achieve a new system

 µ∆I 0

µ(1 + µ
λ
)∇T −µ(1 + 2µ

λ
)∆

 v

q

 =

 f

0

 or L̂M̂v̂ = f̂(7.35)

for some auxiliary variable v̂ = (v, q). The derived PDE system is a block lower

triangular system, and can be solved in a forward substitution process, i.e. first

solve the v equations, and then freeze the v variables in the second equation and

solve the q equation. Moreover, with certain choice of discretizations, the same

triangulation can be realized on the discretized system, i.e. L̂hM̂h is also a block

lower triangular linear system Zhu et al. (2010).

Due to the fact that each of the diagonal blocks of the discrete auxiliary

system is a discretization of Laplacian operator, we can relax the whole system

using a Gauss-Seidel relaxation on each component of the v variables followed by

another Gauss-Seidel relaxation on p variables and achieve the same smoothing

efficiency as that of the Gauss-Seidel relaxation applied on Poisson’s equation.

At any approximation of v and q, the approximate solutions to the augmented

system can be reconstructed using (7.34).

In practice, we do not need to explicitly construct v̂. In a Gauss-Seidel relax-

ation applied on v̂, we iteratively solve for local corrections v̂i ← v̂i+δei, such that

124

the local residual (f̂ − L̂M̂v̂)i is zeroed out. Therefore, δ = (L̂M̂)−1
ii r̂i. Such cor-

rection invokes local corrections to û in a distributive pattern, i.e. ûi ← ûi+δM̂ei,

thus defines the distributive relaxation scheme in Algorithm 6

Algorithm 6 Distributive Smoothing

1: procedure DistributiveSmoothing(L̂h,M̂h,ûh,f̂
h
)

2: for v in {u1, u2, p} do . Must iterate on u1 and u2 before p
3: for i in Lattice[v] do . i is an equation index

4: r ← f̂
h

i − L̂h
i · û

h . L̂h
i is the i-th row of L̂h

5: δ ← r/(L̂hM̂h)ii . (L̂hM̂h)ii is a precomputed constant for each
component

6: ûh += δmT
i . mi is the i-th row of M̂h

7: end for
8: end for
9: end procedure

For a staggered finite difference discretization, the triangularization of the

discretized system can be achieved by discretizing the change of variable operator

using centered difference for gradient and divergence operators and five point

stencil for the Laplacian operator as shown in Zhu et al. (2010). However, when

we use finite element discretization, there is no discrete change of variables with

same sparsity that leads to an exact triangularization. Instead, we discretize the

gradient operator in (7.34) using the stencils derived in a finite element method,

i.e. ∇h = 1
µh2 GhT =

 Dh
x

Dh
y

 mapping from p variables to x and y variables

with the locations illustrated in Figure 7.3-right and the stencils being:

Dh
x =

1

h


−1/8 1/8

−3/4 3/4

−1/8 1/8

 , Dh
y =

1

h

 1/8 3/4 1/8

−1/8 −3/4 −1/8

 . (7.36)

Similarly, the Laplacian operator in (7.34) is discretized from a standard piecewise

125

bi-linear finite element discretization.

Mh
p =

1

h2


1/3 1/3 1/3

1/3 −8/3 1/3

1/3 1/3 1/3

 (7.37)

Although, the linear system L̂hM̂h is not block triangular, our numerical

results show that the derived distributive relaxation is able to reduce the high-

frequency error components efficiently and generate an efficient multigrid solver

in section 7.5.

7.4.4 Higher-order defect correction

We also adopt the idea of higher-order defect correction and develop a less expen-

sive distributive relaxation. In a defect correction scheme for an arbitrary linear

system Lu = f , we solve for the correction δu = uexact − u, which satisfies an

equation Lδu = f −Lu. In practice, we approximate the equation with another

system Lapproxδu = f − Lu that is easier to solve. For example, in a multigrid

correction scheme, a coarse grid system is used as the approximated equation for

solving the correction at the fine grid resolution, i.e. L = Lfine, Lapprox = Lcoarse In

the high order defect correction scheme, a lower order discretization is employed

as the approximated system for solving a higher-order discretization correction.

In our case, the finite difference discretization is a lower order system, and the

finite element discretization is a high order system, i.e. L = Lfem, Lapprox = Lfdm

In other words, we consider solving the following correction equation:

L̂fd,hδû = f̂ − L̂fe,hû.

126

One of the benefit we obtain from such approximation is that we can use the

existing distributive relaxation with exact triangulation of the discretized system

(7.35) introduced in Oosterlee and Gaspar (2008).

To be specific, let us rewrite the finite difference system as

L̂fd,hû =

 Lfd,h
u Gfd,hT

Gfd,h Dfd,h
p

 ufd,h

pfd,h

 =

 f fd,h

0

 , (7.38)

and rewrite the finite element system scaled by −1/h2 to match the scaling of

the differential equation

− 1

h2
L̂fe,hû = − 1

h2

 Lfe,h
u Gfe,hT

Gfe,h Dfe,h
p

 ufe,h

pfe,h

 = − 1

h2

 f fe,h

0

 . (7.39)

In a high order defect correction scheme employing a finite difference dis-

cretization, we solve for correction δû = M̂fd,hδv̂ to locally satisfy

L̂fd,hM̂fd,hδv̂ = − 1

h2
(f̂

fe,h
− L̂fe,hûcurrent).

This derives to a sparser distributive relaxation shown in Algorithm 7.

Algorithm 7 High Order Defect Correction Distributive Smoothing

1: procedure HighOrderDefectCorrectionDistributiveSmooth-

ing(L̂fd,M̂fd,L̂fe,M̂fe,û,f̂
fe,h

)
2: for v in {u1, u2, p} do . Must iterate on u1 and u2 before p
3: for i in Lattice[v] do . i is an equation index

4: r ← f̂
fe,h

i − L̂fe
i · û . L̂fe

i is the i-th row of L̂fe

5: δ ← r/(L̂fdM̂fd)ii
6: û += δmT

i . mi is the i-th row of M̂fd

7: end for
8: end for
9: end procedure

127

The previous two types of distributive relaxations are not applicable for vari-

ables near the domain boundary. In fact, near the boundary, some of the variables

in the distribution stencil may not exist. We follow the idea in Zhu et al. (2010),

to temporarily build an unaugmented system in the boundary band (see Figure

7.8 left).

7.4.5 Boundary relaxation

Near the domain boundary, the distributive relaxation is not well defined; a

special relaxation is required. In Neumann boundary condition case, we eliminate

p from the augmented system (7.23) by left multiplying the equation with We

follow the idea in Zhu et al. (2010), temporarily build an unaugmented system in

a boundary band with variables incident to the boundary band cells demonstrated

in Figure 7.8 left. This unaugmented system is relaxed using a few Gauss-Seidel

relaxations. And we only apply distributive relaxation on variables that are

incident to the distributive cells as shown in Figure 7.8 right.

We eliminate p from the augmented system (7.23) by left multiplying the

equation with

Û =

 I −GD−1
p

0 I

 .

Left multiplying equation (7.23) by Û, we have

ÛL̂û =

 Lu −GD−1
p GT 0

GT Dp

 u

p

 = Ûf̂ . (7.40)

In the first equation for u, the equation is symmetric and positive definite, hence

can be solved again using Gauss-Seidel relaxation. This unaugmented system

is a consistent discretization to the original PDE (7.7). Although Gauss-Seidel

128

relaxation is not an efficient smoother for the unaugmented system if defined ev-

erywhere, for the purpose of boundary relaxation, we only build the temporary

unaugmented system and relax it within a very narrow boundary band as demon-

strated in Figure 7.8, and temporarily freeze the interior variables. The solution

is strongly restricted by nearby interior values, therefore, the Gauss-Seidel relax-

ation is still efficient and stable. Typically, with about 5 to 10 sweeps of boundary

relaxation before and after each interior relaxation sweep, the boundary residual

is reduced to as small as the interior residual. Once we relaxed u well enough,

we freeze u and substitute into the second equation in (7.40) to resolve pressure

variables.

7.4.6 Boundary relaxation for the reduced system in Dirichlet bound-

ary condition case

In Dirichlet boundary condition case, the boundary system (7.30) is a KKT sys-

tem, which is indefinite, and cannot be resolved using Gauss-Seidel relaxations.

Alternative approaches such as Kaczmarz relaxation or box relaxation may be

efficient smoothers, however, their computational cost are much more expen-

sive. Instead, we follow the fundamental basis method, to solve vh from the

reduced system (7.33), and reconstruct the solution of the KKT system (7.30)

using uh = ch + Zhvh. Since Lh is symmetric positive definite, ZhTLhZh is also

symmetric positive definite, hence can be solved using Gauss-Seidel relaxation

(see Algorithm 9).

Without loss of generality, we assume the variables to be reordered such that

Q = I. Since Lh is symmetric positive definite, ZhTLhZh is also symmetric posi-

tive definite, hence can be solved using Gauss-Seidel relaxation (see Algorithm 9).

In practice, a Gauss-Seidel iteration on (7.33) iteratively solves for a correction

129

Algorithm 8 Dirichlet boundary relaxation - vh

1: vh ← 0
2: for i = 1 to m do
3: δ ← eTi ZhT (fh − Lhch − LhZhvh)/(eTi ZhTLhZhei)
4: vh += δei
5: end for

on each single degree of freedom by solving the following scalar equation:

eTi Lh
r (v

h + δei) = eTi ZhT (fh − Lhch), (7.41)

where Lh
r = ZhTLhZh i.e.

(Lh
r)iiδ = eTi ZhT (fh − Lhch − LhZhvh) = eTi ZhT (fh − Lhuh), (7.42)

and then apply the correction: vh ← vh + δei. Equivalently, uh is updated as

uh ← uh + δZhei Therefore we can equivalently solve for a correction on u to

emulate the Gauss-Seidel iteration on vh (see Algorithm 10).

Algorithm 9 Dirichlet boundary relaxation - vh

1: vh ← 0
2: for i = 1 to m do
3: δ ← eTi ZhT (fh − Lhch − LhZhvh)/(Lh)ii
4: vh += δei
5: end for

Algorithm 10 Dirichlet boundary relaxation - uh

1: uh ← ch

2: for i = 1 to m do
3: δ ← eTi ZhT (fh − Lhuh)/(Lh)ii
4: uh += δZhei
5: end for

During the Dirichlet boundary relaxation applied on uh, a numerical error

may be introduced driving uh away from the linear space ch + Zhvh. Also, when

130

we apply coarse grid correction in Algorithm 5, the corrected solution ûh + Pû2h

may not be in the solution space. Therefore, a projection onto the solution space

needs to be applied after the prolongation step. First of all, since the projected

solution uhp = ch+Zhvh, for some vh, and according to the definition of Zh and ch

in (7.31) and (7.32), we have vh = Quh, where Q projects a solution vector to a

sub-vector by eliminating the degrees of freedom that correspond to aggregation

representative nodes. Therefore, the projected solution uhp = ch + ZhQuh.

7.4.7 Coarsening

In a geometric multigrid method, we define a discretization on each level. In deep

interior region, In order to restrict residuals from fine grid to coarse grid, we apply

a restriction operator R for each component defined on the staggered grids with

stencils illustrated in Figure 7.9 . We consider two types of prolongation stencils.

First, we consider prolongation Plo = 2dR. Second, we consider piecewise bi-

linear interpolation for u in combination with the same pressure prolongation as

in Plo, which we donate as Phi.

In deep interior region, we use the same restriction operator R as in (5.7) with

stencils shown in Figure 7.9. We consider two types of prolongation stencils.

First, we consider prolongation Plo = 2dR. Second, we consider piecewise bi-

linear interpolation for u in combination with the same pressure prolongation as

in Plo, which we donate as Phi.

However, on the boundary, there is no guarantee that all dependencies of the

coarse grid variable restriction stencils are active fine grid degrees of freedom.

Therefore, we truncate our restriction stencils to the active degrees of freedom,

which is equivalent to restrict zero residual from inactive regions. Also, when a

Dirichlet boundary condition presents, we can not compute the residuals rh =

131

X

1/8 1/4 1/8

1/8 1/4 1/8

Y1/8 1/8

1/4 1/4

1/8 1/8 P

1/4 1/4

1/4 1/4

Figure 7.9: Restriction operator stencils.

fh−Lhuh−BhTλh when a λ value is involved. In this case, we apply a boundary

relaxation strong enough such that the boundary residuals is smaller than interior

relaxations, and restrict zero boundary residual for these equations.

The coarse grid constraint system right hand side should have been computed

from the restriction of fine grid constraint system residual. However, due to the

fact that our solutions uhp = ch+Zhvh always satisfy boundary constraint exactly,

the coarse grid Dirichlet boundary condition is always zero. Also, prolongation

is implemented in a distributive way, i.e. we iterate over the active coarse grid

corrections, and distribute their values to all active fine level degrees of freedom.

Near the domain boundary, this is equivalent to prolongate zero correction from

exterior coarse grid locations, which is reasonable. We notice that this prolonga-

tion may lead to a solution away from the fundamental basis solution. Therefore,

a projection process is applied immediately after prolongation uh ← ch+ZhQuh.

So far, we discussed the components of a multigrid method, and we continue

by discussing the numerical results.

132

7.5 Numerical examples

We investigate two aspects of our algorithm: discretization error and multigrid

efficiency. In this section, we apply our method on various domains with Neu-

mann or Dirichlet boundary conditions and with a wide range of Poisson’s ratios.

We considered three deformations defined on three geometric domains:

1. Keyhole domain A Keyhole domain is enclosed by a smooth curve con-

necting 8 tangential circles with centers

c1 = (0.25, 0.25); c2 = (0.75, 0.25);

c3 = (0.25, 0.75); c4 = (0.75, 0.75);

s1 = (0.5, 0.6875); s2 = (0.5, 0.3125);

s3 = (0.3125, 0.5); s4 = (0.6875, 0.5);

and radius 0.2 for the first 4 circles and rs =

√
17

4
− 0.2 for the last 4

circles. The radius rs is chosen such that the circle curves are tangential

hence generate a smooth boundary.

The keyhole domain can also be represented by the zero levelset of the

following function:

ϕ(x) = max(min(dist(x, ci, 0.2), dist(x,0, r0)),−min(dist(x, si, rs))

where dist(x,x0, r) = |x− x0| − r, and r0 =
∣∣∣ 0.2√

17
(4, 1)− (0.25, 0.25)

∣∣∣.
A constant divergence deformation is considered, giving the exact boundary

133

conditions and the exact solution for the purpose of error computation.

φ1(x, y) = 2x+
1

2
cos πx sin πy (7.43)

φ2(x, y) = 2y − 1

2
sin πx cosπy (7.44)

Figure 7.10: A keyhold domain and its deformation.. Left: undeformed keyhole
domain; right: deformed keyhole domain

2. Flower domain A flower-shaped domain with inner radius 0.2, outer ra-

dius 0.4 is considered with a levelset function:

ϕ(x) = dist(x,0.5, 0.3 + 0.1 cos 5θ)

where θ is the argument of (x, y). A deformation with spatially varying

divergence is considered as an exact solution.

φ1(x, y) =
2x√
π

cos
π

2
y (7.45)

φ2(x, y) =
2x√
π

sin
π

2
y (7.46)

3. Spiral domain We consider a spiral shaped domain, defined by the zero

134

Figure 7.11: A flower domain and its deformation. Left: undeformed flower
domain; right: deformed flower domain

levelset of

ϕ(x) = r(y)− (0.33 + 0.08 cos 5θ(y)
1
3)

where y is x − (0.5, 0.5) rotated around (0.5, 0.5) by θ = 14(2r(x))
1
6 and

the deformation:

φ1(x, y) =

(
1

2
x+

1

2
) cos(

π

6
+

2

3
πy

)
(7.47)

φ2(x, y) =

(
1

2
x+

1

2
) sin(

π

6
+

2

3
πy

)
(7.48)

7.5.1 Discretization error

All our testing domains are embedded in a [0, 1]2 domain, and we discretize this

square domain with a regular grid of different resolutions ranging from 32 to

1024 in each direction. We plotted log2 |uexact − u|∞ versus log2 resolution and

estimated the solution accuracy order by fitting the data with a linear func-

tion. We remove the Neumann boundary condition null space by enforcing a

non-embedded Dirichlet condition on all degrees of freedom within the domain

135

Figure 7.12: A keyhold domain and its deformation. Left: undeformed spiral
domain, right: deformed spiral domain

[7/16, 9/16]2. From the plotted error convergence behavior, we observe a second-

order convergence for all three types of domains (see Figure 7.13, Figure 7.14,

Figure 7.15); for both Neumann and Dirichlet boundary conditions; and for a

wide range of material parameters including near-incompressible materials. We

notice that the order of accuracy is slightly smaller for domains with compli-

cated boundaries. An important source of the inaccuracy is introduced by the

inconsistent domain discretization at different resolutions.

7.5.2 Multigrid efficiency

We also investigated the efficiency of multigrid methods. First of all, we consider

a periodic boundary condition problem defined on [0, 1]2 and with the exact

solution being

φ1(x, y) = sin 2πx+ cos 2πy

φ1(x, y) = cos 2πx+ sin 2πy

Although periodic boundary condition will not appear in practical elasticity

136

Figure 7.13: Order of accuracy for the keyhole domain. Top: Neumann boundary
condition; bottom: Dirichlet boundary condition; left: Poisson’s ratio=0.3; right:
Poisson’s ratio=0.49; square marker: x component; circle marker: y component.

137

Figure 7.14: Order of accuracy for the flower domain. Top: Neumann boundary
condition, bottom: Dirichlet boundary condition; left: Poisson’s ratio=0.3; right:
Poisson’s ratio=0.49; square marker: x component; circle marker: y component.

138

Figure 7.15: Order of accuracy for the spiral domain. Top: Neumann boundary
condition; bottom: Dirichlet boundary condition; left: Poisson’s ratio=0.3; right:
Poisson’s ratio=0.49; square marker: x component; circle marker: y component.

139

problems, we consider periodic boundary condition problem to evaluate multi-

grid solver avoiding issues that may arise with boundary relaxation. We first

fix the problem resolution to 128× 128 and apply finite element distributive re-

laxation and the distributive relaxation for the finite difference defect correction

problem as the interior relaxations. And we also apply the bilinear prolonga-

tion and a prolongation with P = 4RT . While low incompressibility problems

generates convergence rates no larger than 0.3 for multigrid V-(1,1) cycle with

all different prolongation and distribution options, we focus on the the harder

high-incompressible case with Poisson’s ratio being 0.49, and investigate both

V-(1,1) cycle and W-(1,1) cycle convergence. As shown in Table 7.1, both fi-

nite element distributive relaxation and finite difference defect correction scheme

generate convergence rate less than 0.5 with a multigrid V-(1,1) cycle. Although

finite difference distributive relaxation generates slower convergence than finite

element distributive relaxation for V-(1,1) cycle, with the help of a bilinear in-

terpolation or W-(1,1) cycle, we are able to generate as good convergence rate as

0.23.

We further investigates the multigrid convergence rate for various resolutions

by sticking to one scheme which uses finite element distribution, low order prolon-

gation and a V-(1,1) cycle, and plot the convergence rate for problems discretized

with resolutions from 32 to 1024 (see Figure 7.16). A consistent multigrid con-

vergence rate is observed under refinement.

While all schemes give a nice convergence rate in periodic cases, the conver-

gence rate with Neumann boundary condition and Dirichlet boundary condition

various. In non-trivial boundary condition cases, the convergence rate is mainly

restricted by the efficiency of a boundary relaxation. Therefore, the convergence

rate of a V-(1,1) cycle and a W-(1,1) cycle are very similar, and also different

140

boundary condition distribution multigrid cycle Phi Plo

Periodic FD V-(1,1) 0.24 0.42
FD W-(1,1) 0.23 0.25
FE V-(1,1) 0.13 0.24
FE W-(1,1) 0.13 0.30

Dirichlet FD V-(1,1) 0.72 0.72
FD W-(1,1) 0.72 0.72
FE V-(1,1) 0.37 0.36
FE W-(1,1) 0.42 0.42

Neumann FD V-(1,1) 0.70 0.70
FD W-(1,1) 0.68 0.68
FE V-(1,1) 0.50 0.50
FE W-(1,1) 0.35 0.35

Table 7.1: Multigrid V-(1,1) cycle asymptotic convergence rates - periodic bound-
ary condition. The discretization resolution is 128× 128, and the Poisson’s ratio
is 0.49. For optional prolongations, Phi is bilinear interpolation and Plo is for
P = 4RT . For the optional distributions, FE is the distribution matrix dis-
cretized with bilinear finite element method, and FD is using defect correction
by employing finite difference distributive relaxation.

Figure 7.16: Multigrid V-(1,1) cycle convergence - periodic boundary condition
with problem resolution from 32 to 1024. The interior relaxation is a finite
element distributive relaxation, and the Poisson’s ratio is 0.49.

141

prolongation schemes generate very similar convergence rates (see Tabel 7.1 for

the convergence rate of all algorithm options for the flower domain problem at

a fixed resolution of 128 × 128). The difference between using a finite element

distributive relaxation and a finite element distributive relaxation reflects the

efficiency of the whole smoother in combination with the boundary relaxations.

We further investigate the convergence rate under refinement. Due to the fact

that different prolongation scheme and multigrid cycle generates similar conver-

gence rate. We only plot the asymptotic convergence rate of V(1,1) cycle with

P = 4RT and using finite element distributive relaxation in interior. For both

Dirichlet and Neumann boundary condition problem, we plot the asymptotic con-

vergence rate of resolution from 32 to 1024 and the residual reduction at each

iterations for representative resolution numbers that are powers of 2. We ob-

served consistent convergence rate at all resolutions (see Figure 7.17 and Figure

7.18).

Figure 7.17: Multigrid V-(1,1) cycle convergence rates - flower domain with prob-
lem resolution from 32 to 1024 . The interior relaxation is a finite element dis-
tributive relaxation, and the Poisson’s ratio is 0.49. Left: Dirichlet boundary
condition; right: Neumann boundary condition.

142

Figure 7.18: Multigrid V-(1,1) cycle residual convergence - flower domain with
problem resolution from 32 to 1024 . The interior relaxation is a finite element
distributive relaxation, and the Poisson’s ratio is 0.49. Left: Dirichlet boundary
condition; right: Neumann boundary condition.

143

CHAPTER 8

Soft constraint system

In the previous chapters, we propose the constraints by enforcing Dirichlet bound-

ary conditions. In practical applications, such conditions are not alway conve-

nient to be specified. For example, in character animations, artists design the

bones motion paths which can be used to prescribe the Dirichlet boundary condi-

tions. However, the target configurations can be complicated. As a consequence,

the approximated bone positions may propose conflicting Dirichlet conditions at

discrete level or leading to solutions that are physically not plausible. Soft con-

straints, although as a type of inexact constraints, are more robust and applicable

to more general control problems.

We implement a soft constraint discretization and combine it with the previ-

ous co-rotational linear elasticity dynamic system. We also develop a multigrid

method to solve the soft constraint system efficiently. Finally, the collision prob-

lem is modeled as soft constraint problems and generating robust results.

8.1 Soft constraint energy

In elasticity problem, we minimize an elasticity energy Eelasticity. We modify this

energy by adding a penalty energy which estimates the discrepancy between the

embedded positions and the target positions Ê = Eelasticity + Econstraint. This

discrepancy is measured by the geometric measure of their differences:

144

1. point constraints: Econstraint =
τp
2

∑
i

|φ(xi)− φtarget

i |2 ;

2. line constraints: Econstraint =
τl
2

∫
Γ

|φ(x(t))− φtarget(t)|2 dl;

3. surface constraints: Econstraint =
τs
2

∫
Ω

|φ(x(s, t))− φtarget(s, t)|2 dsdt.

We discretize the above three types of constraints using a spring system be-

tween a set of material points (we call constraint sources) and the corresponding

constraint targets.

Econstraint =
τ

2

∑
i

|φ(xi)− φtarget

i |2 ,

where φ(xi) is approximated by the embedded value, which is interpolated from

the discrete solution φh via an interpolation mapping Ah from the solution vector

to the embedded vector.

Therefore, the discretized linear system is

(Lh − τh(γ−d)AhTAh)φ = f − τh(γ−d)AhTφtarget,

where γ = 0, 1, 2 for point constraints, line constraints and surface constraints.

Lh is a discretized system of the elasticity force −DEelasticity
Dφ

. In this chapter, we

consider both linear and co-rotational linear elasticity model with finite difference

or mixed finite element discretizations. Although our system is a discretization

of the augmented equation (6.2), effectively, we classify the variables close to the

constraints as boundary variables, and treat them in the boundary relaxation. In

the boundary band, we recover an unaugmented system as in 9.1, 6.1.4 and 7.4.5,

and apply boundary relaxation to (5.6). The essential part of the boundary

relaxation is a Gauss-Seidel relaxation on the unaugmented system Lunaugu =

145

f unaug.

With convex elasticity energy Eelasticity, Lh is negative definite, and AhTAh is

symmetric positive definite, thus the overall system is symmetric definite, which

can be relaxed again using Gauss-Seidel relaxation.

8.2 Coarsening of soft constraint operator

We split the operators and generate the coarse level discretization for each of the

two operators: Lh and AhTAh. Lh is coarsened in exactly the same way as we

discussed before; the coarsening of Kh = AhTAh is generated in three different

approaches.

8.2.1 Galerkin coarsening

For an arbitrary restriction Rh, prolongation Ph and a linear system Khuh = fh,

Galerkin coarsening defines the following a coarse grid problem

RhKhPhu2h = Rh(fh −Khuh).

For symmetric positive definite system Kh, if Rh = Ph or is a constant scaling

away from Ph, then the Galerkin coarsening solution gives the optimal coarse

grid correction U = u2h to minimize

1

2
(uh + PhU)TKh(uh + PhU)− fhT (uh + PhU).

We implemented Galerkin coarsening in an efficient way using the sparsity and

uniformity of restriction and prolongation.

Before applying Galerkin coarsening in a multigrid scheme, a coarsening test

146

is applied to convince of the quality of Galerkin coarsening (Algorithm 11).

Algorithm 11 CoarseningTest

1: procedure CoarseningTest(Lh,fh)
2: solve φh0 ← (Lh)−1fh exactly
3: define a coarse grid correction φ2h

0 ← δ2h(x0), and coarse grid right hand
side f 2h ← 0

4: compute coarse grid residual f 2h
0 ← −A2hφ2h

0

5: apply coarse grid perturbation by φh1 ← φh0 + Pφ2h
0

6: compute and restrict residual f 2h
1 = R(fh − Lhφh1)

7: compare f 2h
0 with f 2h

1

8: solve A2hφ2h
1 ← f 2h

1 exactly
9: compare φ2h

0 with φ2h
1

10: end procedure

Since f 2h
1 = R(fh − Lhφh1) = R(fh − Lhφh0 − LhPφ2h

0) ≈ −RLhPφ2h
0 , we

expect f 2h
1 to be equal to f 2h

0 , and φ2h
0 = −φ2h

1 . In practice, due to the fact that

our unaugmented residual is generated from the restricted augmented residual,

we cannot directly verify this relationship, instead, φ2h
0 and φ2h

1 are plotted and

visually φ2h
1 approximates φ2h

1 well (see Figure 8.2).

8.2.2 Re-discretization and natural coarsening

We investigate a coarse grid discretization generated by re-discretizing the con-

straint energy on the coarser level. In the following part of this chapter, we

denote R as the restriction operator and P as the prolongation operator.

We show that for bi-linear interpolation on collocated grids, energy discretiza-

tion on coarse grid leads to the exact Galerkin coarsening. In fact, AhPφ2h

first interpolates from a coarse solution to fine solution using bi-linear interpola-

tion, then interpolate from fine solution to constraint points set using again bi-

linear interpolation, the result is the same as directly interpolated from a coarse

grid solution with bi-linear interpolation for all sampling points. By uniqueness,

147

AhP = A2h. If R = 1
2d

PT

R(− τ

hd
AhTAh)P = − τ

(2h)d
(AhP)TAhP = − τ

(2h)d
(A2h)TA2h

Therefore, the energy rediscretization on a coarse grid leads to the exact Galerkin

coarsening.

Based on that observation, we try to use energy rediscretization as a promising

candidate for staggered grid coarsening. In practice, it does keep a nice multigrid

convergence rate even when the soft constraint term dominates.

The energy rediscretization scheme is easy to implement, however, in this

approach, the energy of all discretization levels depends on all constraint sources

regardless of level of discretization. Therefore, even for the coarsest grid, the

interpolation operators for all constraint sources need to be accumulated. This

leads to an important increase for cost of coarse grid discretization. Galerkin

coarsening has a computational cost that reduces with the number of degrees of

freedom, so we are also interested in directly applying Galerkin coarsening .

8.2.3 Subsampling

In our testing examples, the line constraint is given in an analytical way, and

this derives a natural subsampling coarsening (see Figure 8.1). The subsampling

reduces sample points by half, therefore its weight for each subsampled constraint

need to be doubled to keep the consistence of energy, and for surface constraint

the weight needs to be quadrupled.

148

Figure 8.1: Soft constraints samples. Left: line constraints coarsening; right:
two-dimensional example with point and line constraints.

8.3 Examples and results

8.3.1 Two-dimensional examples

We implement the soft constraint discretization and a multigrid method and

tested them on a two-dimensional example.

We start with a quasistatic problem where point constraints and line con-

straints are applied (see Figure 8.1). The active region is a square domain with

Dirichlet boundary conditions defined on left and right sides, and free surface

boundary conditions defined on the other two sides. We first compute the so-

lutions using an LU decomposition exact solver for different constraint stiffness

values for reference. We visually validated that under high stiffness limit, the

constraint solution approaches constraint target.

Single level relaxations converge slower and slower as τ increases to 109. Vi-

sually, the solver has difficulty in reducing error components shown in Figure 8.3.

149

Moreover, a high frequency residual supported by the constraint system persists.

In practice, a box smoother based on PLU decomposition or an approximated box

smoother with two Gauss-Seidel relaxation sweeps within each box will increase

the smoothing effect significantly.

Figure 8.2: Constraint coarsening test (top left: exact solution; top right: solution
perturbed by δ on one coarse grid variable. Bottom left: solution after coarse
grid correction; bottom right: after post relaxation)

We implemented the multigrid method for another example with both point

and line constraints. We used Galerkin coarsening and listed in Table 8.1 the

multigrid convergence rate for two-grid cycle, V-(1,1) cycle and W-(1,1) cycle

on a 256 × 256 resolution domain. A coupled box relaxation is used near the

constraints with a boundary band of width being 4 cells. The box relaxation is

approximated with 2 or 3 Gauss-Seidel local sweeps over a box of width up to 3

cells.

150

Table 8.1: 2D soft constraint multigrid convergence

τ multigrid cycle box iterations box size convergence
107 two-grid 5 1 0.29
108 two-grid 5 1 0.31
109 two-grid 5 1 0.89
109 two-grid 1 3 0.29
107 V-(1,1) 5 1 0.49
108 V-(1,1) 5 1 0.48
109 V-(1,1) 5 1 0.80
109 V-(1,1) 1 2 0.50
107 W-(1,1) 5 1 0.30
108 W-(1,1) 5 1 —-
109 W-(1,1) 1 2 0.32

8.3.2 Stiff constraint

For τ being relatively small, a small number of boundary relaxations generate

efficient V cycle or W cycle, but for very stiff constraints, we cannot achieve a

good convergence even with a lot of boundary relaxations. From a visualization

of the the stagnated solution (Figure 8.3) and the residual image, we realize

that one of the reason is the inefficient smoother near the constraints. Due to the

narrow support of constraint operator, the constraint system is often singular, and

when the constraint dominates, the boundary system becomes ill-conditioned,

and a Gauss-Seidel solver fails. Fortunately, a wider box solver will increase the

smoothing effect significantly. In Table 8.1, we can see that even for very stiff

constraint, an approximated box solver with two Gauss-Seidel sweeps on a box

of 2 or 3 cells wide will generate a two grid multigrid cycle with convergence rate

as low as 0.3.

151

Figure 8.3: High stiffness difficulty

8.3.3 Collision

We also applied our method to three dimensional cases and resolve collision prob-

lems. First of all, we consider geometric surfaces with analytical signed distance

function. At each time step, we compute the levelset value of all particles from

one object agains the signed distance function of the other objects. We apply

constraints to all particles that has negative values of ϕ(φ). A constraint is ap-

plied on all such particles with target being the particle projected along normal

direction of the levelset gradient (see Figure 8.4).

φtarget

i = φi −
∇ϕ(φi)

|∇ϕ(φi)|
ϕ(φi)

We applied our algorithm on the dynamic system to resolve collision effects as

shown in Figure 8.4.

We also applied our algorithm on collisions between deformable objects. At

each time step, the signed distance function of each deformed objects is updated.

152

Figure 8.4: Collision detection and resolved collisions between a deformable
sphere and an undeformable sphere. Left: collision detection and collision con-
straint target estimation. Black: levelset object; red: triangular mesh; arrows
pointing from collided points to constraint targets. Right: colliding spheres ex-
ample. A deformable sphere is attached to a brick in blue specified by Dirichlet
boundary condition, and pushed to collide with a rigid sphere.

And the penetrated particles are detected between each of the objects and any

other objects. Our results demonstrated a well resolved fast collision between

two deformable objects even if one of them is very thin in Figure 8.5.

153

Figure 8.5: Two deformable objects colliding against each other.

154

CHAPTER 9

Conclusion and future works

We develop a multigrid framework for deformable solids simulation, which is effi-

cient in resolving a wide range of materials including linear elastic materials from

compressible to incompressible limit, as well as some nonlinear materials. The

framework is efficient in resolving from a medium size problem to problems with

millions of degrees of freedom. With certain simplification of the discretization, a

simulation rate of near interactive speed is achieved for very high resolution prob-

lems with arbitrary irregular geometries. A second order accuracy is achieved by

using a mixed finite element method. And the framework is extended to include

soft constraint problems. The proposed framework is promising for further in-

vestigation, and the strength of the approach would be improved if some of the

difficulties can be better resolved.

9.1 Efficient boundary treatment

The proposed multigrid methods using both finite difference method and finite

element method, achieve an optimum efficiency with regular geometry and trivial

boundary conditions. However, their efficiencies are suboptimal for arbitrary ge-

ometry problems. Although the boundary relaxation requires smaller and smaller

amount of computational effort as the resolution increases. The efficiency of the

overall methods would be improved with better boundary treatment. This issue

155

is related to two potential problems: the inaccuracy of the boundary coarsening

and the lack of efficiency of boundary relaxations.

First, if the boundary conditions and nearby interior equations can be resolved

in a coupled way, then the boundary relaxation is much more efficient. While

the finite element method naturally resolves Neumann boundary conditions, ef-

forts are made to eliminate Neumann boundary conditions in the finite difference

method presented in section . Non-embedded Dirichlet boundary conditions in fi-

nite difference case are trivial boundary conditions, and can be relaxed in coupling

with interior by simply fixing the values of the Dirichlet variables. In finite ele-

ment case, the Dirichlet conditions are proposed in a week form, based on which

we derive a simple approach to eliminated the Dirichlet boundary conditions us-

ing fundamental basis. Therefore, no additional error should be introduced to

the boundary equations. However, the finite element case still requires extra

boundary relaxations to achieve the expected multigrid convergence rate. This

is related to the ill-conditioning of the reduced system due to the arbitrary cut

cells.

Secondly, the discrepancy between coarse and fine discretizations is a source

of inaccurate coarsening. In fact, we plan to investigate the combination of a

Galerkin coarsening in the boundary band and a geometric coarsening in interior.

In the incompressible limit, the augmented linear elasticity problem degen-

erates to the Stokes’ problem. Thus we are aiming at a continuation towards

the Stokes’ problem. Although the distributive relaxation naturally extends to

the incompressible limit, the boundary relaxation does not. In fact, we eliminate

pressure variable to generate an unaugmented system that is consistent with the

unaugmented differential equation; however, for the Stokes’ problem, there is no

unaugmented system. Also, the unaugmentation process requires extra computa-

156

tion and memory cost. How to develop an efficient boundary relaxation without

unaugmenting the system is of future interest.

9.2 Nonlinear hyperelastic solids

In the proposed solution for the co-rotational elasticity problem, we use the multi-

grid method to solve for a linearization of the nonlinear problem. This, however, is

not a full linearization; thus, the nonlinear iteration does not converge efficiently

especially with drastic rotations, when no accurate prior information about the

rotation is available. We develop a full linearization for the co-rotational elasticity

equation, which is similar to the derivation in Moita and Crisfield (1996). This

will facilitate a more efficient solution for the co-rotational elasticity problem.

Given our experience with linear multigrid methods, we are also interested in

investigating the nonlinear multigrid method (FAS). One of the essential differ-

ences in implementation lies in the fact that a nonlinear local relaxation requires

a frequent update of local systems. Notice that each such update requires ac-

cessing neighboring solutions as well as an SVD, which will increase the cost of

one relaxation sweep. The balance between the increasing of computation cost

per iteration and the efficiency improvement of one multigrid cycle requires in-

vestigation be investigated. In nonlinear elasticity problems, the stable solutions

between multiple levels might bifurcate under refinement, which is another source

of inaccurate coarse grid approximations.

Klaas et al. (1999) proposed a general mixed formulation for hyperelastic

models. We are interested in investigating realistic models with nonlinear incom-

pressibility. More accurate biomechanics models for human flesh and tissues can

be anisotropic Irving et al. (2004); Teran et al. (2005a). An algebraic coarsening

157

or line relaxation was developed for anisotropic elliptic equations. However, the

algebraic coarsening will generate unstructured grids and lose the nice regular-

ity, and the investigation of a line relaxation with non-grid aligned anisotropy

direction is of interest.

9.3 Collision detection and stable solution

The proposed soft constraint method can be applied to resolve collision between

deformable objects. We are interested in investigating efficient self-collision de-

tection techniques that will not become a performance bottleneck, given the ef-

ficiency of the elasticity solver. Multi-resolution collision detection and response

techniques (e.g. Otaduy et al. (2007)) would be expected to be the most com-

patible candidates.

The soft constraint method is an inexact constraint. To get better constraint

conditions, stiffer constraints are required. Our method will not be efficient

for very high stiffness problems. In fact, this issue has similar features to the

instability issue of the original system under the incompressible limit. One may

consider our treatment of a weak Dirichlet boundary condition in section 7.3 as

an extreme case of a soft constraint. We are interested in investigating similar

approaches.

The soft constraint solver potentially can be used for articulated character

animation as well. Our method is implemented in a research-purpose implemen-

tation. We are interested in developing a user interface for animating articulated

characters.

158

9.4 Adaptivity

Adaptive data structure economized up to 80% on the number of variables as in-

dicated in Debunne et al. (1999); Sifakis et al. (2007b). However, due to different

element sizes, the resulting numerics may not be well conditioned. In fact, the

multigrid method is particularly friendly with adaptively refined regular grids.

We are interested in investigating adaptive multigrid methods.

9.5 Parallel implementation for irregular models

Finally, although our initial investigation has demonstrated excellent potential for

scaling on many-core platforms, a more principled investigation needs to assess

the performance of our method on platforms with SIMD capability, and address

a broader spectrum of constitutive behaviors and interacting geometries.

159

Bibliography

AlexanderLinke (2008). Divergence-Free Mixed Finite Elements for the Incom-

pressible Navier-Stokes Equation. PhD thesis, University of Erlangen. 25

Andersson, J., Hutton, C., Ashburner, J., Turner, R., and Friston, K. (2001).

Modeling geometric deformations in EPI time series. Neuroimage, 13(5):903–

919. 4

Arbogast, T., Wheeler, M., and Zhang, N. (1996). A nonlinear mixed finite

element method for a degenerate parabolic equation arising in flow in porous

media. SIAM Journal on Numerical Analysis, 33(4):1669–1687. 25

Arnold, D., Brezzi, F., and Fortin, M. (1984). A stable finite element for the

Stokes equations. Calcolo, 21(4):337–344. 26

Arnold, D., Falk, R., and Winther, R. (2000). Multigrid in H (div) and H (curl).

Numerische Mathematik, 85(2):197–217. 27

Arnold, D. and Winther, R. (2002). Mixed finite elements for elasticity. Nu-

merische Mathematik, 92(3):401–419. 25

Arnold, D. N. (1990). Mixed finite element methods for elliptic problems. Com-

puter Methods in Applied Mechanics and Engineering, 82(1-3):281–300. 24

Babuška, I. and Suri, M. (1992). Locking effects in the finite element approxima-

tion of elasticity problems. Numerische Mathematik, 62(1):439–463. 25

Bank, R. (1996). Hierarchical bases and the finite element method. Acta numer-

ica, 5:1–43. 20

Baraff, D. and Witkin, A. (1992). Dynamic simulation of non-penetrating flexible

bodies. SIGGRAPH Computer Graphics, 26(2):303–308. 13, 14, 15, 23

160

Baraff, D. and Witkin, A. (1998). Large steps in cloth simulation. In Proceedings

of the 25th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’98, pages 43–54, New York, NY, USA. ACM. 12, 23

Barbič, J., da Silva, M., and Popović, J. (2009). Deformable object animation

using reduced optimal control. ACM Transactions on Graphics, 28(3):1–9. 20

Barbič, J. and James, D. (2005). Real-Time subspace integration for St. Venant-

Kirchhoff deformable models. ACM Transactions on Graphics, 24(3):982–990.

14, 15, 20, 22

Barr, A. (1981). Superquadrics and angle-preserving transformations. IEEE

Computer graphics and Applications, 1(1):11–23. 12

Barr, A. (1984). Global and local deformations of solid primitives. In Proceedings

of the 11th annual conference on Computer graphics and interactive techniques,

page 30. ACM. 12

Barzel, R., Hughes, J., and Wood, D. (1996). Plausible motion simulation for

computer graphics animation. Computer Animation and Simulation96, pages

184–197. 3

Bedrossian, J., von Brecht, J., Zhu, S., Sifakis, E., and Teran, J. (2010). A

Second Order Virtual Node Method for Poisson Interface on Irregular Domains.

Journal of Computational Physics, 229:6405–6426. 108, 113, 115, 116

Belhachmi, Z. and Tahir, S. Mixed finite element discretization of some varia-

tional inequalities arising in elasticity problems in domains with cracks. 2004-

Fez conference on Differential Equations and Mechanics Electronic Journal of

Differential Equations, Conference 11, 2004, page 3340. 25

161

Benzi, M. and Golub, G. (2005). A preconditioner for generalized saddle point

problems. SIAM Journal on Matrix Analysis and Applications, 26(1):20–41.

26

Benzi, M., Golub, G., and Liesen, J. (2005). Numerical solution of saddle point

problems. Acta numerica, 14:1–137. 23

Berkley, J., Turkiyyah, G., Berg, D., Ganter, M., and Weghorst, S. (2004). Real-

time finite element modeling for surgery simulation: An application to virtual

suturing. IEEE Transactions on visualization and computer graphics, pages

314–325. 4

Bischoff, J., Arruda, E., and Grosh, K. (2000). Finite element modeling of hu-

man skin using an isotropic, nonlinear elastic constitutive model. Journal of

Biomechanics, 33(6):645–652. 4

Bochev, P., Dohrmann, C., and Gunzburger, M. (2007). Stabilization of low-order

mixed finite elements for the Stokes equations. SIAM Journal on Numerical

Analysis, 44(1):82–101. 26

Boland, J. M. and Nicolaides, R. A. (1984). On the stability of bilinear-constant

velocity-pressure finite elements. Numerische Mathematik, 44(2):219–222. 26

Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P. (2003). Sparse matrix solvers

on the gpu: conjugate gradients and multigrid. pages 917–924. 8, 21, 27

Bonet, J. and Wood, R. (1997). Nonlinear continuum mechanics for finite element

analysis. Cambridge University Press. 15, 17, 28

Börgers, C. and Widlund, O. (1990). On finite element domain imbedding meth-

ods. SIAM Journal on Numerical Analysis, 27(4):963–978. 17

162

Braess, D. and Ming, P. (2005). A finite element method for nearly incompressible

elasticity problems. Mathematics of Computation, 74(249):25–52. 25

Brandt, A. (1973). Multi-level adaptive technique (MLAT) for fast numerical

solution to boundary value problems. In Proceedings of the Third International

Conference on Numerical Methods in Fluid Mechanics, pages 82–89. Springer.

27

Brandt, A. (1977a). Multi-Level Adaptive Solutions. Mathematics of computa-

tion, 31(138):333–390. 6, 29, 56, 79

Brandt, A. (1977b). Multi-Level Adaptive Solutions. Mathematics of computa-

tion, 31(138):333–390. 27

Brandt, A. (1986). Algebraic multigrid theory: The symmetric case. Applied

Mathematics and Computation, 19(1-4):23–56. 27, 34

Brandt, A. (1994). Rigorous quantitative analysis of multigrid, I: constant coef-

ficients two-level cycle with L 2-norm. SIAM Journal on Numerical Analysis,

31(6):1695–1730. 44

Brandt, A. and Dinar, N. (1978a). Multi-grid solutions to elliptic flow prob-

lems. In Numerical methods for partial differential equations: proceedings of

an advanced seminar, page 53. Academic Press. 27

Brandt, A. and Dinar, N. (1978b). Multigrid solutions to elliptic flow problems.

Numerical methods for partial differential equations, pages 53–147. 40, 47

Brenner, S. (2009). Fast Solvers for Mixed Finite Element Methods. Mixed Finite

Element Technologies, pages 57–88. 26

163

Brenner, S., Li, F., and Sung, L. (2007). A locally divergence-free nonconforming

finite element method for the time-harmonic Maxwell equations. Mathematics

of Computation, 76(258):573. 25

Brezzi, F. and Fortin, M. (1991). Mixed and hybrid finite element methods.

Springer-Verlag: New York. 24, 30, 38, 96

Brezzi, F., Marini, L., Micheletti, S., Pietra, P., Sacco, R., and Wang, S. (2005).

Discretization of semiconductor device problems (I). Handbook of Numerical

Analysis, 13:317–441. 26

Bridson, R., Fedkiw, R., and Anderson, J. (2005). Robust treatment of collisions,

contact and friction for cloth animation. In ACM SIGGRAPH 2005 Courses,

page 2. ACM. 24

Bridson, R., Marino, S., and Fedkiw, R. (2003). Simulation of clothing with

folds and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 28–36. Eurographics Association. 3

Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000). A multigrid tutorial

(2nd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA. 27

Bro-Nielsen, M. et al. (1998a). VR simulation of abdominal trauma surgery. In

In Medicine Meets Virtual Reality 6. Citeseer. 4

Bro-Nielsen, M., Inc, H., and Rockville, M. (1998b). Finite element modeling in

surgery simulation. Proceedings of the IEEE, 86(3):490–503. 4

Cai, Z., Jones, J., McCormick, S., and Russell, T. (1997). Control-volume mixed

finite element methods. Computational Geosciences, 1(3):289–315. 26

164

Cao, Z. (2003). Fast Uzawa algorithm for generalized saddle point problems* 1.

Applied Numerical Mathematics, 46(2):157–171. 26

Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popovic, Z. (2007).

Physically based rigging for deformable characters. Graphical Models, 69(1):71–

87. 24

Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. (2002a). A mul-

tiresolution framework for dynamic deformations. In Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages

41–47. ACM. 14, 17, 21

Capell, S., Green, S., Curless, B., Duchamp, T., and Popovic, Z. (2002b). Inter-

active skeleton-driven dynamic deformations. ACM Transactions on Graphics,

21(3):586–593. 15, 24

Chen, Z., Cockburn, B., Jerome, J., and Shu, C. (1995). Mixed-RKDG finite

element methods for the 2-D hydrodynamic model for semiconductor device

simulation. VLSI Design, 3(2):145–158. 25

Choi, K.-J. and Ko, H.-S. (2005a). Stable but responsive cloth. In ACM SIG-

GRAPH 2005 Courses, page 1, New York, NY, USA. ACM. 3

Choi, M. and Ko, H. (2005b). Modal warping: Real-time simulation of large

rotational deformation and manipulation. IEEE Transactions on Visualization

and Computer Graphics, pages 91–101. 20

Cohen, M. (1992). Interactive spacetime control for animation. ACM SIGGRAPH

Computer Graphics, 26(2):293–302. 23

Cotin, S., Delingette, H., and Ayache, N. (2000). A hybrid elastic model for

165

real-time cutting, deformations, and force feedback for surgery training and

simulation. The Visual Computer, 16(8):437–452. 4

Cotin, S., Delingette, H., and Ayache, N. (2002). Real-time elastic deformations

of soft tissues for surgery simulation. Visualization and Computer Graphics,

IEEE Transactions on, 5(1):62–73. 16

Cotin, S., Delingette, H., Bro-Nielsen, M., Ayache, N., Clément, J., Tassetti,

V., and Marescaux, J. (1996). Geometric and physical representations for a

simulator of hepatic surgery. Medicine Meets Virtual Reality: Health Care in

the Information Age, page 139. 15

Cutting, C., Oliker, A., Haring, J., Dayan, J., and Smith, D. (2002). Use of

three-dimensional computer graphic animation to illustrate cleft lip and palate

surgery. Computer Aided Surgery, 7(6):326–331. 4

Debunne, G., Cani, M.-P., Desbrun, M., and Barr, A. (2000). Adaptive simulation

of soft bodies in real-time. In Proceedings of the Computer Animation, page 15,

Washington, DC, USA. IEEE Computer Society. 13

Debunne, G., Desbrun, M., Barr, A., and Cani, M. (1999). Interactive mul-

tiresolution animation of deformable models. In Eurographics Workshop on

Computer Animation and Simulation, volume 99, pages 133–144. Citeseer. 21,

159

Debunne, G., Desbrun, M., Cani, M., and Barr, A. (2001). Dynamic real-time

deformations using space and time adaptive sampling. In Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages

31–36. ACM. 14, 21

166

Desbrun, M. and Gascuel, M. (1996). Smoothed particles: A new paradigm

for animating highly deformable bodies. In Proceedings of the Eurographics

workshop on Computer animation and simulation, volume 96, pages 61–76.

Citeseer. 18

Dick, C., Georgii, J., Burgkart, R., and Westermann, R. (2008). Computational

steering for patient-specific implant planning in orthopedics. pages 83–92. 27

Dick, C., Georgii, J., and Westermann, R. (2010). A real-time multigrid fi-

nite hexahedra method for elasticity simulation using CUDA. Technical re-

port, Computer Graphics and Visualization Group, Technische Universität

München, Germany. 22, 27

Dongarra, J. and Kontoghiorghes, E. (2001). Parallel numerical linear algebra.

Nova Science. 8, 21

Faloutsos, P., van de Panne, M., and Terzopoulos, D. (1997). Dynamic free-form

deformations for animation synthesis. IEEE Transactions on Visualization and

Computer Graphics, 3(3):201–214. 13

Fung, Y. (1993). Biomechanics: mechanical properties of living tissues. Springer.

16

Gaspar, F., Gracia, J., Lisbona, F., and Oosterlee, C. (2008). Distributive

smoothers in multigrid for problems with dominating grad-div operators. Nu-

merical linear algebra with applications, 15(8):661–683. 27, 40

Georgii, J., Echtler, F., and Westermann, R. (2005). Interactive simulation of

deformable bodies on GPUs. Simulation and Visualization, 2005:247–258. 22

Georgii, J. and Westermann, R. (2005). Mass-spring systems on the GPU. Sim-

ulation Modelling Practice and Theory, 13(8):693–702. 12

167

Georgii, J. and Westermann, R. (2006). A multigrid framework for real-time

simulation of deformable bodies. Computers and Graphics, 30(3):408–415. 16,

27, 59

Georgii, J. and Westermann, R. (2008). Corotated finite elements made fast and

stable. In Proceedings of the 5th Workshop On Virtual Reality Interaction and

Physical Simulation. 16, 59

Gibson, S. and Mirtich, B. (1997). A survey of deformable modeling in computer

graphics. MERL, TR-97, 19. 11

Girault, V. and Raviart, P.-A. (1979). Finite element approximation of

the Navier-Stokes equations, volume 749 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin. 26

Gissler, M., Becker, M., and Teschner, M. (2006). Local constraint methods for

deformable objects. In Proceedings of the 3rd Workshop in VR Interactions

and Physical Simulation (VRIPHYS), pages 1–8. Citeseer. 22

Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. (2007).

Efficient simulation of inextensible cloth. ACM Transactions on Graphics,

26(3):49. 3

Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and Humphreys, G. (2003).

A multigrid solver for boundary value problems using programmable graphics

hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-

ence on Graphics hardware, pages 102–111, Aire-la-Ville, Switzerland. Euro-

graphics Association. 27

Gopalakrishnan, J. and Tan, S. (2009). A convergent multigrid cycle for

168

the hybridized mixed method. Numerical Linear Algebra with Applications,

16(9):689–714. 27

Gortler, S. and Cohen, M. (1995). Hierarchical and variational geometric mod-

eling with wavelets. In Proceedings of the 1995 symposium on Interactive 3D

graphics. ACM. 21

Gourret, J., Thalmann, N., and Thalmann, D. (1989). Simulation of object

and human skin formations in a grasping task. ACM SIGGRAPH Computer

Graphics, 23(3):21–30. 4

Green, S., Turkiyyah, G., and Storti, D. (2002). Subdivision-based multilevel

methods for large scale engineering simulation of thin shells. In Proceedings of

the seventh ACM symposium on Solid modeling and applications, pages 265–

272. ACM. 27

Griebel, M., Oeltz, D., and Schweitzer, M. A. (2003). An algebraic multigrid

method for linear elasticity. SIAM Journal on Scientific Computing, 25(2):385–

407. 71, 81

Grinspun, E., Krysl, P., and Schröder, P. (2002). CHARMS: a simple framework

for adaptive simulation. ACM Transactions on Graphics, 21(3):281–290. 21

Guo, Z., Peng, X., and Moran, B. (2006). A composites-based hyperelastic con-

stitutive model for soft tissue with application to the human annulus fibrosus.

Journal of the Mechanics and Physics of Solids, 54(9):1952–1971. 4

Hackbusch, W. and Trottenberg, U. (1982). Multigrid methods. 6, 27

Han, H. and Wu, X. (1998). A new mixed finite element formulation and the

MAC method for the Stokes equations. SIAM Journal on Numerical Analysis,

35(2):560–571. 26, 98

169

Han, H. and Yan, M. (2008). A Mixed Finite Element Method on A Staggered

Mesh for Navier-Stokes Equations. Journal of Computational Mathematics,

26(6):816–824. 26

Hansbo, P. and Larson, M. (2002). Discontinuous Galerkin methods for incom-

pressible and nearly incompressible elasticity by Nitsche’s method. Computer

methods in applied mechanics and engineering, 191(17-18):1895–1908. 16

Harlow, F., Welch, J., et al. (1965). Numerical calculation of time-dependent vis-

cous incompressible flow of fluid with free surface. Physics of fluids, 8(12):2182–

2189. 30

Hauth, M. and Strasser, W. (2004). Corotational simulation of deformable solids.

In Proc WSCG, volume 12, pages 137–145. Citeseer. 16, 59

Heidelberger, B., Teschner, M., Keiser, R., Müller, M., and Gross, M. (2004).

Consistent penetration depth estimation for deformable collision response. In

Proceedings of Vision, Modeling, Visualization VMV04, Stanford, USA, pages

339–346. Citeseer. 22, 23

Hiptmair, R. (1997). Multigrid method for H (div) in three dimensions. Electronic

Transactions on Numerical Analysis, 6:133–152. 27

Hsu, W. M., Hughes, J. F., and Kaufman, H. (1992). Direct manipulation of

free-form deformations. SIGGRAPH Computer Graphics, 26(2):177–184. 12

Hughes, C., Grzeszczuk, R., Sifakis, E., Kim, D., Kumar, S., Selle, A., Chhugani,

J., Holliman, M., and Chen, Y. (2007). Physical simulation for animation

and visual effects: parallelization and characterization for chip multiprocessors.

volume 35, page 231. ACM. 8, 21

170

Hughes, T. (1987). The Finite Element Method: Linear Static and Dynamic

Finite Element Analysis. Prentice Hall. 76

Hutchinson, D., Preston, M., and Hewitt, T. (1996). Adaptive refinement for

mass/spring simulations. In Proceedings of the Eurographics workshop on

Computer animation and simulation ’96, pages 31–45, New York, NY, USA.

Springer-Verlag New York, Inc. 13

Irving, G., Schroeder, C., and Fedkiw, R. (2007). Volume conserving finite el-

ement simulations of deformable models. In ACM SIGGRAPH 2007 papers,

page 13, New York, NY, USA. ACM. 16, 24

Irving, G., Teran, J., and Fedkiw, R. (2004). Invertible finite elements for ro-

bust simulation of large deformation. In Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 131–140. Eu-

rographics Association. 16, 30, 157

Isaacs, P. M. and Cohen, M. F. (1987). Controlling dynamic simulation with

kinematic constraints. In Proceedings of the 14th annual conference on Com-

puter graphics and interactive techniques, pages 215–224, New York, NY, USA.

ACM. 23

James, D. and Fatahalian, K. (2003). Precomputing interactive dynamic de-

formable scenes. ACM Transactions on Graphics, 22(3):879–887. 20

James, D. and Pai, D. (1999). ArtDefo: accurate real time deformable objects. In

Proceedings of the 26th annual conference on Computer graphics and interactive

techniques, pages 65–72. ACM Press/Addison-Wesley Publishing Co. 15

Kaasschieter, E., Frijns, A., and Huyghe, J. (2003). Mixed finite element mod-

171

elling of cartilaginous tissues. Mathematics and Computers in Simulation, 61(3-

6):549–560. 25

Kaufmann, P., Martin, S., Botsch, M., and Gross, M. (2009a). Flexible simulation

of deformable models using discontinuous Galerkin FEM. Graphical Models,

71(4):153–167. 16, 17

Kaufmann, P., Martin, S., Botsch, M., and Gross, M. (2009b). Flexible simula-

tion of deformable models using discontinuous galerkin fem. Graphical Models,

71(4):153–167. 73

Kazhdan, M. and Hoppe, H. (2008). Streaming multigrid for gradient-domain

operations on large images. ACM Transactions on Graphics, 27(3):1–10. 27

Klaas, O., Maniatty, A., and Shephard, M. (1999). A stabilized mixed finite

element method for finite elasticity.:: Formulation for linear displacement and

pressure interpolation. Computer Methods in Applied Mechanics and Engineer-

ing, 180(1-2):65–79. 26, 157

Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G.,

and Parish, Y. I. H. (1996). Simulating facial surgery using finite element

models. In Proceedings of the 23rd annual conference on Computer graphics

and interactive techniques, pages 421–428, New York, NY, USA. ACM. 14

Krysl, P., Grinspun, E., and Schröder, P. (2003). Natural hierarchical refinement

for finite element methods. International Journal for Numerical Methods in

Engineering, 56(8):1109–1124. 20

Kui, L., Liu, G., and Zienkiewicz, O. (1985). A generalized displacement method

for the finite element analysis of thin shells. International Journal for Numer-

ical Methods in Engineering, 21(12):2145–2155. 26

172

Lapeer, J., Gasson, D., and Karri, V. (2010). A hyperelastic finite element model

of human skin for interactive real-time surgical simulation. IEEE Transactions

on Biomedical Engineering, 99:1. 4

Lee, S.-H., Sifakis, E., and Terzopoulos, D. (2009). Comprehensive biomechanical

modeling and simulation of the upper body. ACM Transactions on Graphics,

28(4):1–17. 4, 72

Lee, Y., Terzopoulos, D., and Waters, K. (1995). Realistic modeling for facial

animation. In Proceedings of the 22nd annual conference on Computer graphics

and interactive techniques, SIGGRAPH ’95, pages 55–62, New York, NY, USA.

ACM. 13

Lekien, F. and Marsden, J. (2005). Tricubic interpolation in three dimensions.

International Journal for Numerical Methods in Engineering, 63(3):455–471.

84

Liu, A., Tendick, F., Cleary, K., and Kaufmann, C. (2003). A survey of surgical

simulation: applications, technology, and education. Presence: Teleoperators

& Virtual Environments, 12(6):599–614. 4

Losasso, F., Gibou, F., and Fedkiw, R. (2004). Simulating water and smoke with

an octree data structure. ACM Transactions on Graphics, 23(3):457–462. 79

Marescaux, J., Clément, J., Tassetti, V., Koehl, C., Cotin, S., Russier, Y., Mutter,

D., Delingette, H., and Ayache, N. (1998). Virtual reality applied to hepatic

surgery simulation: the next revolution. Annals of Surgery, 228(5):627. 4

Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. (2010).

Unified simulation of elastic rods, shells, and solids. In ACM SIGGRAPH

2010 papers, pages 1–10, New York, NY, USA. ACM. 19

173

Metaxas, D. and Terzopoulos, D. (1992). Dynamic deformation of solid primitives

with constraints. volume 26, pages 309–312, New York, NY, USA. ACM. 15,

23

Milliron, T., Jensen, R. J., Barzel, R., and Finkelstein, A. (2002). A framework for

geometric warps and deformations. ACM Transactions on Graphics, 21(1):20–

51. 12

Moita, G. and Crisfield, M. (1996). A finite element formulation for 3-D continua

using the co-rotational technique. International Journal for Numerical Methods

in Engineering, 39(22):3775–3792. 16, 157

Molino, N., Bao, Z., and Fedkiw, R. (2004). A virtual node algorithm for changing

mesh topology during simulation. In ACM SIGGRAPH 2004 Papers, pages

385–392, New York, NY, USA. ACM. 72

Molino, N., Bridson, R., Teran, J., and Fedkiw, R. (2003). A crystalline, red

green strategy for meshing highly deformable objects with tetrahedra. In 12th

Int. Meshing Roundtable, pages 103–114. Citeseer. 17, 21

Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. (2002).

Stable real-time deformations. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, July, pages 49–54.

Citeseer. 2, 15, 59

Müller, M. and Gross, M. (2004). Interactive virtual materials. In GI ’04: Pro-

ceedings of Graphics Interface 2004, pages 239–246, School of Computer Sci-

ence, University of Waterloo, Waterloo, Ontario, Canada. Canadian Human-

Computer Communications Society. 16, 59

174

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007). Position

based dynamics. Journal of Visual Communication and Image Representation,

18(2):109–118. 23

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. (2005a). Mesh-

less deformations based on shape matching. ACM Transactions on Graphics,

24(3):471–478. 19

Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. (2004).

Point based animation of elastic, plastic and melting objects. In Proceedings of

the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,

SCA ’04, pages 141–151, Aire-la-Ville, Switzerland, Switzerland. Eurographics

Association. 18

Müller, M., Teschner, M., and Gross, M. (2005b). Physically-based simulation of

objects represented by surface meshes. In Computer Graphics International,

2004. Proceedings, pages 26–33. IEEE. 16, 72

Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. (2006). Phys-

ically based deformable models in computer graphics. In Computer Graphics

Forum, volume 25, pages 809–836. Wiley Online Library. 11, 16

Nedel, L. and Thalmann, D. (1998). Real time muscle deformations using mass-

spring systems. In Computer Graphics International, 1998. Proceedings, pages

156–165. IEEE, IEEE Computer Society. 12

Ni, X., Garland, M., and Hart, J. (2004). Fair morse functions for extracting the

topological structure of a surface mesh. pages 613–622. 27

Nicolaides, R. A. and Wu, X. (1996). Analysis and convergence of the MAC

175

scheme. II. Navier-Stokes equations. Mathematics of Computation, 65(213):29–

44. 26

O’Brien, J. and Hodgins, J. (1999a). Graphical modeling and animation of brittle

fracture. In Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, pages 137–146. ACM Press/Addison-Wesley Pub-

lishing Co. 16

O’Brien, J. F. and Hodgins, J. K. (1999b). Graphical modeling and animation

of brittle fracture. In Proceedings of the 26th annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’99, pages 137–146, New York,

NY, USA. ACM Press/Addison-Wesley Publishing Co. 18, 30

Oosterlee, C. and Gaspar, F. (2008). Multigrid relaxation methods for systems

of saddle point type. Applied Numerical Mathematics, 58(12):1933–1950. 27,

127

Otaduy, M., Germann, D., Redon, S., and Gross, M. (2007). Adaptive de-

formations with fast tight bounds. In Proceedings of the 2007 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 181–190. Eu-

rographics Association. 21, 158

Pauly, M., Gross, M., and Kobbelt, L. P. (2002a). Efficient simplification of

point-sampled surfaces. In Proceedings of the conference on Visualization ’02,

VIS ’02, pages 163–170, Washington, DC, USA. IEEE Computer Society. 18

Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. (2005).

Meshless animation of fracturing solids. In ACM SIGGRAPH 2005 Papers,

pages 957–964. ACM. 18

176

Pauly, M., Kobbelt, L., and Gross, M. (2002b). Multiresolution modeling of

point-sampled geometry. Technical Report, 3(7):8. 21

Picinbono, G., Delingette, H., and Ayache, N. (2005). Nonlinear and anisotropic

elastic soft tissue models for medical simulation. In Robotics and Automation,

2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2,

pages 1370–1375. IEEE. 14

Platt, D. and Fleischer, K. (1989). Heating and Melting Deformable Models

(from Goop to Glop). In Proceedings Graphics Interface’89, pages 219–226. 18

Platt, J. (1992). A generalization of dynamic constraints. CVGIP: Graphical

Models and Image Processing, 54(6):516–525. 12, 22

Quarteroni, A. and Valli, A. (1999). Domain decomposition methods for partial

differential equations. Oxford University Press, USA. 17

Raghupathi, L., Grisoni, L., Faure, F., Marchal, D., Cani, M., and Chaillou, C.

(2004). An intestinal surgery simulator: Real-time collision processing and

visualization. Visualization and Computer Graphics, IEEE Transactions on,

10(6):708–718. 4

Rappoport, A., Sheffer, A., and Bercovier, M. (1995). Volume-preserving free-

form solid. In Proceedings of the third ACM symposium on Solid modeling and

applications, pages 361–372. ACM. 12

Rivers, A. R. and James, D. L. (2007). Fastlsm: fast lattice shape matching for

robust real-time deformation. In ACM SIGGRAPH 2007 papers, volume 26,

page 82, New York, NY, USA. ACM. 19, 29, 72

Sederberg, T. and Parry, S. (1986). Free-form deformation of solid geometric

models. SIGGRAPH Computer Graphics, 20(4):151–160. 12

177

Selle, A., Lentine, M., and Fedkiw, R. (2008). A mass spring model for hair

simulation. ACM Transactions on Graphics, 27(3):1–11. 3, 12

Shi, L., Yu, Y., Bell, N., and Feng, W. (2006). A fast multigrid algorithm for

mesh deformation. In ACM SIGGRAPH 2006 Papers, pages 1108–1117. ACM.

27

Sifakis, E., Der, K., and Fedkiw, R. (2007a). Arbitrary cutting of de-

formable tetrahedralized objects. In Proceedings of the 2007 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 73–80. Eu-

rographics Association. 18

Sifakis, E., Neverov, I., and Fedkiw, R. (2005). Automatic determination of

facial muscle activations from sparse motion capture marker data. In ACM

SIGGRAPH 2005 Papers, pages 417–425, New York, NY, USA. ACM. 4, 23

Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. (2007b). Hybrid simulation of

deformable solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 81–90, Aire-la-Ville, Switzerland,

Switzerland. Eurographics Association. 21, 72, 79, 159

Singh, K. and Fiume, E. (1998). Wires: a geometric deformation technique. In

Proceedings of the 25th annual conference on Computer graphics and interactive

techniques, pages 405–414, New York, NY, USA. ACM. 12

Sørensen, T. and Mosegaard, J. (2006). An introduction to GPU accelerated

surgical simulation. Biomedical Simulation, pages 93–104. 22

Stenberg, R. and Suri, M. (1996). Mixed hp finite element methods for problems

in elasticity and Stokes flow. Numerische Mathematik, 72(3):367–389. 25

178

Sumner, R. and Popović, J. (2004). Deformation transfer for triangle meshes. In

ACM SIGGRAPH 2004 Papers, pages 399–405. ACM. 3

Szekely, G., Brechbühler, C., Hutter, R., Rhomberg, A., and Schmid, P. (1998).

Modelling of soft tissue deformation for laparoscopic surgery simulation. Med-

ical Image Computing and Computer-Assisted InterventionMICCAI98, page

550. 4

Tejada, E. and Ertl, T. (2005). Large steps in GPU-based deformable bodies

simulation. Simulation Modelling Practice and Theory, 13(8):703–715. 22

Teran, J., Blemker, S., Hing, V., and Fedkiw, R. (2003). Finite volume meth-

ods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 68–74.

Eurographics Association. 16, 17

Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., and Fedkiw,

R. (2005a). Creating and simulating skeletal muscle from the visible human

data set. IEEE Transactions on Visualization and Computer Graphics, pages

317–328. 4, 157

Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. (2005b). Robust quasistatic

finite elements and flesh simulation. pages 181–190. 14, 83

Terzopoulos, D. and Fleischer, K. (1988a). Deformable models. The Visual

Computer, 4(6):306–331. 2, 13, 18

Terzopoulos, D. and Fleischer, K. (1988b). Modeling inelastic deformation: vis-

colelasticity, plasticity, fracture. In Proceedings of the 15th annual conference

on Computer graphics and interactive techniques, pages 269–278, New York,

NY, USA. ACM. 13, 20, 27

179

Terzopoulos, D. and McInerney, T. (1996). Deformable models in medical image

analysis: A survey. Medical Image Analysis, 1(2):91–108. 4

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically de-

formable models. 21(4):205–214. 2, 13, 14, 16, 22, 30

Terzopoulos, D. and Qin, H. (1994). Dynamic NURBS with geometric constraints

for interactive sculpting. ACM Transactions on Graphics, 13(2):103–136. 13

Terzopoulos, D. and Waters, K. (1990). Physically-based facial modeling, analy-

sis, and animation. Journal of visualization and Computer Animation, 1(2):73–

80. 3, 12

Terzopoulos, D. and Witkin, A. (1988). Physically based models with rigid and

deformable components. IEEE Computer Graphics and Applications, 8(6):41–

51. 15

Thomaszewski, B., Pabst, S., and Blochinger, W. (2007). Exploiting parallelism

in physically-based simulations on multi-core processor architectures. 21

Thomaszewski, B., Wacker, M., and Straßer, W. (2006). A consistent bending

model for cloth simulation with corotational subdivision finite elements. In

Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Com-

puter animation, pages 107–116. Eurographics Association. 16

Trottenberg, U., Oosterlee, C., and Schuller, A. (2001). Multigrid. Academic

Press, Inc., Orlando, FL, USA. 27, 40, 48, 55

Vassilev, T. and Spanlang, B. (2002). A mass-spring model for real time de-

formable solids. Proceedings of East-West Vision, 2002:149–154. 12

180

Vassilevski, P. and Lazarov, R. (1996). Preconditioning mixed finite element

saddle-point elliptic problems. Numerical linear algebra with applications,

3(1):1–20. 26

Wang, J., Wang, Y., and Ye, X. (2009). A Robust Numerical Method for Stokes

Equations Based on Divergence-Free H(div) Finite Element Methods. SIAM

Journal on Scientific Computing, 31(4):2784–2802. 25

Wieners, C. (2000). Robust multigrid methods for nearly incompressible elastic-

ity. Computing, 64(4):289–306. 27

Wilhelms, J. and Van Gelder, A. (1997). Anatomically based modeling. In

Proceedings of the 24th annual conference on Computer graphics and interactive

techniques, pages 173–180. ACM Press/Addison-Wesley Publishing Co. 4

Witkin, A. and Welch, W. (1990). Fast animation and control of nonrigid struc-

tures. In Proceedings of the 17th annual conference on Computer graphics and

interactive techniques, pages 243–252. ACM, ACM. 22, 23

Wittum, G. (1989). Multi-grid methods for Stokes and Navier-Stokes equations.

Numerische Mathematik, 54(5):543–563. 27

Wittum, G. (1990). On the convergence of multi-grid methods with transforming

smoothers. Numerische Mathematik, 57(1):15–38. 27

Wu, X., Downes, M., Goktekin, T., and Tendick, F. (2001). Adaptive nonlin-

ear finite elements for deformable body simulation using dynamic progressive

meshes. In Computer Graphics Forum, volume 20, pages 349–358. John Wiley

& Sons. 13

Wu, X. and Tendick, F. (2004). Multigrid integration for interactive deformable

body simulation. pages 92–104. Springer. 27

181

Ye, X. and Hall, C. (1997). A discrete divergence-free basis for finite element

methods. Numerical Algorithms, 16(3):365–380. 25

Zhou, K., Doyle, J., and Glover, K. (1996). Robust and optimal control. Prentice

Hall Englewood Cliffs, NJ. 20

Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. (2010). An efficient multigrid

method for the simulation of high-resolution elastic solids. ACM Transactions

on Graphics, 29(2):1–18. 9, 123, 124, 125, 128

182

	1 Introduction
	1.1 Solids simulation
	1.1.1 Solids simulation in computer animation
	1.1.2 Biomedical simulation and virtual surgery

	1.2 Numerical difficulties
	1.2.1 Conjugate gradient method
	1.2.2 Multigrid methods

	1.3 Thesis structures

	2 Related works
	2.1 Deformation models
	2.2 Discretizations
	2.3 Acceleration methods
	2.4 Constraints and collisions
	2.5 Mixed finite element
	2.6 Multigrid in computer graphics

	3 Mathematics background
	3.1 Linear elaticity
	3.1.1 Discretization

	3.2 Multigrid correction scheme
	3.3 Multigrid methods for linear elasticity

	4 Augmented linear elasticity
	4.1 Finite difference discretization
	4.2 Distributive relaxation

	5 Boundary system and geometric coarsening
	5.1 Domain description
	5.2 A general-purpose box smoother
	5.3 A fast symmetric Gauss-Seidel smoother
	5.4 Restriction and prolongation on staggered grid

	6 Extended models and results
	6.1 Co-rotational linear elasticity
	6.1.1 Nonlinear iteration
	6.1.2 Distributive relaxation
	6.1.3 Interior discretization
	6.1.4 Boundary discretization
	6.1.5 Distribution discretization
	6.1.6 Coarsening

	6.2 Dynamic system
	6.2.1 Time integral
	6.2.2 Augmentation and distribution
	6.2.3 Coarsening of the new system

	6.3 Evaluation of solver performance
	6.3.1 Discretization accuracy analysis
	6.3.2 Animation tests
	6.3.3 Parallelization

	7 A second order mixed finite element method
	7.1 Variational formulation for linear elasticity
	7.2 Mixed finite element formulation
	7.2.1 Discretization
	7.2.2 Implementation details
	7.2.3 Discrete geometric representation and cut cell integration

	7.3 Dirichlet boundary conditions
	7.3.1 Discretizing the Dirichlet problem
	7.3.2 Constructing the null-space for the Dirichlet constraints

	7.4 Multigrid
	7.4.1 Discretization hierarchy
	7.4.2 Relaxation
	7.4.3 Approximated distributive relaxation
	7.4.4 Higher-order defect correction
	7.4.5 Boundary relaxation
	7.4.6 Boundary relaxation for the reduced system in Dirichlet boundary condition case
	7.4.7 Coarsening

	7.5 Numerical examples
	7.5.1 Discretization error
	7.5.2 Multigrid efficiency

	8 Soft constraint system
	8.1 Soft constraint energy
	8.2 Coarsening of soft constraint operator
	8.2.1 Galerkin coarsening
	8.2.2 Re-discretization and natural coarsening
	8.2.3 Subsampling

	8.3 Examples and results
	8.3.1 Two-dimensional examples
	8.3.2 Stiff constraint
	8.3.3 Collision

	9 Conclusion and future works
	9.1 Efficient boundary treatment
	9.2 Nonlinear hyperelastic solids
	9.3 Collision detection and stable solution
	9.4 Adaptivity
	9.5 Parallel implementation for irregular models

