1. Evaluate the line integral \(\int_C xy\,dx + y^2\,dy + yz\,dz \), where \(C \) is the line segment from the point \((1, 0, -1)\) to \((3, 4, 2)\).

2. Evaluate the following integral by making a change of variables:
\[
\iint_R \frac{x - 2y}{3x - y}\,dA
\]
where \(R \) is the parallelogram bounded by \(x - 2y = 0, x - 2y = 4, 3x - y = 1, \) and \(3x - y = 8 \).

3. Use Green’s Theorem to evaluate the line integral
\[
\int_C \sqrt{1 + x^3}\,dx + 2xy\,dy
\]
where \(C \) is boundary of the triangle with vertices \((0, 0), (1, 0), \) and \((1, 3)\), oriented counterclockwise.

4. Find the surface area of the part of the paraboloid \(x = y^2 + z^2 \) that lies inside the cylinder \(y^2 + z^2 = 9 \).

5. Let \(C \) be a simple, closed curve that lies in the plane \(x + y + z = 1 \). Show that the line integral
\[
\int_C z\,dx - 2x\,dy + 3y\,dz
\]
only depends on the area of the region enclosed by \(C \) and not on the shape of \(C \) or its position in the plane.

6. Let \(F(x, y, z) = (xy, 3y, 5y) \), and let \(C \) be the curve of intersection of the plane \(x + z = 5 \) and the cylinder \(x^2 + y^2 = 81 \). Compute \(\oint_C F \cdot dr \).

7. Let \(F(x, y, z) = (\sin y, x\cos y + \cos z, -y\sin z) \). Let \(C \) be the curve given by \(r(t) = (\sin t, t, 2t) \) for \(0 \leq t \leq 2\pi \).
 (a) Is \(F \) conservative?
 (b) Evaluate \(\int_C F \cdot dr \).

8. Use Stokes’ Theorem to evaluate \(\iint_S \text{curl} F \cdot dS \), where \(F(x, y, z) = (\arctan(x^2yz^2), x^2y, x^2z^2) \) and \(S \) is the cone \(x = \sqrt{y^2 + z^2} \) from \(0 \leq x \leq 2 \) oriented in the direction of the positive \(x \)-axis.

9. Fix \(a > 0 \). Let \(F = (xz, x, y) \), and let \(S \) be the surface given by:
\[
x^2 + y^2 + z^2 = a^2 \quad y \geq 0
\]
Compute: \(\iint_S F \cdot d\mathbf{r} \)

10. Use the Divergence Theorem to evaluate \(\iiint_S (2x + 2y + z^2)\,dS \) where \(S \) is the sphere \(x^2 + y^2 + z^2 = 1 \).