

MATH 31B MIDTERM REVIEW WINTER 2026

JOHN HOPPER

TABLE OF CONTENTS

- Identifying integration techniques 2
- L'hopital's and various indeterminate forms 3
- Comparing Growth at infinity 'dominating' 4
- A P.F.D. example 5
- A trig-sub example 6
- Answer Key 7

IDENTIFYING INTEGRATION TECHNIQUES

Identify which integration technique to use for each

- (1) $\int x^2 e^x dx$
- (2) $\int \sin^3(x) \cos^4(x) dx$
- (3) $\int \frac{2x^2+6}{x^3+9x-1} dx$
- (4) $\int \ln(x) dx$
- (5) $\int \frac{1}{x^2+6} dx$
- (6) $\int \frac{x}{x^2+6} dx$
- (7) $\int \frac{x^3}{(x^2+6)^{1/7}} dx$
- (8) $\int \frac{1}{x^2+5x+6} dx$
- (9) $\int \frac{x^2}{\sqrt{1-x^6}} dx$
- (10) $\int \frac{x^3}{(1-x^2)^6} dx$

L'HOPITAL'S AND VARIOUS INDETERMINATE FORMS

Identify the type of indeterminate form and solve the limits

- (1) $\lim_{x \rightarrow 2} \frac{x^2 - 4x + 4}{\ln(x) - \ln(2)}$
- (2) $\lim_{x \rightarrow +\infty} \frac{x^2}{x+1} - \frac{x^2}{x+2}$
- (3) $\lim_{x \rightarrow 0} (x)^{4x^2}$
- (4) $\lim_{x \rightarrow 0} (x + 1)^{x^{-2}}$

COMPARING GROWTH AT INFINITY ‘DOMINATING’

Is $f >> g$, $g >> f$ or neither? $f = x^2 \ln(x)$, $g(x) = x \ln(x)^3$

A P.F.D. EXAMPLE

$$\int \frac{1}{x^2 + 5x + 6} dx = \int \frac{1}{(x+2)(x+3)} dx$$

We can then want that $\frac{1}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$ and thus we have that $1 = A(x+3) + B(x+2)$ we get that $A = -B$ and $1 = 3A + 2B$ so we have that $A = 1$ and $B = -1$, returning to the integral we have

$$\int \frac{1}{x^2 + 5x + 6} dx = \int \frac{1}{x+2} dx - \int \frac{1}{x+3} dx = \ln(x+2) - \ln(x+3) + C$$

A TRIG-SUB EXAMPLE

$$\int \frac{x^3}{(x^2 + 6)^{17}} dx$$

Let $x = \sqrt{3} \tan(\theta)$ so $dx = \sqrt{3} \sec^2(\theta)$ so we get $\int \frac{\sqrt{3} \tan(\theta)(3+3 \sec^2 \theta)}{(\sqrt{3} \sec(\theta))^{34}} \sqrt{3} \sec(\theta)^2 d\theta$
 now let $u = \sec(\theta)$ and $du = \sec(\theta) \tan(\theta) d\theta$ and so we have

$$\int \frac{1}{\sqrt{3}^{30}} \frac{1}{u^{32}} + \frac{-1}{\sqrt{3}^{32}} \frac{1}{u^{33}} du$$

this is something we can integrate. The final step will be to plug back into x and for that we recall $u = \sec(\theta)$ and $x = \sqrt{3} \tan(\theta)$ so we have that $\theta = \arctan(\frac{x}{\sqrt{3}})$ and so $u = \sec(\arctan(\frac{x}{\sqrt{3}})) = \frac{\sqrt{3}}{\sqrt{x^2+3}}$.

ANSWER KEY

1

- (1) int by parts $u = x^2$ $dv = e^x$
- (2) let $\sin^2 = (1 - \cos^2)$ then $u = \cos(x)$
- (3) u-sub $u = x^3 + 9x - 1$
- (4) int by parts $u = \ln(x)$ $dv = 1$
- (5) make into an arctan integral, multiply top and bottom by $1/6$
- (6) u-sub $u = x^2 + 6$ or trig sub $\sqrt{6} \tan(\theta) = x$
- (7) trig sub $\sqrt{6} \tan(\theta) = x$
- (8) factor bottom then pfd
- (9) make into a arcsin integral let $u = x^3$
- (10) trig sub $\sec(\theta) = x$.

2.1

$$\begin{aligned} \lim_{x \rightarrow 2} \frac{x^2 - 4x + 4}{\ln(x) - \ln(2)} &\rightarrow \frac{0}{0} \\ &= {}^{LH} \lim_{x \rightarrow 2} \frac{2x - 4}{\frac{1}{x}} \\ &= \frac{0}{1/2} = 0. \end{aligned}$$

2.2

$$\begin{aligned} \lim_{x \rightarrow +\infty} \frac{x^2}{x+1} - \frac{x^2}{x+2} &\rightarrow \infty - \infty \\ &= \lim_{x \rightarrow +\infty} \frac{x^2(x+2) - x^2(x+1)}{(x+1)(x+2)} \\ &= \lim_{x \rightarrow +\infty} \frac{x^3 + 2x^2 - x^3 - x^2}{x^2 + 3x + 2} \\ &= \lim_{x \rightarrow +\infty} \frac{x^2}{x^2 + 3x + 2} = 1 \end{aligned}$$

Note: This was an easier problem where you did not need L'hopitals often after simplifying you will want to apply LH to solve the resulting limits.

2.3

$$\begin{aligned} \lim_{x \rightarrow 0} (x)^{4x^2} &\rightarrow 0^0 \\ &= e^{\lim_{x \rightarrow 0} \ln((x)^{4x^2})} \\ &= e^{\lim_{x \rightarrow 0} (4x^2 \ln(x))} \\ &= e^{\lim_{x \rightarrow 0} \frac{\ln(x)}{1/(4x^2)}} \\ &= {}^{LH} e^{\lim_{x \rightarrow 0} \frac{1/x}{-1/(2x^3)}} \\ &= e^{\lim_{x \rightarrow 0} 2x^2} \\ &= e^0 = 1. \end{aligned}$$

2.4

$$\begin{aligned}
 \lim_{x \rightarrow 0} (x+1)^{x^{-2}} &\rightarrow 1^\infty \\
 &= e^{\lim_{x \rightarrow 0} x^{-1} \ln(x+1)} \\
 &= e^{\lim_{x \rightarrow 0} \frac{\ln(x+1)}{x}} \\
 &= e^{\lim_{x \rightarrow 0} \frac{\frac{1}{x+1}}{1}} \\
 &= e^1 = e.
 \end{aligned}$$

3.1 Consider $\lim_{x \rightarrow +\infty} \frac{f(x)}{g(x)} = \lim_{x \rightarrow +\infty} \frac{x^2 \ln(x)}{x \ln(x)^3} = \lim_{x \rightarrow +\infty} \frac{x}{\ln(x)^2} =^{LH} \lim_{x \rightarrow +\infty} \frac{1}{2x \ln(x)^{\frac{1}{x}}} = \lim_{x \rightarrow +\infty} \frac{1}{2 \ln(x)} = 0$ so $f \ll g$.