
UNIVERSITY OF CALIFORNIA

Los Angeles

The Material Point Method for the Physics-Based
Simulation of Solids and Fluids

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Chenfanfu Jiang

2015

c© Copyright by

Chenfanfu Jiang

2015

ABSTRACT OF THE DISSERTATION

The Material Point Method for the Physics-Based
Simulation of Solids and Fluids

by

Chenfanfu Jiang
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Demetri Terzopoulos, Co-chair

Professor Joseph M. Teran, Co-chair

Simulating fluids and solid materials undergoing large deformation remains an impor-

tant and challenging problem in Computer Graphics. The dynamics of these materials

usually involve dramatic topological changes and therefore require sophisticated nu-

merical approaches to achieve sufficient accuracy and visual realism. This dissertation

focuses on the Material Point Method (MPM) for simulating solids and fluids for use

in computer animation, and it makes four major contributions:

First, we introduce new MPM for simulating viscoelastic fluids, foams and sponges.

We design our discretization from the upper convected derivative terms in the evolution

of the left Cauchy-Green elastic strain tensor. We combine this with an Oldroyd-B

model for plastic flow in a complex viscoelastic fluid. While the Oldroyd-B model is

traditionally used for viscoelastic fluids, we show that its interpretation as a plastic flow

naturally allows us to simulate a wide range of complex material behaviors. In order to

do this, we provide a modification to the traditional Oldroyd-B model that guarantees

volume preserving plastic flows. Our plasticity model is remarkably simple (foregoing

the need for the singular value decomposition (SVD) of stresses or strains). We show

that implicit time stepping can be achieved in a manner that enables high resolution

ii

simulations at practical simulation times.

Particle-in-Cell (PIC) techniques, particularly the Fluid Implicit Particle (FLIP) vari-

ants have become standard in computer graphics. While they have proven very pow-

erful, they do suffer from some well known limitations. Our second contribution is to

introduce a novel technique designed to retain the stability of the original PIC, without

suffering from the noise and instability of FLIP. Dissipation in the original PIC results

from a loss of information when transferring between grid and particle representations.

We prevent this loss of information by augmenting each particle with a locally affine,

rather than locally constant, description of the velocity. We show that this not only

stably removes the dissipation of PIC, but that it also allows for exact conservation of

angular momentum across the transfers between particles and the grid.

Our third contribution is to introduce a novel material point method for heat transport,

melting and solidifying materials. This brings a wider range of material behaviors into

reach of the already versatile MPM. Extending the material point method in this way

requires several technical novelties. We introduce a dilational/deviatoric splitting of the

constitutive model and show that an implicit treatment of the Eulerian evolution of the

dilational part can be used to simulate arbitrarily incompressible materials. Further-

more, we show that this treatment reduces to a parabolic equation for moderate com-

pressibility and an elliptic, Chorin-style projection at the incompressible limit. Since

projections are naturally done on marker and cell (MAC) grids, we devise a staggered

grid MPM method. To generate varying material parameters, we adapt a heat-equation

solver to the material point framework.

Practical time steps in state-of-the-art simulators typically rely on Newton’s method to

solve large systems of nonlinear equations. In practice, this works well for small time

steps but is unreliable at large time steps at or near the frame rate, particularly for diffi-

cult or stiff simulations. Our fourth contribution is to show that recasting the backward

Euler method as a minimization problem allows Newton’s method to be stabilized by

iii

standard optimization techniques with some novel improvements of our own. The re-

sulting solver is capable of solving even the toughest simulations at the 24 Hz frame

rate and beyond. We show how simple collisions can be incorporated directly into the

solver through constrained minimization without sacrificing efficiency. We also present

novel penalty collision formulations for self collisions and collisions against scripted

bodies designed for the unique demands of this solver. We show that these techniques

improve the behavior of MPM simulations.

iv

The dissertation of Chenfanfu Jiang is approved.

Song-Chun Zhu

Stanley Osher

Joseph M. Teran, Committee Co-chair

Demetri Terzopoulos, Committee Co-chair

University of California, Los Angeles

2015

v

To my family and friends

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions . 2

1.2 Dissertation Overview . 3

2 The Material Point Method . 6

2.1 Deformation . 6

2.1.1 Useful differentials . 6

2.2 The MPM algorithm . 10

2.3 Snow simulation results . 12

3 Elasticity and Plasticity . 14

3.1 Hyperelasticity . 14

3.1.1 Mass-spring system . 15

3.1.2 Neo-Hookean model . 15

3.1.3 Fixed corotated model . 16

3.2 Plasticity . 17

3.2.1 Plastic flow . 17

3.2.2 Material hardening . 19

3.3 Lagrangian forces . 19

4 Simulating Viscoelastic Fluids, Foams and Sponges 23

4.1 Background . 23

4.2 Governing equations . 25

4.2.1 Upper convected derivative . 26

4.2.2 Volume-preserving plasticity 27

4.2.3 Elasticity . 28

4.3 Discretization . 28

vii

4.4 Simulation results . 30

4.5 Discussion . 35

5 The Affine Particle-in-Cell Method . 36

5.1 Background . 37

5.2 Method Outline . 41

5.3 Particle-grid transfers . 42

5.3.1 PIC . 42

5.3.2 Rigid Particle-In-Cell (RPIC) 43

5.3.3 Affine Particle-In-Cell (APIC) 45

5.4 Fluids . 47

5.5 Simulation results . 47

5.6 Discussion . 54

6 Simulating Melting and Solidification 56

6.1 Background . 56

6.2 Method Overview . 60

6.3 Physical Model . 64

6.3.1 Heat flow and phase transition 64

6.3.2 Constitutive model . 66

6.3.3 Pressure Splitting . 68

6.3.4 Pressure . 68

6.3.5 Temporal evolution . 69

6.3.6 Discretization . 69

6.4 Algorithm . 70

6.4.1 Apply plasticity from previous timestep 72

6.4.2 Compute interpolation weights 72

6.4.3 Rasterize particle data to grid 75

6.4.4 Classify cells . 76

viii

6.4.5 MPM velocity update . 76

6.4.6 Process the grid collisions . 78

6.4.7 Project the velocities . 79

6.4.8 Solve the heat equation . 80

6.4.9 Update the particle state from the grid 80

6.4.10 Process the particle collisions and positions 82

6.5 Simulation results . 82

6.6 Discussion . 88

6.7 Summary . 90

7 Conclusion . 91

A An Optimization-Based Integrator . 94

A.1 Introduction . 94

A.2 Time Integration . 96

A.2.1 Minimization problem . 99

A.3 Minimization . 101

A.3.1 Unconstrained minimization 101

A.3.2 Constrained minimization . 104

A.3.3 Practical considerations . 106

A.4 Forces . 107

A.4.1 Elastic . 107

A.4.2 Damping . 108

A.5 Collisions . 109

A.5.1 Object collisions as constraints 110

A.5.2 Object penalty collisions . 111

A.5.3 Penalty self-collisions . 112

A.6 Accelerating the MPM . 113

A.6.1 Optimization formulation . 114

ix

A.6.2 Particle position update . 115

A.7 Simulation results . 116

A.8 Summary . 120

B Derivatives for the Oldroyd-B Model 123

C RPIC and APIC Proofs . 126

C.1 Preliminaries . 126

C.2 Piecewise rigid . 127

C.2.1 Preservation of rigid motion 127

C.2.2 Conservation of momentum 129

C.2.3 Conservation of angular momentum 130

C.3 Affine . 131

C.3.1 Preservation of affine velocity fields 132

C.3.2 Conservation of momentum 133

C.3.3 Conservation of angular momentum 134

D Derivatives for Deviatoric Elasticity . 136

Bibliography . 138

x

LIST OF FIGURES

2.1 A snowball smashes into a wall and sticks to it 12

2.2 A snowball drops to the ground . 13

2.3 Two snowballs smash into each other 13

3.1 An APIC coupled simulation of yogurt and cloth 21

3.2 Comparing APIC with FLIP and PIC using the Lagrangian force model 21

4.1 Twisting sponge . 30

4.2 Shooting at a sponge . 30

4.3 A simulation of shaving foam . 31

4.4 A simulation of toothpaste . 32

4.5 Viennetta ice cream . 33

4.6 Throwing a pie at a mannequin . 34

5.1 Performance comparison with some simple 2D examples 39

5.2 The basic dataflow of various hybrid particle/grid simulation techniques 41

5.3 APIC simulation of a rushing river . 48

5.4 Comparing the methods with a fountain simulation of free-surface flow 48

5.5 APIC vs FLIP in a wine pouring example 49

5.6 APIC vs FLIP in an MPM simulation 50

5.7 APIC vs FLIP in a granular material example 51

5.8 APIC vs FLIP in a high energy collision example 52

5.9 The performance of APIC with an elastoplastic model for lava flow . . . 53

5.10 Comparing APIC with FLIP and PIC during a lava in free-fall example . 53

5.11 Relative timing . 54

6.1 Interplay of grids and particles . 63

6.2 Cell classification criteria and stencils for a particle 73

6.3 Effect of density correction on stationary pool simulation 80

xi

6.4 Mixtures of materials . 83

6.5 Bringing a hot fluid stream in contact with a cold solid 84

6.6 Melting objects from the outside . 85

6.7 An apple is pulled from liquid candy 86

6.8 Melting butter . 86

6.9 Changing the value of latent heat affects the rate of phase transition . . 87

6.10 Lava solidifying into pāhoehoe . 87

A.1 Convergence plot of Newton’s method and our method 97

A.2 Cube being stretched and then given a small compressive pulse 98

A.3 Cube being stretched . 98

A.4 Two spheres fall and collide with one another 99

A.5 Line search . 105

A.6 Sphere dropping hard on the ground 109

A.7 Random displaced particles test . 117

A.8 Point test with clapsed particles . 117

A.9 A torus falls on the ground . 117

A.10 A torus is pushed through a hole . 118

A.11 Stack of boxes . 118

A.12 An armadillo is squeezed between 32 rigid cubes 119

A.13 125 tori are dropped into a bowl . 119

xii

LIST OF TABLES

2.1 Performance comparison with the original formulation 13

4.1 Material parameters . 32

4.2 Simulation performance . 34

6.1 Quantities stored on each particle. 71

6.2 Resolutions and simulation times . 87

A.1 Timing info . 121

xiii

ACKNOWLEDGMENTS

I wish to express my sincere thanks to my advisors, Professor Demetri Terzopoulos and

Professor Joseph Teran, for their continuous support of my PhD study and research.

Their insight and expertise greatly helped me grow as a researcher. Without their guid-

ance and encouragement this thesis would never have materialized. I also thank them

for providing me many opportunities for my career.

I also thank Professor Stanley Osher and Professor Song-Chun Zhu for serving on my

thesis committee and providing suggestions on improving and extending my work.

My appreciation goes to my UCLA colleagues for their help and insights. I would like

to express my gratitude to Jingyi Fang, Xiaowei Ding, Sharath Gopal, Gergely Klar,

Masaki Nakada, Eduardo Poyart, Garett Ridge, Matthew Wang, Tomer Weiss, Wenjia

Huang, Kresimir Petrinec, Weiguang Si, Lap-Fai Yu, Andre Pradhana, Jan Hegemann,

Theodore Gast, Daniel Ram, Craig Schroeder, Yuting Wang, Russell Howes, Jan Hege-

mann, Alexey Stomakhin and Jeffrey Hellrung.

I would like to thank the awesome people with whom I worked at Disney Animation

Studios and Industrial Light & Magic. In particular, I would like to thank Andrew

Selle, Lawrence Chai, Alexey Stomakhin, Aleka McAdams, Hao Li and Kiran Bhat for

sharing their knowledge and guiding me on my work.

I thank my wife Chuchu for her persistent love. She has been a great companion as I

have chased my dreams. She always makes me feel comfortable and confident when-

ever frustration and anxiety attack me.

Most of all, I would like to deeply thank my parents for their support and unconditional

love. Their trust, patience and encouragement have enabled me to reach this far.

xiv

VITA

2010 B.S. (Physics), Special Class for the Gifted Young, University of

Science and Technology of China.

2012–2013 Teaching Assistant, UCLA.

2011–2015 Research Assistant, UCLA.

2012 M.S. (Computer Science), UCLA.

Summer 2012 Research Intern, Industrial Light & Magic, Lucasfilm, San Fran-

cisco, CA.

Summer 2013 Research Intern, Walt Disney Animation Studios, Burbank, CA.

2014-2015 Consultant, Walt Disney Animation Studios, Burbank, CA.

xv

PUBLICATIONS

J. Hegemann, C. Jiang, C. Schroeder, J. Teran, A Level Set Method for Ductile Fracture,

ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pp. 193-

201, 2013. (Best Paper Award)

J. Fang, C. Jiang, D. Terzopoulos, Modeling and animating Myriapoda: A real-time

kinematic/dynamic approach, ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation (SCA), pp. 203-212, 2013.

Y. Wang, C. Jiang, C. Schroeder, J. Teran, An Adaptive Virtual Node Algorithm with

Robust Mesh Cutting, ACM SIGGRAPH/Eurographics Symposium on Computer Ani-

mation (SCA), pp. 77-85, 2014.

A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, A. Selle, Augmented MPM

for Phase-Change and Varied Materials, ACM Transactions on Graphics (SIGGRAPH

2014 Proceedings), 33(4), 2014.

T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, J. Teran, Optimization Integrator for

Large Time Steps, IEEE Transactions on Visualization and Computer Graphics, 2015

C. Jiang, C. Schroeder, A. Selle, J. Teran, A. Stomakhin, The Affine Particle-In-Cell

Method, ACM Transactions on Graphics (SIGGRAPH 2015 Proceedings), 34(4), 2015.

D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, P. Kavehpour, A

Material Point Method for Viscoelastic Fluids, Foams and Sponges, ACM SIGGRAPH/

Eurographics Symposium on Computer Animation (SCA), 2015.

xvi

CHAPTER 1

Introduction

Simulating natural phenomena for virtual worlds and characters is an important appli-

cation in Computer Graphics that remains extremely challenging. An artist’s need to

manipulate and comprehend physical simulations imposes a significant constraint, all

but requiring simulation methods to involve Lagrangian particles. While Lagrangian

approaches are best for simulating solid-like behavior and Eulerian approaches most

easily simulate fluid-like behavior, some materials are in the middle ground. These

materials can exhibit elastic, solid-like resistance to deformation, but they can also un-

dergo very large strains and complex topological changes characteristic of fluids. Dis-

cretization of such topology-changing materials is challenging because of the nonlinear

governing equations and the wide range of exhibited behaviors.

The need for computational efficiency, topological variability, and numerical stability

has led engineers toward hybrid, Lagrangian/Eulerian methods. Because of the use

of a Cartesian grid, these methods are naturally suited to resolve topology changes

and self-collisions combined with the Lagrangian tracking of mass, momentum and

deformation on particles. In practice, the particle-wise deformation information can be

used to represent quantities such as elastoplastic stresses arising from changes in shape,

while an Eulerian background grid is used for implicit solves.

Particle-in-Cell (PIC) techniques, particularly the Fluid Implicit Particle (FLIP) vari-

ants have become the norm in computer graphics fluid simulation. The Material Point

Method (MPM), an extension of FLIP that addresses solid mechanics, has recently

1

been introduced to the physics-based animation community, and successfully used to

simulate elastoplastic flows to animate snow [Stomakhin et al., 2013], phase-changing

materials [Stomakhin et al., 2014], Herschel-Bulkley plastic flows for foam [Yue et al.,

2015], and some other materials [Jiang et al., 2015; Ram et al., 2015].

1.1 Contributions

To our knowledge, this is the first PhD dissertation on the MPM in the field of Computer

Graphics. It makes the following key contributions:

• We introduce a novel information transfer scheme—the Affine Particle-In-Cell

(APIC) method—for hybrid Lagrangian/Eulerian simulations. The method is

stable and accurate without introducing complexity, and we apply it in various

simulations (e.g., Figure 5.5 and Figure 5.9).

• We derive a deviatoric/dilational splitting technique for arbitrary constitutive mod-

els, which enables the unified simulation of compressible and incompressible

materials (e.g., Figure 6.4) as well as transitions between them (e.g., Figure 6.6).

• We develop a heat equation solver that naturally couples with the MPM to easily

simulate melting (e.g., Figure 6.5) and freezing (e.g., Figure 6.10) phenomena.

• We develop a modified, volume-preserving Oldroyd model for viscoelasticity and

apply it in the framework of the MPM to simulating non-Newtonian materials,

such as foams and sponges (e.g., Figure 4.1 and Figure 4.3).

• We present an optimization-based time integration solver that improves the sta-

bility and efficiency of both FEM (e.g., Figure A.7) and MPM (e.g., Figure 2.3)

simulations, such as to simulate dynamic snow (e.g., Figure 2.1).

• We develop a coupling technique for simulating particle and mesh based materi-

2

als together (e.g., Figure 3.1).

1.2 Dissertation Overview

The remainder of this dissertation is structured as follows:

Chapter 2 and Chapter 3 briefly review the basic MPM algorithm, as well as the sim-

plest constitutive models that are commonly used for elastic and plastic objects. We

assume that readers have basic knowledge about continuum mechanics and the MPM.

In particular, Chapter 3 covers the snow constitutive model introduced by Stomakhin

et al. [2013].

Chapter 4 presents a constitutive model for simulating viscoelastic fluids, foams and

sponges [Ram et al., 2015]. We design our discretization from the upper convected

derivative terms in the evolution of the left Cauchy-Green elastic strain tensor. We

combine this with an Oldroyd-B model for plastic flow in a complex viscoelastic fluid.

While the Oldroyd-B model is traditionally used for viscoelastic fluids, we show that its

interpretation as a plastic flow naturally allows us to simulate a wide range of complex

material behaviors. To this end, we provide a modification to the traditional Oldroyd-B

model that guarantees volume-preserving plastic flows. Our plasticity model is remark-

ably simple (foregoing the need for the singular value decomposition (SVD) of stresses

or strains).

Chapter 5 presents a new hybrid, Lagrangian/Eulerian method, the Affine Particle-In-

Cell (APIC) method [Jiang et al., 2015]. While existing approaches (PIC, FLIP, MPM)

have proven very powerful, they suffer from some well-known limitations. The original

PIC is stable, but highly dissipative, while FLIP, which is designed to eliminate this

dissipation, is more noisy and at times unstable. We present a novel technique designed

to retain the stability of the original PIC without suffering from the noise and instability

3

of FLIP. Our primary insight is that the dissipation in the original PIC results from a

loss of information when transferring between the grid and particle representations. We

prevent this loss of information by augmenting each particle with a locally affine (rather

than a locally constant) description of the velocity. We show that this not only stably

removes the dissipation of PIC, but that it also enables exact conservation of angular

momentum across the transfers between the particles and the grid. With our method, we

control noise by keeping the pure filter property of PIC but minimize information loss

by enriching each particle with a tiny matrix providing a locally affine description of the

flow. Our APIC method effectively reduces dissipation, preserves angular momentum

and prevents instabilities. Furthermore, we demonstrate that our method is applicable

to both incompressible liquids and MPM simulations.

Chapter 6 introduces a novel MPM for heat transport, melting, and solidifying materi-

als [Stomakhin et al., 2014]. This brings a wider range of material behaviors into reach

of the already versatile MPM. This is in contrast to best-of-breed fluid, deformable

solid, or rigid-body solvers that are difficult to adapt to a wide range of materials. Ex-

tending the MPM requires several contributions. We introduce a dilational/deviatoric

splitting of the constitutive model and show that an implicit treatment of the Eulerian

evolution of the dilational part can be used to simulate arbitrarily incompressible ma-

terials. Furthermore, we show that this treatment reduces to a parabolic equation for

moderate compressibility and an elliptic, Chorin-style projection at the incompress-

ible limit. Since projections are naturally done on Marker-And-Cell (MAC) grids, we

devise a staggered-grid MPM. Lastly, we adapt a heat-equation solver to the material

point framework. The heat solver captures the underlying thermodynamics and alters

material parameters. The method is implicit and capable of simulating nearly incom-

pressible materials using a Chorin-like projection solve. Hence, we widen the range of

materials that the MPM can handle, and demonstrate this range with several compelling

melting and solidifying examples.

4

Appendix A shows that recasting the backward Euler method as a minimization prob-

lem allows Newton’s method to be stabilized by standard optimization techniques with

some novel improvements of our own. The resulting solver is capable of solving even

the toughest simulations at the 24 Hz frame rate and beyond [Gast et al., 2015]. We

show how simple collisions can be incorporated directly into the solver through con-

strained minimization without sacrificing efficiency. We also show that these tech-

niques improve the behavior of MPM simulations by recasting the MPM as an opti-

mization problem.

5

CHAPTER 2

The Material Point Method

The Material Point Method (MPM) requires both a Lagrangian and an Eulerian view of

material deformation. In this chapter we briefly discuss the deformation theory and the

basic algorithm for the MPM. We refer to [Bonet and Wood, 1997] for a more detailed

introduction of continuum mechanics, and [Sulsky et al., 1995] for a more rigorous

derivation of the MPM. In the context of Computer Graphics, [Stomakhin et al., 2013]

is also a more appropriate introductory document for the MPM.

2.1 Deformation

We consider the motion of material to be determined by a mapping from material points

X to a deformed configuration x. One can define the deformation gradient as

F(X, t) =
∂φ

∂X
(X, t) =

∂x

∂X
(X, t).

2.1.1 Useful differentials

Differentials in terms of the deformation gradient F will appear often in the derivation

of constitutive models and their derivatives (such as in Chapter 3). Here we list some

common ones.

6

2.1.1.1 Differentials of the determinant

The determinant of F is J(F). In both 2D and 3D, it can be explicitly written in terms

of the entries of F . A result worth remembering is

δJ = JF−T δF ,

or, directly, the derivative

∂J

∂F
= JF−T .

Furthermore, sometimes we need to compute δ(JF−T) = ∂(JF−T)
∂F

: δF . This is done

by explicitly writing out each entry of the matrix JF−T , which is a polynomial of the

entries of F , and computing the differential directly.

2.1.1.2 Differentials of SVD

The SVD of F can be written as

F = UΣVT ,

where UTU = I and VTV = I.

Taking differentials yields

δF = δUΣVT + UδΣVT + UΣδVT (2.1)

0 = δUTU + UT δU (2.2)

0 = δVTV + VT δV. (2.3)

7

From (2.1) we have

δΣ = UT δFV −UT δUΣVTV −UTUΣδVTV

= UT δFV −UT δUΣ−ΣδVTV. (2.4)

From (2.2) and (2.3) we know that UT δU and δVTV are skew-symmetric, so their

diagonal entries are 0. Therefore,

δΣ = UT δFV −UT δUΣ−ΣδVTV

= diag
(
UT δFV −UT δUΣ−ΣδVTV

)
= diag

(
UT δFV

)
.

Substituting δΣ back into (2.4), if we write

UT δU =


0 x y

−x 0 z

−y −z 0


and

VT δV =


0 r s

−r 0 t

−s −t 0

 ,

then (2.4) is a linear system with 6 equations in 6 unknowns: x, y, z, r, s, and t. After

solving for these unknowns, we can obtain δU and δV.

8

2.1.1.3 Differentials of the Polar Decomposition

The polar decomposition of F can be written as

F = RS,

where S = ST and RRT = I. Similarly to U in the SVD case, δRTR is skew-

symmetric with diagonal entries of 0.

Starting from the definitions, we have

δF = RδS + δRS (2.5)

0 = δRRT +RδRT (2.6)

δS = δST . (2.7)

Multiplying both sides of (2.5) withRT gives

RT δF = δS +RT δRS. (2.8)

Its transpose is

δF TR = δST + ST δRTR. (2.9)

Subtracting (2.8) and (2.9) yields

RT δF − δF TR = δS +RT δRS− δST − ST δRTR

= RT δRS + SRT δR.

9

This is a solvable linear system in x, y, and z if we assume

RT δR =


0 x y

−x 0 z

−y −z 0

 .

After solving for x, y, and z, we can obtain δR = R(RT δR) and substitute the result

back into (2.8) to obtain δS.

2.2 The MPM algorithm

In this section, we specify the full basic MPM algorithm in one time step. This algo-

rithm assumes the most basic implementation of MPM. Both explicit time integration

(easy to implement but requires smaller time step sizes) and the semi-implicit update

scheme (requires solving a linear system but allows for larger time steps) as in [Stom-

akhin et al., 2013] will be given. All data structures are pre-allocated to proper sizes in

memory. For notational simplicity, the algorithm assumes a fixed corotated constitutive

model with no plasticity.

1. Grid data are reinitialized to default values of 0. This includes nodal mass mi,

nodal velocity vi, and all other helper data structures for solving the integration

scheme.

2. For all particles, the interpolation weights wip and weight gradients ∇wip are

computed and stored on the particles.

3. Mass and momentum are transferred from the particles to the grid according to

mn
i =

∑
p

wnipmp, mn
i v

n
i =

∑
p

wnipmpv
n
p ,

10

and nodal velocities are then computed as

vni =
mn
i v

n
i

mn
i

.

Note that zero-mass nodes must be taken care of to prevent divide-by-zero prob-

lems.

4. The explicit forces on nodes are computed as

−fni (xi) =
∑
p

V 0
p

(
∂Ψ

∂F
(F n

p)

)
(F n

p)T∇wnip.

5. The explicit nodal velocity update is performed with

v∗i = vni + ∆tm−1
i fni .

6. A grid-based collision (against solid boundary walls) is performed on v∗i . De-

pending on the type of collision, there can be different treatments of the velocity.

For example, in the case of sticky material, one can simply set v∗i to zero when

the node is in contact or inside a collision object. In this step, one can also apply

friction effects involving the normal and tangential components of v∗i .

7. For explicit time integration, one can set vn+1
i = v∗i and directly jump to the

next step. For implicit backward Euler time integration, a mass symmetric linear

system ∑
j

(
Iδij + ∆t2m−1

i

∂2Φn

∂xi∂xj

)
vn+1
j = v∗i

is formed and Conjugate Residual (CR) or MINRES can be used to solve it.

11

Figure 2.1: Our approach works naturally with the MPM simulations from [Stomakhin
et al., 2013]. Here we demonstrate this with a a snowball that smashes into a wall
and sticks to it. Notably, we provide a new treatment of particle position updates that
naturally prevents penetration in solid objects like the wall.

8. Particle states are updated from grid velocities. In particular,

F n+1
p = (I + ∆t

∑
i

vn+1
i (∇wnip)T)F n

p

vn+1
p = (1− α)

∑
i

vn+1
i wnip + α(vnp +

∑
i

(vn+1
i − vni)wnip)

xn+1
p = xnp + ∆t

∑
i

vn+1
i wnip.

Here the velocity update is done with a combination of PIC and FLIP. We show

in Chapter 5 that an easy modification can be done to it that largely improves

accuracy and stability.

An improved transfer scheme will be given in Chapter 5. We develop an improved,

optimization-based time integration scheme in Appendix A.

2.3 Snow simulation results

We demonstrate the advantages of using our improved integrator by applying it to the

MPM snow formulation from [Stomakhin et al., 2013]. We ran three examples using

both the original formulation and our modified formulation and compared with the

snowball examples from the original paper. In each case, for our formulation we used

12

Figure 2.2: Here we demonstrate with a snowball that drops to the ground and frac-
tures.

Figure 2.3: The extension of our method to [Stomakhin et al., 2013] is robust to large
deformation and collisions scenarios. Here we demonstrate this for with two snowballs
that collide and fall to the ground.

the CFL ν = 0.6. Figure 2.1 shows a snowball hitting a wall using sticky collisions,

which causes the snow to stick to the wall. Figure 2.2 shows a dropped snowball hitting

the ground with sticky collisions. Figure 2.3 shows two snowballs colliding in mid

air with sticky collisions against the ground. On average, we observed a speed up of

3.5 times over the original method. These results are tabulated in Table 2.1. Notably,

we are able to take significantly larger time steps, however some of the potential gains

from this are compromised by an increased complexity per time step. Nonetheless, our

improved, optimization-based integrator provides a significant computational savings

with minimal modification to the original approach.

Figure Min ∆t (s) Average ∆t (s) Time/frame (s) Speedup Grid # of
Ours Orig Ours Orig Ours Orig factor size particles

2.2 6.0× 10−4 5.2× 10−5 3.4× 10−3 4.4× 10−4 59 184 3.1 600× 300× 600 2.8× 105

2.1 5.4× 10−4 1.7× 10−6 1.5× 10−3 1.4× 10−4 85 431 5.1 200× 240× 600 2.8× 105

2.3 3.5× 10−4 3.7× 10−5 1.6× 10−3 1.7× 10−4 288 780 2.7 800× 300× 800 5.6× 105

Table 2.1: Performance comparison of our modified MPM snow formulation (“Ours”)
with the original formulation (“Orig”).

13

CHAPTER 3

Elasticity and Plasticity

Terzopoulos et al. pioneered the use of elasticity, viscoelasticity, plasticity, and fracture

in computer graphics [Terzopoulos et al., 1987; Terzopoulos and Fleischer, 1988a,b].

In physics or engineering, the constitutive model of a material usually describes how

force is related to deformation or how stress is related to strain in the material. To-

gether with the governing physical equations (such as Newton’s second law), it can be

used to compute the material motion under applied external forces or boundary condi-

tions. This chapter assumes basic knowledge about the definitions of the deformation

gradient, strain, and stress.

3.1 Hyperelasticity

A hyperelastic material refers to an ideally elastic material whose constitutive relation

can be derived from an energy density function. Given an potential energy density Ψ

and a discretization of a continuum, one can usually write out the total potential energy

Φ of a material and use it in deriving forces.

14

3.1.1 Mass-spring system

The mass-spring system is very common in Computer Graphics due to its simplicity.

It is most popular for simulating cloth. Continuum material is modeled as a collection

of M point masses with positions xi, for i = 1, . . . ,M , interconnected by a set of N

linear springs with stiffnesses ck and natural lengths lk, for k = 1, . . . , N . Denoting the

vector of all mass positions as x, the total potential energy of the system at any time is

Φ(x) =
∑
k

1

2
ck(|xi − xj| − lk)2,

where |xi − xj| is the length of deformed spring k that interconnects point mass i

situated at xi and point mass j situated at xj . Given the potential energy, internal

forces and force derivatives can be derived as fi = − ∂Φ
∂xi

and ∂fi
∂xj

= − ∂2Φ
∂xj∂xi

. They are

used in solving the governing equations.

3.1.2 Neo-Hookean model

Continuum mechanics prefers to define energy density functions from deformation

fields. The neo-Hookean model has been widely used to describe isotropic elastic ma-

terials. It is the simplest model for describing large deformation. The energy density

for neo-Hookean materials is given by

Ψ(F) =
µ

2
(FijFji − d)− µ ln J +

λ

2
(ln J)2,

where d is the dimension (2 or 3), F is the deformation gradient, and J = |F |. The

constants µ and λ are typically set from the Young’s modulus and Poisson’s ratio of

the material. The first Piola-Kirchoff stress P is related to the energy density Ψ as

15

P = ∂Ψ
∂F

. For neo-Hookean materials, it can be shown that

P = µF + (λ ln J − µ)F−T .

3.1.3 Fixed corotated model

The ln(J) term in the neo-Hookean material is problematic when J approaches zero

or becomes negative. This can never happen in the real world; however, numerical

simulations generally do not prevent such nonphysical deformations. For robustness,

[Stomakhin et al., 2012] has developed a fixed Corotated model that remains valid under

inverted configurations. The fixed Corotated energy density is written as

Ψ = µ‖F −R‖2
F +

λ

2
(J − 1)2,

whereR comes from the polar decomposition F = RS. It can also be written in terms

of the singular values of F as

Ψ(F) = Ψ̂(Σ(F)) = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2

= µ

(
tr(F TF)− 2

∑
i

σi + d

)
+
λ

2
(J − 1)2,

where σi = Σii comes from the polar singular value decomposition F = UΣVT . Here

the polar SVD is computed such that U and V are rotations. Also, R = UVT and

S = VΣVT . Using δΣ = diag(UT δFV), we can show that the first Piola-Kirchoff

stress is

P =
∂Ψ

∂F
= 2µ(F −R) + λ(J − 1)JF−T .

16

The second derivatives can be computed as

∂2Ψ

∂F ∂F
: δF = δ

(
∂Ψ

∂F

)
= 2µδF − 2µδR+ λJF−T δJ + λ(J − 1)δ(JF−T).

Here δJ = JF−T δF and δ(JF−T) = ∂(JF−T)
∂F

: δF . Also, δR = RRT δR can be

computed usingF = RS and S = ST . This involves solving a linear system forRT δR

which can be proven to be skew symmetric from RRT = I. For a full derivation, see

the technical document of Stomakhin et al. [2013].

All our purely elastic materials, except for those in Chapter 6, are simulated with this

model due to its simplicity and robustness.

3.2 Plasticity

This section presents the simple plasticity model proposed in [Stomakhin et al., 2013]

for simulating the dynamic behaviors of snow. In the real world, snow behavior is

very complicated due to its water-ice mixture nature. Rather than being accurate in its

physical parameters, the model discussed in this section is designed to be simple yet

achieve visual realism.

3.2.1 Plastic flow

The plastic flow is modeled as a constraint on the deformation gradient F . In a general

MPM framework, the treatment discussed below is performed at the end of each time

step independently on the F stored on each particle. It also generally works for a

finite element discretization as long as the deformation is represented with deformation

gradients.

The plastic flow is achieved by decomposing F into an elastic part and a plastic part:

17

F = FEFP , where the energy density function is defined only in terms of FE . With

this definition, Fp represents the new local rest state of the material. This is similar to

enforcing permanent deformation via changing the rest configuration.

In any time step n+ 1, we denote the previously stored deformation gradients on parti-

cles as F n
E and F n

P . Here we emitted the particle index because the process is indepen-

dently carried out per particle. By definition, F n = F n
EF

n
P . We first assume the new

deformation introduced in time step n+ 1 is purely elastic; that is, the MPM algorithm

computes the deformation gradient update as

F̂ n+1
E = (I + ∆t∇vn+1)F n

E .

Here, F̂ n+1
E is temporary. We want to take part of it and make that plastic. First, we

compute the total deformation gradient

F n+1 = F̂ n+1
E F n

P .

Then, we compute the SVD of F̂ n+1
E as

F̂ n+1
E = ÛΣ̂V̂.

We further clamp each entry of Σ̂ to the range [l, h], where l < 1 < h. The closer l

and h are to 1, the easier the material becomes plastic. In particular, h controls stretch-

ing and l controls compression. Denoting the clamped version of Σ̂ as Σ, the final

deformation gradient components are

F n+1
E = ÛΣV̂,

F n+1
P = (F n+1

E)−1F n+1.

18

3.2.2 Material hardening

In a continuum view, snow becomes harder during compression. In extension, it frac-

tures much more easily than other plastic materials such as gum. To achieve these two

effects, we can let the constitutive model parameters depend on the plastic deformation.

In particular, for the fixed Corotated model introduced in Section 3.1.3, we quantify this

hardening/softening effect as

µ = µ0e
ξ(1−Jp),

λ = λ0e
ξ(1−Jp),

where ξ is called the hardening factor and Jp = |FP |measures the severity of the plastic

deformation.

A starting parameter set for snow (as given in [Stomakhin et al., 2013]) is density

ρ = 400, Young’s modulus E = 1.4 × 105, Poisson’s ratio ν = 0.2, lower plasticity

clamping l = 1 − 2.5 × 10−2, higher plasticity clamping h = 1 + 7.5 × 10−3, and

hardening factor ξ = 10. For dry sand, since it can freely separate, we set h = 1.

Section 5.5 presents some results in simulating dry sand. The snow simulation results

are mainly demonstrated in [Stomakhin et al., 2013] and Disney’s 2013 feature anima-

tion “Frozen”.

3.3 Lagrangian forces

This section presents a method for discretizing any mesh-based Lagrangian force model

to a standard MPM grid solver.

For most of the MPM simulations, we compute forces as in [Stomakhin et al., 2013].

This approach has the advantages of a mesh free method, such as effortless topology

19

change. For objects not intended to undergo topological changes, a meshed approach

is also available using the ideas in [Sifakis et al., 2007]. In this case, we can use any

Lagrangian force model (springs, finite elements, etc.) for which we can write down

the total potential energy Φ(xp). Corresponding to this Lagrangian force model, we

compute forces fp = − ∂Ψ
∂xp

. We also assume that, given a vector δuq on particles, we

can multiply by force derivatives ∂fp
∂xq

to obtain δfp =
∑

q
∂fp
∂xq

δuq. Since these force-

related constructs are purely Lagrangian and are computed in the usual way, we will

not elaborate on them here.

Although we have defined our mesh-based forces as Lagrangian forces, we must still

apply them through the grid. We must describe how particle positions xp relate to our

(conceptually) moving grid nodes xi so that forces can be evaluated. Then, we must

compute fi from fp and find a means of computing δfi given δui. Doing this allows us

to use Lagrangian forces as Eulerian forces. Comparing our update rules for xp and xi,

we find xp =
∑

iwipxi. Using the chain rule,

fi =
∑
p

wipfp δfi =
∑
p,q,j

wip
∂fp
∂xq

wjqδuj. (3.1)

Since these forces are applied to the grid, both the MPM and Lagrangian approaches

can be employed in the same simulation. Each particle is labeled as an MPM particle

or a meshed particle. Note that the deformation gradient Fp stored on meshed particles

is never used, since for those particles this quantity is computed using the mesh. This

provides an effective means of coupling MPM with mesh-based approaches, such as

shown in Figure 3.1. This gives the precise surface tracking of Lagrangian techniques

coupled with the automatic collision handling of Eulerian grids.

A coupling example is shown in Figure 3.1. Here we use a traditional MPM dis-

cretization of the elastoplastic constitutive model from [Bargteil et al., 2007] to sim-

ulate frozen yogurt. We couple this with an elastic cloth using the Lagrangian force

20

Figure 3.1: An APIC coupled simulation of elastoplastic frozen yogurt and elastic
cloth, where coupling is achieved using our MPM approach with Lagrangian energy-
based forces.

Figure 3.2: We compare APIC with FLIP and PIC using the Lagrangian force model
from Section 3.3 and a collision scenario with significant angular momentum. APIC
preserves angular momentum better than even pure FLIP, and is at the same time the
most stable of the various options. In the bottom row we show that the cube surface
remains smooth after collision with APIC relative to the behavior of FLIP.

21

model. The cloth is modeled using a standard mass-spring energy. In Figure 3.2 we

show a comparison using mesh-based cubes with a Lagrangian finite element constitu-

tive model. Here, APIC retains angular momentum and energetic behavior better than

PIC, FLIP, and FLIP/PIC blends. FLIP and FLIP/PIC blends produce ringing during

the collisions between the cube and the glass plates and flexible block.

22

CHAPTER 4

Simulating Viscoelastic Fluids, Foams and Sponges

In this chapter, we present a constitutive model for simulating viscoelastic fluids, foams

and sponges. We design our discretization from the upper convected derivative terms

in the evolution of the left Cauchy-Green elastic strain tensor. We combine this with an

Oldroyd-B model for plastic flow in a complex viscoelastic fluid. While the Oldroyd-B

model is traditionally used for viscoelastic fluids, we show that its interpretation as a

plastic flow naturally allows us to simulate a wide range of complex material behaviors.

In order to do this, we provide a modification to the traditional Oldroyd-B model that

guarantees volume preserving plastic flows. Our plasticity model is remarkably simple

(foregoing the need for the singular value decomposition (SVD) of stresses or strains).

4.1 Background

Non-Newtonian fluid behavior is exhibited by a wide range of everyday materials in-

cluding paint, gels, sponges, foams and various food components like ketchup and

custard [Larson, 1999]. These materials are often special kinds of colloidal systems (a

type of mixture in which one substance is dispersed evenly throughout another), where

dimensions exceed those usually associated with colloids (up to 1µm for the dispersed

phase) [Hiemenz and Rajagopalan, 1997; Larson, 1999]. For example, when a gas and

a liquid are shaken together, the gas phase becomes a collection of bubbles dispersed in

the liquid: This is the most common observation of foams. While a standard Newtonian

23

viscous stress is a component of the mechanical response of these materials, they are

non-Newtonian in the sense that there are other, often elastoplastic, aspects of the stress

response to flow rate and deformation. Comprehensive reviews are given in [Morrison

and Ross, 2002; Prudhomme and Kahn, 1996; Schramm, 1994; Larson, 1999].

Terzopoulos and Fleischer were the first in computer graphics to show the effects possi-

ble with simulated elastoplastic materials [Terzopoulos and Fleischer, 1988a,b]. Since

those seminal works, many researchers have developed novel methods capable of repli-

cating a wide range of material behaviors. Generally, these fall into one of three cate-

gories: Eulerian grid, Lagrangian mesh, or particle-based techniques.

Eulerian grid-based approaches: Goktekin et al. [2004] showed that the addition of

an Eulerian elastic stress with von Mises criteria plasticity to the standard level-set-

based simulation of free surface Navier Stokes flows can capture a wide range of vis-

coelastic behaviors. Losasso et al. [2006a] also use an Eulerian approach. Rasmussen

et al. [2004] experiment with a range of viscous effects for level-set-based free surface

melting flows. Batty and Bridson [2008a]; Batty and Houston [2011] use Eulerian ap-

proaches to efficiently simulate spatially varying viscous coiling and buckling. Carlson

et al. [2002a] also achieve a range of viscous effects.

Lagrangian mesh-based approaches: Lagrangian methods naturally resolve defor-

mation needed for elastoplasticity; however, large strains can lead to mesh tangling for

practical flow scenarios and remeshing is required. Bargteil et al. [2007] show that this

can achieve impressive results. This was later extended to embedded meshes in [Wojtan

and Turk, 2008] and further treatment of splitting and merging was achieved in [Wojtan

et al., 2009]. Batty et al. [2012] used a reduced dimension approach to simulate thin

viscous sheets with adaptively remeshed triangle meshes.

Particle Methods: Ever since Desbrun and Gascuel [1996] showed that SPH can be

used for a range of viscous behavior, particle methods have been popular for achieving

24

complex fluid effects. Like Gotekin et al., Chang et al. [2009] also use an Eulerian

update of the strain for elastoplasic SPH simulations. Solenthaler et al. [2007] show

that SPH can be used to compute strain and use this to get a range of elastoplastic

effects. Becker et al. [2009] show that this can be generalized to large rotational motion.

[Gerszewski et al., 2009] also update deformation directly on particles. Keiser et al.

[2005] and Müller et al. [2004] also add elastic effects into SPH formulations. Paiva

et al. [2006, 2009] use a non-Newtonian model for fluid viscosity.

Although the MPM is a hybrid grid/particle method, particles are arguably the pri-

mary material representation. The MPM has recently been used to simulate elastoplas-

tic flows to capture snow in [Stomakhin et al., 2013] and varied, melting materials in

[Stomakhin et al., 2014]. Also, Yue et al. [2015] use the MPM to simulate Herschel-

Bulkley plastic flows for foam.

We show that the MPM approach can be generalized to achieve a wide range of vis-

coelastic, complex fluid effects. Most computer graphics approaches use a von Mises

like stress or strain-based plastic flow criteria which require expensive SVD computa-

tions. With our Oldroyd-inspired approach, we avoid the need for the SVD of either

elastic or plastic responses. We show that this comparatively simple model gives rise

to a wide range of interesting non-Newtonian material behaviors.

4.2 Governing equations

The governing equations arise from basic conservation of mass and momentum as

D

Dt
ρ+ ρ∇ · v = 0, ρ

D

Dt
v = ∇ · σ + ρg, (4.1)

where ρ is the mass density, v is the velocity, σ is the Cauchy stress and g is the

gravitational acceleration. As is commonly done with viscoelastic complex fluids, we

25

write the Cauchy stress as σ = σN + σE , where σN = µN

2

(
∂v
∂x

+ ∂v
∂x

T
)

is the viscous

Newtonian component and σE is the elastic component. We express the constitutive

behavior through the elastic component of the left Cauchy Green strain. Specifically,

the deformation gradient of the flow F can be decomposed as a product of elastic and

plastic deformation as F = F EF P and the elastic left Cauchy Green strain is bE =

F E(F E)T [Bonet and Wood, 1997]. With this convention, we can define the elastic

portion of the Cauchy stress via the stored elastic potential ψ(bE) as σE = 2
J
∂ψ
∂bE

bE .

4.2.1 Upper convected derivative

We can define the plastic flow using the temporal evolution of the elastic right Cauchy

Green strain as in [Bonet and Wood, 1997]. Rewriting F E = F (F P)−1, we have

bE = F (CP)−1FT , where CP = (F P)TF P is the right plastic Cauchy Green strain.

The Eulerian form of the temporal evolution is then obtained by taking the material

derivative

DbE

Dt
=
DF

Dt
(CP)−1F T+ F (CP)−1DF

Dt

T

+ F
D

Dt
[(CP)−1]F T . (4.2)

With this view, the plastic flow is defined via D
Dt

[(CP)−1]. This is relatively difficult

when using von Mises style plastic yield criteria and it is more straightforward to work

directly with F E and F P in that case. However, interpreting the Oldroyd model as a

plastic flow can be seen as D
Dt

[(CP)−1] = 1
Wi

(C−1 − (CP)−1), where C = FTF is the

right Cauchy Green strain. Combining this with D
Dt
F = ∂v

∂x
F (e.g. [Bonet and Wood,

1997]), we obtain

DbE

Dt
=
∂v

∂x
bE + bE

∂v

∂x

T

+
1

Wi
(I− bE). (4.3)

We can see, both from the 1
Wi

(I − bE) and D
Dt

[(CP)−1] = 1
Wi

(C−1 − (CP)−1) terms

that the plasticity achieves a strong damping of the elastic component of the stress. The

26

severity of this damping is inversely proportional to the Weissenberg number Wi. This

equation is often abbreviated as

O
bE =

1

Wi
(I− bE), (4.4)

where the operator
O
bE is defined to be

O
bE ≡ D

Dt
bE − ∂v

∂x
bE − bE ∂v

∂x

T . This is of-

ten referred to as the upper convected derivative and it appears in many mathematical

descriptions of complex fluids [Larson, 1999].

4.2.2 Volume-preserving plasticity

The plastic flow in the Oldroyd model will not generally be volume-preserving. Since

many plastic flows, including those of foams, exhibit this behavior, we provide a mod-

ification to the standard Oldroyd model that will satisfy this. If we define bEOB to

obey
O
bEOB = 1

Wi
(I − bEOB), then we define a new elastic left Cauchy Green stress

as bE ≡
(

J
JOB

) 2
3
bEOB, where J = det(F) and JOB =

√
det(bEOB). Using this

definition, det(bE) = J2 and since by definition det(bE) = det(F E)2 and J =

det(F E) det(F P), we see that it must be true that det(F P) = 1, and thus the plas-

tic flow is volume-preserving. This modification to the Oldroyd plasticity obeys

O
bE =

D

Dt

((
J

JOB

) 2
3

)
bEOB +

1

Wi

(
J

JOB

) 2
3 (

I− bEOB
)
, (4.5)

which has the plastic flow

D

Dt
[(CP)−1] =

D

Dt

((
J

JOB

) 2
3

)
(CP

OB)−1+

1

Wi

(
J

JOB

) 2
3 (

C−1 − (CP
OB)−1

)
.

(4.6)

27

We need not solve for bE using the definition of its plastic flow. In practice, we solve for

the comparatively simple bEOB and then obtain the elastic stress as bE =
(

J
JOB

) 2
3
bEOB.

We provide this derivation here only to show that there is a plastic flow associated with

this definition of the elastic stress.

4.2.3 Elasticity

We define constitutive behavior through the compressible neo-Hookean elastic potential

energy density as

ψ(bE) =
µ

2
(tr(bE)− 3)− µ ln(J) +

λ

2
(J − 1)2 (4.7)

with associated Cauchy stress

σE =
µ

J
(bE − I) + λ(J − 1)I. (4.8)

4.3 Discretization

We closely follow the algorithm from [Stomakhin et al., 2013] and Section 2.2. The

only difference is in the discrete Eulerian grid node forces and force derivatives. All

steps in the algorithm not related to the update of grid node velocities are the same;

we simply change the nature of stress-based forces. In this section, we describe how

to modify the potential-based definition of these forces to discretize our new governing

equations.

As before, we denote the position, velocity and deformation gradient of particle p at

time tn as xnp , vnp , and F n
p , respectively. Eulerian grid node locations are denoted as xi,

where i = (i, j, k) is the grid node index. The weights at time tn are wnip = Ni(x
n
p),

where Ni(x) is the interpolation function associated with grid node i and the weight

28

gradients are ∇wnip = ∇Ni(x
n
p). We define the forces on the Eulerian grid nodes as

the derivative of an energy with respect to grid node locations. We do not actually

move grid nodes, but we consider their movement to define grid node velocities vi as

x̂i = xi + ∆tvi. Using x̂ to denote the vector of all grid nodes, we define the potential

Φ(x̂) =
∑
p

(
ΦE(x̂)V 0

p + ΦN(x̂)V n
p

)
, (4.9)

where ΦE(x̂) is the elastoplastic component of the potential energy density ΦE(x̂) =

ψ
(
b̂E(x̂)

)
and ΦN(x̂) is the Newtonian viscous potential energy density

ΦN(x̂) = µN ε̂p(x̂) : ε̂p(x̂) =
∑
i,j

µN ε̂pij(x̂)ε̂pij(x̂). (4.10)

Here ε̂p(x̂) = 1
2

(
∇v̂(x̂) + (∇v̂(x̂))T

)
is the strain rate at xnp induced by the grid node

motion defined by x̂ over the time step, ∇v̂(x̂) =
∑

i
x̂i−xi

∆t
(∇wnip)T , and V 0

p is the

volume of the material originally occupied by the particle p. However, for the viscous

Newtonian potential, we are approximating an integral over the time tn configuration

of the material, so we have V n
p = det(F n

p)V 0
p .

A deformation gradient F n
p is stored on each particle and updated using

F̂ (x̂) = (I + ∆t∇v̂(x̂))F n
p . (4.11)

We use this to define Ĵp(x̂) = det(F̂ (x̂)) in the definition of

b̂E(x̂) =

(
Ĵp(x̂)2

det(b̂EOBp(x̂))

) 1
3

b̂EOBp(x̂). (4.12)

Similar to the treatment in (4.11), we store bE
n

OBp
on each particle and discretize the

29

Figure 4.1: A soft sponge is twisted. It fractures and collides with itself. The failure
and contact phenomena are resolved automatically by the MPM approach.

Figure 4.2: A kinematic bullet is fired at a sponge, resulting in significant deformation
and fracture.

upper convected derivative terms in the evolution equation for bEOB to obtain

b̂EOBp(x̂) =∆t∇v̂(x̂)bE
n

OBp + ∆tbE
n

OBp(∇v̂(x̂))T

+
∆t

Wi
I +

(
1− ∆t

Wi

)
bE

n

OBp .
(4.13)

The force on the grid nodes is defined as f(x̂) = −∂Φ
∂x̂

(x̂) and it is used in the implicit

update of grid velocities vn+1
i , exactly as in Chapter 2. We work out these derivatives

as well as the ∂f
∂x̂

(x̂) in Appendix B.

4.4 Simulation results

In Figure 4.1, a sponge is twisted with top and bottom fixed by Dirichlet boundary

conditions. Dynamic fracture and self collision are naturally handled. In Figure 4.2,

30

Figure 4.3: Simulated shaving foam (right) is compared with real world footage (left).
The simulation captures the characteristic S-shaped buckling and elastic behavior.

31

Figure 4.4: A simulation of toothpaste. Unlike the shaving foam, Newtonian viscosity
dominates material behavior.

ρ µ λ µN Wi

Twisting sponge 2 3.6× 102 1.4× 103 0 50
Shooting sponge 1 3.6× 102 1.4× 103 0 50

Shaving foam 0.2 5 50 1× 10−4 0.5
Toothpaste 1 0.839 8.39 1× 10−1 0.4

Viennetta ice cream 1 1 10 5× 10−5 0.1
Pie cream 0.2 5 50 1× 10−7 1× 10−4

Pie crust 0.5 5× 105 4× 106 1× 10−8 1× 1030

Pie crust scored 0.5 5 10 1× 10−5 1

Table 4.1: Material parameters.

32

Figure 4.5: Simulated Viennetta ice cream is poured onto a conveyor belt and forms
characteristic folds. A particle view is shown on the bottom.

33

Figure 4.6: A pie with a stiff crust and soft whipped cream is thrown at a mannequin.

Min/Frame Particle # Threads CPU ∆x Grid Resolution
Twisting sponge 5.3 9.1× 105 20 3.00 GHz 0.0366 2453

Shooting sponge 2.0 7.2× 105 16 2.90 GHz 0.0402 1753

Shaving foam 0.93 1.1× 106 12 3.47 GHz 0.0019 2573

Toothpaste 0.28 2.8× 105 16 2.90 GHz 0.0082 244× 487× 244
Viennetta ice cream 1.11 1.2× 106 12 2.67 GHz 0.0026 385× 96× 64

Pie 23.6 1.3× 106 12 3.07 GHz 0.0024 3333

Table 4.2: Simulation performance.

the top and bottom of the sponge are held in place as we shoot it with a kinematic

bullet. The animation is in slow motion to show the detailed material response after

the impact. In Figure 4.3, we simulate a stream of shaving foam hitting the ground,

and compare it with real world footage. Our method captures the S-shaped buckling

and merging behaviors. It also exhibits similar elastoplastic responses. In Figure 4.4,

we simulate toothpaste falling onto a toothbrush. Unlike the shaving foam, Newtonian

viscosity dominates material behavior. Figure 4.5 shows a simulation of manufacturing

Viennetta ice cream. It captures the characteristic folding behavior. In Figure 4.6, we

model a pie and throw it at a mannequin. The fracture pattern of the crust is pre-scored

with weak MPM particles. The cream exhibits detailed splitting and merging behavior.

For the particle-grid transfers, we used the affine Particle-In-Cell (APIC) method from

Chapter 5. We found that using APIC greatly reduced positional artifacts of the pie

particles.

34

The material parameters used in our examples are given in Table 4.1. The simulation

times are shown in Table 4.2. All simulations were performed on Intel Xeon computers.

All renderings were done with Mantra in Houdini. For foam, toothpaste, and Viennetta

ice cream, we reconstruct surfaces from particles, and render them with subsurface

scattering. The sponges were rendered as a density field.

4.5 Discussion

We found that using a Jacobi preconditioner greatly reduced simulation run times. For

example, in the shooting sponge test (Figure 4.2), the Jacobi preconditioner reduces the

number of CG iterations by a factor of 6.

While we have used our method successfully in simulating a variety of materials, it

has some limitations. Many of these are related to the Oldroyd-B model. For example,

unlike the approach in [Yue et al., 2015], our approach only handles shear thinning

but not shear thickening. Therefore, the model cannot be applied to materials such as

oobleck. It also does not handle material softening or hardening.

Our update rule of bEOB allows for inversion, which the constitutive model cannot han-

dle. While bEOB should remain positive definite, we have found this to be only partially

required. In particular, (4.7) involves the quantity tr(bE), which we must ensure is

bounded from below. If bE is positive definite, then tr(bE) > 0. We also compute

det(bE)−
1
3 , which is problematic if bE may become singular. We avoid these prob-

lems in practice by taking advantage of the optimization-based integrator developed in

Appendix A. We add a large penalty to our objective when the determinant or trace of

bE becomes infeasible; the line search in our optimizer then discards these configura-

tions. While bounding the trace and determinant does not enforce definiteness in 3D,

this strategy worked well in practice. Not enforcing these produces popping artifacts.

35

CHAPTER 5

The Affine Particle-in-Cell Method

This chapter introduces a novel mass and momentum (velocity) transfer scheme be-

tween particles and the grid [Jiang et al., 2015]. The techniques introduced here not

only apply to the Material Point Method, but also work for all hybrid Lagrangian/Eulerian

simulation, which is commonplace in computer graphics for fluids and other materials

undergoing large deformation.

In hybrid methods, particles are used to resolve transport and topological change, while

a background Eulerian grid is used for computing mechanical forces and collision

responses. Particle-in-Cell (PIC) techniques, particularly the Fluid Implicit Particle

(FLIP) variants have become the norm in computer graphics calculations. While these

approaches have proven very powerful, they do suffer from some well known limita-

tions. The original PIC is stable, but highly dissipative, while FLIP, designed to remove

this dissipation, is more noisy and at times, unstable.

In this chapter, we present a novel technique designed to retain the stability of the orig-

inal PIC, without suffering from the noise and instability of FLIP. Our primary obser-

vation is that the dissipation in the original PIC results from a loss of information when

transferring between grid and particle representations. We prevent this loss of infor-

mation by augmenting each particle with a locally affine, rather than locally constant,

description of the velocity. We show that this not only stably removes the dissipation

of PIC, but that it also enables exact conservation of angular momentum across the

transfers between particles and grid.

36

5.1 Background

We first review some existing hybrid particle/grid methods.

Hybrid particle/grid: Several works couple SPH with grid-based techniques [Losasso

et al., 2008; Hong et al., 2008a; Lee et al., 2009; Gao et al., 2009; Zhu et al., 2010a;

Raveendran et al., 2011]. Sin et al. [2009]couple particles with a Voronoi grid-based

pressure projection. Feldman et al. [2003] simulate explosions with a particle-based

advection and grid-based pressure solve. Chentanez and Muller [2010, 2014] couple

Lagrangian particles with shallow water and semi-Lagrangian techniques to adapt level

of detail and use particle reseeding for sub-cell detail [Chentanez and Muller, 2011].

PIC/FLIP: Foster and Metaxas [1996] first introduced PIC techniques to computer

graphics with liquid simulation. Zhu and Bridson [2005] popularized the now widely-

used linear combination of FLIP and PIC. Zhu and Bridson [2005] developed a number

of extensions to, including improved treatment of boundary conditions in irregular do-

mains and coupling with rigid bodies [Batty et al., 2007], viscosity treatment [Batty

and Bridson, 2008a], discontinuous-Galerkin-based adaptivity [Edwards and Bridson,

2014], multiphase flow [Boyd and Bridson, 2012], and higher-order accuracy [Ed-

wards and Bridson, 2012]. Cornelis et al. [2014] couple high-resolution FLIP with a

low-resolution implicit Smoothed Particle Hydrodynamics (SPH) from [Ihmsen et al.,

2013]. Gerszewski and Bargteil [2013] use mass-full FLIP with a unilateral incom-

pressibility constraint to resolve large-scale splashing liquids. Narain et al. [2013] also

use FLIP techniques for the simulation of sand dynamics. Stomakhin et al. [2013] use

MPM to simulate snow and melting/freezing [Stomakhin et al., 2014].

Level Sets: Many other graphics approaches utilize similar hybrid particle/grid data

structures, particularly for resolving free-surface flows. Enright et al. [2002] use La-

grangian marker particles to improve the accuracy of the level set method for free-

surface flows with the Particle Level Set Method (PLS). Mihalef et al. [2007] take a sim-

37

ilar approach but concentrate particles directly on the zero isocontour of the level set.

[Enright et al., 2002] couple Lagrangian particles with the Particle Level Set Method to

simulate compressible bubbles in incompressible flow [Patkar et al., 2013]. Kim et al.

[2006a] explore further use of the escaped particles from [Enright et al., 2002]. Song

et al. [2009] apply the Constrained Interpolation Profile (CIP) [Yabe et al., 2001] ap-

proach with [Enright et al., 2002] by allowing particles and grid to store velocity and

level set derivative information.

In a hybrid scheme, the dual representation of the material using particles and grid

provides a lot of advantages, but they also create numerous difficulties. Specifically,

while the hybridization allows numerical algorithms to be done in the most appropriate

representation, transferring between representations creates error. In this chapter we

show how that error can be minimized with minimal effort.

While our approach will apply to a wide range of continuum phenomena, for simplicity,

first consider fluid simulation. Here, pressure and viscosity updates are best done on

an Eulerian grid while advection is best done with Lagrangian particles. The first and

simplest method of this type is PIC [Harlow, 1964; Harlow and Welch, 1965]. While

this method is remarkably effective and simple to implement, it suffers from significant

dissipation (viscous appearance) due to frequent particle/grid transfers. Dissipation is

addressed in the FLIP method [Brackbill and Ruppel, 1986; Brackbill et al., 1988].

The main idea is to transfer increments of velocities and displacements from grid to

particles, rather than directly interpolating from the grid. Intuitively, if there is only

a small offset, only a small correction will be made, typically reducing the dissipa-

tion. Unfortunately, there are other errors aside from dissipation inherent to hybrid

Lagrangian/Eulerian material representations.

Specifically, the mismatch in particle and grid degrees of freedom leads to a loss of

information. Since there are often more particles than grid nodes, some particle modes

are not seen by the grid and get no physical response. This is the so-called “ringing

38

Figure 5.1: For illustration, we compare performance with some simple 2D examples.
The top row compares the methods in a dam break, free surface test. Note that APIC
preserves more vorticity than even pure FLIP, while also remaining less noisy. The
second row illustrates the angular momentum conservation properties of the methods.
The blue spiral indicates how far the circle has rotated. The bottom row illustrates the
ringing instability. Note that for pure FLIP, the velocities are large on particle but zero
when transferred to grid.

instability” (Figure 5.1) which was first-discovered in PIC [Brackbill, 1988] but is even

more-pronounced in FLIP [Love and Sulsky, 2006]. Intuitively, this problem is worse

in FLIP, because in PIC, particle-to-grid transfer followed by grid-to-particle transfer is

a true filtering of the instability. However, while PIC forces all information through the

grid, FLIP preserves some particle information, which allows the instability to persist

and grow unpredictably over multiple time steps. This might lead one to believe that

the ringing instability should not exist for PIC; however, it does to a lesser extent since

movement of particles re-creates the instability in the next time step. In graphics sim-

ulations these instabilities lead to practical particle positional artifacts such as noise,

clumping, and volume change.

A particularly problematic artifact of the dissipation with the traditional PIC approach

is loss of angular momentum. The standard PIC transfer from grid to particles dis-

sipates a significant amount of angular momentum, which leads to serious rotational

artifacts (Figure 5.1). Objects in free fall disturbingly stop rotating as if under the ac-

39

tion of a viscous fluid drag. While FLIP was developed to reduce the dissipation of PIC,

it also greatly improves the angular momentum conservation. However, FLIP will only

guarantee exact conservation of angular momentum with the use of a nondiagonal (con-

sistent) mass matrix, which is not possible in practice since the consistent mass matrix

can be singular for some configurations of the particles [Love and Sulsky, 2006]. This

can be remedied in practice by using an effective mass matrix equal to a weighted av-

erage of a lumped mass matrix and the consistent mass matrix, and while this does not

perfectly conserve angular momentum, it is still a vast improvement over the original

PIC [Love and Sulsky, 2006].

In graphics Zhu and Bridson [2005] advocate blending between pure PIC and FLIP to

stabilize the simulator. While this does produce more stable behavior, it re-introduces

dissipation and may require manual tuning of the blend weights on a case-by-case basis.

The problem is particularly bad for thin sheets of fluid. This has been addressed in

a number of ways including increasing resolution and adaptivity [Hong et al., 2008b,

2009; Ando and Tsuruno, 2011; Ando et al., 2012, 2013]. For similar reasons, Um et al.

[2014] develop a sub-grid-cell corrective forcing procedure to ensure accurate particle

distributions over time with FLIP and Edwards and Bridson [2012] add a regularization

term to diminish particle noise not corrected by the grid.

The current state leaves us with the difficult choice for every simulation we run: (1)

bias our simulation toward PIC, effectively avoiding instability at the expense of dis-

sipation, or (2) bias our simulation toward FLIP, getting more lively simulations at the

expense of noise and possible unstable behavior. In this chapter we present a third

option. In particular, we control noise by keeping the pure filter property of PIC, but

minimizing information loss by enriching each particle with a 3 × 3 matrix giving

locally affine (rather than locally constant) description of the flow. Our Affine Particle-

In-Cell (APIC) method effectively reduces dissipation, preserves angular momentum

and prevents instabilities. Furthermore, we demonstrate that the method is applicable

40

Kinematics

Dynamics

Transfer

Transfer

PIC

Particle Grid Particle Grid

Kinematics

Dynamics

Transfer

Increment Transfer

FLIP

"filter"

Kinematics

Dynamics

Affine Transfer

APIC

Particle Grid

unsafe
path

"filter"

Affine Transfer

Stable Non-dissipative Stable Non-dissipative Stable Non-dissipative

Figure 5.2: The basic dataflow of various hybrid particle/grid simulation techniques.
Both our method and PIC gain stability by using a true filtering transfer.

to both incompressible liquids and MPM simulations [Sulsky et al., 1995].

5.2 Method Outline

A Lagrangian/Eulerian hybrid simulation time step follows a similar pattern regardless

of whether one is simulating fluids with incompressible FLIP or solids with the MPM.

Abstractly, kinematic steps are done on particles and dynamic steps are done on the

grid. The exact form of those steps may be different with each phenomenon, and one

can see examples of a canonical fluid loop in [Zhu and Bridson, 2005] or MPM loop in

[Stomakhin et al., 2013]. As such the basic timestep loop for PIC, FLIP and our method

is shown in Figure 5.2. The only difference between the methods is how the transfer

between grid and particles is done. This difference is the focus of this chapter.

PIC is the canonical technique for coupling, and its diagram clearly shows that all data

flows through the grid, and in fact the transfer from particle to grid is a pre-filter to

the grid dynamics. By contrast, even though FLIP has the same pre-filter when going

from particles to the grid, it introduces an additional data path directly from the original

particle state. The advantage is less dissipation, but the disadvantage is an unsafe path

that can lead to instability. We will show that this path is not the only way to reduce

41

dissipation. In fact, we show that we can obtain low-dissipation simulations while still

maintaining the safety of the PIC filtering scheme.

The key observation is that normally a single particle receives data from multiple grid

points, but it is typically forced to reduce those influences to a single constant value,

leading to loss of information (e.g., dissipation). In Section 5.3 we develop two ap-

proaches for enriching particles to avoid this loss. Rigid Particle-in-cell (RPIC) is in-

troduced in Section 5.3.2, and it augments each particle with the angular momentum

lost in the grid to particle transfer. Unfortunately this is insufficient because shear-

ing modes are still lost. This leads to our final method Affine Particle-in-cell (APIC)

in which particles are endowed with a full affine representation of the local grid data,

which we discuss in Section 5.3.3.

With our transfer technique developed, we show how to apply it to fluids in Section 5.4.

We demonstrate this method on a range of interesting materials in Section 5.5.

5.3 Particle-grid transfers

5.3.1 PIC

The standard PIC routine stores mass mp, position xnp , and velocity vnp . Note that mp

lacks a time n superscript because it is never changed to ensure mass conservation.

Each time step begins with a transfer of mass and momentum from particles to a collo-

cated grid according to

mn
i =

∑
p

wnipmp, mn
i v

n
i =

∑
p

wnipmpv
n
p , (5.1)

where wnip = N(xnp − xi) are our interpolation weights and xi denote the regular

Cartesian grid node locations. With mass and momentum on the grid, we apply forces

42

to the velocities in a grid-based update, vni → ṽn+1
i . Note that we have used ṽn+1

i rather

than vn+1
i to distinguish them from vni at the next time step. Finally, we interpolate the

velocity back to particles with

vn+1
p =

∑
i

wnipṽ
n+1
i . (5.2)

A major problem with PIC is that it severely damps rotational motion. We can get some

insight into this by considering the angular momentum conservation properties in the

transfers. Note that linear momentum is conserved by both transfers. The total angular

momentum over the particles and grid at time tn are given by

LP,n
tot =

∑
p

xnp ×mpv
n
p LG,n

tot =
∑
i

xi ×mn
i v

n
i . (5.3)

While the transfer from particles to the grid conserves angular momentum, the transfer

from the grid back to particles does not. This loss of angular momentum manifests as

rotational motion damping (Figure 5.1).

5.3.2 Rigid Particle-In-Cell (RPIC)

In our efforts to reduce the information loss when transferring from particles to grid

and vice versa, we first develop modifications to the original PIC transfer designed to

facilitate conservation of angular momentum in the grid to particle transfer. Consider

the case of a single particle. PIC typically transfers information to multiple grid lo-

cations since wnip is generally nonzero for a few grid nodes at a time. Thus, even for

a single particle of material, its corresponding representation on the grid is capable of

storing angular momentum (by virtue of consisting of multiple grid nodes). However,

one particle is incapable of representing angular momentum. Therefore, to improve the

compatibility of the particle representation with the grid representation, we can addi-

43

tionally store a sample of local angular momentum Ln
p on each particle. This way, even

in the case of one particle, we can prevent the loss of angular momentum when trans-

ferring from grid to particle. A similar idea was used recently by Muller et al. [2015]

who augment SPH particles with a sample of angular momentum. However, because

their method is SPH-based, they do not need to define particle-grid transfers.

The angular momentum that would normally be lost in the transfer from grid to particles

is

Ln+1
p =

∑
i

wnip(xi − xnp)×mpṽ
n+1
i . (5.4)

With this definition, the total angular momentum on particles becomes

LP,n
tot =

∑
p

(xnp ×mpv
n
p + Ln

p). (5.5)

Also, with this definition, the transfer from grid to particles trivially conserves angular

momentum.

Next, we must define the transfer from particles to the grid. If we consider the particles

to be rigid bodies with inertia tensors Kn
p , then we can define the angular velocity

ωnp = (Kn
p)−1Ln

p . The rigid body’s local velocity at a grid node is vnp +ωnp×(xi−xnp),

which suggests the natural transfer

mn
i v

n
i =

∑
p

wnipmp(v
n
p + ((Kn

p)−1Ln
p)× (xi − xnp)), (5.6)

One may imagine this transfer as distributing the masses wnipmp from the rigid body to

the grid node i. This suggests using

Kn
p =

∑
j

wnjpmp(xj − xnp)∗(xj − xnp)∗T (5.7)

for the rigid body’s inertia tensor, where v∗ is the cross-product matrix associated with

44

vector v. Performing the transfer from particles to grid in this way conserves angular

momentum, as we prove in Appendix C.

5.3.3 Affine Particle-In-Cell (APIC)

While the piecewise rigid formulation corrects rotational artifacts arising from loss of

angular momentum in PIC, it still damps out nonrigid motions such as shearing. We

can extend the idea of enriching our velocity representation to handle shearing modes

by idealizing the velocity as locally affine on each particle. This requires the additional

storage of a matrix Cp, and the local velocity represented by a particle at the grid node

xi is then vnp +Cn
p (xi−xnp). This can be used to define a transfer from particles to grid

as in the piecewise rigid case. However, uniquely defining the nine components of Cn
p

from the three components of Ln
p as in the piecewise rigid case is not possible, which

complicates the process of deriving the transfer from grid to particles.

An important feature of the piecewise rigid formulation is that translational and rota-

tional velocity fields are transferred exactly from particles to the grid and vice versa.

Rather than explicitly trying to conserve angular momentum in the transfer from grid

to particles, we seek to preserve affine velocity fields across both transfers. However,

we show that a simple solution derived from the preservation of affine velocity fields

also conserves angular momentum (Appendix C).

The transfer from particles to grid is motivated analogously to the piecewise rigid case

and is of the form

mn
i v

n
i =

∑
p

wnipmp(v
n
p + Bn

p (Dn
p)−1(xi − xnp)), (5.8)

45

where Cn
p = Bn

p (Dn
p)−1 and

Dn
p =

∑
i

wnip(xi − xnp)(xi − xnp)T (5.9)

is analogous to an inertia tensor and is derived by preserving affine motion during the

transfers. The corresponding transfer from the grid back to particles is

Bn+1
p =

∑
i

wnipṽ
n+1
i (xi − xnp)T . (5.10)

To discuss the angular momentum conservation properties of the transfer, we must first

define angular momentum over the new particle state. A natural definition is the angular

momentum on the grid after the transfer in (5.8). This takes the form

LP,n
tot =

∑
p

mp(x
n
p × vnp + (Bn

p)T : ε), (5.11)

where ε is the permutation tensor (Appendix C). Note that the skew-symmetric com-

ponent of Bn
p contains all of the angular momentum information. In this way, it is

analogous to Ln
p = Kn

pω
n
p , which combined with Bn

p = Cn
pD

n
p illustrates that Dn

p is

analogous to the inertia tensor. Using this definition, conservation during transfer from

particles to grid is automatic. However, conservation during the transfer from grid to

particle can also be shown (Appendix C).

Note that despite these similarities (5.9) this is not quite the same as (5.7), and Dn
p does

not strictly speaking have the properties of an inertia tensor. Conveniently, Dn
p takes

on a surprisingly simple form in the case of the quadratic (Dn
p = 1

4
∆x2I) and cubic

(Dn
p = 1

3
∆x2I) interpolation stencils commonly used for MPM. Note that for these

interpolating stencils, multiplying by (Dn
p)−1 amounts to a constant scaling factor. For

trilinear interpolation, a complication arises since Dn
p may be singular if a particle lies

on a grid facet (node, edge, or face). However, in the special case of a trilinear stencil,

46

we have the convenient identity wnip(D
n
p)−1(xi−xnp) = ∇wnip, which allows us to avoid

this numerical difficulty entirely since (5.8) can be readily evaluated without forming

(Dn
p)−1.

5.4 Fluids

To apply these ideas to MAC-based fluid simulations, we formulate a set of transfers

between particles and MAC faces. Specifically, we transfer from particles to faces using

mn
ai =

∑
p

mpw
n
aip

mn
aiv

n
ai =

∑
p

mpw
n
aip(e

T
a v

n
p + (cnpa)

T (xai − xnp))

and from faces to particles using

vn+1
p =

∑
a,i

wnaipṽ
n+1
ai ea and cn+1

pa =
∑
i

∇wnaipṽn+1
ai .

Here, a represents an x, y, or z face direction, and xai is the location of a MAC face

associated with direction a. The weights are wnaip = N(xai − xnp), where N(x) is

chosen to be the trilinear interpolation kernel. mn
ai and vnai are the mass and velocity

component on the MAC face, and cpa is a vector per axis, notably requiring the same

amount of storage as the collocated case. Incompressibility is enforced in the standard

way [Bridson, 2008].

5.5 Simulation results

Free-surface flow: The most common graphics application of PIC and FLIP is free-

surface incompressible flow (Figure 5.3). We compare APIC with pure FLIP, PIC and

47

Figure 5.3: APIC resolves the complex free-surface dynamics of a rushing river on a
rugged terrain.

Figure 5.4: Here we compare the methods with a fountain simulation of free-surface
flow. The top row shows that while APIC and FLIP are the least dissipative in the initial
stages, the FLIP surface is already displaying a noisy leading edge relative to the more
smoothly resolved APIC. The bottom row shows that the entire surface of the fountain
becomes noisy with FLIP in the later stages.

48

Figure 5.5: APIC/PIC blends yield more energetic and more stable behavior than
FLIP/PIC blends in a wine pouring example. APIC/PIC blends are achieved analo-
gously to FLIP/PIC in that it is a scaling of the particle affine matrices.

FLIP/PIC blends in a number of free-surface calculations. Figure 5.4 shows a com-

parison with a fountain example. The top row (earlier time) shows that while APIC

and FLIP start as the least dissipative, the FLIP surface is already displaying a noisy

leading edge relative to the more smoothly resolved APIC. PIC is the most damped,

and any amount of PIC/FLIP blending leads to a damped leading edge position. The

bottom row (later time) shows that FLIP simulates a noisy surface. which is still visible

on FLIP/PIC blends. In Figure 5.5 we demonstrate the behavior of APIC/PIC blends

compared to FLIP/PIC. We note that unlike with FLIP, pure APIC is clearly superior

to APIC/PIC blends. Note that APIC produces more smooth and stable wine surfaces

than FLIP/PIC blends while simultaneously resolving more energetic splashing behav-

ior than even pure FLIP.

Granular materials: In Figure 5.6 we compare APIC with FLIP and FLIP/PIC blends.

We model the sand as a granular material using the constitutive model from [Stomakhin

et al., 2013] and Chapter 3. We use an inlet condition at the top of the slide to induce

a mixing flow. The dynamics demonstrate the noise of pure FLIP and the dissipation

of PIC and FLIP/PIC blends. APIC is able to retain the stability of PIC and FLIP/PIC

blends without the excessive dissipation. We show another comparison with granular

49

Figure 5.6: We compare APIC with PIC, FLIP and FLIP/PIC blends for an MPM
simulation of granular materials. Notice PIC and FLIP/PIC blend are stable but exhibit
overly viscous behavior, while pure FLIP is unstable and noisy as evidenced by stray
particles and excessive mixing. APIC however is both stable and nearly dissipation
free.

materials in Figure 5.7. Here, FLIP again exhibits overly noisy behavior. The dissipa-

tion in the PIC method causes the sand to bunch together giving it a wet look. While

the FLIP/PIC blend is more stable than pure FLIP, it also suffers from the clumping,

wet look of PIC. However, APIC stably resolves the dynamics of a fine powdery sand.

In Figure 5.8 we show that APIC is better able to retain angular momentum without the

dispersive behavior of FLIP.

Elastic solids: A coupling example can be seen in Figure 3.1. Here we use a traditional

MPM discretization of the elastoplastic constitutive model from [Bargteil et al., 2007]

to simulate frozen yogurt. We couple this with an elastic cloth using the Lagrangian

force model. The cloth is modeled using a standard mass-spring energy. In Figure 3.2

we show a comparison using mesh-based cubes with a Lagrangian finite element con-

stitutive model. Here, APIC retains angular momentum and energetic behavior better

than PIC, FLIP, and FLIP/PIC blends. FLIP and FLIP/PIC blends produce ringing dur-

50

Figure 5.7: We again compare against FLIP and APIC with a granular material ex-
ample. Here, a red cube of sand is dropped onto a torus causing it to exhibit interesting
flow patterns. APIC appears more like a fine powder—while FLIP suffers from ex-
cessive noise and instability. The dissipative nature of PIC causes the sand to clump
together, giving it a wet look that also plagues the FLIP/PIC blend.

51

Figure 5.8: We compare APIC with FLIP and PIC in a high energy collision example.
APIC resolves interesting spiral shedding behavior that the other methods cannot.

ing the collisions between the cube and the glass plates and flexible block. For the

underlying method of coupling the cloth and yogurt, see Section 3.3.

Lava: We demonstrate the benefits of APIC for lava flows using the model from [Stom-

akhin et al., 2014]. In Figure 5.9 we show interesting lava flows over a rugged terrain.

We directly compare APIC with FLIP and FLIP/PIC blends in Figure 5.10. In this ex-

ample, a spout pours lava with cooler, rockier properties near the outer circumference

into free-fall. APIC resolves an interesting periodic flow, while pure FLIP goes unsta-

ble, with hotter interior particles noisily exploding outwards. FLIP/PIC blends stabilize

this behavior, but do not produce flows as detailed as with APIC.

52

Figure 5.9: Here we demonstrate the performance of APIC with an elastoplastic model
for lava flow.

Figure 5.10: We compare APIC with FLIP and PIC during a lava in free-fall exam-
ple. Pure FLIP is unstable which leads to particles exploding out from the interior.
FLIP/PIC blends do not suffer from this, but they cannot resolve the detailed flows
shown in APIC.

53

Sheet2

Page 1

Method FLIP PIC APIC
Mixture 1 0.99 0.95 0 0.95 0.99 1

Wine 1.2 1.1 1.1 1.0 1.0 1.1 1.1

River 1.0 1.1 1.0 1.2

Collision 9.5 3.2 1.5 1.0 5.0

Lava Free-fall 2.5 1.1 0.9 1.0 1.3

Water fountain 1.1 1.2 1.5 1.0 1.0

Sand incline 4.0 1.9 1.5 1.0 2.2

FLIP 1.0 FLIP 1.0 FLIP 0.95 PIC APIC 0.95 APIC 0.99 APIC 1.0

[
Wine

River
Collision

Lava Free-fall
Water fountain

Sand incline

0.0

1.0

2.0

3.0

4.0

5.0
FLIP 1.0

FLIP 1.0

FLIP 0.95

PIC

APIC 0.95

APIC 0.99

APIC 1.0T
im

e
R

el
at

iv
e

to
 P

IC

Figure 5.11: We use relative timing to abstract performance impact from our particular
simulator. Typically simulation performance is correlated to CFL, thus unstable and
lively simulations take longer.

5.6 Discussion

Although we eliminate nearly all of the artificial dissipation of pure PIC, our method

neither improves nor exacerbates the ringing instability. This is quite unlike FLIP,

however, which avoids dissipation at the cost of losing stability.

A minor disadvantage of our approach is the need to store an extra matrix per particle

and perform a few extra operations during the transfers. In practice, we have found the

extra storage and transfer cost to be negligible as runtime costs are typically dominated

by the magnitude of the velocities and our CFL. PIC tends to be fastest, since it damps

out motion and has the smallest velocities. On the other hand, FLIP tends to be slowest

due to its instability and consequent larger velocities. In particular, we see that the wine

timings in Figure 5.11 are fairly uniform across all methods, because the maximum

velocity is similar. Similarly, unstable FLIP simulations like the high energy collision

tend to be very slow.

It is interesting to note that a stable FLIP blend often contains artifacts that are desirable,

54

especially in the case of liquids and wet sand. FLIP in some ways is akin to forcing

functions that are required to make grid-based smoke solvers visually interesting. We

assert, however, that if such instabilities are desirable, the artist would prefer to create

them in a way they desire rather than have them uncontrollably imposed by the method.

55

CHAPTER 6

Simulating Melting and Solidification

In this chapter, we introduce a novel Material Point Method (MPM) for heat trans-

port, melting and solidifying materials. This brings a wider range of material behav-

iors into reach of the already versatile MPM. This is in contrast to best-of-breed fluid,

solid, or rigid-body solvers that are difficult to adapt to a wide range of materials. Ex-

tending the material point method requires several contributions. We introduce a dila-

tional/deviatoric splitting of the constitutive model and show that an implicit treatment

of the Eulerian evolution of the dilational part can be used to simulate arbitrarily incom-

pressible materials. Furthermore, we show that this treatment reduces to a parabolic

equation for moderate compressibility and an elliptic, Chorin-style projection at the in-

compressible limit. Since projections are naturally done on Marker-And-Cell (MAC)

grids, we devise a staggered-grid MPM method. Lastly, to generate varying material

parameters, we adapt a heat-equation solver to a material point framework.

6.1 Background

From the process of lava solidifying into pāhoehoe to advertisements showing molten

chocolate solidified over ice cream, materials undergoing phase transitions are both

ubiquitous and complex. These transitional dynamics are some of the most compelling

natural phenomena. However, visual simulation of these effects remains a challenging

open problem. The difficulty lies in achieving robust, accurate and efficient simulation

56

of a wide variety of material behaviors without requiring overly complex implementa-

tions.

Phase transitions and multiple material interactions typically involve large deformation

and topological changes. Thus a common approach is to use a modified fluid solver,

which works well for viscous Newtonian fluids or even moderately viscoplastic flows.

However, solid and elastic material behavior is then more difficult to achieve. Alter-

natively, Lagrangian-mesh-based approaches naturally resolve elastic deformation, but

they must be augmented with explicit collision detection, and re-meshing is required for

fluid-like behaviors with topological changes. Due to the trade-offs between solid and

fluid methods, many authors have considered explicit coupling between two solvers,

but such approaches typically require complex implementations and have significant

computational cost.

A common goal is to handle a variety of materials and material transitions without

sacrificing simplicity of implementation. This motivation typically drives researchers

and practitioners toward particle approaches. For example, SPH and FLIP methods

are commonly augmented with an approach for computing strains required for more

general elastic stress response. The key observation is that particles are a simple and

extremely flexible representation for graphics. This is a central motivation in our ap-

proach to the problem.

Computing strain from world-space particle locations without the luxury of a Lagrangian

mesh proves challenging. One approach is using the MPM [Sulsky et al., 1995], which

augments particles with a transient Eulerian grid that is adept at computing derivatives

and other quantities. However, while MPMs successfully resolve a wide range of be-

haviors, they do not handle arbitrarily incompressible materials. This is in contrast

to incompressible FLIP [Zhu and Bridson, 2005] techniques that naturally treat liquid

simulation but typically only resolve pressure or viscosity-based stresses.

57

In this chapter, we present a number of contributions. We show that MPM can be

easily augmented with a Chorin-style projection [Chorin, 1968] technique that enables

simulation of arbitrarily incompressible materials, thus providing a connection to the

commonly used FLIP techniques. We achieve this with a MAC-grid-based [Harlow

and Welch, 1965] MPM solver, a splitting of the stress into elastic and dilational parts,

a projection-like implicit treatment of the Eulerian evolution of the dilational part, and

careful attention to how quantities are rasterized and updated on the grid. Additionally,

we couple a simple yet practical heat model to our material point solver, allowing us to

drive material changes with temperature and phase.

Thermodynamic variation of material properties to achieve melting and solidifying ef-

fects for visual simulation was first explored in the pioneering work of Terzopoulos

et al. [1991]. Since then, such explorations have remained very popular. A common

requirement in such approaches is the unified treatment of a wide variety of material be-

haviors. While specialized techniques for single materials are relevant when discussing

prior approaches, we primarily restrict the following literature discussion to papers that

explicitly consider multiple materials with solidification and melting.

Particle-based melting: SPH is commonly used for modeling viscosity and pressure

response in liquids and has been popular in graphics since the work of Desbrun and

Gascuel [1996]. Because of its wide use, SPH has been frequently modified with more

general strain computations that allow more general stress response. For example, So-

lenthaler et al. [2007] simply use standard SPH interpolation to create a continuous

displacement field from per-particle world space positions that can be differentiated in

material-space to obtain per-particle displacement gradients. Becker et al. [2009] show

however that this displacement differentiation approach cannot accurately resolve mate-

rial rotations, so they instead propose a shape-matching approach [Müller et al., 2005].

Chang et al. [2009] handle viscoelastic and melting flow by computing the strain us-

ing a convenient Eulerian evolution (as in [Goktekin et al., 2004]) that only requires

58

SPH interpolation of the velocities in world space. A number of other SPH methods

have used Moving Least Squares to compute the strain. Keiser et al. [2005] and Müller

et al. [2004] handle the transition from solid to fluid by including both traditional SPH-

based pressure forces with elastic forces defined from an elastic potential defined via

the moving least squares approximation to the deformation gradient. While moving

least squares approaches do not suffer from the rotational artifacts encountered in the

more straightforward methods of Solenthaler et al. [2007] and Becker et al. [2009],

they are plagued by a number of failure scenarios where inversion of the associated

moment matrices are not defined (e.g., co-planar and co-linear particle configurations

as discussed in [Becker et al., 2009]). Paiva et al. [2009] and Paiva et al. [2006] avoid

the need for strain computation altogether instead using non-Newtonian modifications

of fluid viscosity to achieve complex fluid effects useful in melting and solidifying.

Other notable uses of SPH for melting effects include [Stora et al., 1999] for lava flows,

[Iwasaki et al., 2010] and [Lii and Wong, 2013] for melting ice and [Lenaerts and Dutre,

2009] for the treatment of porous granular materials and water.

Mesh-based melting: Lagrangian meshes have long been popular due to trivial per-

element strain computation that leads to accurate elastic behavior [Teschner et al.,

2004]. However, fluid and melting behaviors necessitate topological change, requiring

remeshing. Bargteil et al. [2007] achieved efficient remeshing, Wojtan and Turk [2008]

increased efficiency and fidelity using embedded meshes, and Wojtan et al. [2009] in-

cluded the treatment of splitting. Wicke et al. [2010] introduce a dynamic local remesh-

ing algorithm that attempts to replace as few tetrahedra as possible limiting the number

of visual artifacts. Clausen et al. [2013] used tetrahedron-based remeshing to melt vis-

coelastic solids into fluids. Kim et al. [2006b] model ice dynamics as a thin film Stefan

problem and represent ice volumes with a level set method.

Grid-based melting: Eulerian methods are natural when melting into a fluid phase.

However, the challenge is then the computation of elastic strain. Goktekin et al. [2004];

59

Losasso et al. [2006a] use an Eulerian update rule for the strain evolution. Rasmussen

et al. [2004] achieve melting effects by simply increasing viscosity in an Eulerian ap-

proach. Wojtan et al. [2007] include erosion phase change effects with a level set

representation of fluids and eroding solids. Zhao et al. [2006] use a modified Eule-

rian lattice Boltzmann method to treat melting and flowing. Wei et al. [2003] use a

cellular-automata-based simplification of the physics. Losasso et al. [2006b] couple

a Lagrangian mesh representation of a solid with Eulerian representations of a fluid

to treat each phase in the melting process. [Carlson et al., 2002b] also combine La-

grangian and Eulerian approaches by using particles for material advection and a MAC

grid for implicit viscosity and pressure projection.

Heat and phase transitions: Heat evolution is typically achieved by solving the heat

equation in the world space of the system. The local temperature of the material can

then be used to modify its mechanical properties. Stora et al. [1999] varied viscosity

with temperature to simulate lava flows. Terzopoulos et al. [1991]; Teschner et al.

[2004]; Zhao et al. [2006]; Losasso et al. [2006a]; Iwasaki et al. [2010]; Clausen et al.

[2013] model phase transition using a hard freezing temperature threshold. On the other

hand, Carlson et al. [2002b]; Keiser et al. [2005]; Paiva et al. [2006]; Solenthaler et al.

[2007]; Chang et al. [2009]; Paiva et al. [2009]; Dagenais et al. [2012] define a more

smoothed material property range in the phase transition region, perhaps to model the

latent heat. Maréchal et al. [2010]; Lii and Wong [2013] more correctly model phase

transition including latent heat.

6.2 Method Overview

Goal: Our goal is to simulate a wide variety of materials, with the specific area of focus

being volumetric simulation in the presence of phase change. A fully general unified

simulation model is beyond the scope of our work, and such a model would need to

60

consider many more interactions. Researchers have considered some of these other

goals with coupling [Carlson et al., 2004; Chentanez et al., 2006; Robinson-Mosher

et al., 2008] and multi-material unification [Martin et al., 2010] (these citations are

not exhaustive). Our focus is on heat-driven material change, in particular, because

it requires handling a wide range of material behaviors and the transition within that

range. We stress, however, that if a practitioner requires only one material at a time,

computational efficiency might be obtained by using a specialized solver (e.g. FLIP for

liquids).

MPM limitations: [Stomakhin et al., 2013] demonstrates that material point methods

occupy an interesting middle ground for simulation techniques, especially elastoplas-

tic materials undergoing fracture. By adding plasticity to the basic constitutive model

energy in [Stomakhin et al., 2012], they show that a range of compressible materials

(like snow) can be simulated. While incompressibility can be approached by increas-

ing the Poisson’s ratio, at some point locking can occur [Mast et al., 2012]. At that

point one might decide to use a much simpler incompressible FLIP method. How-

ever, more generally speaking, numerical systems can usually be formulated using hard

constraints or soft constraints. Soft constraints can vary stiffness, but at sufficiently

high stiffness, hard constraint formulations become efficient and necessary. For ex-

ample, stiffer mass-spring systems can approach rigidity, but practitioners usually turn

to the reduced-coordinate rigid-body systems. Analogously, liquids can be simulated

using equation-of-state SPH, but Incompressible SPH [Solenthaler and Pajarola, 2009]

is often more efficient. Regardless, in the presence of material transition, it becomes

difficult to switch different parts of the domain between hard constraints and soft con-

straints, so soft constraint methods are used everywhere. This serves to motivate the key

idea, to bring some of the efficiency of hard-constraint incompressible FLIP methods

to soft-constraint MPM techniques like [Stomakhin et al., 2013].

Contributions: Our basic approach is to combine the projection ideas present in in-

61

compressible FLIP with the rich constitutive material properties of MPM to get a very

flexible solver. Our particular contributions are as follows:

1. We carefully model heat in the context of MPM by solving the heat equation

on a background grid. Using the resulting temperature and phase, we can vary

material properties like the Young’s modulus and Poisson ratio. To solve for

specifically problematic parameters that cause MPM locking, we develop a gen-

eralized Chorin-style projection, further requiring a MAC-style staggered MPM

formulation.

2. We further show that a deviatoric/dilational splitting of the constitutive model

naturally allows for this while facilitating arbitrary variation from compressible

to incompressible.

3. We also show that sharp phase transitions also benefit from a deviatoric strain-

based energy density function because it prevents energy gain when transitioning

from fluid to solid.

In essence, our method can be seen as a combination of an incompressible FLIP solver

and a material point solver, with material properties driven by temperature distribution

defined by a heat solver operating in parallel.

We next proceed to explain the details of our solver. A visual diagram of our method is

shown in Figure 6.1. In Section 6.3 we derive the physical equations for the mechanical

evolution and heat transfer, as well as our splitting scheme. In Section 6.4 we discuss

the details of our algorithm. Finally we present results in Section 6.5 and discussion in

Section 6.6.

62

Initial
MAC grid velocities

rasterization

MPM solved
MAC grid velocities

MAC
deviatoric MPM solve

Final
MAC grid velocities

cell-centered
pressure solve

rasterization

Initial cell-centered
temperature & heat

Final cell-centered
temperature & heat

cell-centered
Poisson heat-solve

interpolate temperature
& update phase

Initial MPM particles

Final MPM particles

interpolate velocities
& update deformation gradient

Grids

Figure 6.1: Our method benefits from the interplay of grids and particles. In parallel
with our mechanical evolution we have a thermodynamic evolution that also uses grids
as a scratchpad.

63

6.3 Physical Model

We describe the mapping from points in an initial material configuration X to their

deformed state x by a transform x = φ(X). We use the notation F = ∂φ/∂X to

describe the Jacobian (or deformation gradient) of the mapping. Material motion is

governed by conservation of mass, conservation of momentum, and the elastoplastic

constitutive relation

Dρ

Dt
= 0, ρ

Dv

Dt
= ∇ · σ + ρg, σ =

1

J

∂Ψ

∂FE
F T
E , (6.1)

where ρ is density, t is time, v is velocity, σ is the Cauchy stress, g is gravity, Ψ is the

elastoplastic potential energy density, FE is the elastic part of the deformation gradient

F , and J = det(F) (e.g., [Bonet and Wood, 1997]).

6.3.1 Heat flow and phase transition

The heat flow is governed by

ρ
Du

Dt
= −∇ · q, q = −κ∇T , c =

du

dT
, (6.2)

where u is stored heat energy per unit mass, T is temperature, q is heat flux, κ is heat

conductivity in accordance with Fourier’s Law, and c is heat capacity per unit mass

(e.g., [Gonzalez and Stuart, 2008]). Eliminating u and q leads to the heat equation

ρc
DT

Dt
= ∇ · (κ∇T). (6.3)

This is a simplified model in that we assume no transfer between the mechanical and

heat energy of the system (and hence u is a function of T only). Even so, this is the most

popular approach for simulating heat transfer in graphics. Also, instead of representing

64

volumetric heat source terms, we use heat boundary conditions: Dirichlet or Neumann,

depending on the desired behavior.

To complete our physical model, we must form a thermo-mechanical model by bringing

our heat and mechanical systems together. This is accomplished by varying Ψ with

temperature and phase. In particular, we use different expressions for Ψ depending on

whether the material is in a solid or liquid state. It is worth noting that stable transition

between two phases requires the careful treatment discussed later.

We discretize the temperature evolution in time from (6.3) as

T n+1 − T n =
∆t

ρncn
∇ · (κn∇T n+1). (6.4)

Note, however, that this equation describes temperature evolution only within one

phase. Phase transition is a separate process in the sense that it requires extra heat,

so called latent heat, which cannot be observed as a temperature change. Specifically,

the latent heat of fusion L of an object is the heat required to transfer it from a solid

into a liquid state isothermally at the freezing point of the material (e.g., [Serway and

Jewett, 2009]). Thus, the transition does not happen instantly at the freezing point, and

the importance of capturing this effect is discussed in [Lii and Wong, 2013].

Some researchers mimic the effect of latent heat by expanding the temperature range in

the vicinity of the freezing point and introducing separate temperatures for melting and

freezing [Carlson et al., 2002b; Keiser et al., 2005; Paiva et al., 2006; Solenthaler et al.,

2007; Paiva et al., 2009; Chang et al., 2009; Dagenais et al., 2012]. While this approach

is sufficient for handling phase transition of a single material, it is not generally appli-

cable to mixtures of materials with different thermal properties, since the expanded

temperature ranges would not necessarily agree. We thus will follow the approach of

[Maréchal et al., 2010; Lii and Wong, 2013] to accurately handle the effect latent heat

in the multimaterial case. We discuss our latent heat treatment in Section 6.4.9.

65

In general, material parameters—e.g., µ and λ—can be defined as functions of the

current temperature in addition to them being functions of the current phase; however,

in practice we found that keeping them constant with T and letting µ = 0 in the fluid

phase was sufficient to produce visually compelling results.

6.3.2 Constitutive model

For a realistic treatment of melting and freezing, we require a suitable and well-behaved

handling of plasticity and transition between liquid and solid phases of the materials.

Following the multiplicative plasticity treatment of Stomakhin et al. [2013], we separate

F into an elastic part FE and a plastic part FP so that F = FEFP . With this separation,

we base our constitutive model on the elastoplastic fixed co-rotational energy density

function [Stomakhin et al., 2012, 2013]

Ψ(FE) = Ψµ(FE) + Ψλ(JE), (6.5)

where

Ψµ(FE) = µ‖FE −RE‖2
F , Ψλ(JE) =

λ

2
(JE − 1)2, (6.6)

JE = det(FE), and RE is the rotation from the polar decomposition of FE . This

constitutive model is known to be suitable for solids, where µ and λ are typically set

from Young’s modulus and Poisson’s ratio of the material. Furthermore, letting µ = 0

makes the energy density depend only on the local volume change and thus is suitable

for liquids, both compressible and incompressible (in the λ → ∞ limit). In fact, in

this case it can be shown that the Cauchy stress is a scalar pressure. Specifically, JE

measures relative volume change, and Ψλ penalizes it, facilitating volume preservation.

Note however, that Ψµ is not completely orthogonal to Ψλ in the sense that it also

penalizes volume change. In addition, it penalizes deviatoric strains to which Ψλ is

oblivious. Thus, simply overriding Ψµ in (6.5) when changing phase is unsuitable for

66

freezing, as this transition would result in a sudden large increase in potential energy

and produce popping artifacts. Clearly this energy increase must be avoided if freezing

is to be possible.

To better understand where the energy increase comes from, consider the dilational

(JE)
1
d I and deviatoric (JE)−

1
dFE parts of FE , where d is the dimension and I is the

identity matrix. The first source of energy is the consequence of the deviatoric com-

ponent of FE . The deviatoric part is not used in Ψλ and would generally change quite

drastically with the flow. To remedy this, we note that fluids are almost perfectly plas-

tic with respect to deviatoric strain. We incorporate this into our model by clearing the

deviatoric component from FE immediately after it is updated by letting FE ← (JE)
1
d I

at the end of each time step in the fluid phase.

This fluid plasticity does not completely eliminate the problem, since Ψµ is nonzero

even if FE contains only a dilational component. To address this, we eliminate the dila-

tional component explicitly from Ψµ. This is commonly done for nearly-incompressible

materials [Bonet and Wood, 1997] and helps allow for arbitrarily large λ. That is, we

define an alternative energy density function

Ψ̂(FE) = Ψ̂µ(FE) + Ψλ(JE) (6.7)

where Ψ̂µ(FE) = Ψµ(J
− 1
d

E FE). (6.8)

The derivatives of Ψµ and Ψλ are as in [Stomakhin et al., 2013], and the chain rule gives

us the deviatoric stress σµ = 1
J

∂Ψ̂µ
∂FE
F T
E where, for clarity, ∂Ψ̂µ

∂FE
(FE) is an evaluation of a

function at FE . See Appendix D for details related to the derivative terms arising from

the chain rule.

67

6.3.3 Pressure Splitting

The model as stated would handle some material variation, but locking could occur in

highly incompressible materials. This section shows how to prevent locking by trans-

forming our solid model into a more fluid-like form whose resulting discretization will

be much more efficient. This process is analogous to fluid-only methods that are derived

by starting with general continuum stresses together with simplifying assumptions that

lead to a pressure equation of state. We will follow a similar strategy, albeit without the

fluid-only simplifying assumption by starting with our hyperelastic stress given in (6.5).

Although this derivation ultimately yields the commonly used pressure p = k(ρ− ρ0),

where k is a stiffness, ρ is pressure, and ρ0 is the rest density, that connection must be

proven.

6.3.4 Pressure

The problematic term for highly incompressible materials is Ψλ. However, we note that

this term gives rise to a dilational (constant diagonal) Cauchy stress as

σλ =
1

J

(
∂Ψλ

∂JE

∂JE
∂FE

)
F T
E =

1

J

∂Ψλ

∂JE
JEF

−T
E F T

E = −pI, (6.9)

where

p = − 1

JP

∂Ψλ

∂JE
= − 1

JP
λ(JE − 1). (6.10)

It is interesting to note that, in the absence of plasticity, J = JE , Jp = 1, and J = ρ/ρ0,

making (6.10) reduce to p = −λ(ρ/ρ0 − 1), the traditional SPH equation of state

[Monaghan, 1992].

68

6.3.5 Temporal evolution

Even though p is related to our other variables, by treating it as an unknown, we can

achieve a splitting, analogous to Chorin-style projection. The main difference is that

we are not restricted to fully incompressible materials, and we instead handle the full

spectrum. To derive the splitting consider the time evolution of pressure

Dp

Dt
= − 1

JP

∂2Ψλ

∂J2
E

DJE
Dt

. (6.11)

Since J = JEJP and DJ
Dt

= J∇ · v (e.g., [Gonzalez and Stuart, 2008]), we have
DJE
Dt

= JE∇ · v and therefore

Dp

Dt
= − 1

JP

∂2Ψλ

∂J2
E

JE∇ · v = −λJE
JP
∇ · v. (6.12)

6.3.6 Discretization

Additionally, with the definition of p from (6.9), our force balance equation takes the

fluid-like form

ρ
Dv

Dt
= ∇ · σ + ρg = ∇ · σµ −∇p+ ρg, (6.13)

where σµ is the component of stress from Ψµ. We discretize the system of equations

(6.12) and (6.13) as

pn+1 − pn

∆t
= −λ

nJnE
JnP
∇ · vn+1, (6.14)

vn+1 − vn

∆t
=

1

ρn
∇ · σµ −

1

ρn
∇pn+1 + g. (6.15)

Note that we can replace the material derivative with a simple finite difference in time

because advection will be done in a Lagrangian manner using MPM.

69

To solve the system (6.14) and (6.15), we split the pressure application in (6.15) from

the other forces by introducing an intermediate v?

v? − vn

∆t
=

1

ρn
∇ · σµ + g, (6.16)

vn+1 − v?

∆t
= − 1

ρn
∇pn+1. (6.17)

Taking the divergence of (6.17) and eliminating ∇ · vn+1 using (6.14) yields

JnP
λnJnE

pn+1

∆t
−∆t∇ ·

(
1

ρn
∇pn+1

)
=

JnP
λnJnE

pn

∆t
−∇ · v?. (6.18)

We use pn = − 1
JnP
λn(JnE − 1) for the right hand side.

Note that the discrete system for the pressure will be symmetric positive definite and

similar to a discrete heat equation for moderate λ. As λ is increased to the incompress-

ible limit, the pressure equation is then the standard Poisson equation seen in Chorin-

style projections [Chorin, 1968]. This is similar in spirit to the implicit treatment of

the compressible Euler equations in [Kwatra et al., 2009]. While the introduction of an

auxiliary pressure unknown is common in incompressible elasticity (e.g., [Bonet and

Wood, 1997]), it would generally be coupled with the velocity unknowns (e.g., [Mast

et al., 2012]). Our introduction of the implicit treatment based on the evolution of pres-

sure (6.11) is novel and drastically improves the efficiency of the approach because it

decouples the pressure from the nonlinear equations for velocity unknowns.

6.4 Algorithm

We will now describe the discretization details in our algorithm. We outline each

step required to advance one time step in the simulation (Figure 6.1 for a schematic

overview). We can think of this process as updating the state (itemized in Table 6.1)

70

Notation Description Is Constant
xp Position Not constant
vp Velocity Not constant
mp Mass Constant
V 0
p Initial volume Constant

FEp Elastic part of Fp Not constant
FPp Plastic part of Fp Not constant
µp Lamé parameter µ Depends on Tp and phase
λp Lamé parameter λ Depends on Tp, but not phase
Tp Temperature Not constant
Up Transition heat Not constant (Sec. 6.4.9)
cp Heat capacity per unit mass Depends on Tp and phase
κp Heat conductivity Depends on Tp and phase
Lp Latent heat Constant
ζp Phase Depends on Tp and Up (Sec.6.4.9)

Table 6.1: Quantities stored on each particle.

from time tn to time tn+1. The process uses a background MAC grid and combines

standard aspects of traditional MPM and FLIP solvers. Specifically, after the particle

state is transferred to the grid, the deviatoric forces are first discretized with implicit

MPM in accordance with (6.16). This step results in an intermediate velocity field

whose divergence is used in the right hand side of the implicit equation for the dila-

tional part in (6.18). The dilational part is treated with the generalized Chorin-style

projection over the MAC grid and the intermediate velocity is then given a pressure

correction in accordance with (6.17). The inclusion of the heat transfer effects only

requires an additional heat equation solve per time step. We discuss the specific details

of each step in the algorithm in the following subsections, which can be summarized

as:

1. Apply plasticity from previous timestep (Section 6.4.1)

2. Compute interpolation weights (Section 6.4.2)

3. Rasterize particle data to grid (Section 6.4.3)

4. Classify cells (Section 6.4.4)

5. Compute MPM forces (Section 6.4.5.1)

71

6. Process grid collisions (Section 6.4.6)

7. Apply implicit MPM update (Section 6.4.5.2)

8. Project velocities (Section 6.4.7)

9. Solve heat equation (Section 6.4.8)

10. Update particle state from grid (Section 6.4.9)

11. Process particle collisions and update particle positions (Section 6.4.10)

6.4.1 Apply plasticity from previous timestep

For simplicity, it is common for graphics researchers to apply a heuristic plastic-yield

criterion for compressible elastic materials, because there is considerable leeway in

visual applications [Irving et al., 2004; Stomakhin et al., 2013]. However, in the case of

nearly incompressible materials, the plastic flow should also be nearly incompressible.

We therefore provide a simple procedure for guaranteeing JP ≡ det(FP) = 1 for

nearly incompressible materials. We note that more accurate plasticity models from

the engineering literature (such as von Mises yield criteria) also have the property that

JP = 1 as a consequence of rate independence [Bonet and Wood, 1997; Goktekin et al.,

2004; Bargteil et al., 2007]. We begin by adjusting FE and FP so that the singular

values of FE are restricted to the interval [1− θc, 1 + θs] as in [Stomakhin et al., 2013].

We then apply the correction FE ← (JP)1/dFE and FP ← (JP)−1/dFP , which ensures

that FP is purely deviatoric, or equivalently, JP = 1.

6.4.2 Compute interpolation weights

To transfer data from particles to MAC faces and MAC cell centers, we need multiple

sets of interpolation weights per particle. Basically, we have d face-centered grids,

one for each dimension, and one cell-centered grid. The procedure of computing the

weights is identical for all of these grids and follows [Steffen et al., 2008]. The grids

72

Particles
Cells marked empty
Cells marked interior

Collision object boundary
Faces marked as colliding

Cells marked colliding

Node did not receive mass
Node did receive mass

Node & Cell Classification Node Stencils

Reference particle
Cells whose pressures not corrected
Cells whose pressures corrected

Node received no mass / not corrected /not used
Node received mass / corrected / used

Node received mass / not corrected / not used
Node received masses / corrected / not used

Figure 6.2: The left figure illustrates cell classification criteria. Note that faces marked
“colliding” are Neumann faces for the Poisson solve and yellow cells marked “collid-
ing” are Dirichlet cells for the Poisson solve. The right figure shows stencils for a
single reference particle. The particle contributes to the green, blue, and orange faces,
the pressure solve only corrects orange and blue faces, but our quadratic interpolation
touches only the orange faces.

73

however are offset with respect to each other, which leads to different weight values for

each grid. Below, we introduce a common notation for all offset grids and describe a

way to procedurally calculate the weights.

We express the fact that the d + 1 grids are offset with respect to each other by con-

sidering their base point (x0a, y0a, z0a) (lower-left point in 2D), where a ∈ {x, y, z}

indicates velocity components for each of the face grids and a = ? represents the

pressure grid. Up to some translation vector, we have (x0x, y0x, z0x) = (−h
2
, 0, 0),

(x0y, y0y, z0y) = (0,−h
2
, 0), (x0z, y0z, z0z) = (0, 0,−h

2
), and (x0?, y0?, z0?) = (0, 0, 0),

where h is the grid spacing. Figure 6.2 (left) illustrates one of the MAC grids. Now,

given a grid of spacing h with cell indices c = (i, j, k) with points located at xca =

(xi, yj, zk) = (x0a + ih, y0a + jh, z0a + kh) we can define interpolation of an arbitrary

particle position xp = (xp, yp, zp). As in [Steffen et al., 2008], we define a multidimen-

sional separable kernel from the one-dimensional cubic B-spline

N(x) =


1
2
|x|3 − x2 + 2

3
, 0 ≤ |x| < 1

−1
6
|x|3 + x2 − 2|x|+ 4

3
, 1 ≤ |x| < 2

0, otherwise

(6.19)

as Nh
ca(xp) = N(1

h
(xp − xia))N(1

h
(yp − yja))N(1

h
(zp − zka)).

For a more compact notation, later on we will use i as an index into MAC grid faces,

and c for indexing cell-centered quantities. E.g., vi stands for the velocity field com-

ponent at face i, and pc is the pressure value at the center of cell c. With this, the

interpolation weight of particle xp is wip = Nh
c(i)a(i)(xp) with respect to face i and

wcp = Nh
c?(xp) with respect to cell c. Here a(i) and c(i) are the dimension component

and cell index associated with face i respectively. Alternatively, the face index can be

uniquely identified by a cell and an axis as i = i(c, a), for a ∈ {x, y, z}. Similarly, we

define ∇wip = ∇Nh
c(i)a(i)(xp) and ∇wcp = ∇Nh

c?(xp). The various components and

their associated values are summarized in the following table:

74

Grid a Base Weight

cell ? (0, 0, 0) wcp = Nh
c?(xp)

x-offset x (−h
2
, 0, 0) wi(c,x)p = Nh

cx(xp)

y-offset y (0,−h
2
, 0) wi(c,y)p = Nh

cy(xp)

z-offset z (0, 0,−h
2
) wi(c,z)p = Nh

cz(xp)

6.4.3 Rasterize particle data to grid

We rasterize data to the grid using the interpolation weights from Section 6.4.2. Mass

is first rasterized to the grid faces as

mn
i =

∑
p

wnipmp.

These face densities allow us to normalize the interpolation of velocity and thermal

conductivity as

Ani =
∑
p

wnipmpA
n
p for A ∈ {v, κ}.

We repeat the process at cell centers, computing cell massesmn
c =

∑
pw

n
cpmp followed

by

Bn
c =

1

mn
c

∑
p

wncpmpA
n
p for B ∈ {J, JE, c, T, λ−1},

noting that rasterizing λ−1 rather than λ is important for stability.1 Finally, we set

JnPc = Jnc
JnEc

.

1The relationship between JE and λ results in a balance in the pressure − λ
JP

(JE − 1). Unfor-
tunately, averaging JE and λ through rasterization might destroy this balance, creating an artificially
large pressure. Estimating λ with a harmonic average, or equivalently, rasterizing λ−1 and computing
λc = 1/λ−1

c , resolves this problem.

75

6.4.4 Classify cells

We represent our collision objects as level sets and assign each collision object a tem-

perature. We begin the collision processing by checking all faces for collisions. A

MAC face is colliding if the level set computed by any collision object is negative at

the face center. If it is colliding, we flag the face as colliding. For convenience and con-

sistency in other parts of the algorithm, we classify each MAC cell as empty, colliding,

or interior. A cell is marked as colliding if all of its surrounding faces are colliding.

Otherwise, a cell is interior if the cell and all of its surrounding faces have mass. All re-

maining cells are empty (left portion of Figure 6.2). Colliding cells are either assigned

the temperature of the object it collides with or a user-defined spatially-varying value,

depending on the setup. If the free surface is being enforced as a Dirichlet tempera-

ture condition, the ambient air temperature is recorded for empty cells. No other cells

require temperatures to be recorded at this stage.

6.4.5 MPM velocity update

In our deviatoric/dilational splitting of the material response, the deviatoric forces are

discretized with implicit MPM, and the dilation part is discretized with the generalized

Chorin-style projection. Using the common notation from a projection method, we can

think of the the implicit MPM step as updating rasterized grid-based velocities vni to

v?i in accordance with (6.16). The last step for grid velocities is to apply the pressure

correction, computed using (6.18), to v?i to obtain vn+1
i in accordance with (6.17). We

outline the procedure for computing v?i in this section and the following subsections.

The first step is to compute the MPM force.

Following Stomakhin et al. [2013], we discretize the deviatoric forces via a potential

energy. This naturally facilitates an implicit treatment with symmetric linearization. We

denote the location of grid face i as xi. If we interpret our Eulerian MAC grid as though

76

it were Lagrangian, we would estimate that after ∆t, this face would have moved to

x̂i = xi + ∆tv?i ea(i), where ea(i) is the basis vector in the direction corresponding to

the MAC velocity component v?i . If we denote the vector of all x̂i as x̂, then we can

think of it as depending on the vector of all face velocities v?i which we can denote as

v?. Or, x̂ = x̂(v?). Note that this interpretation is for convenience in computing forces

and force derivatives as we do not actually move our grid. Since we only really have

one degree of freedom in x̂i, we will denote it as x̂i = (x̂i)a(i) and x̂i = x̂i(v
?
i) =

(x̂i)a(i) + ∆tv?i .

The deviatoric potential energy is

Φµ(x̂) =
∑
p

V 0
p Ψ̂µ(F̂Ep(x̂)), (6.20)

where V 0
p is the initial volume occupied by particle p and F̂Ep is the elastic part of the

deformation gradient of particle p. F̂Ep depends on x̂ as in [Sulsky et al., 1995]

F̂Ep(x̂) =

(
I +

∑
i

(x̂i − xi)(∇wnip)T
)
F n
Ep. (6.21)

6.4.5.1 MPM forces

The force component fi at face i is given by fi = − ∂Φ
∂x̂i

= − ∂Φ

∂F̂Ep

∂F̂Ep
∂x̂i

∂xi

∂xi
, or

fi(x̂) = −
∑
p

V 0
p eTa(i)

∂Ψ

∂FE
(F̂Ep(x̂))(F n

Ep)
T∇wnip. (6.22)

With these forces, we compute the right hand side for our MPM treatment

bi = vni +
∆t

mi

fi + ∆tgi
∑
p

wnip, (6.23)

77

where gi is the gravity component at face i and fni = −∂Φµ
∂x̂i

(x̂(0)), again using the

convention that x̂ = x̂(v?).

6.4.5.2 Semi-implicit MPM update

We use one step of Newton’s method to solve the implicit system for deviatoric and

inertial force balance. This yields a (mass) symmetric system for v?

∑
j

(
δij +

∆t2

2mn
i

∂2Φµ

∂x̂i∂x̂j
(x̂(0))

)
︸ ︷︷ ︸

qij

v?j = bi, (6.24)

where qij are the entries of matrixQ. The system is symmetric but potentially indefinite,

so we use the iterative conjugate residual method [Choi, 2006]. This Krylov method

only requires the action of Q on an arbitrary increment δu (comprised of scalar MAC

face increments δuj). The nontrivial term is from the Hessian and can be expressed as

− δfi =
∑
j

∂2Φµ

∂x̂i∂x̂j
(x̂(0))δuj =

∑
p

V 0
p eTa(i)Ap(F

n
Ep)

T∇wnip, (6.25)

where

Ap =
∂2Ψµ

∂F 2
E

(FE(x̂)) :

(∑
j

δujea(i)(∇wnjp)TF n
Ep

)
. (6.26)

6.4.6 Process the grid collisions

Each face marked as colliding during the cell classification step must have its velocity

corrected for collisions. We perform sticking collisions for all of our collisions, so we

simply assign the velocity component from the collision body to the corresponding face

on the MAC grid.

78

6.4.7 Project the velocities

We discretize (6.18) for the pressure then use it to correct the intermediate velocities

v?. This is a discrete parabolic equation that, of course, reduces to a Poisson equation

in the incompressible limit of λ → ∞. In either case our discretization reduces to

a symmetric positive definite system of equations. We discretize in space using the

central-difference stencils naturally defined over the MAC grid. The right hand side

of our system has entries sc stored at MAC cell centers. We compute these as sc =

−JE
n
c−1

∆tJE
n
c
−
∑n

i Gicv
?
i , where Gic are the coefficients of the central-differenced gradient

stencil. Our corresponding matrix takes the increments δpc and produces the results δrc,

where δrc =
δpcJnP c

JE
n
cλ

n
c ∆t

+ ∆t
∑

i

∑
c′

1
ρni
GicGic′δpc′ and ρni =

mni
V ni

is the mass density

at face i. The mass at the face is mn
i , and V n

i is a control volume around the face,

whose formula we describe below. Once we have solved for the pressure, we apply the

pressure correction to the velocities using vn+1
i = v?i −∆t

∑
c

1
ρni
Gicpc.

The discretization of Gic corresponds to a simple voxelized, central-differenced gradi-

ent operator. We enforce homogeneous Dirichlet pressure boundary conditions at cells

that have been marked as empty, and homogeneous Neumann boundary conditions at

faces adjacent to cells that have been marked as colliding.

Degrees of freedom near collision objects do not have as many neighboring particles as

interior degrees of freedom, since part of their influence is covered by a collision object.

This causes these faces to appear lighter, which would in turn cause them to rise under

gravity without careful definition of ρni . We prevent such phenomena by computing

control volumes that accurately represent the portion of the domain associated with a

face. This is done as V n
i =

∑
c

∫
Ωc
χcN

h
c(i)a(i)(x)dx, where Ωc is the interior of MAC

cell c, and χc = 1 if cell c is marked as interior or χc = 0 otherwise. This is an

approximation to
∫

Ωn
Nh

i dx, where Ωn is the domain encompassed by the material.

This control volume is essential for accurately approximating the density near collision

79

Figure 6.3: Simulation of a stationary pool with (left) and without (right) density cor-
rection. Without correction the faces near collision objects appear lighter which causes
them to rise under gravity.

objects. Note that the integral described in the formula for V n
i has only a finite number

of cases, which the product structure of Nh
c(i)a(i)(x) makes relatively easy to tabulate.

We demonstrate the effect of density correction in Figure 6.3.

6.4.8 Solve the heat equation

We perform a stabilized Poisson solve to update the temperature in accordance with

(6.4). We begin by setting the right hand side to T nc , which is a cell-centered rasterized

temperature. Our corresponding matrix takes the increments δTc and produces the re-

sult δTc + ∆t
∑n

i

∑
c′

∆xd

mnc c
n
c
κni GicGic′δTc′ . The discretization of Gic corresponds to a

simple voxelized, central-differenced gradient operator. We enforce Dirichlet tempera-

ture boundary conditions at cells that are in contact with fixed temperature bodies (like

a heated pan or air) and homogeneous Neumann boundary conditions at faces adjacent

to cells that can be considered empty or corresponding to insulated objects.

6.4.9 Update the particle state from the grid

Some outermost faces involved in the MPM step do not receive a correction from the

projection step, and as a result they tend to have outdated velocity values (Figure 6.2).

80

To prevent errors from uncorrected velocities when transferring information back to the

particles, we use a tighter quadratic stencil given by the following spline:

N(x) =


−x2 + 3

4
, 0 ≤ |x| < 1

2

1
2
x2 − 3

2
x+ 9

8
, 1 ≤ |x| < 3

2

0, otherwise

(6.27)

We interpolate velocities back to particles using FLIP, where the PIC component is

computed as vPICp =
∑

i v
n+1
i wnipea(i) and the FLIP component as vFLIPp = vnp +∑

i(v
n+1
i − vni)wnipea(i). With these, the new velocities are vn+1

p = αvFLIPp + (1 −

α)vPICp , where α is the FLIP fraction. We used α = 0.95 in our examples.

The next step is to update FEp. To do this, we must compute a velocity gradient, which

we do with ∇vn+1
p =

∑
i v

n+1
i ea(i)∇wTip. Normally, one would finish with the update

rule F n+1
Ep = (I + ∆t∇vn+1

p)F n
Ep. We found that this occasionally leads to Jn+1

Ep ≤ 0

if the time step is too large, so we opt for a compromise between this simple rule

and the ideal but expensive exponential computation F n+1
Ep = e∆t∇vn+1

p F n
Ep. Instead,

we use F n+1
Ep = R(∆t∇vn+1

p)F n
Ep, where R(M) = I +M if det(I +M) > 0 and

R(M) = R(1
2
M)2 otherwise. Note that this is effectively a truncated geometric series

of the exponential function, where we invest just enough time to keep the determinant

positive. In practice, this function recurses very rarely, and the update is more robust

but nearly as efficient as before. If p is a fluid particle, we finish off the update of F n+1
Ep

by removing its deviatoric component using F n+1
Ep ← (Jn+1

Ep)1/dI.

Similarly to velocity, temperature gets transferred from the grid cell centers to particles

as T n+1
p = βT FLIPP + (1 − β)T PICP , where T FLIPp = T np +

∑
c(T

n+1
c − T nc)wcp,

T PICp =
∑

c T
n
c wcp and β is the FLIP ratio (we used β = 0.95 for our examples).

As mentioned before, the heat equation and, thus, the grid-based heat update are valid

only within one material phase, so cases where the temperature crosses the freezing

81

point require special treatment. Namely, a portion of the heat the particle gets (or loses)

should be spent on the phase change. To account for this effect, we have an energy

buffer associated with each particle of size Lp, and the particle stores the amount of

heat Up contained in that buffer, which can vary from 0 to Lp. Initially, we allow each

particle to freely change its temperature according to the heat equation. But whenever

the freezing point is reached, any additional temperature change is multiplied by cpmp

and added to the buffer, with the particle temperature kept unchanged. This can also be

viewed as a post correction of the temperature for a particle that “illegally” crossed the

freezing point. Once the buffer is completely full (particle heat Up = Lp), we switch the

particle phase to fluid. Conversely, if the buffer becomes empty (particle heat Up = 0),

we switch the particle phase to solid. Note that the phase change happens only when

the buffer is completely full or empty, otherwise the material retains its phase from the

previous timestep. This sort of hysteresis facilitates more stable phase transitions, as

opposed to using a hard threshold on Up.

6.4.10 Process the particle collisions and positions

We complete our time integration by enforcing collisions on our particles. Since we

did sticking collisions with the grid, we do sticking collisions on particles as well.

A particle is registered as colliding if a collision body registers a negative level set

value at the location of the particle. If this occurs, the particle’s velocity is set to the

velocity of the collision body at that location. Finally, we update particle positions as

xn+1
p = xnp + ∆tvn+1

p .

6.5 Simulation results

We have generated a number of visually interesting results using our method. Our novel

splitting and rasterization techniques facilitate handling mixtures with extreme varia-

82

Figure 6.4: Our method handles mixtures of materials with drastically different prop-
erties, ranging from compressible to (almost) incompressible. Here each letter has λ
varying from 106 to 5× 109, as well as varying µ and plasticity parameters. c©Disney.

83

Figure 6.5: Bringing a hot fluid stream in contact with a cold solid produces compelling
phase transition effects. The image demonstrates both: Simulated particle view with
temperature distribution (top) and the rendering of our final meshed geometry (bottom).
c©Disney.

tions of material parameters. This can be seen in Figure 6.4 where we drop elastoplas-

tic SIGGRAPH letters with material properties ranging from compressible to almost

incompressible with varying stiffness and plasticity parameters.

Further, our simplified yet practical heat model allows us to achieve compelling phase

transition effects. Figure 6.5 shows hot liquid chocolate pouring on a cold solid choco-

late bunny. During the process some solid melts and some liquid freezes producing

intricate shapes. Figure 6.6 and Figure 6.7 demonstrate how we can use external sur-

face heat sources and sinks (such as hot/cold air and the cold frying pan) to melt and

freeze different objects. Our careful treatment of the physics of phase transition using

latent heat allows us to maintain sharp, yet stable, interfaces between solid and fluid

phases, as can be seen in the butter melting example in Figure 6.8. By varying materi-

als’ thermal parameters such as heat conductivity, heat capacity, and latent heat, we can

control the heat flow and thus (indirectly) affect the dynamics of melting and freezing,

as shown in Figure 6.9. To create believable lava flow solidifying into pāhoehoe shown

in Figure 6.10, we varied the temperature of the mountain based on the distance to the

lava source (the heat exchange with the air was not simulated). This way the lava would

freeze more gradually, forming attractive layered shapes. We also added some variation

to the freezing temperature of the particles in order to give it a more amorphous look.

84

Figure 6.6: Setting a Dirichlet temperature boundary condition on the air cells allows
us to melt objects from the outside. c©Disney.

85

Figure 6.7: An apple is pulled from liquid candy and it hardens on contact with the air,
creating a sticky, candied apple. c©Disney.

Figure 6.8: Our method is able to capture many intricate features of butter melting
over a hot frying pan, such as wave-like spread and micro ripples of the fluid phase, as
well as effortless sliding behavior of the solid chunk on top of it. c©Disney.

86

Figure 6.9: Changing the value of latent heat affects the rate of phase transition,
demonstrated by this melting wax example. c©Disney.

Figure 6.10: Lava solidifying into pāhoehoe forms complex and attractive shapes. The
lava emits light according to the blackbody spectrum corresponding to the simulated
temperature. c©Disney.

Example Particles Grid min/frame
SIGGRAPH letters 1.0× 106 96× 144× 96 18.5
Bunny and hot stream 1.2× 106 170× 170× 170 8.4
Bunny and hot air 1.2× 106 160× 160× 160 11.4
Apple dip 0.8× 106 64× 128× 64 11.0
Melting butter 4.2× 106 128× 128× 128 14.5
Lava 3.5× 106 300× 150× 300 29.7

Table 6.2: Particle counts, grid resolutions and simulation times per frame for each
of our examples. Simulations were performed on a 16-core Xeon E5-268 2.67 GHz
machine.

87

The simulation times for each of the examples are shown in Table 6.2. For each of

those, the timestep size was ∆t ' 3 × 10−4 s. To achieve convergence, the conjugate

residual solvers for the MPM, projection, and heat diffusion steps normally would take

under 10, 300 and 50 iterations, respectively.

6.6 Discussion

MPM: While MPM yields automatic collision and topology changes, it incurs some

difficulties. For example, the grid introduces numerical plasticity, and it is difficult to

represent sharp interfaces between materials. One down-side of our cubic interpolant

is that we have a wider stencil compared to what most incompressible FLIP solvers

use. This leads to additional numerical viscosity as well as increased computational

expense. While it is tempting to use quadratic B-splines for rasterization paired with

trilinear interpolation, low-order interpolation with the MPM is known to have stability

problems [Steffen et al., 2008]. Additionally, we focused on sticky boundaries be-

cause the materials we were simulating were typically sticky. Thus, deriving a free-slip

boundary condition would be interesting future work. It would be interesting to con-

sider alternative integration strategies that would yield bigger time steps, though our

time steps tend to be commensurate with [Stomakhin et al., 2013].

Projection: Although the projection-like decoupling of pressure from MPM-discretized

deviatoric terms is valid away from the boundary, there is still coupling through the

free surface boundary condition σ · n = σµ · n − pn = 0. In order to separate the

MPM-based solution of the deviatoric terms from the pressure equations, we implicitly

assume that σµ · n = 0 during the MPM solve and then that p = 0 for the projection

step, at the free surface. While this does guarantee that σ · n = σµ · n − pn = 0, it

removes some flexibility as it is akin to enforcing a+b = 0 with a = 0 and b = 0. Note

that the boundary conditionσµ ·n = 0 is automatically enforced at the free surface with

88

an MPM discretization since it is the “natural" boundary from the variational principle

on which MPM is based. While this decoupling certainly causes errors in both pressure

and the velocities (see, e.g., [Hirt and Shannon, 1968] for discussion), this simplifica-

tion is commonly done in both the computer graphics [Carlson et al., 2002b; Goktekin

et al., 2004; Rasmussen et al., 2004; Losasso et al., 2006b; Batty and Bridson, 2008b]

and engineering literature [Harlow and Welch, 1965].

Performance: Our implementation was parallelized and has shown good scaling re-

sults with increasing number of CPU cores. However, the performance still remains an

issue. In particular, the grid rasterization step (including matrix-vector multiplication

in the implicit MPM solve) constitutes a significant portion of runtime. In the future,

we might consider acceleration via CPU SIMD or GPGPU techniques to improve the

performance. Also, employing simulation level of detail techniques could reduce run

times in areas where the particles have settled. Alternatively, Lagrangian techniques

such as [Solenthaler et al., 2007] have achieved material variation and melting effects

with less computational cost. Nevertheless, we believe our formulation remains in-

teresting because it provides a theoretical unification between two popular algorithms

while also allowing formalized constitutive modeling.

Sampling: Particle methods can suffer from poor sample quality under large deforma-

tion. Even though pure Lagrangian methods can avoid drift when returning to a rest

configuration, under significant plastic deformation, conditioning, sample density, and

accuracy may degrade, requiring remeshing (e.g., [Bargteil et al., 2007]) or resampling.

While we note that in the presence of less liquid-like behavior, drift is less of an issue.

We plan to experiment with resampling techniques in the future.

Rendering: While modeling and simulation is simplified with particle methods, ob-

taining high-quality rendering becomes more challenging. Since the MPM naturally

produces a density rasterization, index-of-refraction matched volume renderers can

sometimes be applied (e.g., for snow). For most of the materials, however, we needed

89

to render an interface, thus we turned to meshing solutions. Such techniques are com-

mon for liquid rendering and typically involve rasterizing particles to a grid using some

(usually spherically symmetric) basis function followed by grid smoothing, contouring,

and final surface smoothing. These steps typically require per-example tuning and it is

often impossible to recover as much detail as the particles seem to possess. This can be

seen in Figure 6.5. We also experimented with anisotropic kernel techniques such as

[Yu and Turk, 2010], but we found that while they are very successful for liquids with

visible surface tension, in our case they created more artifacts than they removed. Thus,

any techniques that improve meshing will improve the final quality of our results.

6.7 Summary

In summary, we introduced a novel material point method for melting and solidify-

ing materials using a heat solver to capture the underlying thermodynamics and alter

mechanical parameters. The method is implicit and capable of simulating nearly in-

compressible materials using a Chorin-like projection solve. Hence, we have widened

the range of materials that the MPM can handle, and we have demonstrated this breadth

with several compelling melting and solidifying examples.

90

CHAPTER 7

Conclusion

The multiphysics simulation of materials undergoing large deformation and topology

change is useful in Computer Graphics, Mechanical Engineering, and other fields. In

these situations, how to cleverly represent material geometry as well as accurately re-

solve its evolution under energetic external loads or subject to heat transport remains

an important and challenging problem. This thesis focused on the development of

novel hybrid, Lagrangian/Eulerian simulation methods. In these methods, particles are

used to resolve transport and topological change while a background Eulerian grid is

used to compute mechanical forces and collision responses. Particle-in-Cell (PIC) tech-

niques, particularly the Fluid Implicit Particle (FLIP) variants, including the Material

Point Method (MPM), have become the norm in computer graphics fluid simulation.

Our approach effectively reduces numerical dissipation and overcomes instabilities in

solving energetic mechanical problems. We developed an augmented MPM for simu-

lating multiphase materials integrated with heat transportation. This method is capable

of handling the underlying thermodynamics in coupled simulations of phase-changing

materials. Each method in this dissertation independently solves an existing problem

or proposes a novel approach to certain simulation scenarios. Together, they contribute

to the unified goal of simulating dynamic-topology materials as well as the coupling of

them.

We called our new hybrid, Lagrangian/Eulerian method the Affine Particle-In-Cell

method (APIC). While existing approaches (PIC, FLIP, MPM) have proven very pow-

91

erful, they do suffer from some well-known limitations. The original PIC is stable, but

highly dissipative, while FLIP, which is designed to remove this dissipation, is more

noisy and at times unstable. We presented a novel technique designed to retain the

stability of the original PIC, without suffering from the noise and instability of FLIP.

Our key observation was that the dissipation in the original PIC results from a loss

of information when transferring between grid and particle representations. We pre-

vented this loss of information by augmenting each particle with a locally affine, rather

than locally constant, description of the velocity. We showed that this not only stably

removes the dissipation of PIC, but that it also enables exact conservation of angular

momentum across the transfers between the particles and the grid. With our method,

we controlled noise by keeping the pure filter property of PIC but minimized informa-

tion loss by enriching each particle with a tiny matrix providing a locally affine (rather

than a locally constant) description of the flow. Our APIC method effectively reduces

dissipation, preserves angular momentum and prevents instabilities. Furthermore, we

demonstrated that the method is applicable to both incompressible liquids and MPM

simulations. We also introduced a novel MPM for heat transport, melting, and solidify-

ing materials. This brings a wider range of material behaviors into reach of the already

versatile MPM, which is in contrast to best-of-breed fluid, solid, or rigid-body solvers

that are difficult to adapt to a wide range of materials.

Extending the MPM required several technical contributions. We introduced a dila-

tional/deviatoric splitting of the constitutive model and show that an implicit treatment

of the Eulerian evolution of the dilational part can be used to simulate arbitrarily incom-

pressible materials. Furthermore, we showed that this treatment reduces to a parabolic

equation for moderate compressibility and an elliptic, Chorin-style projection at the in-

compressible limit. Since projections are naturally done on Marker-And-Cell (MAC)

grids, we devised a staggered-grid MPM method. Lastly, to generate varying material

parameters, we adapted a heat-equation solver to a material point framework. The heat

solver captures the underlying thermodynamics and alters mechanical parameters. The

92

method is implicit and capable of simulating nearly incompressible materials using a

Chorin-like projection solve. Hence, we have broadened the range of materials that

MPM can handle, and demonstrated the greater scope of our technique with several

compelling melting and solidifying examples.

Our methods were shown to be computationally efficient, numerically stable, and phys-

ically accurate. These features enabled them to be directly applied within the visual

effects industry. A large portion of the work on simulating multiphase physics (such as

the melting and solidifying of materials) and the unified simulation of energetic matter

(such as the dynamics of incompressible fluid and granular materials) has been em-

ployed in Disney’s feature animations. Our research has contributed to stunning levels

of visual realism for 3D animations and movie special effects, as well as for use by the

interactive games industry.

Advancing the digital entertainment industry with mathematical and computational

technology has had a significant positive impact on a great many people’s lives. How-

ever, the physics-based simulation methods developed in this thesis can inspire other

important multidisciplinary applications. In particular, our work on the unified sim-

ulation of solids and fluids can be used to create integrated numerical and graphical

physics-based models of human tissue, such as to realize a realistic biomechanical

model of the liver and its associated fluidic systems with associated injury and sur-

gical procedure toolkits. Furthermore, our work on the simulation of the cutting of

deformable objects [Wang et al., 2014] promises to impact on the future development

of virtual surgery simulators.1 It can potentially become a framework for training sur-

geons to remotely perform robotically-mediated surgeries.

1See, e.g., Xbox + math = virtual surgery, UCLA. https://www.youtube.com/watch?v=lT9IWPCaDNk

93

APPENDIX A

An Optimization-Based Integrator

Practical time steps in state-of-the-art simulators typically rely on Newton’s method to

solve large systems of nonlinear equations. In practice, this works well for small time

steps but is unreliable at large time steps at or near the frame rate, particularly for dif-

ficult or stiff simulations. In this appendix, we show that recasting the backward Euler

method as a minimization problem allows Newton’s method to be stabilized by stan-

dard optimization techniques with some novel improvements of our own. The resulting

solver is capable of solving even the toughest simulations at the 24 Hz frame rate and

beyond. We show how simple collisions can be incorporated directly into the solver

through constrained minimization without sacrificing efficiency. We show that these

techniques improve the behavior of MPM simulations.

A.1 Introduction

The most commonly used time integration schemes for graphics applications are im-

plicit methods. Among these, the backward Euler method [Baraff and Witkin, 1998; Hi-

rota et al., 2001; Volino and Magnenat-Thalmann, 2001; Martin et al., 2011; Liu et al.,

2013] or variants of the Newmark method [Kane, 1999; Bridson et al., 2002, 2003] are

the most common, though even more sophisticated schemes like BDF-2 [Hauth and

Etzmuss, 2001; Choi and Ko, 2005], implicit-explicit schemes [Eberhardt et al., 2000;

Stern and Grinspun, 2009], or even the more exotic exponential integrators [Michels

94

et al., 2013] have received consideration. Integrators have been the subject of compar-

ison before (e.g., [Hauth and Etzmuss, 2001; Volino and Magnenat-Thalmann, 2001;

Parks and Forsyth, 2002]), seeking good compromises between speed, accuracy, ro-

bustness, and dynamic behavior.

These integrators require the solution to one or more nonlinear systems of equations

in each time step. These systems are typically solved by some variation on Newton’s

method. Even the most stable simulators are typically run several time steps per 24 Hz

frame of simulation. There is growing interest in running simulations at larger time

steps [Su et al., 2013], so that the selection of ∆t can be made based on other factors,

such as damping or runtime, and not only on whether the simulator works at all. One

of the major factors that limits time-step sizes is the inability of Newton’s method to

converge reliably with large time steps (Figures A.2, A.3, and A.4), or if a fixed number

of Newton iterations are taken, the stability of the resulting simulation.

We address this by formulating our nonlinear system of equations as a minimization

problem, which we demonstrate can be solved more robustly. The idea that dynamics,

energy, and minimization are related has been known since antiquity and is commonly

leveraged in variational integrators [Simo et al., 1992; Kane et al., 1999; Kane, 1999;

Lew et al., 2004; Kharevych et al., 2006; Stern and Grinspun, 2009; Gonzalez et al.,

2010]. The idea that the nonlinear system that occurs from methods like backward

Euler can be formulated as a minimization problem has appeared many times in graph-

ics in various forms [Hirota et al., 2001; Kharevych et al., 2006; Martin et al., 2011;

Liu et al., 2013; Michels et al., 2013]. Kharevych et al. [2006] point out that mini-

mization leads to a method that is both simpler and faster than the equivalent nonlinear

root-finding problem, and Liu et al. [2013] show that a minimization formulation can

be used to solve mass-spring systems more efficiently. Kane et al. [1999] use a mini-

mization formulation as a means of ensuring that a solution to their nonlinear system

can be found assuming one exists. Goldenthal et al. [2007] show that a minimization

95

formulation can be used to enforce constraints robustly and efficiently. Hirota et al.

[2001] show that supplementing Newton’s method with a line search greatly improves

robustness. Martin et al. [2011] also show that supplementing Newton’s method with a

line search and a definiteness correction leads to a robust solution procedure. Following

their example, we show that recasting the solution of the nonlinear systems that result

from implicit time integration schemes as a nonlinear optimization problem results in

substantial robustness improvements. We also show that additional improvements can

be realized by incorporating additional techniques like Wolfe condition line searches

which curve around collision bodies, conjugate gradient with early termination on in-

definiteness, and choosing conjugate gradient tolerances based on the current degree of

convergence.

This chapter covers [Gast et al., 2015], where we applied the optimization integrator

approach to the MPM snow simulator. This allows us to take much larger time steps

than the original method and results in a significant speedup.

A.2 Time Integration

First we consider a general Lagrangian simulation. The equations of motion for simu-

lating solids are ẋ = v and Mv̇ = f , where f = f(x,v) are forces. As is common

in graphics, we assume M is a diagonal lumped-mass matrix. Since we are inter-

ested in robustness and large time steps, we follow a backward Euler discretization.

This leads to xn+1−xn
∆t

= vn+1 and M vn+1−vn
∆t

= fn+1 = f(xn+1,vn+1). Elim-

inating vn+1 using the first equation yields M xn+1−xn−∆tvn

∆t2
= f(xn+1, x

n+1−xn
∆t

),

which is a nonlinear system of equations in the unknown positions xn+1. This sys-

tem of nonlinear equations is normally solved with Newton’s method. If we define

h(xn+1) = M xn+1−xn−∆tvn

∆t2
− f(xn+1, x

n+1−xn
∆t

), then our nonlinear problem is one of

finding a solution to h(x) = 0. To do this, one would start with an initial guess x(0),

96

Figure A.1: Convergence of Newton’s method (middle) and our stabilized optimization
formulation (bottom) for a simple 36-dof simulation in 2D. The initial configuration
(top) is parameterized in terms of a pixel location, with the rest configuration occurring
at (3

5
, 1

2
). The initial velocity is zero, and 1 time step is attempted. Time steps are (left

to right) 170, 40, 20, 10, and 1 steps per 24 Hz frame, with the rightmost image being
∆t = 1 s. Color indicates convergence in 0 iterations (black), 15 iterations (blue),
30 or more iterations (cyan), or failure to converge in 500 iterations (red). Note that
Newton’s method tends to converge rapidly or not at all, depending strongly on problem
difficulty and the initial guess.

such as the value predicted by forward Euler. This estimate is then iteratively improved

using the update rule x(i+1) = x(i) −
(
∂h
∂x

(x(i))
)−1

h(x(i)). Each step requires the solu-

tion of a linear system, which is usually symmetric and positive definite and is solved

with a Krylov solver such as conjugate gradient or MINRES.

If h(x) is well-behaved and the initial guess is sufficiently close to the solution, New-

ton’s method will converge very rapidly (quadratically). If the initial guess is not close

enough, Newton’s method may converge slowly or not at all. For small enough time

steps, the forward and backward Euler time steps will be very similar (they differ by

O(∆t2)), so a good initial guess is available. For large time steps, forward Euler will

be unstable, so it will not provide a good initial guess. Further, as the time step grows,

Newton’s method may become more sensitive to the initial guess (Figure A.1). The

97

Figure A.2: A cube being stretched and then given a small compressive pulse, shown
with our method (top) and the standard Newton’s method (bottom). Both simulations
were run with 1 time step per 24 Hz frame. In this simulation, Newton’s method is able
to converge during the stretch phase, but a simple pulse of compression, as would nor-
mally occur due to a collision, causes it to fail to converge and never recover. Newton’s
method requires 5 time steps per frame to converge on this simple example.

Figure A.3: A cube being stretched: Initial configuration (left), our method at t = 0.4 s
and t = 3.0 s (middle), and standard Newton’s method at t = 0.4 s and t = 3.0 s (right).
Both simulations were run with 1 time step per 24 Hz frame. Newton’s method requires
3 time steps per frame to converge on this simple example.

result is that Newton’s method will often fail to converge if the time step is too large.

Figures A.2, A.3, and A.4 show examples of simulations that ought to be routine but

where Newton’s method fails to converge at ∆t = 1/24 s.

Sometimes only one or a small fixed number of Newton steps are taken rather than

trying to solve the nonlinear equation to a tolerance. The idea is that a small number of

Newton steps is sufficient to get most of the benefit from doing an implicit method while

limiting its cost. Indeed, even a single Newton step with backward Euler can allow time

steps orders of magnitude larger than explicit methods. Linearizing the problem only

goes so far, though, and even these solvers tend to have time step restrictions for tough

problems.

98

Figure A.4: Two spheres fall and collide with one another with ∆t = 1/24 s: Initial
configuration (left), our method (top), and Newton’s method (bottom). Notice the ar-
tifacts caused by Newton’s method not converging. Newton’s method requires 6 time
steps per frame to converge on this example.

A.2.1 Minimization problem

The solution to making Newton’s method converge reliably is to recast the equation-

solving problem as an optimization problem, for which robust and efficient methods

exist. In principle, that can always be done, since solving h(x) = 0 is equivalent to

minimizing ‖h(x)‖ assuming a solution exists. This approach is not very convenient,

though, since it requires a global minimum of ‖h(x)‖. Further, minimization using

Newton’s method would require the Hessian of ‖h(x)‖, which involves the second

derivatives of our forces. The standard approach only requires first derivatives. What

we really want is a quantity E that we can minimize whose second derivatives only

require the first derivatives of our forces. That is, we need to integrate our system of

nonlinear equations h(x). It turns out that if we require our forces to come from an

energy, we can do this. This way of recasting the problem also requires that only a

99

local minimum be found. Most forces with symmetric force derivatives can be put into

this model. We will show later how damping can also be incorporated into this model.

Friction can be given an approximate potential which is valid for small ∆t [Pandolfi

et al., 2002]. Since our examples focus on taking larger time steps, we incorporate

friction explicitly after the Newton solve.

Let Φ be the total potential energy of our internal forces (gravity is a special case, which

we will address later). The potential Φ has a global minimum, which is typically its rest

configuration. Then, we can write h(x) = M x−xn−∆tvn

∆t2
+ ∂Φ

∂x
. We need to express

this as the gradient of some scalar function E(x). Letting x̂ = xn + ∆tvn, we have

E(x) = 1
2∆t2

(x−x̂)TM (x−x̂)+Φ. Then, h = ∂E
∂x

as desired. SinceM is symmetric

and positive definite (or at least semidefinite if scripted objects are permitted), the first

term is bounded from below by zero. Since Φ is also bounded from below, E is as

well. Thus, E has a global minimum. If E(xn+1) is smooth at its minima, then this

minimum will satisfy ∂E
∂x

(xn+1) = 0 or equivalently h(xn+1) = 0. Note that, although

we are now doing minimization rather than root finding, we are still solving the same

equations. The discretization and dynamics will be the same, but the solver will be

more robust.

Gravity: A graphics simulation would not be very useful without gravity. Gravity

has the potential energy function −MgTx, where g is the gravitational acceleration

vector, but this function is not bounded. An object can fall arbitrarily far and liberate

a limitless supply of energy, though in practice this fall will be stopped by the ground

or some other object. Adding the gravity force to our nonlinear system yields h(x) =

M x−xn−∆tvn

∆t2
−Mg + ∂Φ

∂x
, which can be obtained from the bounded minimization

objective E(x) = 1
2∆t2

(x − x̂ −∆t2g)TM(x − x̂ −∆t2g) + Φ. A more convenient

choice of E, and the one we use in practice, is obtained by simply adding the effects of

gravity Φg = −MgTx into Φ. Since all choices E will differ by a constant shift, this

more convenient minimization objective will also be bounded from below.

100

A.3 Minimization

The heart of our simulator is our algorithm for solving optimization problems, which we

derived primarily from [Nocedal and Wright, 2006], though most of the techniques we

apply are well-known. We begin be describing our method as it applies to unconstrained

minimization and then show how to modify it to handle the constrained case.

A.3.1 Unconstrained minimization

Our optimization routine begins with an initial guess, x(0). Each iteration consists of

the following steps:

1. ? Register active set

2. Compute gradient ∇E and HessianH of E at x(i)

3. Terminate successfully if ‖∇E‖ < τ

4. Compute Newton step ∆x = −H−1∇E

5. Make sure ∆x is a downhill direction

6. Clamp the magnitude of ∆x to ` if ‖∆x‖ > `

7. Choose step size α in direction ∆x using a line search

8. Take the step: x(i+1) = x(i) + α∆x

9. ? Project x(i+1)

Here, τ is the termination criterion, which controls how accurately the system must

by solved. The length clamp ` guards against the possibility of the Newton step being

enormous (if ‖∆x‖ = 10100, computing Φ(x(i) + ∆x) is unlikely to work well). Its

101

value should be very large. Our line search is capable of choosing α > 1, so the

algorithm is very insensitive with respect to the choice `. We normally use ` = 103.

Steps beginning with ? are only performed for constrained optimization and will be

discussed later. A few of the remaining steps require further elaboration here.

Linear solver considerations: Computing the Newton step requires solving a sym-

metric linear system. The obvious candidate solver for this is MINRES that can handle

indefinite systems, and indeed this will work. However, there are many tradeoffs to be

made here. In contrast to a normal Newton solve, an accurate estimate for ∆x is not

necessary for convergence. Indeed, we would still converge with high probability if we

chose ∆x to be a random vector. The point of using the Newton direction is that con-

vergence will typically be much more rapid, particularly when the superconvergence

of Newton’s method kicks in. (Choosing ∆x = −∇E leads to gradient descent, for

example, which can display notoriously poor convergence rates.) When the current es-

timate is far from the solution, the exact Newton direction tends to be little better than

a very approximate one. Thus, the idea is to spend little time on computing ∆x when

‖∇E‖ is large and more time when it is small. We do this by solving the system to a

relative tolerance of min(1
2
, σ
√

max(‖∇E‖, τ)). The 1
2

ensures that we always reduce

the residual by at least a constant factor, which guarantees convergence. The scale σ

adjusts for the fact that ∇E is not unitless (we usually use σ = 1). If our initial guess

is naive, we must make sure we take at least one minimization iteration, even if ∇E is

very small. Using τ here ensures that we do not waste time solving to a tiny tolerance

in this case.

Conjugate gradient: One further optimization is to use conjugate gradient as the solver

with a zero initial guess. If indefiniteness is encountered during the conjugate gradient

solve, return the last iterate computed. If this occurs on the first step, return the right

hand side. If this is done, ∆x is guaranteed to be a downhill direction, though it might

not be sufficiently downhill for our purposes. In practice, indefiniteness will only occur

102

if far from converged, in which case little time is wasted in computing an accurate ∆x

that is unlikely to be very useful anyway. Indeed, if the system is detectably indefinite

and ∆x is computed exactly; it might not even point downhill. Since we are searching

for a minimum ofE (even a local one), the Hessian ofE will be symmetric and positive

definite near this solution. (Technically, it need only be positive semidefinite, but in

practice this is of little consequence.) Thus, when we are close enough to the solution

for an accurate Newton step to be useful, conjugate gradient will suffice to compute

it. This is very different from the normal situation, where a solver like MINRES or

an indefiniteness correction are employed to deal with the possibility of indefiniteness.

In the case of our solver, neither strategy is necessary, and both make the algorithm

slower.

Downhill direction: Making sure ∆x points downhill is fairly straightforward. If

∆x ·∇E < −κ‖∆x‖‖∇E‖, then we consider ∆x to be suitable. Otherwise, if−∆x is

suitable, we use it instead. If neither ∆x nor−∆x are suitable, then we use the gradient

descent direction −∇E. Note that if the conjugate gradient strategy is used for com-

puting the Newton direction, then −∆x will never be chosen as the search direction at

this stage. We have found κ = 10−2 to work well.

Line search: For our line search procedure, we use an algorithm for computing α such

that the strong Wolfe Conditions are satisfied. See [Nocedal and Wright, 2006] for

details. The line search procedure guarantees that E never increases from one iteration

to the next and that, provided certain conditions are met, sufficient progress is always

made. One important attribute of this line search algorithm is that it first checks to see

if ∆x itself is a suitable step. In this way, the line search is almost entirely avoided

when Newton is converging properly.

Initial guess: A good initial guess is important for efficient simulation under normal

circumstances. Under low-∆t or low-stress conditions, a good initial guess is obtained

by replacing fn+1 by fn, resulting in M xn+1−xn−∆tvn

∆t2
= f(xn). Solving for xn+1

103

yields the initial guess x(0) = xn + ∆tvn + ∆t2f(xn). This initial guess is particularly

effective under free fall, since here the initial guess is correct and no Newton iterations

are required. On the other hand, this initial guess is the result of an explicit method,

which will be unstable at large time steps or high stress. Under these conditions, this is

unlikely to be a good initial guess and may in fact be very far from the solution. Under

these situations, a better initial guess is obtained from x(0) = xn + ∆tvn. In practice,

we compute both initial guesses and choose the one which produces the smaller value

of E. This way, we get competitive performance under easy circumstances and rugged

reliability under tough circumstances.

A.3.2 Constrained minimization

We use constrained minimization for some of our collisions, which may result in a

large active set of constraints, such as when an ball is bouncing on the ground. As the

ball rises, constraints become deactivated. As the ball hits the ground, more constraints

become activated. The change in the number of active constraints from iteration to

iteration may be quite significant. This would render a traditional active set method

impractical, since constraints are activated or deactivated one at a time. Instead, we

use the gradient-projection method as our starting point, since it allows the number of

active constraints to change quickly. The downside to this choice is that its reliance on

the ability to efficiently project to the feasible region limits its applicability to simple

collision objects.

Projections: Let P (x) be the projection that applies Pbp to xp for all body-particle

pairs (b, p) that are labeled as active or are violated (φb(xp) < 0). Note that pairs such

that φb(xp) = 0 (as would be the case once projected) are considered to be touching

but not violated. The iterates x(i) obtained at the end of each Newton step, as well as

the initial guess, are projected with P .

104

Figure A.5: Line search showing the gradient descent direction (green), Newton direc-
tion (red), and effective line search path (blue). The constraint is initially feasible (left),
active (middle), and touching but inactive (right). Constraints are projected if violated
or active, but only inactive constraints may separate.

Register active set: Let E ′ be the objective that would be computed in the uncon-

strained case. The objective function for constrained optimization isE(x) = E ′(P (x)).

Compute the gradient∇E ′. Constraints that are touching and for which∇E ′ ·∇φb ≥ 0

are labeled as active for the remainder of the Newton step. All others are labeled as

inactive. No constraint should be violated at this stage. Note that E ′(x(i)) = E(x(i)) is

true before and after every Newton step, since constraints are never violated there.

Curved paths: Note that configurations are always projected to the feasible region be-

fore E is computed. One may interpret this as performing line searches along curved

paths, as illustrated is Figure A.5. When the unprojected line search curve passes

through the medial axis of an object, it is possible for the search curve to be discon-

nected. This causes a discontinuity in the energy as seen from the line search. If the

line search does not stop at the discontinuity, the discontinuity has no effect. If it does,

the constraint causing the discontinuity will be active (in which case the discontinuity

is projected out) or separating (in which case we move away from the discontinuity)

in the next Newton step. Thus a disconnected search curve is not a problem for our

method.

Derivatives: Note also that E must be differentiated twice, and that involves differen-

105

tiating the projection function P twice. Since P depends on the first derivatives of φb,

the HessianH of E would seem to require third derivatives. We note, however, that the

only occurrence of the third derivative of φb occurs multiplied by φb. Since H is used

only at the beginning of the Newton step when the configuration is feasible, φb(xp) = 0

or Pbp is the identity function. The third derivative term is zero either way, so only the

second derivatives of φb are required.

A.3.3 Practical considerations

There are a few matters of practicality that are worth mentioning regarding the effective

use of this method. The most important of these is that the method does not tolerate

discontinuities in E, not even very minute ones, except under some special circum-

stances that we mention below. In practice, what tends to happen is that a line search

encounters a discontinuity in E, where E rises abruptly. The line search dutifully ad-

vances the configuration right up to location of this discontinuity. If in the next Newton

iteration the descent direction points into the discontinuity, no progress can be made.

The solver is stuck. Discontinuities in∇E can also cause problems and are impossible

to avoid in general. As long as these kinks are not valleys of E, they are fine. Thus,

the corotated constitutive model, though not completely unusable with this solver, is

ill-advised (the fixed variant [Stomakhin et al., 2012] has no such valleys and is fine).

In practice, we have only encountered problems when evaluating self-collision models.

The self-collision model we propose works well with the method.

The second practical consideration is thatE can be somewhat noisy. This is particularly

true with forces that involve an SVD, since its computation involves a balance between

speed and accuracy. If the Newton tolerance τ is set too low, the solver will be forced to

optimize an objectiveE where the actual change inE is hidden by the noise. Even with

our noisy SVD, we found there is typically at least a three order-of-magnitude range

between the largest value of τ below which no change in output is visually observed

106

and the smallest value above which E is not too noisy to optimize reliably. If we make

the E computation robust, E can be optimized down to roundoff level.

Another practical consideration is that occasionally very large changes in the configura-

tion are considered by the line search. For most forces, this is of little consequence. For

self-collisions, however, this poses a major performance hazard. We note that when

this occurs, the other components of E become very large too. We first compute all

contributions to E except self-collisions. Since our self-collision potential has a global

minimum of zero, the real E will be at least as large as the estimate. If this partial E

is larger than E(x(i)), we do not compute self-collisions at all. While this presents a

discontinuity in E to the optimizer, it is safe to do so under these conditions, since the

optimizer will avoid the large value in E by taking a smaller step along the search line.

A.4 Forces

Our formulation is fairly insensitive to the underlying forces, provided it has a contin-

uous potential energy function. We use five forces in our simulations. The simplest of

these is gravity, which we addressed in Section A.2.1. We also employ a hyperelas-

tic constitutive model (Section A.4.1), a Rayleigh damping model (Section A.4.2), and

two collision penalty force models (Sections A.5.2 and A.5.3).

A.4.1 Elastic

A suitable hyperelastic constitutive model must have a few key properties to be suitable

for this integrator. The most important is that it must have a potential energy func-

tion defined everywhere, and this function must be continuous. The constitutive model

must be well-defined for any configuration, including configurations that are degener-

ate or inverted. This is true even if objects do not invert during the simulation, since the

107

minimization procedure may still encounter such states. Examples of suitable constitu-

tive models are those defined by the corotated hyperelasticity energy [Schmedding and

Teschner, 2008; Zhu et al., 2010b; Muller and Gross, 2004; Etzmuss et al., 2003; Chao

et al., 2010; McAdams et al., 2011] (but see Section A.3.3), and the fixed corotated

hyperelasticity variant [Stomakhin et al., 2012]. Stress-based extrapolated models [Irv-

ing et al., 2004; Teran et al., 2005] are unsuitable due to the lack of a potential energy

function in the extrapolated regime, but energy-based extrapolation models [Stomakhin

et al., 2012] are fine. We use the fixed corotated variant [Stomakhin et al., 2012] for all

of our simulations for its combination of simplicity and robustness.

A.4.2 Damping

At first, one might conclude that requiring a potential energy may limit our method’s

applicability, since damping forces cannot be defined by a potential energy function.

A very simple damping model is given by f = −kMvn+1. Eliminating the velocity

from the equation yields f(xn+1) = −kM xn+1−xn
∆t

, where k > 0. The scalar function

Φ(xn+1) = k
2∆t

(xn+1−xn)TM(xn+1−xn) has the necessary property that f = −∂Φ
∂x

.

Note that this Φ looks very similar to our inertial term in E, and it is similarly bounded

from below. That this Φ is not a real potential energy function is evident from its

dependence on xn and ∆t, but it is nevertheless suitable for use in our integrator. This

simple drag force is not very realistic, though, so we do not use it in our simulations.

A more realistic damping force is Rayleigh damping. Let ψ be an elastic poten-

tial energy function. The stiffness matrix corresponding to this force is − ∂2ψ
∂x∂x

, and

the Rayleigh damping force is f = −k
(

∂2ψ
∂x∂x

(xn+1)
)
vn+1. This integrates to Φc =

k
∆t

(
(xn+1 − xn)T ∂ψ

∂x
− ψ

)
. This candidate Φc has at least two serious problems. The

first is that second derivatives of Φc involve third derivatives of ψ. The second is that
∂2ψ
∂x∂x

may be indefinite, in which case the damping force may not be entirely dissipative.

Instead, we approximate Rayleigh damping with a lagged version. Let D = ∂2ψ
∂x∂x

(xn).

108

Figure A.6: Sphere dropping hard on the ground with ∆t = 1/24 s with constraint
collisions (top) and collisions as a post-process (bottom). Penalty collisions produce
a result very similar to constraint collisions, though some penetration with the ground
occurs. Note that the post-processing approach leads to inversion during recovery from
the collision.

Since D does not depend on xn+1, the lagged Rayleigh damping force f = −kDvn+1

leads to Φd = k
2∆t

(xn+1 − xn)TD(xn+1 − xn). This solves the first problem, since

the second derivative of Φd is just k
∆t

D. Since D is not being differentiated, it is safe

to modify it to eliminate indefiniteness as described in [Teran et al., 2005; Stomakhin

et al., 2012]. This addresses the second problem. We did not use the damping model

found in [Kharevych et al., 2006], which uses ψ(xn+1) with xn used as the rest config-

uration, because it is not defined when xn is degenerate.

A.5 Collisions

Collisions are a necessary part of any practical computer graphics simulator. The sim-

plest approach to handling collisions is to process them as a separate step in the time

integration scheme. This works well for small time steps, but it causes problems when

used with large time steps as seen in Figure A.4. Such arrangement often leads to the

collision step flattening objects to remove penetration and the elastic solver restoring

the flattened geometry by pushing it into the colliding object. To get around this prob-

lem, the backward Euler solver needs to be aware of collisions. A well-tested strategy

for doing this is to use penalty collisions, and we do this for two of our three collision

109

processing techniques.

A.5.1 Object collisions as constraints

Our first collision processing technique takes advantage of our minimization frame-

work to treat collisions with non-simulated objects as inequality constraints. Treating

collisions or contacts as constraints is not new and in fact forms the basis for LCP

formulations such as [Kaufman et al., 2008; Gascon et al., 2010]. Unlike LCP formu-

lations, however, our formulation does not attempt to be as complete and as a result can

be solved about as efficiently as a simple penalty formulation.

Our constraint collision formulation works reliably when the level set is known ana-

lytically. This limits its applicability to analytic collision objects. While this approach

is feasible only under limited circumstances, these circumstances occur frequently in

practice. When this approach is applicable, it is our method of choice, since it produces

better results (e.g., no interpenetration) for similar cost. When this formulation is not

applicable, we use a penalty collision formulation instead.

We begin by representing our collision objects (indexed with b) by a level set, which

we denote φb to avoid confusion with potential energy. By convention, φb(x) < 0 for

points x in the interior of the collision object b. Our collision constraint is simply that

φb(x
n+1
p) ≥ 0 for each simulation particle p and every constraint collision object b.

With such a formulation, we can project a particle at xp to the closest point x′p on the

constraint manifold using x′p = Pbp(xp) = xp − φb(xp)∇φb(xp). We show how to

solve the resulting minimization problem in Section A.3.2.

We apply friction after the Newton solve. The total collision force felt by particles

is ∇E ′(xn+1) − ∇E(xn+1) = ∇E ′(xn+1) − ∇E ′(P (xn+1)) (Section A.3.2 for the

definition of E ′). Only collision pairs that are active at the end of the minimization will

be applying such forces. We use the level set’s normal and the collision force to apply

110

Coulomb friction to colliding particles.

Our constraint collision formulation is not directly applicable to grid-based level sets,

since we assume that Pbp(Pbp(xp)) = Pbp(xp) and Pbp(x) is continuous. Continuity

of Pbp(x) can be achieved, for example, with C1 cubic spline level set interpolation.

However, it will not generally be true that Pbp(Pbp(xp)) = Pbp(xp). Alternatively, the

projection routine can be modified to iterate the projection to convergence, but then

continuity is lost.

A.5.2 Object penalty collisions

When a collision object is not analytic, as will normally be the case for characters

for instance, we use a penalty formulation instead. As in the constraint formulation,

we assume our collision object is represented by a level set φb. The elastic potential

energy Φbp(xp) of our penalty force is Φbp(x) = 0 if φb(xp) > 0 and Φbp(xp) =

kφb(xp)
3 otherwise. Since Φbp is a potential energy, we must differentiate it twice for

our solver. It is important to compute the derivatives of φb exactly by differentiating the

interpolation routine rather than approximating them using central differences. While

a C1 cubic spline interpolation is probably a wiser interpolation strategy since it would

avoid the energy kinks that may be caused by a piecewise linear encoding of the level

set, we found linear interpolation to work well, too, and we use linear interpolation in

our examples.

As in the constraint case, we apply friction after the Newton solve. The total colli-

sion force felt by a particle due to object penalty collisions is obtained by evaluating

the penalty force at xn+1. We compute the component of the discrete acceleration
xn+1−xn−∆tvn

∆t2
perpendicular to the collision force and apply Coulomb friction in the

opposite direction to the colliding particle.

111

A.5.3 Penalty self-collisions

We detect self-collisions by performing point-tetrahedron inclusion tests, which we

accelerate with a bounding box hierarchy. If a point is found to be inside a tetrahedron

but not one of the vertices of that tetrahedron, then we flag the particle as colliding.

Once we know a particle is involved in a self collision, we need an estimate for how

close the particle is to the boundary. If this particle has collided before, we use the

primitive it last collided with as our estimate. Otherwise, we compute the approximate

closest primitive in the rest configuration using a level set and use the current distance

to this surface element as an estimate.

Given this upper bound estimate of the distance to the boundary, we perform a bound-

ing box search to conservatively return all surface primitives within that distance. We

check these candidates to find the closest one. Now we have a point-primitive pair,

where the primitive is the surface triangle, edge, or vertex that is closest to the point

being processed. Let d be the square of the point-primitive distance. The penalty col-

lision energy for this point is Φ = kd
√
d+ ε, where ε is a small number (10−15 in our

case) to prevent the singularities when differentiating. Note that this penalty function is

approximately cubic in the penetration depth. This final step is the only part that must

be differentiated.

As with the other two collision models, we apply friction after the Newton solve. In

the most general case, a point n0 collides with a surface triangle with vertices n1, n2,

and n3. As with the object penalty collision model, collision forces are computed by

evaluating Φ(xn+1) and its derivative. The force applied to n0 is denoted f ; its direc-

tion is taken to be the normal direction n. The closest point on the triangle to n0 has

barycentric weights w1, w2, and w3. Let w0 = −1 for convenience. Let Q = I− nnT .

If we apply a tangential impulse Qj to these particles, their new velocities will be

v̂ni = vni + wim
−1
ni

Qj, and total kinetic energy will be KE =
∑3

n=0
1
2
mni v̂

T
ni
v̂ni . We

112

want to minimize this kinetic energy to prevent friction from causing instability. Since

M is positive definite, we see that KE is minimized when∇KE = Qv+m−1Qj = 0,

where v =
∑3

n=0wivni and m−1 =
∑3

n=0 wim
−1
ni
wi. Thus if we let j = −mQv then

∇KE = 0 , and Qj = j. If ‖j‖ < µ‖f‖, then we choose j′ = j as our friction im-

pulse. Otherwise, j′ = µ‖f‖ j
‖j‖ . Finally, the new velocities are v′ni = vni + wim

−1
ni

j′.

Note that all three friction algorithms decrease kinetic energy but do not modify posi-

tions, so none of them can add energy to the system, and thus stability ramifications

are unlikely even though friction is applied explicitly. This approach to friction can

have artifacts, however, since friction will be limited to removing kinetic energy from

colliding particles. This limits the amount of friction that can be applied at large time

steps. An approach similar to the one in [Kaufman et al., 2008] that uses successive

Quadratic Programming solves could possibly be applied to eliminate these artifacts.

However Zheng and James [2011] found existing large-scale sparse QP solvers to be

insufficiently robust, and thus we did not use this method.

A.6 Accelerating the MPM

In this section we describe the application of this optimization approach to the MPM

snow simulation. The approach discussed in [Stomakhin et al., 2013] and Section 2.2

used an energy-based formulation to facilitate a semi-implicit treatment of the MPM.

While this leads to a significant time step improvement over more standard explicit

treatments, it still requires a small time step in practice to remain stable. We show

how to modify their original formulation so that we are able to take time steps on the

order of the CFL condition. We also provide an improved treatment of collisions with

solid bodies that naturally handles them as constraints in the optimization. Although

the optimization solve is for grid velocities, we show that a backward Euler (rather than

forward Euler) update of particle positions in the grid-based velocity field automatically

guarantees no particles penetrate solid bodies. In addition to the significantly improved

113

stability, we demonstrate in Section 2.3 that in many cases a worthwhile speedup can

be obtained with our new formulation.

In Section 4.1 of [Stomakhin et al., 2013], the original method is broken down into

10 steps. We retain steps 1-2 unaltered. Steps 3-6 are replaced with our optimization

formulation described in Section A.6.1. Steps 7-8 are unaltered. Step 9 is omitted

entirely, and step 10 is replaced by the implicit update in Section A.6.2.

A.6.1 Optimization formulation

The primary modification that we propose is to use the optimization framework in place

of the original solver. For this, we must formulate their update in terms of an optimiza-

tion objective E. The original formulation defined the potential energy Φ(xi) concep-

tually in terms of the grid node locations xi. Here we use the index i to refer to grid

node indices. Their grid is a fixed Cartesian grid and never moves, and they solve for

vn+1
i . We will follow the same conceptual formulation here. This leads to the objective

E(vi) =
∑

i
1
2
mi‖vi − vni ‖2 + Φ(xni + ∆tvi), where mi is the mass assigned to grid

index i. Our final vn+1
i is computed so that E(vn+1

i) is minimized. We solve this min-

imization problem as in Section A.3. Note that we apply plasticity explicitly as in the

original formulation.

Using larger time steps causesour linear systems to become slower to solve. In the

case of the MPM, we found it beneficial to use the diagonal preconditioner Lii =∑
p diag(mpwipI + ∆t2V 0

pH), where H = (λp + µp)∇wip∇wTip + µp∇wTip∇wipI.

This preconditioner approximates the diagonal of the stiffness matrix at the rest con-

figuration. This works well since snow is unable to deform much without hardening

or fracturing. We use an approximation to the diagonal, rather than the exact diagonal,

because we never explicitly form the matrix. This approximation suffices for precondi-

tioning and is more efficient.

114

The original method performed solid body collisions while computing new grid veloci-

ties. We treat body collisions using constraints in our optimization problem. We assume

sticking collisions and let P (vi) = 0 for all grid nodes i that lie inside a collision ob-

ject. Note that we do not permit separation during optimization, though separation may

occur during other steps in the algorithm.

A.6.2 Particle position update

One of the difficulties with running the method of [Stomakhin et al., 2013] with larger

time steps is the particle-based solid body collisions. They were needed under the old

formulation to prevent settling into the ground, but at the same time they cause bunching

of particles at collision objects. These problems are exacerbated at larger time steps,

and another approach is required. Instead, we show that altering the way we update

particle positions can avoid the need for a separate particle collision step.

For each particle position xp we solve the backward Euler update equation xn+1
p =

xnp + ∆tv(xn+1
p), where v(xn+1

p) =
∑

i v
n+1
i Nh

i (xp) is the interpolated grid veloc-

ity at the particle location xn+1
p . These updates are independent per particle and so

are relatively inexpensive. A solution to this backward Euler equation always exists

nearby. Note that pure PIC velocities are used in the particle position updates. While

a combination of FLIP/PIC is still stored on particles (to avoid excessive dissipation

in subsequent transfer to grid), PIC velocities for position updates lead to more stable

behavior.

The motivation for our modification can be best understood in the case of sticking col-

lisions. Inside a collision object, we will have vn+1
i = 0 due to the collision constraints

imposed during optimization. If we then assume that we will interpolate v(xn+1
p) = 0

here, then we can see from xn+1
p = xnp + ∆tv(xn+1

p) that xn+1
p = xnp . Note that if a

particle ends up inside the collision object, then it must have already been there. Thus,

115

it is not possible for particles to penetrate collision objects. In our implementation,

v(xn+1
p) = 0 will only be true if we are slightly inside collision objects, but in practice

this procedure actually stops particles slightly outside collision objects.

We solve this equation with Newton’s method. Since Newton’s method need not con-

verge, some care is required, though in practice nothing as sophisticated as Section A.3

is needed. We always use the Newton direction but repeatedly halve the length of the

Newton step until the objective E = ‖xn+1
p − xnp −∆tv(xn+1

p)‖ no longer increases.

(If halving the step size 14 times does not suffice, we take the reduced step anyway.)

Typically, only one Newton step is required for convergence. We have never observed

this to fail.

We use a quadratic spline rather than the cubic of the original formulation to reduce

stencil width and improve the effectiveness of the modified position update. That is, we

let N(x) = 3
4
−x2 for |x| < 1

2
, N(x) = 1

2
x2− 3

2
|x|+ 9

8
for 1

2
≤ |x| < 3

2
, and N(x) = 0

otherwise. Using a quadratic stencil also has the advantage of being more efficient.

We do not use a linear spline since it is not smooth enough for Newton’s method to be

effective in the particle position update.

Since the MPM involves a grid, we limit our time step so that particles do not travel

more that one grid spacing per time step. That is, we choose ∆t so that ν∆x
∆t
≥

maxp ‖vnp ‖ for some ν < 1. We chose ν = 0.6 for our examples. Although the

time step restriction is computed based on vnp rather than vn+1
p , this suffices in practice.

A.7 Simulation results

We begin by demonstrating how robust our solver is by considering the two most diffi-

cult constitutive model tests we are aware of—total randomness and total degeneracy.

The attributes that make them tough constitutive model tests also make them tough

116

Figure A.7: Random test with 65 × 65 × 65 particles simulated with ∆t = 1/24 s for
three stiffnesses: Low stiffness recovering over 100 time steps (top), medium stiffness
recovering over 40 time steps (bottom left), and high stiffness recovering in a single time
step (bottom right). The red tetrahedra are inverted, while the green are uninverted.

Figure A.8: Point test with 65 × 65 × 65 particles simulated with ∆t = 1/24 s for
three stiffnesses: Low stiffness recovering over 120 time steps (top), medium stiffness
recovering in 5 time steps (bottom left), and high stiffness recovering in a single time
step (bottom right).

Figure A.9: A torus falls on the ground (constraint collisions) and collides with itself
(penalty collisions).

117

Figure A.10: A torus is pushed through a hole (constraint collisions).

Figure A.11: A stack of deformable boxes of varying stiffness is struck with a rigid
kinematic cube (constraint collisions) with ∆t = 1/24 s. The green boxes are 10 times
as stiff as the blue boxes.

118

Figure A.12: An armadillo is squeezed between 32 rigid cubes (constraint collisions)
with ∆t = 1/24 s. When this torture test is run at 1, 2, 4 and 8 steps per frame the
average runtime per frame is 46, 58, 88, and 117 seconds, respectively.

Figure A.13: 125 tori are dropped into a bowl at 5 time steps per frame, resulting in
significant deformation and tough collisions.

119

solver tests—high stress, terrible initial guess, tangled configurations, and the need to

dissipate massive amounts of unwanted energy. Figure A.7 shows the recovery of a

65× 65× 65 cube (824k dofs) from a randomized initial configuration for three differ-

ent stiffnesses with ∆t = 1/24 s. Figure A.8 repeats the tests with all points starting at

the origin. The recovery times vary from about 3 s for the softest to a single time step

for the stiffest. We were surprised to find that a single step of backward Euler could

untangle a randomized cube, even at high resolution.

Figure A.9 is a classical torus drop demonstrating that our self collisions are effective

at stopping collisions at the torus’s hole. Figure A.10 uses constraints for all body col-

lisions and demonstrates that our constraint collisions are effective with concave and

convex constraint manifolds. Figure A.11 demonstrates our method with stiffer de-

formable bodies with sharp corners. Figure A.12 demonstrates our constraint collisions

are effective for objects with sharp corners. Finally, Figure A.13 shows a more practical

example, which uses all three types of collisions—self collisions, constraint collisions

(with ground) and penalty collisions (against a bowl defined by a grid-based level set).

In Section 2.3, we demonstrate the advantages of using our optimization integrator by

applying it to the MPM snow formulation from [Stomakhin et al., 2013].

A.8 Summary

We have demonstrated that backward Euler solved with Newton’s method can be made

more robust by recasting the resulting system of nonlinear equations as a nonlinear

optimization problem so that robust optimization techniques can be employed. The

resulting method is extremely robust to large time step sizes, high stress, and tangled

configurations.

Runtimes and other performance-related information for all of our simulations are pro-

120

Figure Ours Steps
frame

Time
frame (s) # dofs Solves

step

A.13 Y 5 200 984k 2.2
A.3 mid Y 1 0.51 18.5k 2.8
A.3 rt N 1/3 8.7/1.1 18.5k 15/0.7
A.2 top Y 1 0.52 18.5k 2.9
A.2 bot N 1/5 3.8/1.3 18.5k 6.6/0.6
A.4 top Y 1 4.25 28.0k 8.1
A.4 bot N 1/6 33/7.3 28.0k 26/0.8
A.9 Y 5 1.13 7.9k 2.1
A.7 top Y 1 68.0+ 824k 12.3
A.7 lt Y 1 1470+ 824k 236.8
A.7 rt Y 1 667+ 824k 109.6
A.8 top Y 1 43.1+ 824k 10.7
A.8 lt Y 1 831+ 824k 155.9
A.8 rt Y 1 444+ 824k 88.8
A.6 top Y 1 0.42 14.0k 3.8
A.6 bot N 1∗ 1.13 14.0k 9.8
A.10 Y 1 0.45 7.9k 8.6
A.12 Y 1 46.1 73.8k 34.7
A.11 Y 1 17.1 138k 6.9

Table A.1: Time step sizes and average running times for the examples. The last
column shows the average number of linear solves per time step. Each of the Newton’s
method examples fails to converge at the frame rate. For a fairer comparison, timing
information for all but the one marked ∗ is shown at the frame rate and the stable time
step size. The stress tests marked + spend the majority of their time on the first frame
or two due to the difficult initial state.

vided in Table A.1. All Lagrangian simulations were run single-threaded on a 3.1–

3.5 GHz Xeon core, the MPM simulations were run with 10 threads for Figure 2.3 and

12 threads for Figure 2.2 and Figure 2.1. Our solver’s performance is competitive with

a standard Newton solver for those examples where both were run. In general, we take

more Newton steps but spend less time on each, and the resulting runtime for typical

examples is about the same for the two solvers, though our solver is faster for all of the

difficult examples. Setting a large time step size can actually be slower than a smaller

one, even with the same solver. For time integrators (like backward Euler) that have a

significant amount of damping at large time steps, constitutive models are often tuned

to take into account the numerical damping. If the integrator is forced to simulate a por-

121

tion of a simulation at a smaller time step, the dynamic behavior can change noticeably.

Solving with constraints is about the same speed as using penalty collisions.

Note that Figure A.13 and Figure A.9 were run with smaller time steps sizes to avoid

collision artifacts. This indicates that a self-collision scheme that is more tolerant of

large time steps is required. The scheme does not have problems with collisions be-

tween different objects at the frame rate as long as they are not too thin. Continuous

collision detection could perhaps be used. We leave both of these problems for future

work.

The current method has a couple disadvantages compared with current techniques. It

requires a potential energy to exist (which is how most constitutive models are defined

anyway) and is sensitive to discontinuities in this energy. The method also occasion-

ally fails to make progress due to valley shaped kinks in our collision processing. In

practice, this only occurs when the system is already fairly close to a solution, since

otherwise any energy kinks are overwhelmed by the strong gradients in the objective.

From a practical perspective, this means this sort of breakdown can be dealt with by

simply ignoring it. This does, however, prevent the method from being absolutely ro-

bust. We leave this weakness to be addressed in future work.

Our method was derived and implemented on top of a backward Euler integrator, which

is known for being very stable but quite damped. The nonlinear system of equations for

other A-stable integrators such as the trapezoid rule and BDF-2 can also be readily con-

verted into minimization form and solved similarly. Being second-order schemes, their

use would reduce damping at large time steps, though the trapezoid rule’s oscillatory

properties should be taken into account.

122

APPENDIX B

Derivatives for the Oldroyd-B Model

While the potential energy contains many elements and computing its second deriva-

tives seems like a hopeless task, this is not the case. Breaking the potential energy

into small pieces makes the implementation straightforward to implement and debug.

In this appendix, we present pseudo-code that may be used to compute the potential

energy Φ =
∑

p Φp along with its derivatives, ∂Φ
∂xi

=
∑

p Φp,i and ∂2Φ
∂xi∂xj

=
∑

p Φp,ij.

The following computational steps may be used to compute the potential energy con-

tribution of a particle Φp. Note that all the quantities computed below, except for the

final result Φp, are intermediate quantities used to break the computation into many

parts. Most of them have no particular physical significance, and most have no partic-

ular relationship to similarly named quantities elsewhere in this manuscript. The bold

capitalized quantities are matrices, and the rest are scalars.

Ap ←
∑
i

(x̂i − xni)(∇wnip)T Bp ← Apb
En

OBp

Gp ← bE
n

OBp +
∆t

Wi

(
I− bE

n

OBp

)
F̂p ← (I + Ap)F

n
p

Sp ← Gp + Bp + BT
p Hp ← F̂−1

p

Jp ← det(F̂p) ap ←
λ

2
(Jp − 1)2

qp ←
1

2∆t2
(
‖Ap‖2

F + AT
p : Ap

)
bp ← µ ln(Jp)

cp ← µNP qp det(F n
p) gp ← tr(Sp)

Kp ← S−1
p hp ← det(Sp)

123

kp ← h
− 1
d

p mp ← J
2
d
p

np ← kpgp pp ←
µ

2
mpnp

Φp ← Vp(pp − bp + ap + cp)

The next set of routines are for the first derivatives of the quantities above, with the

final result being the potential energy derivative for a particle, Φp,i. Note that these

routines use the quantities computed above. Intermediate quantities of the form cp,i are

related to the intermediates above by cp,i = ∂cp
∂x̂i

, which allows for incremental testing.

All quantities computed below are vectors.

bpi ← bE
n

OBp∇w
n
ip fpi ← (F n

p)T∇wnip

hpi ←HT
p fpi kpi ←KT

p bpi

Jp,i ← Jphpi ap,i ← λ(Jp − 1)Jp,i

qp,i ←
1

∆t2
(Ap∇wnip + AT

p∇wnip) bp,i ← µhpi

cp,i ← µNP det(F n
p)qp,i gp,i ← 2bpi

kp,i ← −
2kp
d
kpi mp,i ←

2mp

d
hpi

pp,i ←
µ

2
(mp,inp +mpnp,i) np,i ← kp,igp + kpgp,i

Φp,i ← Vp(pp,i − bp,i + ap,i + cp,i)

The final set of routines are for second derivatives, with the final result being the po-

tential energy Hessian for a particle, Φp,ij. Intermediate quantities of the form cp,ij are

related to the intermediates above by cp,ij =
∂cp,i
∂x̂j

. All quantities computed below are

matrices.

Jp,ij ← Jphp,ih
T

p,j − Jphp,jh
T

p,i

ap,ij ← λJp,iJ
T
p,j + λ(Jp − 1)Jp,ij

bp,ij ← −µhp,jh
T

p,i

124

qp,ij ←
1

∆t2
((∇wnip)T∇w,jI +∇w,j(∇wnip)T)

cp,ij ← µNP det(F n
p)qp,ij

kp,ij ←
4kp
d2
kp,ik

T

p,j +
2kp
d
kp,jk

T

p,i +
2kp
d
b
T

p,ikp,jKp

mp,ij ←
4mp

d2
hp,ih

T

p,j −
2mp

d
hp,jh

T

p,i

np,ij ← kp,ijgp + kp,ig
T
,j + gp,ik

T
,j

pp,ij ←
µ

2
(mp,ijnp +mp,in

T
,j + np,im

T
,j + np,ijmp)

Φp,ij ← Vp(pp,ij − bp,ij + ap,ij + cp,ij)

125

APPENDIX C

RPIC and APIC Proofs

This appendix provides detailed proofs for the properties of RPIC and APIC.

C.1 Preliminaries

When we consider conservation of angular momentum when transferring from the grid

to particles at the end of a time step, we need to consider angular momentum to be

defined over moved grid nodes and we use the notation x̃n+1
i = xi+∆tṽn+1

i to indicate

this. To avoid confusion, rather than referring to unmoved grid nodes at the beginning

of the time step as xi, we will use xni to emphasize that they have not been dynamically

updated yet, whereas the x̃n+1
i have been updated.

We will also use a few properties of standard interpolating functions, namely.

∑
i

wip = 1

∑
i

wipx
n
i = xnp∑

i

wip(x
n
i − xnp) = 0

126

C.2 Piecewise rigid

The transfer from particles to the grid is given by

mn
i =

∑
p

wnipmp

Kn
p =

∑
j

wnjpmp(x
n
j − xnp)∗(xnj − xnp)∗T

mn
i v

n
i =

∑
p

wnipmp(v
n
p + ((Kn

p)−1Ln
p)× (xni − xnp))

with the transfer to particles given by

vn+1
p =

∑
i

wnipṽ
n+1
i

Ln+1
p =

∑
i

wnip(x
n
i − xnp)×mpṽ

n+1
i .

C.2.1 Preservation of rigid motion

Let ∆t = 0 and consider the the process of transferring velocity (ṽn+1
i) information

to particles (vn+1
p , Bn+1

p) and then back to the grid (vn+1
i). Since ∆t = 0, we have

wnip = wn+1
ip and xnp = xn+1

p , so that Kn
p = Kn+1

p and mn
i = mn+1

i . If the velocities

before the transfer represent rigid motion, then ṽn+1
i = v+ω×xni , where v and ω are

vectors.

ṽn+1
i = v + ω × xni

vn+1
p =

∑
i

wnipṽ
n+1
i

=
∑
i

wnip(v + ω × xni)

=
∑
i

wnipv +
∑
i

wnipω × xni

127

= v
∑
i

wnip + ω ×
∑
i

wnipx
n
i

= v + ω × xnp

Ln+1
p =

∑
i

wnip(x
n
i − xnp)×mpṽ

n+1
i

=
∑
i

wnip(x
n
i − xnp)×mp(v + ω × xni)

=

(∑
i

wnip(x
n
i − xnp)

)
×mpv +

∑
i

wnip(x
n
i − xnp)×mp(ω × xni)

=
∑
i

mpw
n
ip(x

n
i − xnp)∗(xni)∗Tω

=
∑
i

mpw
n
ip(x

n
i − xnp)∗(xni − xnp)∗Tω +

∑
i

mpw
n
ip(x

n
i − xnp)∗(xnp)∗Tω

= Kn
pω +mp

(∑
i

wnip(x
n
i − xnp)

)∗
(xnp)∗Tω

= Kn
pω

mn+1
i vn+1

i =
∑
p

wn+1
ip mp(v

n+1
p + ((Kn+1

p)−1Ln+1
p)× (xn+1

i − xn+1
p))

mn
i v

n+1
i =

∑
p

wnipmp(v
n+1
p + ((Kn

p)−1Ln+1
p)× (xni − xnp))

=
∑
p

wnipmp(v + ω × xnp + ((Kn
p)−1Kn

pω)× (xni − xnp))

=
∑
p

wnipmp(v + ω × xnp + ω × (xni − xnp))

=

(∑
p

wnipmp

)
(v + ω × xni)

= mn
i (v + ω × xni)

vn+1
i = v + ω × xni

= ṽn+1
i

128

C.2.2 Conservation of momentum

Particle to grid The angular momentum on the grid after transferring from particles

is

pG,ntot =
∑
i

mn
i v

n
i

=
∑
i

(∑
p

wnipmp(v
n
p + ((Kn

p)−1Ln
p)× (xni − xnp))

)

=
∑
i,p

wnipmpv
n
p +

∑
i,p

wnipmp(((K
n
p)−1Ln

p)× (xni − xnp))

=
∑
p

(∑
i

wnip

)
mpv

n
p +

∑
p

mp((K
n
p)−1Ln

p)×

(∑
i

wnip(x
n
i − xnp)

)

=
∑
p

mpv
n
p

= pP,ntot

Grid to particle The angular momentum on the particles after transferring from the

grid is

pP,n+1
tot =

∑
p

mpv
n+1
p

=
∑
p

mp

(∑
i

wnipṽ
n+1
i

)

=
∑
i

(∑
p

wnipmp

)
ṽn+1
i

=
∑
i

mn
i ṽ

n+1
i

= pG,n+1
tot

129

C.2.3 Conservation of angular momentum

Particle to grid The angular momentum on the grid after transferring from particles

is

LG,n
tot =

∑
i

xni ×mn
i v

n
i

=
∑
i

xni ×

(∑
p

wnipmp(v
n
p + ((Kn

p)−1Ln
p)× (xni − xnp))

)

=
∑
i,p

xni × wnipmpv
n
p +

∑
i,p

xni × wnipmp(((K
n
p)−1Ln

p)× (xni − xnp))

=
∑
p

(∑
i

wnipx
n
i

)
×mpv

n
p +

∑
i,p

xni × wnipmp(x
n
i − xnp)∗T (Kn

p)−1Ln
p

=
∑
p

xnp ×mpv
n
p +

∑
i,p

(xni − xnp)× wnipmp(x
n
i − xnp)∗T (Kn

p)−1Ln
p

+
∑
i,p

xnp × wnipmp(x
n
i − xnp)∗T (Kn

p)−1Ln
p

=
∑
p

xnp ×mpv
n
p +

∑
p

(∑
i

mpw
n
ip(x

n
i − xnp)∗(xni − xnp)∗T

)
(Kn

p)−1Ln
p

+
∑
p

xnp ×mp

(∑
i

wnip(x
n
i − xnp)

)∗T
(Kn

p)−1Ln
p

=
∑
p

xnp ×mpv
n
p +

∑
p

Kn
p (Kn

p)−1Ln
p

=
∑
p

(xnp ×mpv
n
p + Ln

p)

= LP,n
tot

Grid to particle The angular momentum on the particles after transferring from the

grid is

LP,n+1
tot =

∑
p

(xn+1
p ×mpv

n+1
p + Ln+1

p)

130

=
∑
p

(
xn+1
p ×mp

(∑
i

wnipṽ
n+1
i

)
+

(∑
i

wnip(x
n
i − xnp)×mpṽ

n+1
i

))

=
∑
i,p

(
xn+1
p ×mpw

n
ipṽ

n+1
i + wnip(x

n
i − xnp)×mpṽ

n+1
i

)
=
∑
i,p

(xn+1
p − xnp)×mpw

n
ipṽ

n+1
i +

∑
i,p

wnipx
n
i ×mpṽ

n+1
i

= ∆t
∑
p

vn+1
p ×mp

∑
i

wnipṽ
n+1
i +

∑
i,p

wnip(x̃
n+1
i −∆tṽn+1

i)×mpṽ
n+1
i

= ∆t
∑
i,p

vn+1
p ×mpv

n+1
p +

∑
i,p

wnipx̃
n+1
i ×mpṽ

n+1
i

=
∑
i

(∑
p

wnipmp

)
x̃n+1
i × ṽn+1

i

=
∑
i

x̃n+1
i ×mn

i ṽ
n+1
i

= LG,n+1
tot

C.3 Affine

The transfer from particles to the grid is given by

mn
i =

∑
p

wnipmp

Dn
p =

∑
i

wnip(x
n
i − xnp)(xni − xnp)T =

∑
i

wnipx
n
i (xni)T − xnp (xnp)T

mn
i v

n
i =

∑
p

wnipmp(v
n
p + Bn

p (Dn
p)−1(xni − xnp))

with the transfer to particles given by

vn+1
p =

∑
i

wnipṽ
n+1
i

Bn+1
p =

∑
i

wnipṽ
n+1
i (xni − xnp)T .

131

C.3.1 Preservation of affine velocity fields

Let ∆t = 0 and consider the the process of transferring velocity (ṽn+1
i) information

to particles (vn+1
p , Bn+1

p) and then back to the grid (vn+1
i). Since ∆t = 0, we have

wnip = wn+1
ip and xnp = xn+1

p , so that Dn
p = Dn+1

p and mn
i = mn+1

i . If the velocities

before the transfer represent an affine velocity field, then ṽn+1
i = v + Cxni , where v is

a vector and C is a matrix.

ṽn+1
i = v + Cxni

vn+1
p =

∑
i

wnipṽ
n+1
i

=
∑
i

wnip(v + Cxni)

=
∑
i

wnipv +
∑
i

wnipCx
n
i

= v
∑
i

wnip + C
∑
i

wnipx
n
i

= v + Cxnp

Bn+1
p =

∑
i

wnipṽ
n+1
i (xni − xnp)T

=
∑
i

wnip(v + Cxni)(xni − xnp)T

=
∑
i

wnipv(xni − xnp)T +
∑
i

wnipCx
n
i (xni − xnp)T

= v

(∑
i

wnip(x
n
i − xnp)

)T

+ C
∑
i

wnip(x
n
i − xnp)(xni − xnp)T +

∑
i

wnipCx
n
p (xni − xnp)T

= CDn
p + Cxnp

(∑
i

wnip(x
n
i − xnp)

)T

= CDn
p

132

mn+1
i vn+1

i =
∑
p

wn+1
ip mp(v

n+1
p + Bn+1

p (Dn+1
p)−1(xn+1

i − xn+1
p))

mn
i v

n+1
i =

∑
p

wnipmp(v
n+1
p + Bn+1

p (Dn
p)−1(xni − xnp))

=
∑
p

wnipmp(v + Cxnp + CDn
p (Dn

p)−1(xni − xnp))

=
∑
p

wnipmp(v + Cxnp + C(xni − xnp))

=

(∑
p

wnipmp

)
(v + Cxni)

= mn
i (v + Cxni)

vn+1
i = v + Cxni

= ṽn+1
i

C.3.2 Conservation of momentum

Particle to grid

pG,ntot =
∑
i

mn
i v

n
i

=
∑
p

∑
i

mpw
n
ip(v

n
p + Bn

p (Dn
p)−1(xni − xnp))

=
∑
p,i

mpw
n
ipv

n
p +

∑
p,i

mpw
n
ipB

n
p (Dn

p)−1(xni − xnp)

=
∑
p

mp

(∑
i

wnip

)
vnp +

∑
p

mpB
n
p (Dn

p)−1

(∑
i

wnip(x
n
i − xnp)

)

=
∑
p

mpv
n
p

= pP,ntot

133

Grid to particle

pP,n+1
tot =

∑
p

mpv
n+1
p

=
∑
p

mp

∑
i

wnipṽ
n+1
i

=
∑
i

(∑
p

mpw
n
ip

)
ṽn+1
i

=
∑
i

mn
i ṽ

n+1
i

= pG,n+1
tot

C.3.3 Conservation of angular momentum

Particle to grid

LG,n
tot =

∑
i

xni ×mn
i v

n
i

=
∑
p

∑
i

xni ×mpw
n
ip(v

n
p + Bn

p (Dn
p)−1(xni − xnp))

=
∑
p

∑
i

xni ×mpw
n
ipv

n
p +

∑
p

∑
i

xni ×mpw
n
ipB

n
p (Dn

p)−1xni

−
∑
p

∑
i

xni ×mpw
n
ipB

n
p (Dn

p)−1xnp

=
∑
p

xnp ×mpv
n
p +

∑
p

∑
i

xni ×mpw
n
ipB

n
p (Dn

p)−1xni

−
∑
p

xnp ×mpB
n
p (Dn

p)−1xnp(
LG,n
tot

)
α

=
∑
p,β,γ

xnpβeβγαmpv
n
pγ +

∑
p,i,β,γ,τ,σ

xniβeβγαmpw
n
ipB

n
pγτ (D

−1)npτσx
n
iσ

−
∑

p,β,γ,τ,σ

xnpβeβγαmpB
n
pγτ (D

−1)npτσx
n
pσ

134

=
∑
p,β,γ

xnpβeβγαmpv
n
pγ

+
∑

p,β,γ,τ,σ

eβγαmpB
n
pγτ (D

−1)npτσ

(∑
i

xniβw
n
ipx

n
iσ − xnpβxnpσ

)

=
∑
p,β,γ

xnpβeβγαmpv
n
pγ +

∑
p,β,γ,τ,σ

eβγαmpB
n
pγτ (D

−1)npτσD
n
pσβ

=
∑
p,β,γ

xnpβeβγαmpv
n
pγ +

∑
p,β,γ

eβγαmpB
n
pγβ

LG,n
tot =

∑
p

xnp ×mpv
n
p +

∑
p

mp(B
n
p)T : ε

= LP,n
tot

Grid to particle

LP,n+1
tot =

∑
p

xn+1
p ×mpv

n+1
p +

∑
p

mp(B
n+1
p)T : ε

(
LP,n+1
tot

)
α

=
∑
p,β,γ

eβγαx
n+1
pβ mpv

n+1
pγ +

∑
p,β,γ

eβγαmpB
n+1
pγβ

=
∑
p,β,γ

eβγαx
n+1
pβ mp

∑
i

wnipṽ
n+1
iγ +

∑
p,β,γ

eβγαmp

∑
i

wnipṽ
n+1
iγ (xniβ − xnpβ)

LP,n+1
tot =

∑
p,i

xn+1
p ×mpw

n
ipṽ

n+1
i +

∑
p,i

(xni − xnp)×mpw
n
ipṽ

n+1
i

=
∑
p,i

(xn+1
p − xnp)×mpw

n
ipṽ

n+1
i +

∑
p,i

xni ×mpw
n
ipṽ

n+1
i

= ∆t
∑
p

vn+1
p ×mp

∑
i

wnipṽ
n+1
i +

∑
p,i

(x̃n+1
i −∆tṽn+1

i)×mpw
n
ipṽ

n+1
i

= ∆t
∑
p,i

vn+1
p ×mpv

n+1
p +

∑
p,i

x̃n+1
i ×mpw

n
ipṽ

n+1
i

=
∑
i

x̃n+1
i ×mn

i ṽ
n+1
i

= LG,n+1
tot

135

APPENDIX D

Derivatives for Deviatoric Elasticity

For our constitutive model we use Ψ̂µ(F) = Ψµ(J−
1
dF), where plasticity does not

matter and is ignored for the purposes of computing these derivatives. For convenience,

let a = −1
d
, and the µ subscripts are ignored. Then, Ψ̂(F) = Ψ(JaF). We begin by

computing Ψ̂µ(F). We will use index notation for precision during the derivations.

Differentiation by the matrix Fij is indicated by enclosing the index pair in parenthesis

after a comma, as in J,(ij). LetH = F−T . We begin with some preliminary derivatives

for J andH .

HjiFjk = δik

J,(ij) = JHij

(Ja),(ij) = aJa−1J,(ij)

= aJa−1JHij

= aJaHij

(HjiFjk),(rs) = 0

Hji,(rs)Fjk +HjiFjk,(rs) = 0

Hji,(rs)Fjk = −HjiFjk,(rs)

Hji,(rs)δjm = −HjiδjrδksHmk

Hji,(rs) = −HriHjs

136

The derivatives of the quantity JaF will occur frequently, so we begin by naming them

and evaluating them.

Kkmij = (JaFkm),(ij)

= JaFkm,(ij) + (Ja),(ij)Fkm

= Jaδikδjm + aJaFkmHij

KkmijZij = JaδikδjmZij + aJaFkmHijZij

KkmijZij = JaZkm + aJaFkmHijZij

K : Z = Ja(Z + a(H : Z)F)

ZkmKkmij = JaδikδjmZkm + aJaFkmHijZkm

ZkmKkmij = JaZij + aJaFkmZkmHij

Z : K = Ja(Z + a(F : Z)H)

Kkmij,(rs) = (Ja(δikδjm + aFkmHij)),(rs)

Kkmij,(rs) = (Ja),(rs)(δikδjm + aFkmHij) + Ja(δikδjm + aFkmHij),(rs)

Kkmij,(rs) = aJaHrs(δikδjm + aFkmHij) + aJa(Fkm,(rs)Hij + FkmHij,(rs))

Kkmij,(rs) = aKkmijHrs + aJa(δkrδmsHij − FkmHrjHis)

With the operator K, we can express the relationship between Â = ∂Ψ̂
∂F

(F) and A =

∂Ψ
∂F

(JaF).

Ψ̂(Fij) = Ψ(JaFij)

Ψ̂,(ij) = Ψ,(km)(J
aFkm),(ij)

= Ψ,(km)Kkmij

Â = A : K

137

Finally, we relate C = ∂2Ψ
∂F ∂F

(JaF) to Ĉ = ∂2Ψ̂
∂F ∂F

(F).

Ψ̂,(ij)(rs) = (Ψ,(km)Kkmij),(rs)

Ψ̂,(ij)(rs) = Ψ,(km)(tu)KtursKkmij + Ψ,(km)Kkmij,(rs)

Ψ̂,(ij)(rs) = Ψ,(km)(tu)KtursKkmij

+ aΨ,(km)KkmijHrs + aJaΨ,(rs)Hij − aJaΨ,(km)FkmHrjHis

Ψ̂,(ij)(rs)Zrs = Ψ,(km)(tu)KtursKkmijZrs + aΨ,(km)KkmijHrsZrs

+ aJaΨ,(rs)HijZrs − aJaΨ,(km)FkmHrjHisZrs

Ĉ : Z = (C : (K : Z)) : K + a(H : Z)A : K

+ aJa(A : Z)H − aJa(A : F)HZTH

138

BIBLIOGRAPHY

Ando, R., Thurey, N., and Tsuruno, R. (2012). Preserving fluid sheets with adaptively

sampled anisotropic particles. IEEE Trans Vis Comp Graph, 18(8):1202–1214. 40

Ando, R., Thurey, N., and Wojtan, C. (2013). Highly adaptive liquid simulations on

tetrahedral meshes. ACM Trans Graph, 32(4):103:1–103:10. 40

Ando, R. and Tsuruno, R. (2011). A particle-based method for preserving fluid sheets.

In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim, SCA ’11, pages 7–16.

40

Baraff, D. and Witkin, A. (1998). Large steps in cloth simulation. In Proc. SIGGRAPH,

pages 43–54. 94

Bargteil, A., Wojtan, C., Hodgins, J., and Turk, G. (2007). A finite element method for

animating large viscoplastic flow. ACM Trans. Graph., 26(3). 20, 24, 50, 59, 72, 89

Batty, C., Bertails, F., and Bridson, R. (2007). A fast variational framework for accurate

solid-fluid coupling. ACM Trans Graph, 26(3). 37

Batty, C. and Bridson, R. (2008a). Accurate viscous free surfaces for buckling, coiling,

and rotating liquids. In Proc 2008 ACM/Eurographics Symp Comp Anim, pages 219–

228. 24, 37

Batty, C. and Bridson, R. (2008b). Accurate viscous free surfaces for buckling, coiling,

and rotating liquids. In Proc 2008 ACM/Eurographics Symp Comp Anim, pages 219–

228. 89

Batty, C. and Houston, B. (2011). A simple finite volume method for adaptive viscous

liquids. In Proc 2011 ACM SIGGRAPH/Eurograp Symp Comp Anim, pages 111–118.

24

139

Batty, C., Uribe, A., Audoly, B., and Grinspun, E. (2012). Discrete viscous sheets.

31(4):113:1–113:7. 24

Becker, M., Ihmsen, M., and Teschner, M. (2009). Corotated sph for deformable solids.

In Eurographics Conf. Nat. Phen., pages 27–34. 25, 58, 59

Bonet, J. and Wood, R. (1997). Nonlinear Continuum Mechanics for Finite Element

Analysis. Cambridge University Press. 6, 26, 64, 67, 70, 72

Boyd, L. and Bridson, R. (2012). Multiflip for energetic two-phase fluid simulation.

ACM Trans Graph, 31(2):16:1–16:12. 37

Brackbill, J. (1988). The ringing instability in particle-in-cell calculations of low-speed

flow. J Comp Phys, 75(2):469–492. 39

Brackbill, J., Kothe, D., and Ruppel, H. (1988). Flip: A low-dissipation, pic method

for fluid flow. Comp Phys Comm, 48:25–38. 38

Brackbill, J. and Ruppel, H. (1986). Flip: A method for adaptively zoned, particle-

in-cell calculations of fluid flows in two dimensions. J Comp Phys, 65:314–343.

38

Bridson, R. (2008). Fluid simulation for computer graphics. Taylor & Francis. 47

Bridson, R., Fedkiw, R., and Anderson, J. (2002). Robust treatment of collisions, con-

tact and friction for cloth animation. In ACM Trans. Graph. (ToG), volume 21, pages

594–603. ACM. 94

Bridson, R., Marino, S., and Fedkiw, R. (2003). Simulation of clothing with folds and

wrinkles. In Proc. Symp. Comp. Anim., pages 28–36. 94

Carlson, M., Mucha, P., Horn, R. V., and Turk, G. (2002a). Melting and flowing. In

ACM SIGGRAPH/Eurographics Symp. Comp. Anim., pages 167–174. 24

140

Carlson, M., Mucha, P., and Turk, G. (2004). Rigid fluid: animating the interplay

between rigid bodies and fluid. In ACM Trans. on Graph., volume 23, pages 377–

384. 61

Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. (2002b). Melting and

flowing. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., pages 167–174.

60, 65, 89

Chang, Y., Bao, K., Liu, Y., Zhu, J., and Wu, E. (2009). A particle-based method for

viscoelastic fluids animation. In ACM Symp. Virt. Real. Soft. Tech., pages 111–117.

25, 58, 60, 65

Chao, I., Pinkall, U., Sanan, P., and Schroeder, P. (2010). A simple geometric model

for elastic deformations. ACM Trans. Graph., 29:38:1–38:6. 108

Chentanez, N., Goktekin, T. G., Feldman, B. E., and O’Brien, J. F. (2006). Simulta-

neous coupling of fluids and deformable bodies. In ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 83–89. 61

Chentanez, N. and Muller, M. (2010). Real-time simulation of large bodies of water

with small scale details. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim,

SCA ’10, pages 197–206. 37

Chentanez, N. and Muller, M. (2011). Real-time eulerian water simulation using a

restricted tall cell grid. ACM Trans Graph, 30(4):82:1–82:10. 37

Chentanez, N. and Muller, M. (2014). Coupling 3d eulerian, height field and particle

methods for the simulation of large scale liquid phenomena. In Proc ACM SIG-

GRAPH/Eurograph Symp Comp Anim, SCA ’14. 37

Choi, K.-J. and Ko, H.-S. (2005). Stable but responsive cloth. In ACM SIGGRAPH

2005 Courses, page 1. ACM. 94

141

Choi, S.-C. T. (2006). Iterative Methods for Singular Linear Equations and Least-

Squares Problems. PhD thesis, ICME, Stanford University, CA. 78

Chorin, A. (1968). Numerical solution of the Navier-Stokes Equations. Math. Comp.,

22:745–762. 58, 70

Clausen, P., Wicke, M., Shewchuk, J. R., and O’brien, J. F. (2013). Simulating liq-

uids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph.,

32(2):17:1–17:15. 59, 60

Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. (2014). Iisph-flip for incompress-

ible fluids. Comp Graph Forum, 33(2):255–262. 37

Dagenais, F., Gagnon, J., and Paquette, E. (2012). A prediction-correction approach

for stable sph fluid simulation from liquid to rigid. In Proc. of Comp. Graph. Intl.

60, 65

Desbrun, M. and Gascuel, M. (1996). Smoothed particles: A new paradigm for animat-

ing highly deformable bodies. In Eurographics Workshop Comp. Anim. Sim., pages

61–76. 24, 58

Eberhardt, B., Etzmus, O., and Hauth, M. (2000). Implicit-explicit schemes for fast

animation with particle systems. Springer. 94

Edwards, E. and Bridson, R. (2012). A high-order accurate particle-in-cell method. Int

J Numer Meth Eng, 90:1073–1088. 37, 40

Edwards, E. and Bridson, R. (2014). Detailed water with coarse grids: combining sur-

face meshes and adaptive discontinuous galerkin. ACM Trans Graph, 33(4):136:1–

136:9. 37

Enright, D., Marschner, S., and Fedkiw, R. (2002). Animation and rendering of com-

plex water surfaces. ACM Trans Graph, 21(3):736–744. 37, 38

142

Etzmuss, O., Keckeisen, M., and Strasser, W. (2003). A fast finite element solution for

cloth modeling. In Proc. Pac. Graph., pages 244–251. 108

Feldman, B., O’Brien, J., and Arikan, O. (2003). Animating suspended particle explo-

sions. SIGGRAPH ’03, 22(3):708–715. 37

Foster, N. and Metaxas, D. (1996). Realistic animation of liquids. Graph Mod Imag

Proc, 58:471–483. 37

Gao, Y., Li, C., Hu, S., and Barsky, B. (2009). Simulating gaseous fluids with low and

high speeds. Comp Graph Forum, 28(28):1845–1852. 37

Gascon, J., Zurdo, J. S., and Otaduy, M. A. (2010). Constraint-based simulation of

adhesive contact. In Proc. Symp. Comp. Anim., pages 39–44. 110

Gast, T., Schroeder, C., Stomakhin, A., Jiang, C., and Teran, J. (2015). Optimization

integrator for large time steps. IEEE Trans Vis Comp Graph, pages 1–1. 5, 96

Gerszewski, D. and Bargteil, A. (2013). Physics-based animation of large-scale splash-

ing liquids. ACM Trans Graph, 32(6):185:1–185:6. 37

Gerszewski, D., Bhattacharya, H., and Bargteil, A. (2009). A point-based method for

animating elastoplastic solids. In Proc ACM SIGGRAPH/Eurograph Symp Comp

Anim, pages 133–138. 25

Goktekin, T., Bargteil, A., and O’Brien, J. (2004). A method for animating viscoelastic

fluids. ACM Trans Graph, 23(3):463–468. 24, 58, 59, 72, 89

Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. (2007). Effi-

cient simulation of inextensible cloth. In ACM Trans. on Graph. (TOG), volume 26,

page 49. ACM. 95

143

Gonzalez, M., Schmidt, B., and Ortiz, M. (2010). Force-stepping integrators in la-

grangian mechanics. Intl. J. for Num. Meth. in Engng., 84(12):1407–1450. 95

Gonzalez, O. and Stuart, A. (2008). A First Course in Continuum Mechanics. Cam-

bridge texts in applied mathematics. Cambridge University Press. 64, 69

Harlow, F. (1964). The particle-in-cell method for numerical solution of problems in

fluid dynamics. Meth Comp Phys, 3:319–343. 38

Harlow, F. and Welch, E. (1965). Numerical calculation of time dependent viscous flow

of fluid with a free surface. Phys Fluid, 8(12):2182–2189. 38, 58, 89

Hauth, M. and Etzmuss, O. (2001). A high performance solver for the animation of

deformable objects using advanced numerical methods. In Comp. Graph. Forum,

volume 20, pages 319–328. 94, 95

Hiemenz, P. and Rajagopalan, R. (1997). Principles of Colloid and Surface Chemistry.

Marcel Dekker. 23

Hirota, G., Fisher, S., Lee, C., Fuchs, H., et al. (2001). An implicit finite element

method for elastic solids in contact. In Comp. Anim., 2001., pages 136–254. IEEE.

94, 95, 96

Hirt, C. and Shannon, J. (1968). Free-surface stress conditions for incompressible-flow

calculations. JCP, 2(4):403–411. 89

Hong, J., Lee, H., Yoon, J., and Kim, C. (2008a). Bubbles alive. ACM Trans Graph,

27(3):48:1–48:4. 37

Hong, W., House, D., and Keyser, J. (2008b). Adaptive particles for incompressible

fluid simulation. Vis Comp, 24(7):535–543. 40

144

Hong, W., House, D., and Keyser, J. (2009). An adaptive sampling approach to incom-

pressible particle-based fluid. Theory Pract Comp Graph, pages 69–76. 40

Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. (2013). Implicit

incompressible sph. IEEE Trans Vis Comp Graph, 20(3):426–435. 37

Irving, G., Teran, J., and Fedkiw, R. (2004). Invertible finite elements for robust sim-

ulation of large deformation. In Proc. 2004 ACM SIGGRAPH/Eurographics Symp.

Comp. Anim., pages 131–140. 72, 108

Iwasaki, K., Uchida, H., Dobashi, Y., and Nishita, T. (2010). Fast particle-based visual

simulation of ice melting. Comp. Graph. Forum, 29(7):2215–2223. 59, 60

Jiang, C., Schroeder, C., Selle, A., Teran, J., and Stomakhin, A. (2015). The affine

particle-in-cell method. ACM Trans Graph, 34(4). 2, 3, 36

Kane, C. (1999). Variational integrators and the Newmark algorithm for conservative

and dissipative mechanical systems. PhD thesis, Caltech. 94, 95

Kane, C., Marsden, J. E., and Ortiz, M. (1999). Symplectic-energy-momentum pre-

serving variational integrators. J. Math. Phys., 40:3353. 95

Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. (2008). Staggered projec-

tions for frictional contact in multibody systems. In ACM Trans. Graph. (TOG),

volume 27, page 164. ACM. 110, 113

Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. (2005). A unified

lagrangian approach to solid-fluid animation. In Eurographics/IEEE VGTC Conf.

Point-Based Graph., pages 125–133. 25, 59, 60, 65

Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J., and Schroder, P. (2006).

Geometric, variational integrators for computer animation. In Proc. Symp. Comp.

Anim., pages 43–51. 95, 109

145

Kim, J., Cha, D., Chang, B., Koo, B., and Ihm, I. (2006a). Practical animation of

turbulent splashing water. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim,

SCA ’06, pages 335–344. 38

Kim, T., Adalsteinsson, D., and Lin, M. C. (2006b). Modeling ice dynamics as a

thin-film stefan problem. In Proc 2006 ACM SIGGRAPH/Eurographics Symp Comp

Anim, pages 167–176. 59

Kwatra, N., Su, J., Gretarsson, J., and Fedkiw, R. (2009). A method for avoiding the

acoustic time-step restriction in compressible flow. J. Comp. Phys., 228:4146–4161.

70

Larson, R. G. (1999). The Structure and Rheology of Complex Fluids. Oxford Univer-

sity Press: New York. 23, 24, 27

Lee, H., Hong, J., and Kim, C. (2009). Interchangeable sph and level set method in

multiphase fluids. Vis Comp, 25(5):713–718. 37

Lenaerts, T. and Dutre, P. (2009). Mixing fluids and granular materials. Comp. Graph.

Forum, 28(2):213–218. 59

Lew, A., Marsden, J., Ortiz, M., and West, M. (2004). Variational time integrators. Intl.

J. Num. Meth. Engng., 60(1):153–212. 95

Lii, S.-Y. and Wong, S.-K. (2013). Ice melting simulation with water flow handling.

Vis. Comp., pages 1–8. 59, 60, 65

Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. (2013). Fast simulation of mass-

spring systems. ACM Trans. Graph. (TOG), 32(6):214. 94, 95

Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. (2006a). Melting and burning

solids into liquids and gases. IEEE Trans. Vis. Comp. Graph., 12:343–352. 24, 60

146

Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. (2006b). Multiple interacting liquids.

ACM Trans. Graph., 25(3):812–819. 60, 89

Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. (2008). Two-way coupled sph and

particle level set fluid simulation. IEEE Trans Vis Comp Graph, 14:797–804. 37

Love, E. and Sulsky, D. (2006). An unconditionally stable, energy-momentum consis-

tent implementation of the the material point method. Comp Meth App Mech Eng,

195:3903–3925. 39, 40

Maréchal, N., Guérin, E., Galin, E., Mérillou, S., and Mérillou, N. (2010). Heat transfer

simulation for modeling realistic winter sceneries. Comp. Graph. Forum, 29(2):449–

458. 60, 65

Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. (2010). Unified

simulation of elastic rods, shells, and solids. ACM Trans. Graph., 29(4):39:1–39:10.

61

Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. (2011). Example-based

elastic materials. In ACM Trans. Graph. (TOG), volume 30, page 72. ACM. 94, 95,

96

Mast, C., Mackenzie-Helnwein, P., Arduino, P., Miller, G., and Shin, W. (2012).

Mitigating kinematic locking in the material point method. J. Comp. Phys.,

231(16):5351–5373. 61, 70

McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E.

(2011). Efficient elasticity for character skinning with contact and collisions. ACM

Trans. Graph., 30:37:1–37:12. 108

Michels, D., Sobottka, G., and Weber, A. (2013). Exponential integrators for stiff

elastodynamic problems. In ACM Trans. Graph. (TOG). ACM. 94, 95

147

Mihalef, V., Metaxas, D., and Sussman, M. (2007). Textured liquids based on the

marker level set. Comp Graph Forum, pages 457–466. 37

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual review of astronomy

and astrophysics, 30:543–574. 68

Morrison, I. and Ross, S. (2002). Colloidal Dispersions: Suspensions, Emulsions and

Foams. Wiley Interscience. 24

Muller, K., Fedosov, D., and Gompper, G. (2015). Smoothed dissipative particle dy-

namics with angular momentum conservation. J Comp Phys, 281:301–315. 44

Muller, M. and Gross, M. (2004). Interactive virtual materials. In Proc. Graph. Intl.,

pages 239–246. 108

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. (2005). Meshless deforma-

tions based on shape matching. ACM Trans. Graph., 24(3):471–478. 58

Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. (2004).

Point based animation of elastic, plastic and melting objects. In ACM SIG-

GRAPH/Eurographics Symp. Comp. Anim., pages 141–151. 25, 59

Narain, R., Golas, A., and Lin, M. (2013). Free-flowing granular materials with two-

way solid coupling. ACM Trans Graph, 29(6):173:1–173:10. 37

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer series in opera-

tions research and financial engineering. Springer. 101, 103

Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. (2006). Particle-based non-

newtonian fluid animation for melting objects. In Conf. Graph. Patt. Images, pages

78–85. 25, 59, 60, 65

148

Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. (2009). Particle-based viscoplas-

tic fluid/solid simulation. Comp. Aided Des., 41(4):306–314. 25, 59, 60, 65

Pandolfi, A., Kane, C., Marsden, J., and Ortiz, M. (2002). Time-discretized variational

formulation of non-smooth frictional contact. Intl. J. Num. Meth. Engng., 53:1801–

1829. 100

Parks, D. and Forsyth, D. (2002). Improved integration for cloth simulation. In Proc.

of Eurographics. 95

Patkar, S., Aanjaneya, M., Karpman, D., and Fedkiw, R. (2013). A hybrid lagrangian-

eulerian formulation for bubble generation and dynamics. In Proc ACM SIG-

GRAPH/Eurograp Symp Comp Anim, SCA ’13, pages 105–114. 38

Prudhomme, R. and Kahn, S. (1996). Foams: Theory, Measurements, and Applications.

Marcel Dekker. 24

Ram, D., Gast, T., Jiang, C., Schroeder, C., Stomakhin, A., Teran, J., and Kavehpour, P.

(2015). A material point method for viscoelastic fluids, foams and sponges. In Proc

ACM SIGGRAPH/Eurographics Symp Comp Anim, SCA ’15. 2, 3

Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W.,

Hoon, S., and Fedkiw, R. (2004). Directable photorealistic liquids. In ACM SIG-

GRAPH/Eurographics Symp. Comp. Anim., pages 193–202. 24, 60, 89

Raveendran, K., Wojtan, C., and Turk, G. (2011). Hybrid sph. In Proc 2011 ACM

SIGGRAPH/Eurograp Symp Comp Anim, SCA ’11, pages 33–42. 37

Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. (2008). Two-

way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph.,

27(3):46:1–46:9. 61

149

Schmedding, R. and Teschner, M. (2008). Inversion handling for stable deformable

modeling. Vis. Comp., 24:625–633. 108

Schramm, L. (1994). Foams: Fundamentals and Applications in the Petroleum Indus-

try. ACS. 24

Serway, R. A. and Jewett, J. W. (2009). Physics for Scientists and Engineers. Cengage

Learning. 65

Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. (2007). Hybrid simulation of de-

formable solids. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, pages

81–90. 20

Simo, J. C., Tarnow, N., and Wong, K. (1992). Exact energy-momentum conserving

algorithms and symplectic schemes for nonlinear dynamics. Computer methods in

applied mechanics and engineering, 100(1):63–116. 95

Sin, F., Bargteil, A., and Hodgins, J. (2009). A point-based method for animating

incompressible flow. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, pages

247–255. 37

Solenthaler, B. and Pajarola, R. (2009). Predictive-corrective incompressible sph. In

ACM transactions on graphics (TOG), volume 28, page 40. ACM. 61

Solenthaler, B., Schläfli, J., and Pajarola, R. (2007). A unified particle model for fluid-

solid interactions. Comp. Anim. Virt. Worlds, 18(1):69–82. 25, 58, 59, 60, 65, 89

Song, O., Kim, D., and Ko, H. (2009). Derivative particles for simulating detailed

movements of fluids. IEEE Trans Vis Comp Graph, pages 247–255. 38

Steffen, M., Kirby, R., and Berzins, M. (2008). Analysis and reduction of quadrature

errors in the material point method (MPM). Int. J. Numer. Meth. Engng, 76(6):922–

948. 72, 74, 88

150

Stern, A. and Grinspun, E. (2009). Implicit-explicit variational integration of highly

oscillatory problems. Multiscale Modeling & Simulation, 7(4):1779–1794. 94, 95

Stomakhin, A., Howes, R., Schroeder, C., and Teran, J. (2012). Energetically consistent

invertible elasticity. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., pages

25–32. 16, 61, 66, 106, 108, 109

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. (2013). A material point

method for snow simulation. ACM Trans Graph, 32(4):102:1–102:10. 2, 3, 6, 10,

12, 13, 17, 19, 25, 28, 37, 41, 49, 61, 66, 67, 72, 76, 88, 113, 114, 115, 120

Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. (2014).

Augmented mpm for phase-change and varied materials. ACM Trans Graph,

33(4):138:1–138:11. 2, 4, 25, 37, 52

Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-D. (1999). Animating

lava flows. In Graph. Int., pages 203–210. 59, 60

Su, J., Sheth, R., and Fedkiw, R. (2013). Energy conservation for the simulation of

deformable bodies. Visualization and Computer Graphics, IEEE Transactions on,

19(2):189–200. 95

Sulsky, D., Zhou, S.-J., and Schreyer, H. (1995). Application of particle-in-cell method

to solid mechanics. Comp. Phys. Comm., 87:236–252. 6, 41, 57, 77

Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. (2005). Robust quasistatic finite el-

ements and flesh simulation. In Proc. Symp. Comp. Anim., pages 181–190. 108,

109

Terzopoulos, D. and Fleischer, K. (1988a). Deformable models. Vis Comp, 4(6):306–

331. 14, 24

151

Terzopoulos, D. and Fleischer, K. (1988b). Modeling inelastic deformation: Viscole-

lasticity, plasticity, fracture. SIGGRAPH Comp Graph, 22(4):269–278. 14, 24

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable

models. Proc. SIGGRAPH, 21:205–214. 14

Terzopoulos, D., Platt, J., and Fleischer, K. (1991). Heating and melting deformable

models. J. Vis. Comp. Anim., 2(2):68–73. 58, 60

Teschner, M., Heidelberger, B., Muller, M., and Gross, M. (2004). A versatile and

robust model for geometrically complex deformable solids. In Comp. Graph. Int.,

pages 312–319. 59, 60

Um, K., Baek, S., and Han, J. (2014). Advanced hybrid particle-grid method with

sub-grid particle correction. Comp Graph Forum, 33:209–218. 40

Volino, P. and Magnenat-Thalmann, N. (2001). Comparing efficiency of integration

methods for cloth simulation. In Comp. graph. Intl. 2001 Proc., pages 265–272.

IEEE. 94, 95

Wang, Y., Jiang, C., Schroeder, C., and Teran, J. (2014). An adaptive virtual node

algorithm with robust mesh cutting. In Proc ACM SIGGRAPH/Eurographics Symp

Comp Anim, SCA ’14, pages 77–85. 93

Wei, X., Li, W., and Kaufman, A. (2003). Melting and flowing of viscous volumes. In

Intl. Conf. Comp. Anim. Social Agents, pages 54–60. 60

Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F.

(2010). Dynamic local remeshing for elastoplastic simulation. ACM Transactions on

Graphics, 29(4):49:1–11. Proc. of ACM SIGGRAPH 2010. 59

Wojtan, C., Carlson, M., Mucha, P. J., and Turk, G. (2007). Animating corrosion and

erosion. In Eurographics Conf. Nat. Phen., pages 15–22. 60

152

Wojtan, C., Thürey, N., Gross, M., and Turk, G. (2009). Deforming meshes that split

and merge. ACM Trans. Graph., 28(3):76:1–76:10. 24, 59

Wojtan, C. and Turk, G. (2008). Fast viscoelastic behavior with thin features. ACM

Trans. Graph., 27(3):47:1–47:8. 24, 59

Yabe, T., Xiao, F., and Utsumi, T. (2001). The constrained interpolation profile method

for multiphase analysis. J Comp Phys, 169:556–593. 38

Yu, J. and Turk, G. (2010). Reconstructing surfaces of particle-based fluids using

anisotropic kernels. In Proc. of the 2010 ACM SIGGRAPH/Eurographics Symp. on

Comp. Anim., pages 217–225. Eurographics Association. 90

Yue, Y., Smith, B., Batty, C., Zheng, C., and Grinspun, E. (2015). Continuum foam: A

material point method for shear-dependent flows. To appear, ACM Trans Graph. 2,

25, 35

Zhao, Y., Wang, L., Qiu, F., Kaufman, A., and Mueller, K. (2006). Melting and flowing

in multiphase environment. Comp. Graph., 30:2006. 60

Zheng, C. and James, D. L. (2011). Toward high-quality modal contact sound. In ACM

Transactions on Graphics (TOG), volume 30, page 38. ACM. 113

Zhu, B., Yang, X., and Fan, Y. (2010a). Creating and preserving vortical details in sph

fluid. Comp Graph Forum, 29(7):2207–2214. 37

Zhu, Y. and Bridson, R. (2005). Animating sand as a fluid. ACM Trans Graph,

24(3):965–972. 37, 40, 41, 57

Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. (2010b). An efficient and paralleliz-

able multigrid framework for the simulation of elastic solids. ACM Trans. Graph.,

29:16:1–16:18. 108

153

	Introduction
	Contributions
	Dissertation Overview

	The Material Point Method
	Deformation
	Useful differentials

	The MPM algorithm
	Snow simulation results

	Elasticity and Plasticity
	Hyperelasticity
	Mass-spring system
	Neo-Hookean model
	Fixed corotated model

	Plasticity
	Plastic flow
	Material hardening

	Lagrangian forces

	Simulating Viscoelastic Fluids, Foams and Sponges
	Background
	Governing equations
	Upper convected derivative
	Volume-preserving plasticity
	Elasticity

	Discretization
	Simulation results
	Discussion

	The Affine Particle-in-Cell Method
	Background
	Method Outline
	Particle-grid transfers
	PIC
	Rigid Particle-In-Cell (RPIC)
	Affine Particle-In-Cell (APIC)

	Fluids
	Simulation results
	Discussion

	Simulating Melting and Solidification
	Background
	Method Overview
	Physical Model
	Heat flow and phase transition
	Constitutive model
	Pressure Splitting
	Pressure
	Temporal evolution
	Discretization

	Algorithm
	Apply plasticity from previous timestep
	Compute interpolation weights
	Rasterize particle data to grid
	Classify cells
	MPM velocity update
	Process the grid collisions
	Project the velocities
	Solve the heat equation
	Update the particle state from the grid
	Process the particle collisions and positions

	Simulation results
	Discussion
	Summary

	Conclusion
	An Optimization-Based Integrator
	Introduction
	Time Integration
	Minimization problem

	Minimization
	Unconstrained minimization
	Constrained minimization
	Practical considerations

	Forces
	Elastic
	Damping

	Collisions
	Object collisions as constraints
	Object penalty collisions
	Penalty self-collisions

	Accelerating the MPM
	Optimization formulation
	Particle position update

	Simulation results
	Summary

	Derivatives for the Oldroyd-B Model
	RPIC and APIC Proofs
	Preliminaries
	Piecewise rigid
	Preservation of rigid motion
	Conservation of momentum
	Conservation of angular momentum

	Affine
	Preservation of affine velocity fields
	Conservation of momentum
	Conservation of angular momentum

	Derivatives for Deviatoric Elasticity
	Bibliography

