Equivalent characterizations of Loewner energy Recent work by Yilin Wang

Ben Johnsrude

18 Feb 2020

Ben Johnsrude

Equivalent characterizations of Loewner energ

18 Feb 2020 1 / 53

• $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$

•
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$

• $\mathscr{C} = \{\gamma : [0, \infty) \to \overline{\mathbb{H}} \text{ simple}, \gamma(0) = 0, \gamma(0, \infty) \subseteq \mathbb{H}, \gamma(t) \to \infty\}$

•
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$

•
$$\mathscr{C} = \{\gamma : [0,\infty) \to \overline{\mathbb{H}} \text{ simple}, \gamma(0) = 0, \gamma(0,\infty) \subseteq \mathbb{H}, \gamma(t) \to \infty\}$$

 $\bullet \ {\mathscr C}$ is the collection of "simple chords in ${\mathbb H}$ from 0 to ∞ "

• For each $t \geq 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected

• For each $t \geq 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected

- For each $t \geq 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected
- Have conformal maps $g_t:\mathbb{H}\setminus\gamma[0,t] o\mathbb{H}$, $g_t(z)=z+o_{z o\infty}(1)$

- For each $t \ge 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected
- Have conformal maps $g_t:\mathbb{H}\setminus\gamma[0,t] o\mathbb{H}$, $g_t(z)=z+o_{z o\infty}(1)$

- For each $t \geq 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected
- Have conformal maps $g_t : \mathbb{H} \setminus \gamma[0, t] \to \mathbb{H}$, $g_t(z) = z + o_{z \to \infty}(1)$
- Reparametrizing γ gives $g_t(z) = z + \frac{2t}{z} + o_{z \to \infty}(z^{-1})$

- For each $t \geq 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected
- Have conformal maps $g_t:\mathbb{H}\setminus\gamma[0,t] o\mathbb{H}$, $g_t(z)=z+o_{z o\infty}(1)$
- Reparametrizing γ gives $g_t(z) = z + \frac{2t}{z} + o_{z \to \infty}(z^{-1})$
- Track special value $W(t) = g_t(\gamma(t))$

- For each $t \ge 0, \mathbb{H} \setminus \gamma[0, t]$ is simply-connected
- Have conformal maps $g_t:\mathbb{H}\setminus\gamma[0,t] o\mathbb{H}$, $g_t(z)=z+o_{z o\infty}(1)$
- Reparametrizing γ gives $g_t(z) = z + \frac{2t}{z} + o_{z \to \infty}(z^{-1})$
- Track special value $W(t) = g_t(\gamma(t))$
- $(g_t)_{t\geq 0}$ are the mapping-out functions, $t\mapsto W(t)$ is the driving function

• W(0) = 0, W real-valued, continuous

< ∃ ►

- W(0) = 0, W real-valued, continuous
- $\gamma \mapsto W$ is known as the Loewner transform

- W(0) = 0, W real-valued, continuous
- $\gamma \mapsto W$ is known as the Loewner transform
- One may derive the Loewner differential equation:

- W(0) = 0, W real-valued, continuous
- $\gamma \mapsto W$ is known as the Loewner transform
- One may derive the Loewner differential equation:

$$\partial_t g_t = rac{2}{g_t - W(t)}, \quad g_0(z) = z$$

- W(0) = 0, W real-valued, continuous
- $\gamma \mapsto W$ is known as the Loewner transform
- One may derive the Loewner differential equation:

$$\partial_t g_t = rac{2}{g_t - W(t)}, \quad g_0(z) = z$$

 $\{\text{sufficiently nice } W \in C_0([0, +\infty))\} \leftrightarrow \{\text{simple paths in } \mathbb{H} \text{ from 0 to } \infty\} \\ = \mathscr{C}$

Sample driver: $W \equiv 0$

Sample driver: $W \equiv 0$

$$\partial_t g_t = \frac{2}{g_t}, \quad g_0(z) = z$$

∃ >

Sample driver: $W \equiv 0$

$$\partial_t g_t = rac{2}{g_t}, \quad g_0(z) = z$$

 $g_t^2(z) = 4t + z^2$

Ben Johnsrude

18 Feb 2020 5 / 53

Sample driver: $W \equiv 0$

$$\partial_t g_t = \frac{2}{g_t}, \quad g_0(z) = z$$
$$g_t^2(z) = 4t + z^2$$
$$\gamma(t) = g_t^{-1}(W(t)) = g_t^{-1}(0) = 2i\sqrt{t}$$

Sample driver: $W \equiv 0$

$$\partial_t g_t = \frac{2}{g_t}, \quad g_0(z) = z$$
$$g_t^2(z) = 4t + z^2$$
$$\gamma(t) = g_t^{-1}(W(t)) = g_t^{-1}(0) = 2i\sqrt{t}$$

Ben Johnsrude

Equivalent characterizations of Loewner energy

Sample driver: W(t) = t

Sample driver: W(t) = t

Substitute: $F_t(z) = g_t(z) - t + 2\log(2 - g_t(z) + t)$

Sample driver: W(t) = t

Substitute: $F_t(z) = g_t(z) - t + 2\log(2 - g_t(z) + t)$ $\partial_t F_t = -1, \quad F_0(z) = z + 2\log(2 - z)$

Sample driver: W(t) = t

Substitute: $F_t(z) = g_t(z) - t + 2\log(2 - g_t(z) + t)$ $\partial_t F_t = -1, \quad F_0(z) = z + 2\log(2 - z)$ $F_t(\gamma(t) + t) = 2\log 2 + t$

Sample driver: W(t) = t

Substitute: $F_t(z) = g_t(z) - t + 2\log(2 - g_t(z) + t)$ $\partial_t F_t = -1, \quad F_0(z) = z + 2\log(2 - z)$ $F_t(\gamma(t) + t) = 2\log 2 + t$ Asymptotics: $\gamma(t) = 2i\sqrt{t} + \frac{2}{3}t + O(t^{3/2})$

• • = • •

Sample driver: W(t) = t

Substitute: $F_t(z) = g_t(z) - t + 2\log(2 - g_t(z) + t)$ $\partial_t F_t = -1, \quad F_0(z) = z + 2\log(2 - z)$ $F_t(\gamma(t) + t) = 2\log 2 + t$ Asymptotics: $\gamma(t) = 2i\sqrt{t} + \frac{2}{3}t + O(t^{3/2})$ Rescaling: $\widetilde{W}(t) = \lambda t \implies \widetilde{\gamma}(t) = \frac{1}{\lambda}\gamma(\lambda^2 t) = 2i\sqrt{t} + \frac{2}{3}\lambda t + O(t^{3/2})$

Sample driver: W(t) = t

Substitute: $F_t(z) = g_t(z) - t + 2\log(2 - g_t(z) + t)$ $\partial_t F_t = -1, \quad F_0(z) = z + 2\log(2 - z)$ $F_t(\gamma(t) + t) = 2\log 2 + t$ Asymptotics: $\gamma(t) = 2i\sqrt{t} + \frac{2}{3}t + O(t^{3/2})$ Rescaling: $\widetilde{W}(t) = \lambda t \implies \widetilde{\gamma}(t) = \frac{1}{\lambda}\gamma(\lambda^2 t) = 2i\sqrt{t} + \frac{2}{3}\lambda t + O(t^{3/2})$

• Includes 1/2-Hölder drivers of small norm

- Includes 1/2-Hölder drivers of small norm
- Includes $\sqrt{\kappa}B_t$ where $0 \le \kappa \le 4$ and B_t Brownian motion (SLE_{κ})

- Includes 1/2-Hölder drivers of small norm
- Includes $\sqrt{\kappa}B_t$ where $0 \le \kappa \le 4$ and B_t Brownian motion (SLE_{κ})
- Less regular W generate families of hulls, rather than paths

- Includes 1/2-Hölder drivers of small norm
- Includes $\sqrt{\kappa}B_t$ where $0 \le \kappa \le 4$ and B_t Brownian motion (SLE_{κ})
- Less regular W generate families of hulls, rather than paths
- Regularity correspondence: for 0 < α < 1, $\alpha \neq$ 1/2, have

$$\gamma \in \mathcal{C}^{1+lpha}(0,\infty) \iff \mathcal{W} \in \mathcal{C}^{1+lpha-1/2}(0,\infty)$$

Here we choose to study curves driven by finite energy drivers:
Here we choose to study curves driven by finite energy drivers:

$$I(\gamma) = I(W) = \int_0^\infty rac{W'(t)^2}{2} dt < \infty$$

Here we choose to study curves driven by finite energy drivers:

$$I(\gamma) = I(W) = \int_0^\infty rac{W'(t)^2}{2} dt < \infty$$

For W not absolutely continuous, set $I(\gamma) = \infty$.

Here we choose to study curves driven by finite energy drivers:

$$I(\gamma) = I(W) = \int_0^\infty rac{W'(t)^2}{2} dt < \infty$$

For W not absolutely continuous, set $I(\gamma) = \infty$.

 $I(\gamma)$ is the Loewner energy of γ .

Loewner energy

For $\gamma \in \mathscr{C}$ with $I(\gamma) < \infty$:

• • • • • • • • • • • •

For $\gamma \in \mathscr{C}$ with $I(\gamma) < \infty$: • $\gamma = w(i\mathbb{R}_{\geq 0})$ for some $w : \mathbb{H} \to \mathbb{H}$ quasiconformal (a quasichord) $\left(w$ quasiconformal $\longleftrightarrow w$ hence $\left\| \partial_{\overline{z}} w \right\|_{\infty} < 1 \right)$

w quasiconformal
$$\iff w$$
 homeo, $\left\| \frac{\partial_{\overline{z}} w}{\partial_{z} w} \right\|_{L^{\infty}(\mathbb{H})} < 1$

→ ∃ →

For $\gamma \in \mathscr{C}$ with $I(\gamma) < \infty$: • $\gamma = w(i\mathbb{R}_{\geq 0})$ for some $w : \mathbb{H} \to \mathbb{H}$ quasiconformal (a quasichord) $\left(w \text{ quasiconformal } \iff w \text{ homeo}, \left\|\frac{\partial_{\overline{z}}w}{\partial_{z}w}\right\|_{L^{\infty}(\mathbb{H})} < 1\right)$

• γ is rectifiable

• $\gamma = w(i\mathbb{R}_{\geq 0})$ for some $w : \mathbb{H} \to \mathbb{H}$ quasiconformal (a quasichord)

$$\left(w \text{ quasiconformal } \iff w \text{ homeo}, \left\|\frac{\partial_{\overline{z}}w}{\partial_z w}\right\|_{L^{\infty}(\mathbb{H})} < 1\right)$$

 $\bullet \ \gamma$ is rectifiable

•
$$\ell(\hat{\gamma}) \sim |z - w|$$
 as diam $(\hat{\gamma}) \rightarrow$ 0, $\hat{\gamma} \subseteq \gamma$ with endpoints z, w

" γ has no corners"

4 3 > 4

• $\gamma = w(i\mathbb{R}_{\geq 0})$ for some $w: \mathbb{H} \to \mathbb{H}$ quasiconformal (a quasichord)

$$\left(w \text{ quasiconformal } \iff w \text{ homeo}, \left\|\frac{\partial_{\overline{z}}w}{\partial_z w}\right\|_{L^{\infty}(\mathbb{H})} < 1\right)$$

• γ is rectifiable

•
$$\ell(\hat{\gamma}) \sim |z - w|$$
 as diam $(\hat{\gamma}) \rightarrow 0$, $\hat{\gamma} \subseteq \gamma$ with endpoints z, w

" γ has no corners"

•
$$I(\gamma) = 0 \iff \gamma = i\mathbb{R}_{\geq 0}$$

"I measures how much γ differs from a line"

• $\gamma = w(i\mathbb{R}_{\geq 0})$ for some $w: \mathbb{H}
ightarrow \mathbb{H}$ quasiconformal (a quasichord)

$$\left(w \text{ quasiconformal } \iff w \text{ homeo}, \left\|\frac{\partial_{\overline{z}}w}{\partial_z w}\right\|_{L^{\infty}(\mathbb{H})} < 1\right)$$

• γ is rectifiable

•
$$\ell(\hat{\gamma}) \sim |z - w|$$
 as diam $(\hat{\gamma}) \rightarrow$ 0, $\hat{\gamma} \subseteq \gamma$ with endpoints z, w

" γ has no corners"

•
$$I(\gamma) = 0 \iff \gamma = i\mathbb{R}_{\geq 0}$$

"I measures how much γ differs from a line"

•
$$I(\gamma) = \lim_{\epsilon \to 0} \lim_{\kappa \to 0} -\kappa \log \mathbb{P} [SLE_{\kappa} \text{ stays } \epsilon \text{-close to } \gamma]$$

• $\gamma = w(i\mathbb{R}_{\geq 0})$ for some $w:\mathbb{H}
ightarrow \mathbb{H}$ quasiconformal (a quasichord)

$$\left(w \text{ quasiconformal } \iff w \text{ homeo}, \left\|\frac{\partial_{\overline{z}}w}{\partial_z w}\right\|_{L^{\infty}(\mathbb{H})} < 1\right)$$

• γ is rectifiable

•
$$\ell(\hat{\gamma}) \sim |z - w|$$
 as diam $(\hat{\gamma}) \rightarrow$ 0, $\hat{\gamma} \subseteq \gamma$ with endpoints z, w

" γ has no corners"

• $I(\gamma) = 0 \iff \gamma = i\mathbb{R}_{\geq 0}$

"I measures how much γ differs from a line"

•
$$I(\gamma) = \lim_{\varepsilon \to 0} \lim_{\kappa \to 0} -\kappa \log \mathbb{P}[\mathsf{SLE}_{\kappa} \text{ stays } \varepsilon \text{-close to } \gamma]$$

" γ driven by finite-energy drivers form a skeleton of SLE_κ for small κ "

How may one characterize chords driven by finite-energy drivers?

$$I(\lambda\gamma) = I(t \mapsto \lambda W(\lambda^{-2}t))$$

э

(日)

$$egin{aligned} I(\lambda\gamma) &= I(t\mapsto\lambda W(\lambda^{-2}t)) \ &= rac{1}{2}\int_0^\infty W'(\lambda^{-2}t)^2\lambda^{-2}dt \end{aligned}$$

э.

• • • • • • • • • • • •

$$I(\lambda\gamma) = I(t \mapsto \lambda W(\lambda^{-2}t))$$
$$= \frac{1}{2} \int_0^\infty W'(\lambda^{-2}t)^2 \lambda^{-2} dt$$
$$= \frac{1}{2} \int_0^\infty W'(t)^2 dt$$

< A

-

$$I(\lambda\gamma) = I(t \mapsto \lambda W(\lambda^{-2}t))$$

= $\frac{1}{2} \int_0^\infty W'(\lambda^{-2}t)^2 \lambda^{-2} dt$
= $\frac{1}{2} \int_0^\infty W'(t)^2 dt$
= $I(\gamma)$

< A

-

For $\lambda > 0$, $I(\lambda \gamma) = I(t \mapsto \lambda W(\lambda^{-2}t))$ $= \frac{1}{2} \int_0^\infty W'(\lambda^{-2}t)^2 \lambda^{-2} dt$ $= \frac{1}{2} \int_0^\infty W'(t)^2 dt$

 \implies I is invariant under conformal automorphisms of $(\mathbb{H}, 0, \infty)$

 $= I(\gamma)$

For any $D \subsetneq \mathbb{C}$ simply connected, a, b distinct prime ends of D, may form Loewner energy for (D, a, b):

For any $D \subsetneq \mathbb{C}$ simply connected, a, b distinct prime ends of D, may form Loewner energy for (D, a, b):

$$egin{aligned} & I_{D, m{a}, m{b}}(\gamma) := I_{\mathbb{H}, 0, \infty}(\phi^{-1} \circ \gamma) \ \phi : (\mathbb{H}, 0, \infty) o (D, m{a}, m{b}) ext{ conformal} \end{aligned}$$

For any $D \subsetneq \mathbb{C}$ simply connected, a, b distinct prime ends of D, may form Loewner energy for (D, a, b):

$$egin{aligned} &I_{D,a,b}(\gamma) := I_{\mathbb{H},0,\infty}(\phi^{-1}\circ\gamma) \ \phi : (\mathbb{H},0,\infty) o (D,a,b) ext{ conformal} \end{aligned}$$

Well-defined!

Conformal invariance

Sample domain: $(\Sigma := \mathbb{C} \setminus \mathbb{R}_{>0}, 0, \infty)$

-

(日)

Conformal invariance

Sample domain: $(\Sigma:=\mathbb{C}\setminus\mathbb{R}_{\geq0},0,\infty)$

Equivalent characterizations of Loewner energ

18 Feb 2020 13 / 53

э.

э

A (1) > A (2) > A

Conformal invariance

Sample domain: $(\Sigma := \mathbb{C} \setminus \mathbb{R}_{\geq 0}, 0, \infty)$

$$I_{\Sigma,0,\infty}(\gamma) = I_{\mathbb{H},0,\infty}(\sqrt{\gamma})$$

Ben Johnsrude

Equivalent characterizations of Loewner energ

э. 18 Feb 2020 13/53

э

A (1) > A (2) > A

 $\Sigma \setminus \gamma = H_1 \cup H_2$

 $\Sigma \setminus \gamma = H_1 \cup H_2$

Idea: γ is close to a line \iff H_1, H_2 are close to half-planes

- 4 ∃ ▶

 $\Sigma \setminus \gamma = H_1 \cup H_2$

Idea: γ is close to a line $\iff H_1, H_2$ are close to half-planes \longrightarrow Measure how much h_1, h_2 differ from an affine map

$h_1: H_1 \to \mathbb{H}, \quad h_2: H_2 \to \mathbb{H}^*$ conformal

18 Feb 2020 15 / 53

$h_1: H_1 ightarrow \mathbb{H}, \quad h_2: H_2 ightarrow \mathbb{H}^*$ conformal

$$\begin{split} h_{j}^{*}|dz|^{2} &= |h_{j}'|^{2}|dz|^{2} \\ &= e^{2\log|h_{j}'|}|dz|^{2} \\ &=: e^{2\sigma_{j}}|dz|^{2} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$h_1: H_1 ightarrow \mathbb{H}, \quad h_2: H_2 ightarrow \mathbb{H}^*$ conformal

$$h_{j}^{*}|dz|^{2} = |h_{j}'|^{2}|dz|^{2}$$
$$= e^{2\log|h_{j}'|}|dz|^{2}$$
$$=: e^{2\sigma_{j}}|dz|^{2}$$

$$h_j$$
 affine $\iff \sigma_j$ constant $\iff \int_{H_j} |\nabla \sigma_j|^2 |dz|^2 = 0$

Ben Johnsrude

Equivalent characterizations of Loewner energ

18 Feb 2020 15 / 5

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$J(\gamma) = J(h := h_1 \cup h_2) = rac{1}{\pi} \int_{\Sigma \setminus \gamma} |
abla \sigma|^2 |dz|^2$$

$$egin{aligned} J(\gamma) &= J(h := h_1 \cup h_2) = rac{1}{\pi} \int_{\Sigma \setminus \gamma} |
abla \sigma|^2 |dz|^2 \ &= rac{1}{\pi} \int_{\Sigma \setminus \gamma} \left| rac{h''}{h'}
ight|^2 |dz|^2 \end{aligned}$$

$$egin{aligned} J(\gamma) &= J(h := h_1 \cup h_2) = rac{1}{\pi} \int_{\Sigma \setminus \gamma} |
abla \sigma|^2 |dz|^2 \ &= rac{1}{\pi} \int_{\Sigma \setminus \gamma} \left| rac{h''}{h'}
ight|^2 |dz|^2 \end{aligned}$$

(well-defined)

(日)

Theorem (Y. Wang '19): If γ is a simple chord in Σ from 0 to ∞ , then

$$I_{\Sigma,0,\infty}(\gamma) = J(\gamma)$$

Theorem (Y. Wang '19): If γ is a simple chord in Σ from 0 to ∞ , then $I_{\Sigma,0,\infty}(\gamma) = J(\gamma)$

<u>Proof:</u> To be discussed in the sequel.

Loop version of *J*-energy

18 Feb 2020 18 / 5

э

A D N A B N A B N A B N

Loop version of *J*-energy

Note: h_1, h_2 are more directly related to $\gamma \cup \mathbb{R}_{>0}$ than to γ
Loop version of *J*-energy

Note: h_1, h_2 are more directly related to $\gamma \cup \mathbb{R}_{\geq 0}$ than to $\gamma \implies$ may extend J to be defined on all loops passing through ∞ !

Loop version of *J*-energy

Note: h_1, h_2 are more directly related to $\gamma \cup \mathbb{R}_{\geq 0}$ than to $\gamma \implies$ may extend J to be defined on all loops passing through ∞ !

Should have a loop analogue of *I*-energy...

Should have a loop analogue of *I*-energy...

For $\gamma: [0,1] \to \widehat{\mathbb{C}}$ simple loop, set

$$I^{L}(\gamma,\gamma(0)) = \lim_{arepsilon
ightarrow 0} I_{\widehat{\mathbb{C}}\setminus\gamma[0,arepsilon],\gamma(arepsilon),\gamma(1)}(\gamma[arepsilon,1])$$

$$I^{L}(\gamma,\gamma(0)) = \lim_{arepsilon
ightarrow 0} I_{\widehat{\mathbb{C}}\setminus\gamma[0,arepsilon],\gamma(arepsilon),\gamma(1)}(\gamma[arepsilon,1])$$

• • • • • • • • • • • •

$$I^{L}(\gamma,\gamma(0)) = \lim_{\varepsilon \to 0} I_{\widehat{\mathbb{C}} \setminus \gamma[0,\varepsilon],\gamma(\varepsilon),\gamma(1)}(\gamma[\varepsilon,1])$$

• I^L Möbius invariant: for $\mu:\widehat{\mathbb{C}}\rightarrow\widehat{\mathbb{C}}$ Möbius,

$$I^{L}(\gamma,\gamma(0))=I^{L}(\mu(\gamma),\mu(\gamma)(0))$$

$$I^{L}(\gamma,\gamma(0)) = \lim_{\varepsilon \to 0} I_{\widehat{\mathbb{C}} \setminus \gamma[0,\varepsilon],\gamma(\varepsilon),\gamma(1)}(\gamma[\varepsilon,1])$$

• I^L Möbius invariant: for $\mu:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ Möbius,

$$I^{L}(\gamma,\gamma(0)) = I^{L}(\mu(\gamma),\mu(\gamma)(0))$$

• I^L independent of choice of root and orientation:

$$I^{L}(t\mapsto\gamma(t),\gamma(0))=I^{L}(t\mapsto\gamma(s+t),\gamma(s))=I^{L}(t\mapsto\gamma(-t),\gamma(0))$$

$$I^{L}(\gamma,\gamma(0)) = \lim_{\varepsilon \to 0} I_{\widehat{\mathbb{C}} \setminus \gamma[0,\varepsilon],\gamma(\varepsilon),\gamma(1)}(\gamma[\varepsilon,1])$$

• I^L Möbius invariant: for $\mu:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ Möbius,

$$I^{L}(\gamma,\gamma(0)) = I^{L}(\mu(\gamma),\mu(\gamma)(0))$$

• *I^L* independent of choice of root and orientation:

$$I^{L}(t\mapsto\gamma(t),\gamma(0))=I^{L}(t\mapsto\gamma(s+t),\gamma(s))=I^{L}(t\mapsto\gamma(-t),\gamma(0))$$

 \implies I^L is well-defined on the space of simple loops (i.e. loops not equipped with a parametrization)

I

Applying a Möbius transformation so that $\gamma(0) = \infty$, we have the general identity:

Applying a Möbius transformation so that $\gamma(0) = \infty$, we have the general identity:

Theorem (Y. Wang '19): If γ is a simple loop in $\widehat{\mathbb{C}}$ through ∞ , then

$$I^{L}(\gamma,\infty) = rac{1}{\pi} \int_{\widehat{\mathbb{C}}\setminus\gamma} \left| rac{h''}{h'}
ight|^{2} |dz|^{2} = J(\gamma)$$

Observations: for γ loop of finite energy,

Observations: for γ loop of finite energy,

• γ is a quasicircle (image of $\{|z| = 1\}$ under quasiconformal map of $\widehat{\mathbb{C}}$)

Observations: for γ loop of finite energy,

- γ is a quasicircle (image of $\{|z| = 1\}$ under quasiconformal map of $\widehat{\mathbb{C}}$)
- γ rectifiable (don't have all quasicircles)

Observations: for γ loop of finite energy,

- γ is a quasicircle (image of $\{|z|=1\}$ under quasiconformal map of $\widehat{\mathbb{C}}$)
- γ rectifiable (don't have all quasicircles)
- *I^L* Möbius invariant, so may choose to identify loops by action of Möbius transformations

Observations: for γ loop of finite energy,

- γ is a quasicircle (image of $\{|z|=1\}$ under quasiconformal map of $\widehat{\mathbb{C}}$)
- γ rectifiable (don't have all quasicircles)
- I^L Möbius invariant, so may choose to identify loops by action of Möbius transformations

<u>Idea:</u> identify finite energy loops as a subspace of universal Teichmüller space!

▶ ◀ ≣ ▶ ■ ∽ ९ € 18 Feb 2020 23 / 53

$T(1) = \{\gamma \text{ quasicircle}\}/\mathsf{M\"ob}$

Ben Johnsrude

Equivalent characterizations of Loewner energ

18 Feb 2020 23 / 53

$$\mathcal{T}(1) = \{\gamma \text{ quasicircle}\}/\mathsf{M\"ob}$$

 $\simeq \left\{f, g \text{ complementary conf. maps extending q.c.'ally to } \widehat{\mathbb{C}}\right\}/\sim$

$$\begin{split} \mathcal{T}(1) &= \{\gamma \text{ quasicircle}\}/\mathsf{M\"ob} \\ &\simeq \left\{f,g \text{ complementary conf. maps extending q.c.'ally to } \widehat{\mathbb{C}}\right\}/\sim \end{split}$$

T(1) admits natural structure of a Hilbert manifold (Takhtajan-Teo '06)

Theorem (Takhtajan-Teo '06) Let γ be a simple bounded loop. TFAE:

- $\gamma \in \mathcal{T}_0(1)$ (connected component of $\{|z|=1\}$)
- $\int_{\mathbb{D}} \left| \frac{f''}{f'} \right|^2 |dz|^2 < \infty$ • $\int_{\widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}} \left| \frac{g''}{g'} \right|^2 |dz|^2 < \infty$

Theorem (Takhtajan-Teo '06) Let γ be a simple bounded loop. TFAE:

- $\gamma \in T_0(1)$ (connected component of $\{|z|=1\}$)
- $\int_{\mathbb{D}} \left| \frac{f''}{f'} \right|^2 |dz|^2 < \infty$
- $\int_{\widehat{\mathbb{C}}\setminus\overline{\mathbb{D}}}\left|\frac{g''}{g'}\right|^2 |dz|^2 < \infty$

Such quasicircles γ are known as *Weil-Petersson class*.

Theorem (Y. Wang '19) Let γ be a (bounded) simple loop in $\widehat{\mathbb{C}}$. Then $I^{L}(\gamma) < \infty \iff \gamma \in T_{0}(1)$ **Theorem** (Y. Wang '19) Let γ be a (bounded) simple loop in $\widehat{\mathbb{C}}$. Then

$$I^{L}(\gamma) < \infty \iff \gamma \in T_{0}(1)$$

Moreover,

$$I^L(\gamma) = \frac{1}{\pi} \mathbf{S}_1(\gamma)$$

where S_1 is the universal Liouville action $T_0(1) \to \mathbb{R}$, a Kähler potential for the Weil-Petersson metric on $T_0(1)$.

End of part 1.

・ 何 ト ・ ヨ ト ・ ヨ ト

We now demonstrate some of the core steps in the proof of I = J in the chordal case.

$$I_{\mathbb{H},0,\infty}(\gamma[0,T]) = \int_0^T rac{W'(t)^2}{2} dt$$

$$egin{aligned} &I_{\mathbb{H},0,\infty}(\gamma[0,\,T]) = \int_0^T rac{W'(t)^2}{2} dt \ &= \int_0^\infty rac{1}{2} \left[rac{d}{dt} W(t\wedge T)
ight]^2 dt \end{aligned}$$

< (17) > < (17) > <

$$egin{aligned} & I_{\mathbb{H},0,\infty}(\gamma[0,\,T]) = \int_0^T rac{W'(t)^2}{2} dt \ &= \int_0^\infty rac{1}{2} \left[rac{d}{dt} W(t\wedge T)
ight]^2 dt \ &= I_{\mathbb{H},0,\infty}\left(\overline{\gamma[0,\,T]}
ight) \end{aligned}$$

$$egin{aligned} & I_{\mathbb{H},0,\infty}(\gamma[0,\,T]) = \int_0^T rac{W'(t)^2}{2} dt \ &= \int_0^\infty rac{1}{2} \left[rac{d}{dt} W(t\wedge T)
ight]^2 dt \ &= I_{\mathbb{H},0,\infty}\left(\overline{\gamma[0,\,T]}
ight) \end{aligned}$$

where $\overline{\gamma[0, T]}$ is the "completed" chord given by $\gamma[0, T]$ followed by the geodesic from $\gamma(T)$ to ∞ .

▶ < ≣ ▶ ≣ ∽ < < 18 Feb 2020 29 / 5

(日) (四) (日) (日) (日)

Equivalent characterizations of Loewner energ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

 $0 \leq t \leq T$,

イロト イヨト イヨト イヨト

Ben Johnsrude

(日) (四) (日) (日) (日)

• $I_{\mathbb{H},0,\infty}(\gamma[0,T])$

Ben Johnsrude

Equivalent characterizations of Loewner energ

▶ < ≧ ▶ ≧ ∽ Q (18 Feb 2020 30 / 53

< (日) × < 三 × <
Step 1a: I-Additivity

 $0 \leq t \leq T$,

- $I_{\mathbb{H},0,\infty}(\gamma[0,T])$
- $I_{\mathbb{H},0,\infty}(\gamma[0,t])$

э.

< (日) × < 三 × <

Step 1a: I-Additivity

- $I_{\mathbb{H},0,\infty}(\gamma[0,T])$
- $I_{\mathbb{H},0,\infty}(\gamma[0,t])$
- $I_{\mathbb{H}\setminus\gamma[0,t],\gamma(t),\infty}(\gamma[t,T])$

→ < Ξ →</p>

Step 1a: I-Additivity

- $I_{\mathbb{H},0,\infty}(\gamma[0,T])$
- $I_{\mathbb{H},0,\infty}(\gamma[0,t])$
- $I_{\mathbb{H}\setminus\gamma[0,t],\gamma(t),\infty}(\gamma[t,T])$

I-additivity:

$$I_{\mathbb{H},0,\infty}(\gamma[0,T]) = I_{\mathbb{H},0,\infty}(\gamma[0,t]) + I_{\mathbb{H}\setminus\gamma[0,t],\gamma(t),\infty}(\gamma[t,T])$$

May compute the *J*-energy for finite-length curves by extension:

May compute the *J*-energy for finite-length curves by extension:

May compute the *J*-energy for finite-length curves by extension:

$$J(\gamma[0,T]) := J\left(\overline{\gamma[0,T]}\right) = rac{1}{\pi} \int_{H_1 \cup H_2} \left|rac{h''}{h'}
ight|^2 |dz|^2$$

Note: one choice of $h = h_1 \cup h_2$ would be the mapping-out function

 $h: \Sigma \setminus \gamma[0, T] \to \Sigma, \quad h(\gamma(T)) = 0, \quad h(z) = z + O(1)$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For $0 \leq t \leq T$,

Ben Johnsrude

Equivalent characterizations of Loewner energ

18 Feb 2020 33 / 53

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

For $0 \leq t \leq T$,

Ben Johnsrude

Equivalent characterizations of Loewner energ

18 Feb 2020 33 / 53

(4) (日本)

э

For $0 \leq t \leq T$,

18 Feb 2020 33 / 53

For $0 \leq t \leq T$,

Proposition (*J*-additivity): Let $\gamma[0, T]$ be a simple chord in $(\Sigma, 0, \infty)$ with finite Loewner energy. Then, for all $0 \le s < t \le T$,

$$J(h_t) = J(h_s) + J(h_{t,s})$$

< ロト < 同ト < ヨト < ヨト

To prove the proposition, we need a lemma.

To prove the proposition, we need a lemma. For $\boldsymbol{\Omega}$ a domain, set

$$\mathscr{D}(\Omega) = \left\{ g \in C^\infty(\Omega) : \int_\Omega |\nabla g|^2 dz^2 < \infty
ight\}$$

To prove the proposition, we need a lemma. For $\boldsymbol{\Omega}$ a domain, set

$$\mathscr{D}(\Omega) = \left\{ g \in C^\infty(\Omega) : \int_\Omega |
abla g|^2 dz^2 < \infty
ight\}$$

Lemma: If a finite capacity curve $\gamma = \gamma[0, T]$ in $(\Sigma, 0, \infty)$ satisfies:

- $\gamma \cup \mathbb{R}_{\geq 0}$ is $C^{1,\alpha}$ for some $\alpha > 0$,
- $\sigma_{h_T} \in \mathscr{D}(\Sigma \setminus \gamma)$

To prove the proposition, we need a lemma. For $\boldsymbol{\Omega}$ a domain, set

$$\mathscr{D}(\Omega) = \left\{ g \in C^\infty(\Omega) : \int_\Omega |\nabla g|^2 dz^2 < \infty
ight\}$$

Lemma: If a finite capacity curve $\gamma = \gamma[0, T]$ in $(\Sigma, 0, \infty)$ satisfies:

• $\gamma \cup \mathbb{R}_{\geq 0}$ is $C^{1,\alpha}$ for some $\alpha > 0$, • $\sigma_{h_{\tau}} \in \mathscr{D}(\Sigma \setminus \gamma)$

then, for all $g \in \mathscr{D}(\Sigma)$,

$$\int_{\Sigma\setminus\gamma} \nabla g \cdot \nabla \sigma_{h_T}(z) |dz|^2 = 0$$

 $\underbrace{ \text{Sketch of proof of Lemma:}}_{\text{components of } \mathbb{C} \setminus \Gamma.} \text{Denote } \Gamma = \overline{\gamma} \cup \mathbb{R}_{\geq 0} \text{ and } H_1, H_2 \text{ the }$

A (1) > A (2) > A

Sketch of proof of Lemma: Denote $\Gamma = \overline{\gamma} \cup \mathbb{R}_{\geq 0}$ and H_1, H_2 the components of $\mathbb{C} \setminus \Gamma$. We assume:

- g compactly supported in $\mathbb C$
- $g|_{H_1}$ and $g|_{H_2}$ extend to $C^\infty(\overline{H_1})$ and $C^\infty(\overline{H_2})$
- Γ smooth

<u>Sketch of proof of Lemma</u>: Denote $\Gamma = \overline{\gamma} \cup \mathbb{R}_{\geq 0}$ and H_1, H_2 the components of $\mathbb{C} \setminus \Gamma$. We assume:

- g compactly supported in $\mathbb C$
- $g|_{H_1}$ and $g|_{H_2}$ extend to $C^{\infty}(\overline{H_1})$ and $C^{\infty}(\overline{H_2})$
- Γ smooth

(for less smooth Γ , approximate by $h_{1,T}^{-1}(\mathbb{R}+i\varepsilon)$)

Integrating by parts:

Integrating by parts:

$$\int_{\Sigma\setminus\gamma} \nabla g \cdot \nabla \sigma_{h_{\mathcal{T}}}(z) |dz|^2 = \int_{\mathcal{H}_1\cup\mathcal{H}_2} \nabla g \cdot \nabla \sigma_{h_{\mathcal{T}}}(z) |dz|^2$$

Integrating by parts:

$$\begin{split} \int_{\Sigma \setminus \gamma} \nabla g \cdot \nabla \sigma_{h_{T}}(z) |dz|^{2} &= \int_{H_{1} \cup H_{2}} \nabla g \cdot \nabla \sigma_{h_{T}}(z) |dz|^{2} \\ &= -\int_{H_{1} \cup H_{2}} g \Delta \sigma_{h_{T}}(z) |dz|^{2} \\ &+ \int_{\Gamma_{1} \cup \Gamma_{2}} g(z) \partial_{n} \sigma_{h_{T}}(z) dl(z) \end{split}$$

Integrating by parts:

$$\begin{split} \int_{\Sigma \setminus \gamma} \nabla g \cdot \nabla \sigma_{h_{T}}(z) |dz|^{2} &= \int_{H_{1} \cup H_{2}} \nabla g \cdot \nabla \sigma_{h_{T}}(z) |dz|^{2} \\ &= -\int_{H_{1} \cup H_{2}} g \Delta \sigma_{h_{T}}(z) |dz|^{2} \\ &+ \int_{\Gamma_{1} \cup \Gamma_{2}} g(z) \partial_{n} \sigma_{h_{T}}(z) dl(z) \\ &= \int_{\Gamma_{1} \cup \Gamma_{2}} g(z) \partial_{n} \sigma_{h_{T}}(z) dl(z) \end{split}$$

$$\partial_n \sigma_{h_T}(z) = k(h_T(z))e^{\sigma_{h_T}(z)} - k_0(z)$$

$$\partial_n \sigma_{h_T}(z) = k(h_T(z))e^{\sigma_{h_T}(z)} - k_0(z)$$

Along Γ , $h_T(z) \in \partial \mathbb{H}$ which has curvature 0, so $k(h_T(z)) = 0$.

$$\partial_n \sigma_{h_T}(z) = k(h_T(z))e^{\sigma_{h_T}(z)} - k_0(z)$$

Along Γ , $h_T(z) \in \partial \mathbb{H}$ which has curvature 0, so $k(h_T(z)) = 0$.

Along $\mathbb{R}_{>0}$, $k_0(z) = 0$.

Thus

$$\int_{\Sigma\setminus\gamma} \nabla g \cdot \nabla \sigma_{h_{\mathcal{T}}}(z) |dz|^2 = \int_{\Gamma_1\cup\Gamma_2} g(z) \partial_n \sigma_{h_{\mathcal{T}}}(z) dl(z)$$

(日)

Thus

$$\begin{split} \int_{\Sigma \setminus \gamma} \nabla g \cdot \nabla \sigma_{h_{T}}(z) |dz|^{2} &= \int_{\Gamma_{1} \cup \Gamma_{2}} g(z) \partial_{n} \sigma_{h_{T}}(z) dl(z) \\ &= -\int_{\overline{\gamma}} (g|_{H_{2}}(z) - g|_{H_{1}}(z)) k_{0}(z) dl(z) \end{split}$$

(日)

Thus

$$\begin{split} \int_{\Sigma\setminus\gamma} \nabla g \cdot \nabla \sigma_{h_{T}}(z) |dz|^{2} &= \int_{\Gamma_{1}\cup\Gamma_{2}} g(z) \partial_{n} \sigma_{h_{T}}(z) dl(z) \\ &= -\int_{\overline{\gamma}} (g|_{H_{2}}(z) - g|_{H_{1}}(z)) k_{0}(z) dl(z) \\ &= 0 \end{split}$$

since g extends continuously across $\overline{\gamma}$.

э

Proof of proposition (*J*-additivity):

Ben Johnsrude

Equivalent characterizations of Loewner energ

18 Feb 2020 40 / 53

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof of proposition (*J*-additivity):

Proof of proposition (*J*-additivity):

Proof of proposition (*J*-additivity):

$\sigma_{h_t}(z) = \log |h'_t| = \log |(h_{t,s} \circ h_s)'| = \sigma_{h_{t,s}}(h_s(z)) + \sigma_{h_s}(z)$

A ∰ ▶ A ∃ ▶ A
$$\sigma_{h_t}(z) = \log |h'_t| = \log |(h_{t,s} \circ h_s)'| = \sigma_{h_{t,s}}(h_s(z)) + \sigma_{h_s}(z)$$

$$egin{aligned} &\pi J(h_t) = \pi J(h_s) + \int_{\Sigma \setminus \gamma} |
abla (\sigma_{h_{t,s}} \circ h_s)(z)|^2 |dz|^2 \ &+ 2 \int_{\Sigma \setminus \gamma}
abla (\sigma_{h_{t,s}} \circ h_s) \cdot
abla \sigma_{h_s}(z) |dz|^2 \end{aligned}$$

Ben Johnsrude

Equivalent characterizations of Loewner energ

・ロト ・ 日 ト ・ 目 ト ・

$$\int_{\Sigma\setminus\gamma} |\nabla(\sigma_{h_{t,s}}\circ h_s)(z)|^2 |dz|^2$$

$$\int_{\Sigma\setminus\gamma} |\nabla(\sigma_{h_{t,s}} \circ h_s)(z)|^2 |dz|^2 = \int_{\Sigma\setminus\gamma} h_s^* \left[|\nabla\sigma_{h_{t,s}}(z)|^2 |dz|^2 \right]$$

$$egin{aligned} &\int_{\Sigma\setminus\gamma}|
abla(\sigma_{h_{t,s}}\circ h_{s})(z)|^{2}|dz|^{2}=\int_{\Sigma\setminus\gamma}h_{s}^{*}\left[|
abla\sigma_{h_{t,s}}(z)|^{2}|dz|^{2}
ight]\ &=\int_{\Sigma\setminus\hat\gamma}|
abla\sigma_{h_{t,s}}(z)|^{2}|dz|^{2} \end{aligned}$$

$$\begin{split} \int_{\Sigma \setminus \gamma} |\nabla(\sigma_{h_{t,s}} \circ h_s)(z)|^2 |dz|^2 &= \int_{\Sigma \setminus \gamma} h_s^* \left[|\nabla \sigma_{h_{t,s}}(z)|^2 |dz|^2 \right] \\ &= \int_{\Sigma \setminus \hat{\gamma}} |\nabla \sigma_{h_{t,s}}(z)|^2 |dz|^2 \\ &= \pi J(h_{t,s}) \end{split}$$

Step 1b: J-additivity

Similarly,

$$2\int_{\Sigma\setminus\gamma}\nabla(\sigma_{h_{t,s}}\circ h_s)\cdot\nabla\sigma_{h_s}(z)|dz|^2$$

$$2\int_{\Sigma\setminus\gamma} \nabla(\sigma_{h_{t,s}} \circ h_{s}) \cdot \nabla\sigma_{h_{s}}(z) |dz|^{2}$$

= $-2\int_{\Sigma\setminus\gamma} \nabla(\sigma_{h_{t,s}} \circ h_{s}) \cdot \nabla(\sigma_{h_{s}^{-1}} \circ h_{s})(z) |dz|^{2}$

$$2\int_{\Sigma\setminus\gamma} \nabla(\sigma_{h_{t,s}} \circ h_{s}) \cdot \nabla\sigma_{h_{s}}(z) |dz|^{2}$$

= $-2\int_{\Sigma\setminus\gamma} \nabla(\sigma_{h_{t,s}} \circ h_{s}) \cdot \nabla(\sigma_{h_{s}^{-1}} \circ h_{s})(z) |dz|^{2}$
= $-2\int_{\Sigma\setminus\gamma} h_{s}^{*} \left[\nabla\sigma_{h_{t,s}} \cdot \nabla\sigma_{h_{s}^{-1}}(z) |dz|^{2} \right]$

$$2\int_{\Sigma\setminus\gamma} \nabla(\sigma_{h_{t,s}} \circ h_{s}) \cdot \nabla\sigma_{h_{s}}(z) |dz|^{2}$$

= $-2\int_{\Sigma\setminus\gamma} \nabla(\sigma_{h_{t,s}} \circ h_{s}) \cdot \nabla(\sigma_{h_{s}^{-1}} \circ h_{s})(z) |dz|^{2}$
= $-2\int_{\Sigma\setminus\gamma} h_{s}^{*} \left[\nabla\sigma_{h_{t,s}} \cdot \nabla\sigma_{h_{s}^{-1}}(z) |dz|^{2} \right]$
= $-2\int_{\Sigma\setminus\hat{\gamma}} \nabla\sigma_{h_{t,s}} \cdot \nabla\sigma_{h_{s}^{-1}}(z) |dz|^{2}$

3

・ロト ・ 日 ト ・ 目 ト ・

By assumption, $J(h_{t,s}) < \infty$, so $\sigma_{h_{t,s}} \in \mathscr{D}(\Sigma \setminus \hat{\gamma})$

A (1) > A (2) > A

Step 1b: J-additivity

By assumption, $J(h_{t,s}) < \infty$, so $\sigma_{h_{t,s}} \in \mathscr{D}(\Sigma \setminus \hat{\gamma})$ One may also compute

$$\int_{\Sigma} |\nabla \sigma_{h_s^{-1}}|^2 |dz|^2 = \pi J(h_s) < \infty$$

so $\sigma_{h_s^{-1}} \in \mathscr{D}(\Sigma)$.

A (1) > A (2) > A

Step 1b: J-additivity

By assumption, $J(h_{t,s}) < \infty$, so $\sigma_{h_{t,s}} \in \mathscr{D}(\Sigma \setminus \hat{\gamma})$ One may also compute

$$\int_{\Sigma} |\nabla \sigma_{h_s^{-1}}|^2 |dz|^2 = \pi J(h_s) < \infty$$

so $\sigma_{h_s^{-1}} \in \mathscr{D}(\Sigma)$. By the lemma,

$$-2\int_{\Sigma\setminus\hat{\gamma}}\nabla\sigma_{h_{t,s}}\cdot\nabla\sigma_{h_s^{-1}}(z)|dz|^2=0$$

.

Thus

$$\pi J(h_t) = \pi J(h_s) + \int_{\Sigma \setminus \gamma} |\nabla(\sigma_{h_{t,s}} \circ h_s)(z)|^2 |dz|^2 + 2 \int_{\Sigma \setminus \gamma} \nabla(\sigma_{h_{t,s}} \circ h_s) \cdot \nabla \sigma_{h_s}(z) |dz|^2$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Thus

$$\begin{aligned} \pi J(h_t) &= \pi J(h_s) + \int_{\Sigma \setminus \gamma} |\nabla(\sigma_{h_{t,s}} \circ h_s)(z)|^2 |dz|^2 \\ &+ 2 \int_{\Sigma \setminus \gamma} \nabla(\sigma_{h_{t,s}} \circ h_s) \cdot \nabla \sigma_{h_s}(z) |dz|^2 \\ &= \pi J(h_s) + \pi J(h_{t,s}) + 0 \end{aligned}$$

as desired.

3

・ロト ・ 日 ト ・ 目 ト ・

▲ 伺 ▶ ▲ 三 ▶ ▲

Let $W(t) = \lambda t$.

.∋...>

< (日) × (日) × (4)

Let $W(t) = \lambda t$.

$$I(\gamma[0, T]) = \int_0^T \frac{\lambda^2}{2} dt = \frac{\lambda^2}{2} T$$

- 4 回 ト 4 三 ト 4 三 ト

Let $W(t) = \lambda t$.

$$I(\gamma[0,T]) = \int_0^T \frac{\lambda^2}{2} dt = \frac{\lambda^2}{2} T$$

Also have: $T \mapsto J(h_T)$ continuous, additive, hence linear.

▶ < ∃ ▶ < ∃

Let $W(t) = \lambda t$.

$$I(\gamma[0, T]) = \int_0^T \frac{\lambda^2}{2} dt = \frac{\lambda^2}{2} T$$

Also have: $T \mapsto J(h_T)$ continuous, additive, hence linear. Hence it suffices to show

$$I(\gamma[0,\,T])\sim J(h_T)$$
 as $T
ightarrow 0$

→ ∃ →

•
$$g_t(z) = \sqrt{h_t(z^2)} + \lambda t$$
 mapping-out function in $\mathbb H$ for $\sqrt{\gamma[0,t]}$

< □ > < 同 > < 回 > < 回 > < 回 >

• $g_t(z) = \sqrt{h_t(z^2)} + \lambda t$ mapping-out function in $\mathbb H$ for $\sqrt{\gamma[0,t]}$

• We may exploit the Loewner equation:

• $g_t(z) = \sqrt{h_t(z^2)} + \lambda t$ mapping-out function in $\mathbb H$ for $\sqrt{\gamma[0,t]}$

• We may exploit the Loewner equation:

$$\partial_t g_t = \frac{2}{g_t - \lambda t}$$

• $g_t(z) = \sqrt{h_t(z^2)} + \lambda t$ mapping-out function in $\mathbb H$ for $\sqrt{\gamma[0,t]}$

• We may exploit the Loewner equation:

$$\partial_t g_t = \frac{2}{g_t - \lambda t}$$

Solving produces

$$\sigma_t(z) = -\frac{\lambda t}{2} (\lambda t + \operatorname{Re}(\sqrt{h_t(z)}) - \operatorname{Re}(\sqrt{z}))$$

• $g_t(z) = \sqrt{h_t(z^2)} + \lambda t$ mapping-out function in $\mathbb H$ for $\sqrt{\gamma[0,t]}$

• We may exploit the Loewner equation:

$$\partial_t g_t = \frac{2}{g_t - \lambda t}$$

Solving produces

$$\sigma_t(z) = -\frac{\lambda t}{2} (\lambda t + \operatorname{Re}(\sqrt{h_t(z)}) - \operatorname{Re}(\sqrt{z}))$$

• As a consequence, for t > 0,

$$ert
abla \sigma_t(z) ert = O\left(ert z ert^{-1/2}
ight) ext{ for } z ext{ small}$$
 $ert
abla \sigma_t(z) ert = O\left(ert z ert^{-3/2}
ight) ext{ for } z ext{ large}$

A (1) > A (2) > A

$$J(h_{T}) = \frac{1}{\pi} \int_{\Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(z) dl$$

A (1) > A (2) > A

$$J(h_{T}) = \frac{1}{\pi} \int_{\Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(z) dl$$
$$= \frac{1}{\pi} \int_{\gamma(t) \in \Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(\gamma(t)) dl$$

→ < ∃ →</p>

$$J(h_{T}) = \frac{1}{\pi} \int_{\Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(z) dl$$

$$= \frac{1}{\pi} \int_{\gamma(t) \in \Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(\gamma(t)) dl$$

$$= \frac{\lambda^{2}}{4\pi} \int_{0}^{T} \left[\sqrt{h_{T}(\gamma(t)^{-})} - \sqrt{h_{T}(\gamma(t)^{+})} \right] \operatorname{Im} \left(\partial_{t} \sqrt{\gamma(t)} \right) dt$$

A (1) > A (2) > A

$$J(h_{T}) = \frac{1}{\pi} \int_{\Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(z) dl$$

$$= \frac{1}{\pi} \int_{\gamma(t) \in \Gamma_{1} \cup \Gamma_{2}} \sigma_{h_{T}} \partial_{n} \sigma_{h_{T}}(\gamma(t)) dl$$

$$= \frac{\lambda^{2}}{4\pi} \int_{0}^{T} \left[\sqrt{h_{T}(\gamma(t)^{-})} - \sqrt{h_{T}(\gamma(t)^{+})} \right] \operatorname{Im} \left(\partial_{t} \sqrt{\gamma(t)} \right) dt$$

$$= \frac{\lambda^{2}}{4\pi} \int_{0}^{T} \left[\sqrt{h_{T-t}(0^{-})} - \sqrt{h_{T-t}(0^{+})} \right] \operatorname{Im} \left(\partial_{t} \sqrt{\gamma(t)} \right) dt$$

using $h_T = h_{T-t} \circ h_t$, since W is linear.

.

$$\partial_t \sqrt{\gamma(t)} = -rac{2}{\sqrt{\gamma(t)}} + \lambda$$

$$\partial_t \sqrt{\gamma(t)} = -rac{2}{\sqrt{\gamma(t)}} + \lambda$$

Recall the asymptotics for *t* small:

$$\partial_t \sqrt{\gamma(t)} = -rac{2}{\sqrt{\gamma(t)}} + \lambda$$

Recall the asymptotics for t small:

$$egin{aligned} &\sqrt{\gamma(t)} = 2i\sqrt{t} + O(t) \ &\sqrt{h_t(0^+)} = 2\sqrt{t} + O(t) \ &\sqrt{h_t(0^-)} = -2\sqrt{t} + O(t) \end{aligned}$$

Thus, as $T \rightarrow 0$,

• • • • • • • • • • • •
$$J(h_{T}) = \frac{\lambda^2}{4\pi} \int_0^T \left[\sqrt{h_{T-t}(0^+)} - \sqrt{h_{T-t}(0^-)} \right] \operatorname{Im} \left(\partial_t \sqrt{\gamma(t)} \right) dt$$

-

• • • • • • • • • • • • •

$$J(h_T) = \frac{\lambda^2}{4\pi} \int_0^T \left[\sqrt{h_{T-t}(0^+)} - \sqrt{h_{T-t}(0^-)} \right] \operatorname{Im} \left(\partial_t \sqrt{\gamma(t)} \right) dt$$
$$= \frac{\lambda^2}{\pi} (1 + O(\sqrt{T})) \int_0^T \frac{\sqrt{T-t}}{\sqrt{t}} dt$$

-

• • • • • • • • • • • • •

$$J(h_T) = \frac{\lambda^2}{4\pi} \int_0^T \left[\sqrt{h_{T-t}(0^+)} - \sqrt{h_{T-t}(0^-)} \right] \operatorname{Im} \left(\partial_t \sqrt{\gamma(t)} \right) dt$$
$$= \frac{\lambda^2}{\pi} (1 + O(\sqrt{T})) \int_0^T \frac{\sqrt{T-t}}{\sqrt{t}} dt$$
$$= \frac{\lambda^2}{\pi} (T + O(T^{3/2})) \int_0^1 \frac{\sqrt{1-t}}{\sqrt{t}} dt$$

• • • • • • • • • • • •

$$J(h_T) = \frac{\lambda^2}{4\pi} \int_0^T \left[\sqrt{h_{T-t}(0^+)} - \sqrt{h_{T-t}(0^-)} \right] \operatorname{Im} \left(\partial_t \sqrt{\gamma(t)} \right) dt$$
$$= \frac{\lambda^2}{\pi} (1 + O(\sqrt{T})) \int_0^T \frac{\sqrt{T-t}}{\sqrt{t}} dt$$
$$= \frac{\lambda^2}{\pi} (T + O(T^{3/2})) \int_0^1 \frac{\sqrt{1-t}}{\sqrt{t}} dt$$
$$= \frac{\lambda^2}{2} (T + O(T^{3/2}))$$

• • • • • • • • • • • •

Since $T \mapsto J(h_T)$ is linear,

< (17) > < (17) > <

Since $T \mapsto J(h_T)$ is linear,

$$J(h_T) = \frac{\lambda^2}{2}T = I(\gamma[0, T])$$

the desired identity.

Corollary: I = J when γ is driven by a piecewise linear function.

.

For W of finite Dirichlet energy, pick step functions approximating W' in L^2 .

- For W of finite Dirichlet energy, pick step functions approximating W' in L^2 .
- \implies have piecewise linear drivers approximating W uniformly and in Dirichlet energy

For W of finite Dirichlet energy, pick step functions approximating W' in L^2 .

 \implies have piecewise linear drivers approximating W uniformly and in Dirichlet energy

 \implies ... \implies I = J for general finite-energy drivers

- For W of finite Dirichlet energy, pick step functions approximating W' in L^2 .
- \implies have piecewise linear drivers approximating W uniformly and in Dirichlet energy
- \implies ... \implies I = J for general finite-energy drivers (tools: J is lower semicontinuous, I and J additive)