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Week 1

Logistics

Ta: John Hopper
Email: jshopper@math.ucla.edu, (jshopper@g.ucla.edu also works)
Office: MS 3921
OH: Monday Thursdays 12:30-1:30pm

General proof writing

Exercise 1.1. Write out truth tables for P , Q, P ∨ Q (or), P ⇒ Q, Q ⇒ P , not
P → not Q, and not Q ⇒ not P . Are any of these the same?

The following is an interesting exercise into proving or statements, it may be
helpful to think of the above truth table.

Exercise 1.2. Let a and b be integers, prove that if ab is even, then a or b is even.

You can define a to be even if it can be written as a = 2k for some integer k and
odd if it can be written as 2k+1 for k an integer. You may assume that a number
either even or odd but not both (in fact try one proof with this fact and try a proof
without it).

Solution: The idea is if I want to prove an “or” statement there are generally
two good ways.

(1) is by contrapositive that is in this case show if neither a nor b is even (that
is they are both odd), then ab is not even (i.e. odd). This works well when the
negative statements are well characterized as in this case ‘not even’ is ‘odd’ and
still something useful to assume in the proof.
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2 JOHN HOPPER

(2) is by cases that is in case 1 assume a is even, in this case we are automatically
done. In case 2 assume a is odd, and now show that if a is odd and ab is even then
b is even. (this second method is annoying to do rigorously in this case, but there
are other ‘or’ proofs where this method is the easier of the two). Another way to
think of this is to note that a or b on a truth table is the same as not a implies b.

(3) As with most math there are other options, these are two of the most common
ones.

The following is some practice on for all and there exists statements

Exercise 1.3. Determine which of the following is true, for those that are false
what is the negation of the statement?:

(1) For all n,m ∈ N there exists an p ∈ N where p > m · n.
(2) ∀n ∈ N, ∀m ∈ N, ∃p ∈ N such that p > m/n.
(3) ∀n ∈ N ∃p ∈ N such that for every m ∈ N, p > n ·m.
(4) ∃p ∈ N such that ∀n,m ∈ N p > n ·m.

Induction

The following is in my mind the most classic type of induction problem, it is 1.1
from the book, after it I have a similar one you can do on your own.

Exercise 1.4. Show that for all n ∈ N that 1
6n(n + 1)(2n + 1) = 1 + · · · + n2 =∑n

i=1 i
2. (Bonus: do higher sums you can find the formulas here:

http://www.math.com/tables/expansion/power.htm)

Proof. We only need one base case when n = 1 and we can see that 1
6 (1)(1 + 1)(2 ·

1 + 1) = 1·2·3
6 = 1 which is indeed equal to

∑1
i=1 i

2 = 12 = 1.
For the Inductive step we have the following inductive hypothesis, (IH): for some

n ∈ N that 1
6n(n+ 1)(2n+ 1) =

∑n
i=1 i

2.
We want to show that assuming the IH that the statement is true for n+1, that

is 1
6 (n+ 1)((n+ 1) + 1)(2(n+ 1) + 1) =

∑n+1
i=1 i2.

To show this we start with 1
6 (n+ 1)((n+ 1) + 1)(2(n+ 1) + 1) and simplify and

make it look like something plus 1
6n(n+ 1)(2n+ 1) to use the IH:

1

6
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1) =

1

6
(n+ 1)(n+ 2)(2n+ 3)

=
1

6
(n+ 1)(n)(2n+ 3) +

2

6
(n+ 1)(2n+ 3)

=
1

6
(n+ 1)(n)(2n+ 1) +

2

6

[
(n+ 1)(2n+ 3) + (n+ 1)(n)

]
.

We can now apply the IH to see that

1

6
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1) =

n∑
i=1

i2 +
2

6

[
(n+ 1)(2n+ 3) + (n+ 1)(n)

]
.

If we simply we can see that (n+1)(2n+3)+(n+1)(n) = (n+1)(3n+3) = 3(n+1)2,
and thus we have that

1

6
(n+1)((n+1)+1)(2(n+1)+1) =

n∑
i=1

i2+
2

6

[
(n+1)(2n+3)+(n+1)(n)

]
=

n∑
i=1

i2+(n+1)2 =

n+1∑
i=1

i2.
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We have thus shown the inductive step and the base case and thus by the principal
of induction we have shown that all n ∈ N that 1

6n(n+1)(2n+1) = 1+ · · ·+ n2 =∑n
i=1 i

2. □

I like 1.11 from the book

Exercise 1.5. For each n ∈ N let Pn be the statement that n2 + 5n+ 1 is even:
1. Show that Pn ⇒ Pn+1

2. Is it true that Pn is true for all N, why?

Some fun Fibonacci sequence proofs:

Exercise 1.6. Let Fn be the nth term of the Fibonacci sequence i.e. F1 = F2 = 1
and Fn+2 = Fn + Fn+1. Show that

∑n
i=1 Fi = Fn+2 − 1 (how many base cases do

you need?)

Exercise 1.7. Show that
∑n

i=1 F
2
i = FnFn+1.

Exercise 1.8. Show that if n ≡ 1, 2 mod 3 (that is n is not divisible by 3) then
Fn is odd and if n = 3k for some k ∈ N, then Fn is even by strong induction.

Back to top



4 JOHN HOPPER

Week 2

Warm up:
1. Determine if the following sets are bounded from above or not, if so state

their supremum:

(1) {1} ∪ {4} ∪ {6}
(2) {x2 : x ≥ 0}
(3) {−x4 + 4 : x ∈ R}
(4) {n−1

n : n ∈ N}
2. Determine if the following sequences converge if so state their limit:

(1) 1
n sin(n3)

(2) n3 − n
(3) ( 1−2n

n )n

(4) 2n

n!

Exercise 2.1. Suppose that S1, S2 ⊂ R both are bounded above and have the
property that they contain their upper bound, that is supS1 ∈ S1 and supS2 ∈ S2.
Show that S1 ∪ S2 is bounded above and contains its own upper bound, sup(S1 ∪
S2) ∈ S1 ∪ S2.

Exercise 2.2. Is this true if we change union with intersection? That is it true that
S1∩S2 is bounded above and contains its own upper bound, sup(S1∩S2) ∈ S1∩S2.
Prove or find a counter example.

Exercise 2.3. Suppose that S is a set that is bounded below. Let L be the greatest
lower bound i.e. L = inf{x : x ∈ S}. Show that for all positive numbers ϵ > 0 that
there is an x ∈ S where L ≤ x ≤ L+ ϵ.

Hint : What does it mean for L+ ϵ not to be a lower bound.

Proof. We can argue that for all ϵ > 0 that L+ ϵ is not a lower bound, and as such
we know that the following statement is not true: “every x ∈ S, x ≥ L+”. The
negation of that statement is exactly “there exists x ∈ S where x < L+ ϵ”. We can
note that since x ∈ S and L is a lower bound we know that x ≥ L, thus we have
shown that there is an x ∈ S where L ≤ x < L+ ϵ, so certainly L ≤ x ≤ L+ ϵ. □

The following are two follow up exercise on the same idea, the first is a partial
converse, the second is a connection with sequences.

Exercise 2.4. Suppose that S is a set that is bounded below. Let L be a lower
bound for S. Suppose further that for all ϵ > 0 that there is an x ∈ S such that
L ≤ x ≤ L+ ϵ. Show that L = inf{x : x ∈ S}.

We can note that there are analogous statements that U is the sup of S if for all
ϵ > 0 that there is an x ∈ S where U − ϵ ≤ x ≤ U . Use this and your knowledge of
limits to solve the following:

Exercise 2.5. Suppose that an is an increasing sequence, that is an ≥ am for
n ≥ m. Suppose further that there is some R where an < R for all n, that is
{an}n∈N is bounded above. Show that limn→+∞ an = sup{an : n ∈ N}.

Here is some more limit practice:

Exercise 2.6. Suppose that {an}n∈N is a convergent sequence with limit a, and
r ∈ R, r > 0 show that {r · an}n∈N is also a convergent sequence with limit r · a.
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Proof. Fix ϵ > 0. We want to show that there is an N ∈ N such that for all n > N
that |r · an − r · a| < ϵ.

Let ϵ′ = ϵ/R, not that since ϵ > 0 that ϵ′ > 0. We can use the fact that
limn→+∞ an = a so there is an N ′ ∈ N such that for all n > N ′ that |an − a| < ϵ′.

Let N = N ′, then notice that for all n > N ,

|r · an − r · a| = |r(an − a)| = |r| · |an − a| = r|an − a| < rϵ′ = ϵ.

Where |r| = r since r > 0, as such we have shown that for all n > N that
|r · an − r · a| < ϵ which is what we wanted to show. □

Exercise 2.7. Suppose that {an}n∈N is a convergent sequence with limit a. Show
that {a2n : n ∈ N} is a convergent sequence with limit a.

Exercise 2.8. Prove that an = n!
nn is a convergent sequence with limit 0.

Hint : expand the power and the factorial as a large product and compare to a
simpler sequence, say 1

n .

Exercise 2.9. Prove the squeeze theorem if an ≥ 0 is a sequence and bn ≥ an is a
different sequence that converges with limit 0 then an converges with limit 0.
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Week 3

Warm up: Solve the following algebraic expressions

(1) 2x− 1 = x
(2) 2x−1

x = x

(3) x2 = x

Given that following sequences sn converge to s, determine the possible values for
s.

(1) sn+1 = 2sn − 1

(2) sn+2 = 2sn+1−1
sn

(3) sn+1 = s2n
also: Determine if the sequence sn+2 = sn+1sn converge if s1 = 1/2 and s2 = 4?

What if s1 = 1/2 and s2 = 0? The professor wanted me to go over the following
homework problem which is the squeeze theorem:

Exercise 3.1. Suppose that (sn), (an), (bn) are all sequences where for all n ∈ N
we have that an ≤ sn ≤ bn and we know that limn→+∞ an = s = limn→+∞ bn.
Show that limn→+∞ sn = s.

Exercise 3.2. Suppose that (tn) and (sn) are sequences where |sn| ≤ tn for all
n ∈ N, conclude that if limn→+∞ tn = 0 then limn→+∞ sn = 0.

The following is a problem closely related to one of your homework problems:

Exercise 3.3. If (an) is a sequence and limn→+∞ an = a and (bn) where bn = an
for all but finitely many n ∈ N. Show that limn→+∞ bn = a.

The following is an exercise around recursively defined series.

Exercise 3.4. For this whole exercise we will be working with the recurrence
relation: xn+2 = xn+1+xn

2 .

(1) Show that 2xn+2+xn+1

3 = 2xn+1+xn

3 for all n ∈ N, conclude that 2xn+1+xn

3 =
2x2+x1

3 for all n ∈ N.
(2) Show that 2|xn+2 − xn+1| ≤ |xn+1 − xn|.
(3) Argue that 2|xn+3 − 2x2+x1

3 | ≤ |xn+2 − 2x2+x1

3 | for all n ∈ N.
(4) Argue that for all n ∈ N that |xn+2 − 2x2+x1

3 | ≤ 1
2n |a2 − a1|.

(5) Conclude that the sequence xn converges to 2x2+x1

3 .

Back to top
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Week 4

Warm-up: Determine if the following sequences are increasing, decreasing, and/or
bounded.

(1) xn = n!
(−n)n

(2) xn = log(n+ 1)

(3) xn = log(n)
n

Monotone sequences and e

Here is a fun-ish exercise proving the existence of the number e.

Exercise 4.1. Consider the sequence sn =
∑n

i=1
1
i! . First compare with the se-

quence xn = 1+
∑n

i=2
1

(i−1)2 and argue that sn is bounded. Conclude that there is

sum number e =
∑+∞

i=1
1
i! .

Exercise 4.2. Show that if xn > 0 is a bounded increasing sequence if and only if
is sn = log(xn) a bounded increasing sequence.

Exercise 4.3. Using that xn = (1+ 1
n )

n is a bounded increasing sequence. Bonus:
Using the fact that limn→+∞ log(xn) = log(limn→+∞ xn) to show that the limit of
the above problem is e (hint: it will be useful to use the hint twice)

Infinite sequences and Cauchy sequences

Exercise 4.4. Suppose that xn ≥ 0 for all n ∈ N and limn→+∞ xn = +∞ let
sn = 1

n (
∑n

i=1 xi) show that limn→+∞ sn = +∞

Hint: If you know that there is an N where sn > M for all n > M is there a
time where sn > M/2?

Exercise 4.5. Suppose that limn→+∞ sn = −∞, show that there the sequence sn
is bounded from above.

Exercise 4.6. Show that if xn is a Cauchy sequence, the show by hand (without
limit theorems) that the sequence sn = xn+1 − xn is Cauchy. (Bonus: what is its
limit?)

Exercise 4.7. Suppose that xn is a Cauchy sequence. Let tn be a sequence given
by the recurrence relation tn = tn−1 + xn − xn−1 and t0 = 100. Show that the
sequence tn is Cauchy.

Back to top
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Week 5

Warm-up: Which of the following have an increasing subsequence? Decreasing
subsequence?

(1) an = (−1)n · 2
(2) bn = (−1

2 )n

(3) cn = 3n+2
20n−39

(4) dn = −n3

Exercise 5.1. Suppose that xn =


0 n = 3k

22 n = 3k + 1

23 n = 3k + 2

show that there is no subse-

quence that converges to 12.

Exercise 5.2. Show that if limn→+∞ an = +∞, then every subsequence ank
we

have that limk→+∞ ank
= +∞.

Exercise 5.3. Using the previous exercise, conclude that there is no decreasing
subsequence of an (same an from above).

Exercise 5.4. Suppose that bn has no decreasing subsequence. Show that bn is
bounded from below.

Hint : A proof by contrapositive may be helpful

Exercise 5.5. Show that if every subsequence of an is bounded then the original
subsequence is bounded.

Hint: It may be easier to do a proof by contrapositive.
Back to top
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Week 6

Warm-up which of the following are continuous functions on R \ {0}?
(1) 1

cos(1/x)

(2) sin(x2)e1/x
2

(3) 1
sin(x)

(4) cos(1/x)x2 − sin(1/x)

Exercise 6.1. A function f : R → R is said to be α-Hölder continuous if |f(x) −
f(y)| ≤ (x− y)α. Show that for any 0 < α < 1 an α-Hölder continuous function is
continuous.

Exercise 6.2. Prove that the function

{
sin(1/x) x ̸= 0

0 x = 0
is not continuous at 0.

Exercise 6.3. Show that if f is continuous at 0 and g is not continuous at 0, then
f + g is not continuous at 0.

Exercise 6.4. Find a pair of functions f and g that are not continuous at zero,
but f + g is continuous at zero.

Exercise 6.5. Show that
∑+∞

n=1
1

17n−12 < +∞.

Exercise 6.6. Show that
∑+∞

n=2
sin(n)
n3/2 < +∞

Exercise 6.7. Determine if
∑+∞

n=1
(2n)!
(n)2n converges or not. Similiarly if

∑+∞
n=1

n!
(n+1)·2n

converges.

Back to top



10 JOHN HOPPER

Week 7

Exercise 7.1. Prove that for any constant r ∈ R there is an angle θr ∈ [0, π
2 ] where

sin(θr) = cos(rθr).

Proof. Consider the function f(x) = sin(x) − cos(rx) note that f(0) = −1 and
f(π/2) ≥ 0.

Case 1: If it is equal to zero we are done as sin(π/2) = cos(rπ/2).
Case 2: If f(π/2) > 0 by IVT we know that there is a x ∈ [0, π] where f(x) = 0

and this x solves the problem. □

Exercise 7.2. Given that
√
x+ y−

√
x ≤ √

y for x, y ≥ 0 show that f(x) =
√
x is

uniformly continuous on [0,+∞).

Exercise 7.3. Let g(x) be a continuous function on [0,+∞) with the property
that for all ϵ > 0 there is an N ∈ N such that if x > N x ∈ R that |g(x)| < ϵ. Show
that g(x) is uniformly continuous.

Proof. Fix ϵ > 0.
There exists and N such that if x > N then g(x) < ϵ

2 .
We can note that g is continuous on the closed interval [0, N + 1] and thus

uniformly continuous, that is there is a δ′ > such that if |x − y| < δ′ with x, y ∈
[0, N + 1] then |f(x)− f(y)| < ϵ.

Let δ = min{δ′, 1}. If |x − y| < δ then either x, y > N or x, y ≤ N + 1. In the
first case we have that |f(x)−f(y)| ≤ |f(x)|+ |f(y)| < ϵ/2+ϵ/2 = ϵ by the triangle
inequality. In the second case we have that x, y ∈ [0, N + 1] and |x − y| < δ′ so
|f(x)− f(y)| < ϵ. □

Exercise 7.4. Suppose that f(x) : [0,+∞) → R is a continuous function that
is uniformly continuous on [1, 000,+∞) show that f in uniformly continuous on
[0,+∞).

Proof. Fix ϵ > 0.
Note that f is continuous on the closed and bounded interval [0, 1, 002] and thus

uniformly continuous on this interval. Thus, there exists a δ1 > 0 such that if
|x− y| < δ1 and x, y ∈ [0, 1002] then |f(x)− f(y)| < ϵ.

We are given that f is uniformly continuous from [1000,+∞) so there exists
δ2 > 0 such that if |x− y| < δ2 and x, y ≥ 1000 then |f(x)− f(y)| < ϵ.

Define δ = min{δ1, δ2, 2}. If |x− y| < δ ≤ 2 and x, y ∈ [0,+∞) then we can note
that either 0 ≤ x, y ≤ 1002 or x, y ≥ 1000 (this is because otherwise if x ≤ 1000
and y > 1002 then |x− y| > 2 contradiction that |x− y| < δ).

In the first case we have that x, y ∈ [0, 1002] and |x − y| < δ ≤ δ1 so we know
that |f(x)− f(y)| < ϵ.

In the second case we have that x, y ∈ [1000,+∞) and that |x− y| < δ ≤ δ2 so
we know that |f(x)− f(y)| < ϵ.

Thus, in either possible case we have that |f(x) − f(y)| < ϵ, so we have shown
that if |x− y| < δ then |f(x)− f(y)| < ϵ proving the statement. □

Exercise 7.5. Show that the sequence an = e1/2 · e1/4 . . . e1/2n = Πn
j=1e

1/2j is a
Cauchy sequence.

Exercise 7.6. Show that if f : R → R is continuous (but not necessarily uniformly
continuous on all of R) and an is a Cauchy sequence, then f(an) is a Cauchy
sequence.
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Remark 7.7. The above exercise 7.6 does not show that general continuous functions
send Cauchy sequences to Cauchy sequences. For example f(x) = 1

x is continuous
on R \ {0} but it sends the Cauchy sequence 1/n to the sequence n which is not
Cauchy, so the assumption that f was continuous on all of R was important for
the exercise (as failing to be continuous at a single point in R allows for counter
examples).

Back to top
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Week 8

Back to top
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Week 9
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Week 10
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