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Exercieses

Here was the bonus problem I wrote down, written out with a solution. I rec-
ommend giving it a try before reading it.

Exercise 1.1. If J ⊂ R is a closed and bounded set, and f : R → R is monotonically
non-decreasing - that is for all a ≤ b that f(a) ≤ f(b) - then there exists y ∈ J such
that f(y) = sup{f(x) : x ∈ J}.
Proof. We can recall from discussion that since f is monotonically increasing if we
can find the right-most (or greatest) point in J that will be a good choice for y.

We first show that there is such a right-most point. I don’t know what you
covered last quarter, maybe you showed that closed and bounded subsets of R
have a greatest point, in case you didn’t we can show this with the extreme value
theorem, EVT. Consider the function g(x) = x, which is continuous and as such we
know that since J is compact (recall closed and bounded is the same as compact),
then we know that g achieves supremum on J . That is there is a y ∈ J where
g(y) ≥ g(x) for all other x ∈ J . But recall, g(y) = y and g(x) = x so this is simply
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2 JOHN HOPPER

a point y ∈ J with y ≥ x for all x ∈ J which is the ‘right-most point’ we were
asking for.

We can now notice that for all x ∈ J we know x ≤ y and thus by monotonicity
of f that f(x) ≤ f(y) which shows that f(y) is an upper bound for {f(x) : x ∈ J},
since it is in this set it must actually be the least upper bound. Thus, f(y) =
sup{f(x) : x ∈ J} as we desired to show. □

I realize the last question I mentioned in discussion was a bit longer than first
realized (and I rushed through it in class, which doesn’t help). I have written it
more carefully here. Below it is also a slightly harder, but very similar problem for
you to try on your own if you want to test your understanding of this proof.

Exercise 1.2. Suppose J = [0, 1] and Pn is the partition given by{[
i

n
,
i+ 1

n

]
: 0 ≤ i ≤ n− 1, and i ∈ Z

}
.

Suppose further that f : R → R is 1-Lipchitz continuous, that is f is continuous and
|f(x)−f(y)| ≤ |x−y| for all x, y ∈ R. Show that limn→+∞ L(f, Pn)−U(f, Pn) → 0

Proof. First, lets write out what it is we are taking a limit of and try to unpack
the notation a bit:

L(f, Pn)− U(f, Pn) =
∑
J∈Pn

mJ length(J)−
∑
J∈Pn

MJ length(J).

Next, we can note that the summations (the big Sigmas) are over the same set and
so we can put them together,∑
J∈Pn

mJ · length(J)−
∑
J∈Pn

MJ · length(J) =
∑
J∈Pn

mJ · length(J)−MJ · length(J)

=
∑
J∈Pn

(mJ −MJ) · length(J).

Lets look more closely at each term in the sum individually. We can note that
length(J) = 1

n since each interval in the partition is of the form [ in ,
i+1
n ]. Now lets

turn our attention to mJ −MJ , we are going to try a squeeze theorem, so we need
upper and lower bounds. We know that mJ ≤ MJ so we have mJ − MJ ≤ 0.
We also know that since f is continuous mJ = f(x1) and MJ = f(x2) where
x1, x2 ∈ J , but J is an interval of length 1/n so |x1 − x2| ≤ 1/n so we can the
1-Lipchitz property to see that

|mJ −MJ | = |f(x1)− f(x2)| ≤ |x1 − x2| ≤ 1/n.

We also know the sign, (it is negative) so we have that

−1

n
≤ mJ −MJ ≤ 0.
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We now have bounds on each part, time to put them all together:

L(f, Pn)− U(f, Pn) =
∑
J∈Pn

(mJ −MJ) · length(J)

=
∑
J∈Pn

(mJ −MJ) ·
1

n

≤
∑
J∈Pn

0 · 1
n

≤ 0

and

L(f, Pn)− U(f, Pn) =
∑
J∈Pn

(mJ −MJ) · length(J)

=
∑
J∈Pn

(mJ −MJ) ·
1

n

≥
∑
J∈Pn

−1

n
· 1
n

=
∑
J∈Pn

−1

n2

=
−1

n
the last equality comes from the fact there are n sub-intervals of Pn. We have
thus shown that −1

n ≤ L(f, Pn) − U(f, Pn) ≤ 0, and we know that limn→+∞ 0 =

limn→+∞
−1
n = 0, thus by squeeze theorem we know that limn→+∞ L(f, Pn) −

U(f, Pn) = 0. □

If you want to practice, below is a very similar problem to 1.2. I would suggest
taking a break then trying to solve 1.3 without looking at the solution to 1.2. If you
get stuck, try look at it. I do recommend taking a (1 hour or more) break because
it is often easy to miss the hard part of proofs if you just read them. The goal here
is to remember some of the proof, but not all of it so it more closely resembles your
working on homework/midterm problems.

Question 1.3. Suppose J = [0, 1] and Pn is the partition given by{[
i

n
,
i+ 1

n

]
: 0 ≤ i ≤ n− 1, and i ∈ Z

}
.

Suppose further there is a λ > 0 and 0 < α < 1 where for all x, y ∈ R we know
|f(x)− f(y)| ≤ λ|x− y|α. Show that limn→+∞ L(f, Pn)− U(f, Pn) → 0.

Back to top



4 JOHN HOPPER

Week 2

Warm-up

Are the following statements true or false?

(1) For any continuous and bounded function f and box J , MJ(f) > mJ(f).
(F)

(2) If f is a continuous function and J is a bounded box, then f is bounded on
J . (T)

(3) The area of the box [0, 1]× [2, 3]× [0, 1
2 ] is 2.5. (F)

(4) If P ′ is a refinement of the partition P , then we know that U(f, P ) ≥
U(f, P ′). (T)

(5) For some particularly nasty bounded functions, f , there are partitions P
and Q where U(f, P ) ≤ L(f,Q). (F)

(6) If f is a bounded function and B a bounded box, then f is integrable. (F)
(7) If f is bounded and integrable and P is a partition of B, then

∫
B
f ≤

L(f, P ). (F)
(8) If f is a bounded function and B a bounded box and for every ϵ > 0 we

know that there is a partition Pϵ where U(f, Pϵ) − L(f, Pϵ) < ϵ then f is
integrable. (T)

Question 1

a)If f is a bounded function and B a bounded box and for every ϵ > 0 we know
that there is a partition Pϵ where U(f, Pϵ) − L(f, Pϵ) ≤ ϵ then f is integrable.
(Caution! This is not the same as (8) above as we have a less than or equal to).

b) Suppose that f is a bounded function, and B is a bounded box. We know
that for every n there is a partition Pn where U(f, Pn) − L(f, Pn) ≤ 1

n , then f is
integrable.

Answer:

Proof of a). Fix ϵ > 0 then we can note that for ϵ′ = ϵ/2 < ϵ. We can apply the
assumption there is a partition P such that U(f, P )− L(f, P ) ≤ ϵ′ < ϵ. □

proof of b). Fix ϵ > 0, we wish to show that there is a partition, P , such that
U(f, P )− L(f, P ) < ϵ.

Note that 1/ϵ > 0 let n be the smallest integer greater than or equal to (1/ϵ)+1.
In particular we have that n > 1/ϵ and thus 1/n < ϵ. Let P = Pn so we have that
U(f, P )− L(f, P ) ≤ 1/n < ϵ. □

Question 2

Exercise 2.1. Show that if B is a box and f is integrable on B then |f | is integrable
on B.

Hint: fist show lemma 2.3.
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Proof. Fix ϵ > 0, since f is integrable we know that there is a partition P where
U(f, p)− L(f, P ) < ϵ. We can then use the lemma to see that

U(|f |, P )− L|f |, P ) =
∑
J∈P

(MJ(|f |)−mJ(|f |))vol(J)

≤
∑
J∈P

(MJ(f)−mJ(f))vol(J)

= U(f, P )− L(f, P ) < ϵ

. Thus, we have shown for all ϵ > 0 there is a partition P such that U(|f |, P ) −
L|f |, P ) < ϵ, so f is integrable.

□

Question 2.2. Is the converse true? If |f | is integrable on B then is f integrable.
Either prove or find a counterexample (and prove the counterexample works, that
is |f | is integrable but f is not you may use the any homework problems as if you
solved them).

Answer: No, consider the function f which is 1 on the irrational numbers between
0 and 1 and−1 on the rational numbers, f is not integrable, but |f | = 1 is integrable.

Lemma 2.3. Show that for a box J that MJ(f)−mJ(f) ≥ MJ(|f |)−mJ(|f |) ≥ 0

Proof. One of the most straight forward proof is to break it into cases where 1)
MJ(f) ≥ mJ(f) ≥ 0, 2) MJ(f) ≥ 0 > mJ(f), and 0 > MJ(f) ≥ mJ(f).

The first case |f | = f so MJ(f)−mJ(f) = MJ(|f |)−mJ(|f |).
The third case |f | = −f so MJ(|f |) = −mJ(f) and mJ(|f |) = −MJ(f) and you

can check that MJ(f)−mJ(f) = (−mJ(f))− (−MJ(f)) = MJ(|f |)−mJ(|f |).
The second case we can note that MJ(|f |) = max(MJ(f),−mJ(f)) ≤ MJ(f)−

mJ(f) and that mJ(f) ≥ 0 since 0 is a lower bound for |f | (note finding mJ(|f |)
exactly is not feasible without more information about f). Thus we can see that
MJ(|f |)−mJ(|f |) ≤ MJ(f)−mJ(f)− 0. □

Question 3

Exercise 2.4. Suppose that f : R → R is bounded and integrable on the interval
[a, b]. Show that g : R2 → R where g(x, y) = f(x) is integrable on the box [a, b] ×
[c, d] for any −∞ < c < d < +∞.

Back to top

Question 4

Exercise 2.5. Show that log10(x) is integrable on [1, 10].

Hint: Notice log10 is increasing so MJf −mJf where J = [t0, t1] is f(t1)− f(t0)
(to prove this use 1.1). Can you find a partition Pn where f(t1) = 0.1, f(t2) = 0.2
... what about for 0.01 and 0.02 or for t1 = 1/n and t2 = 2/n, use Question 1 part
b.
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Week 3

Warm-up

Exercise 3.1. Show that a single point {x0} = S has volume zero.

Exercise 3.2. Show that f(x) = x on R is uniformly continuous.

Uniform Continuity

Exercise 3.3. A continuous function f : Rn → R is called α-Hölder continuous if
there is a λ > 0 such that ∥f(x)− f(y)∥ < λ∥x− y∥α for all x, y ∈ Rn. Show that
for any 0 < α < 1, if f is α-Hölder continuous then f is uniformly continuous.

Exercise 3.4. Show that f(x) = x2 on all of R is not uniformly continuous.

Volume Zero

Exercise 3.5 (Exercise 6.5.7 in the book). Prove that if S1 and S2 have volume
zero, then so does S1 ∪ S2. (Hint: χS1∪S2

≤ χS1
+ χS2

.)

Corollary 3.6. Show that for all n ∈ N, if S1, S2, . . . , Sn have volume zero then
so does ∪n

i=1Si.

Hint : Use proof by induction

Question 3.7. If S1, · · · ⊂ [0, 1] have volume zero is it true that ∪+∞
i=1Si has volume

zero. Prove or provide a counterexample.

Exercise 3.8. If N has volume zero and S is has volume v ∈ [0,+∞), show that
S \N has volume v as well.

Back to top
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Week 4

Below are some classic computations that you would probably see if you took
32B and require some tricks that it would be good to know. These assume you are
familiar with polar, spherical, and cylindrical coordinates.

Exercise 4.1. Find the area of the ellipse x2

a + y2

b ≤ 1.

Hint : Try a change of variables to make it a circle.

Exercise 4.2. Find the volume of the ice-cream cone: x2 + y2 + z2 ≤ 4 and√
x2 + y2 ≤ z.

Hint : Use spherical coordinates

Exercise 4.3. Find the volume of the the frustum: 2
√

x2 + y2 ≤
√
3z, 1 ≤ z ≤ 2.

Hint Use cylindrical coordinates, i.e. polar for x-y and leave z alone.

Exercise 4.4. Show that
∫
R e−x2

dx =
√
π
2 , by first showing that

∫
R2 e

−x2−y2

dA =
π
2 and then applying Fubini’s theorem.

Exercise 4.5. Use change of variables to find the area of closed region show below:

Hint : The region looks vaguely rectangular, can you find a change of variables
to make the region a rectangle?
Back to top
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Week 5

Arclength

You were told in class that
∫
Φ
f =

∫
D
(f ◦ Φ)volk(D1Φ, . . . , DkΦ). Here we will

look a little closer when k = 1 and f = 1 or in other words the arc-length of a
curve.

Exercise 5.1. Show the following are equivalent for a curve Φ : [0, T ] → Rn,

(1)
∫
Φ
1

(2)
∫ T

0
|Φ′(t)|dt

Moreover show that that the arclength of the graphG(f) is given by
∫ T

0

√
1 + |f ′(t)|2dt.

Proof. We can note that we can parameterize the 1-surface by Φ and V olP1(D1Φ) =

|D1Φ| = | d
dxΦ(x)| = |Φ′(x)|. Thus, our formula says that

∫
Φ
1 =

∫ T

0
1|Φ′(t)|dt

as desired. Now we can note that the graph G(f) can be parameterized by Φ :
(x) 7→ (x, f1(x), . . . , fn(x)) = (x, f(x)) in which case D1Φ = (1, f ′

1(x), . . . , f
′
n(x)) =

(1, f ′(x)) and |D1Φ| =
√

12 + f ′
1(x)

2 + · · ·+ f ′
n(x)

2 =
√
1 + |f ′(x)|2 and thus we

get that the arclength is
∫
Φ
1 =

∫ T

0

√
1 + |f ′(x)|2dx as desired. □

Exercise 5.2. Let n = 3, and suppose that |∇Φ| = 1. Show that d
dt (∇Φ(t)) and

∇Φ are perpendicular. Furthermore, argue that ∇Φ(t),
d
dt∇Φ(t)

| d
dt∇Φ(t)| and their cross

product form an orthonormal basis.

Surface Area

The following is a fun property about the surface area of spheres in three dimen-
sions:

Exercise 5.3. Find the surface area of the section of the sphere x2 + y2 + z2 =
1 where t ≤ z ≤ 1 for t ≥ 0 by letting Φ : {x2 + y2 ≤ 1} → R3 Φ(x, y) =

(x, y,
√
1− x2 + y2). Compute the surface area where t1 ≤ z ≤ t2 for generic

−1 ≤ t1 ≤ t2 ≤ 1.

Proof. We will prove this with two different choices of Φ:
(1) Spherical Coordinate Φ, we can note that the surface of the sphere can be

easily parameterized in spherical coordinates since ρ ≡ 1 and thus we can send
(θ, ϕ) 7→ (1, θ, ϕ) where the latter is spherical so if we map to cartesian we can see
that it is (θ, ϕ) 7→ (sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)). We can then see that the
bounds should be [0, 2π]× [0, arccos(t)]. We can then see that

D1Φ = (− sin(ϕ) sin(θ), sin(ϕ) cos(θ), 0)

and

D2Φ = (− cos(ϕ) cos(θ),− cos(ϕ) sin(θ), sin(ϕ)).

We can note that these two are orthogonal (take their dot product) and so

vol(P2(D1Φ, D2Φ) = |D1Φ| · |D2Φ| = | sin(ϕ)| · 1 = sin(ϕ).

Now, we can use our formula to see that the surface area is∫
Φ

1 =

∫ arccos(t)

0

∫ 2π

0

sin(ϕ)dθdϕ = 2π[− cos(ϕ)]
ϕ=arccos(t)
ϕ=0 = 2π(1− t).
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(2) Thinking of the surface as a graph. This is a very common trick most k-
surfaces can be thought of as graphs of functions in which case Φ(u) = (u,G(u))
(maybe not in that order you can imagine that the half of the sphere where x > 0
would be a graph and Φ = (G(y, z), y, z) but this general form is very common).
We just need to solve one variable in terms of the others the initial issue is to do this
we need to square root which gives us two answers instead of 1 (plus and minus)
but since z ≥ 0 we can ignore the negative answer (in some situations you can get
around this by writing a surface as the union of two disjoint surfaces each which
can be viewed as a graph, though this can make the notation cumbersome). We

have z =
√
1− x2 − y2 = G(x, y) so Φ(x, y) = (x, y,

√
1− x2 − y2). We can find

DxΦ = (1, 0,
−x√

1− x2 − y2
)

and

DxΦ = (0, 1,
−y√

1− x2 − y2
).

Since we are in three dimensions we can find the volume of the parallelepiped with
a cross product:

vol(P2(D1Φ, D2Φ)) = |(1, 0, −x√
1− x2 − y2

)× (0, 1,
−y√

1− x2 − y2
)|

= |( y√
1− x2 − y2

,
x√

1− x2 − y2
, 1)|

=

√
x2 + y2 + (1− x2 − y2)

1− x2 − y2
=

1√
1− x2 − y2

.

So we want to integrate
∫
{(x,y):x2+y2≤1−t2}

1√
1−x2−y2

which is best done in polar,

we could have done the initial Φ in terms of polar and get to the same point but I
feel like that is slightly less obvious than viewing. Converting to polar the integral
becomes ∫ √

1−t2

0

∫ 2π

0

r√
1− r2

dθdr = 2π
[
−
√
1− r2

]r=√
1−t2

r=0
= 2π[1− t].

For the more general problem we can note that for t1 ≥ t2 ≥ 0 clearly the surface
area is 2π(1− t2)− 2π(1− t1) = 2π(t1 − t2) we can then argue by symmetry that
this works for more general t1 and t2. □

Next, we will prove a formula from Calc 2 about the surface area of revolution

Exercise 5.4. Suppose that f : [a, b] → R≥0 is smooth. Compute the surface area
of the volume of revolution when rotating around the x-axis and show it is equal

to
∫ b

a
2πf(x)

√
1 + f ′(x)2dx.

Hint : Let Φ : [a, b]× [0, 2π] send (x, θ) to (x, f(x) cos(θ), f(x) sin(θ)).

Proof. Following the hint we can see that

D1Φ = (1, f ′(x) cos(θ), f ′(x) sin(θ) D2Φ = (0,−f(x) sin(θ), f(x) cos(θ).
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We can note that our the volume is once again the magnitude of the cross product
which is

|D1Φ×D2Φ| = |(f ′(x)f(x)(sin2(θ) + cos2(θ)),−f(x) sin(θ),−f(x) cos(θ))|

=
√

f ′(x)2f(x)2 + f(x)2 = |f(x)|
√

1 + f ′(x)2.

We can then plug this into our fomula, use Fubini and note f(x) > 0 so |f(x)| = f(x)
to see that∫

Φ

1 =

∫ b

a

∫ 2π

0

1 · f(x)
√
1 + f ′(x)2dx =

∫ b

a

2πf(x)
√

1 + f ′(x)2.

□

Surface integrals are consistent

Exercise 5.5. Suppose that Φ : Rn → Rn and Ψ : Rn → Rm, and f : Rn → R
all smooth with n ≤ m where Φ−1 exists and is also smooth. You take it as a fact
that f ◦ g is smooth if f and g are. Show the following equality:∫

Ψ◦Φ
f =

∫
Φ

f(Ψ)|detΦ′|−1

Hint : If A and B are matrices then det(AB) = det(A)det(B), in particular
det(A−1) = det(A)−1.

Back to top
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Week 6

Warm-up

1.Let S be the top have of the sphere parameterized by Φ(x, y) = (x, y,
√
1− x2 − y2)

without doing the computations (by looking at the picture) determine if the
∫
S
F ·dS

is positive, negative or zero. when F (x, y, z) is:

(1) F (x, y, z) = ⟨1, 0, 0⟩
(2) F (x, y, z) = ⟨0, 0, 1⟩
(3) F (x, y, z) = ⟨y, 0, 0⟩
(4) F (x, y, z) = ⟨0, 0, x⟩
(5) F (x, y, z) = ⟨x, y, z⟩.
2. Let S be the smooth boundary of a solid region in R3. Which, if any, of the

following are the same as 1
3

∫
S
⟨x, y, z⟩ · dS?

(1)
∫
S
⟨x, 0, 0⟩ · dS

(2) 1
2

∫
S
⟨y, x, 0⟩ · dS

(3)
∫
S
⟨y, x, z⟩ · dS

Green’s, Stokes’, divergence theorems

Exercise 6.1. Using change of variables show that if V (x, y, z) = ∇F (x, y, z) that
and γ : [0, T ] → R3 a smooth curve that

∫
γ
V (x, y, z) · dγ = F (γ(T )) − F (γ(0)).

Conclude that if a if a vector field V (x, y, z) : D → R3 is the gradient of a function
F then V has no curl.

Exercise 6.2. Consider the vector-field V (x, y) = ⟨ −y
x2+y2 ,

x
x2+y2 ⟩ defined on all of

R2 \ (0, 0). Show that the vector-field has no curl. Even so, prove that there is no
function f : R2 \ (0, 0) → R where V (x, y) = ∇f(x, y).

Exercise 6.3. For both of the following let S be the top half of the sphere pa-

rameterized Φ(x, y) = (x, y,
√
1− x2 − y2), compute the following quantities in a

clever way using theorems from class.∫
S

⟨x2 + sin(z), cos(y)z2, zx+ z3 +
√
x2 + y2⟩ · dS∫

S

⟨−2z, 0, 3x2 + 3y2⟩ · dS

Hint: The second vector field looks like a curl of ⟨−y3, x3+z2, 0⟩ (answers should
be 2π

3 and 3π
2 ).

1-forms

Exercise 6.4. Compute the following line integrals let γ(t) = ⟨t, t2, t3⟩ let ω1 =

xdy, let ω2 = (x2 + z)dz and let ω3 = ydx find
∫ 1

0
γ(t)dω.

( 23 ,
11
10 ,

1
3 )

Exercise 6.5. Let ωi be as in 6.4. Are any of these closed or exact? Is there a

combination of these that is? Using this can you verify what
∫ 1

0
γdω1 +

∫ 1

0
γω3 is?

Back to top
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Week 7

Algebra of differential forms

Exercise 7.1. Show that if ω is a 2l + 1-form on then ω ∧ ω = 0.

Exercise 7.2. Show this is not true if ω is even. Furthermore, show that there is
a differential form ω on R2n such that ω ∧ · · · ∧ ω ̸= 0 for up to n copies of ω.

Exercise 7.3. Let ω = x2ydx ∧ dw − sin(w)dy ∧ dz and η = 3xdx − 4ydy. Find
and simplify ω ∧ η, ω ∧ ω, η ∧ η, and η ∧ ω ∧ η.

Green’s theorem: differential forms

Exercise 7.4. Let B be a closed connected set in R2 with counter-clockwise
oriented boundary ∂B. Argue with Green’s theorem why

∫
B

df
dy (x, y)dy ∧ dx +∫

B
dg
dx (x, y)dx ∧ dy =

∫
∂B

f(x, y)dx +
∫
∂B

g(x, y)dy observe this almost appears to

allow fractions with “ df
dxdx = f”.

More Stokes’, Div, and Green’s practice

Exercise 7.5. Let Φ(x, y) = (x, y,
√
1− x2 − y2) for x2 + y2 ≤ 1 parameterize the

top-half of the unit sphere. Let ω = zdx∧dy−ydx∧dz+xdy∧dz. First compute by
hand

∫
Φ
ω. Second notice that this is equal to

∫
Φ
V ·N where V (x, y, z) = ⟨x, y, z⟩

and use Divergence theorem to find the integral a different way.

Exercise 7.6. Let V (x, y) = ⟨−3x2y, x3 + y sin2(y)⟩, using Green’s theorem find∫
γ
V · dγ for the path γ = (− cos(θ), sin(θ)) for θ ∈ (0, π).

Exercise 7.7. Let S be the solid between z =
√
x2 + y2 and x2 + y2 + z2 = 4

and y > |x|, compute the flux integral
∫
∂S

V · dN where V (x, y, z) = ⟨x3 + 2xy2 +

xz2, x2

y , z3 + 2zy2 + zx2⟩.

Back to top
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Week 8

Exercise 8.1. If ω ∈ Ω•(Rn) is closed and η ∈ Ω•(Rn) is exact is it necessarily
true that ω ∧ η is closed or exact prove or find a counter example for each.

Exercise 8.2. Show that −y
x2+y2 dx+ x

x2+y2 dy is closed but not exact on R2 \ {0}.
Can you find a similar 2-form on R3 \ {0} that is closed but not exact (maybe just
find something that similarly is closed showing it is exact uses some more general
Stokes’ theorem)? What about higher dimensions?

Remark 8.3 (Just think about don’t prove). For this problem I will call a k-form
bounded if it is of the form f(x1, . . . , xn)dxi1 ∧ · · · dxik if f is bounded (we still
require f is be smooth). Show that there is no bounded n− 1 form whose exterior
derivative is dx1 ∧ · · · ∧ dxn.

I changed the above to a remark since it is too technical to show by hand.
The idea is that any n − 1 form whose exterior derivative is dx1 ∧ · · · ∧ dxn must
be

∑n
i=1(−1)i+1aix

idx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxn + η where η is exact and∑n
i=1 ai = 1. Proving this is the case is rather hard to do rigorously. Finally you

can note that the latter is not bounded, technically speaking I still need to show
that η does not have anything of the form f(x)dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxn

which ‘cancels’ with the previous one to keep it bounded but in order for such a
cancellation to occur it must have non-zero xi partial derivative somewhere and
thus not be exact.

Exercise 8.4. If x, y and r, θ represent Cartesian and polar coordinates. Show that
dx = cos(θ)dr− r sin(θ)dθ and dy = sin(θ)dr+ r cos(θ)dθ. Conclude that dx∧dy =
rdr∧ dθ. Show also that dr = x√

x2+y2
dx+ y√

x2+y2
dy and dθ = −y

x2+y2 dx+
x

x2+y2 dy

where has the latter previously shown up? Why does it makes sense that dr and
dθ undefined at the origin?

Exercise 8.5. If n = 2k+1 can there exist a differential k-form ω on Rn such that
dω ∧ ω = dx1 ∧ · · · ∧ dxn (Hint: start with k = 1).

Proof. Such a form does exist, we can begin in R3 we can note that it is impossible
to work for something of the form f(x, y, z)dx as it and its exterior derivative have
a dx and thus will wedge to zero so we will need something sort of like f(x, y, z)dx+
g(x, y, z)dy. First, we know a dz needs to show up so maybe f should have a z
and any other terms or higher powers just stick around after the derivaitve when
we want a 1 in front of our wedge product so maybe zdx+ g(x, y, z)dy we see that

in this case ω ∧ dω = g(x, y, z)dy ∧ dz ∧ dx+ z ∂g
∂z (x, y, z)dz ∧ dy ∧ dx the first term

is almost there we just need g to be 1 and in this case the second term disappears
and thus zdx+ dy should work.

So can we extend this, well how did it work we had ω = η+λ where λ was closed
(just a wedge product) and η was such that its exterior derivative is the wedge
product of all the things missing in λ. So we can let η = x1dx2 ∧ · · · ∧ dxk+1 and
λ = dxk+2 ∧ · · · ∧ dx2k+1 and we can see that dω ∧ ω = dx1 ∧ · · · ∧ dxn.

□

Exercise 8.6. Is there a pair differential 1-forms η and ω such that for any smooth
non-vanishing function g that gη ∧ d(gω) = g2η ∧ ω.

Hint : Consider 8.5.
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Proof. Let ω = η be as in 8.5 then we can note that d(gω) = dg∧ω+ gdω and thus
we can see that gω ∧ d(gω) = gω ∧ dg ∧ ω + g2ω ∧ dω, but since ω is a 1-form we
know that ω ∧ dg ∧ ω = 0. □

Back to top
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Week 9

I will use □k (Ik is the more standard notation) to denote the standard k-cube
[0, 1]k.

Exercise 9.1. Compute the pull back of ω = x3dx1 ∧ dx2 ∧ dx4 by T (a, b, c) =
(ab, c2, b, a2).

This should be bd(ab) ∧ d(c) ∧ d(a2) = 2a2bdb ∧ dc ∧ da = 2a2bda ∧ db ∧ dc.

Exercise 9.2. Let Φ,Ψ : □3 → R4 be Φ(x, y, z) = (x2, y, xz, y+z) and Ψ(x, y, z) =
(2x, 3y, 4x, z) and consider the chain C = −Φ + 2Ψ and let ω = x3dx1 ∧ dx2 ∧ dx4

find
∫
C ω.

Hint : First compute the pull back

Exercise 9.3. Let Φ(u, v) = (u cos(2πc), u sin(2πv),
√
1− u2) and Ψ(u, v) = (u cos(2πc), u sin(2πv),−

√
1− u2).

(1) Find ∂(Φ + Ψ) and ∂(Φ−Ψ).
(2) Given a two form η = x3dx1∧dx2−x2dx1∧dx3+x1dx2∧dx3 is its integral

over ∂B1 positive, negative, or zero?
(3) Compute

∫
Φ±Ψ

η.

(4) Which of the two is the “correct” way to write ∂B1 as a chain?

Exercise 9.4. Consider Φ(u, v) = (sin(πu) cos(2πv), sin(πu) sin(2πv), cos(2πv))
show that ∂Φ = 0.

Exercise 9.5. If ω = df is an exact 1-form and Φ : □1 → Rn is a 1-box. Show
that

∫
Φ
ω = f(Φ(1)) − f(Φ(0)), how does this related to

∫
∂Φ

f (integral of a zero
form)? How does this change is we instead consider the chain C = aΦ?

Exercise 9.6. Suppose that Φ,Ψ : □1 → Rn, are 1-boxes let C1 = Φ − Ψ and
C2 = 2Φ−2Ψ. Show that if Φ(1) = Ψ(0) then there is a different 1-box Γ1 : □1 → Rn

such that ∂Γ = ∂C1. Under what circumstances is there Γ2 : □1 → Rn such that
∂Γ = ∂C2?

Back to top
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Week 10

Exercise 10.1 (9.14.3 from the book). Let C be a k-chain, f : Rn → R be a
function and ω be a (k − 1)-form show the following ‘integration by parts’ and
explain when it gives the standard integration by parts formula:∫

C
fdω =

∫
∂C

fω −
∫
C
df ∧ ω.

Exercise 10.2. Let Φ(a, b) = ⟨a2, ab, b2⟩ and Ψ(a, b) = ⟨a, a, b⟩ and C = 2Φ + Ψ
and let ω = zdx ∧ dy, using generalized Stokes’ theorem, find∫

C
ω.

Answer: 11
6 most of the differential forms should pull back to zero.

Exercise 10.3. Let Φ(θ, ϕ) = ⟨2 cos(2πθ) sin(πϕ), 2 sin(2πθ) sin(πϕ), cos(πϕ)⟩, us-
ing Stokes’ theorem argue why ∫

Φ

dω = 0

for any 1-form ω.

Exercise 10.4. Use the generalized Stokes’ theorem to prove the fundamental

theorem of calculus that
∫ b

a
f ′(x)dx = f(b)− f(a).

Exercise 10.5. Let f : [0, 1] → (0,+∞) be a smooth function where f(0) = f(1),
let γ(t) = ⟨cos(2πt)f(t), sin(2πt)f(t)⟩, and v(x, y) = ⟨ −y√

x2+y2
, x√

x2+y2
⟩. Using

generalized Stokes’ prove that
∫
γ′ · vdt = 2π.

Hint : Note that we can write γ′ ·v as ω(γ′) for ω = xdy−ydx
x2+y2 find dω and a 2-chain

C where ∂C = γ − η where η is something easy to integrate, say counterclockwise
oriented circle or some large/small radius.

Exercise 10.6. Let

(1) f1(s, t) = ⟨0, st, 0, s⟩
(2) f2(s, t) = ⟨s, st, t, s⟩
(3) f3(s, t) = ⟨0, 0, st, 0⟩
(4) f4(s, t) = ⟨s, t, st, 1⟩
(5) f5(s, t) = ⟨st, 0, 0, t⟩
(6) f6(s, t) = ⟨st, t, s, t⟩

and let C = −f1 + f2 + f3 − f4 − f5 + f6 and let ω = xdy ∧ dz + wzdx ∧ dy, find∫
C
ω

Hint : Consider Φ(a, b, c) = ⟨ab, bc, ca, b⟩
Back to top
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