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Background: Loewner evolution

Setting:

H = {z ∈ C : Im (z) > 0}
C = {γ : [0,∞)→ H simple,γ(0) = 0, γ(0,∞) ⊆ H, γ(t)→∞}
C is the collection of “simple chords in H from 0 to ∞”
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Background: Loewner evolution

For each t ≥ 0,H \ γ[0, t] is simply-connected

Have conformal maps gt : H \ γ[0, t]→ H, gt(z) = z + oz→∞(1)

Reparametrizing γ gives gt(z) = z + 2t
z + oz→∞(z−1)

Track special value W (t) = gt(γ(t))

(gt)t≥0 are the mapping-out functions, t 7→W (t) is the driving
function
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Background: Loewner evolution

W (0) = 0,W real-valued, continuous

γ 7→W is known as the Loewner transform

One may derive the Loewner differential equation:

∂tgt =
2

gt −W (t)
, g0(z) = z

{sufficiently nice W ∈ C0([0,+∞))} ↔{simple paths in H from 0 to ∞}
= C

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 4 / 53



Background: Loewner evolution

W (0) = 0,W real-valued, continuous

γ 7→W is known as the Loewner transform

One may derive the Loewner differential equation:

∂tgt =
2

gt −W (t)
, g0(z) = z

{sufficiently nice W ∈ C0([0,+∞))} ↔{simple paths in H from 0 to ∞}
= C

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 4 / 53



Background: Loewner evolution

W (0) = 0,W real-valued, continuous

γ 7→W is known as the Loewner transform

One may derive the Loewner differential equation:

∂tgt =
2

gt −W (t)
, g0(z) = z

{sufficiently nice W ∈ C0([0,+∞))} ↔{simple paths in H from 0 to ∞}
= C

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 4 / 53



Background: Loewner evolution

W (0) = 0,W real-valued, continuous

γ 7→W is known as the Loewner transform

One may derive the Loewner differential equation:

∂tgt =
2

gt −W (t)
, g0(z) = z

{sufficiently nice W ∈ C0([0,+∞))} ↔{simple paths in H from 0 to ∞}
= C

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 4 / 53



Background: Loewner evolution

W (0) = 0,W real-valued, continuous

γ 7→W is known as the Loewner transform

One may derive the Loewner differential equation:

∂tgt =
2

gt −W (t)
, g0(z) = z

{sufficiently nice W ∈ C0([0,+∞))} ↔{simple paths in H from 0 to ∞}
= C

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 4 / 53



Background: Loewner evolution

Sample driver: W ≡ 0

W (t)

γ(t)

∂tgt =
2

gt
, g0(z) = z

g2
t (z) = 4t + z2

γ(t) = g−1
t (W (t)) = g−1

t (0) = 2i
√
t
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Background:Loewner evolution

Sample driver: W (t) = t

W (t)

γ(t)

Substitute: Ft(z) = gt(z)− t + 2 log(2− gt(z) + t)

∂tFt = −1, F0(z) = z + 2 log(2− z)

Ft(γ(t) + t) = 2 log 2 + t

Asymptotics: γ(t) = 2i
√
t + 2

3 t + O(t3/2)

Rescaling: W̃ (t) = λt =⇒ γ̃(t) = 1
λγ(λ2t) = 2i

√
t + 2

3λt + O(t3/2)
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Background: Loewner evolution

{sufficiently nice W ∈ C0([0,+∞))} not fully understood...

Includes 1/2-Hölder drivers of small norm

Includes
√
κBt where 0 ≤ κ ≤ 4 and Bt Brownian motion (SLEκ)

Less regular W generate families of hulls, rather than paths

Regularity correspondence: for 0 < α < 1, α 6= 1/2, have

γ ∈ C 1+α(0,∞) ⇐⇒ W ∈ C 1+α−1/2(0,∞)
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Includes 1/2-Hölder drivers of small norm

Includes
√
κBt where 0 ≤ κ ≤ 4 and Bt Brownian motion (SLEκ)

Less regular W generate families of hulls, rather than paths

Regularity correspondence: for 0 < α < 1, α 6= 1/2, have

γ ∈ C 1+α(0,∞) ⇐⇒ W ∈ C 1+α−1/2(0,∞)

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 7 / 53



Background: Loewner evolution

{sufficiently nice W ∈ C0([0,+∞))} not fully understood...

Includes 1/2-Hölder drivers of small norm

Includes
√
κBt where 0 ≤ κ ≤ 4 and Bt Brownian motion (SLEκ)

Less regular W generate families of hulls, rather than paths

Regularity correspondence: for 0 < α < 1, α 6= 1/2, have

γ ∈ C 1+α(0,∞) ⇐⇒ W ∈ C 1+α−1/2(0,∞)

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 7 / 53



Background: Loewner evolution

{sufficiently nice W ∈ C0([0,+∞))} not fully understood...
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Loewner energy

Here we choose to study curves driven by finite energy drivers:

I (γ) = I (W ) =

∫ ∞
0

W ′(t)2

2
dt <∞

For W not absolutely continuous, set I (γ) =∞.

I (γ) is the Loewner energy of γ.

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 8 / 53



Loewner energy

Here we choose to study curves driven by finite energy drivers:

I (γ) = I (W ) =

∫ ∞
0

W ′(t)2

2
dt <∞

For W not absolutely continuous, set I (γ) =∞.

I (γ) is the Loewner energy of γ.

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 8 / 53



Loewner energy

Here we choose to study curves driven by finite energy drivers:

I (γ) = I (W ) =

∫ ∞
0

W ′(t)2

2
dt <∞

For W not absolutely continuous, set I (γ) =∞.

I (γ) is the Loewner energy of γ.

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 8 / 53



Loewner energy

Here we choose to study curves driven by finite energy drivers:

I (γ) = I (W ) =

∫ ∞
0

W ′(t)2

2
dt <∞

For W not absolutely continuous, set I (γ) =∞.

I (γ) is the Loewner energy of γ.

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 8 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Loewner energy

For γ ∈ C with I (γ) <∞:

γ = w(iR≥0) for some w : H→ H quasiconformal (a quasichord)(
w quasiconformal ⇐⇒ w homeo,

∥∥∥∥∂zw∂zw

∥∥∥∥
L∞(H)

< 1

)

γ is rectifiable

`(γ̂) ∼ |z − w | as diam(γ̂)→ 0, γ̂ ⊆ γ with endpoints z ,w

“γ has no corners”

I (γ) = 0 ⇐⇒ γ = iR≥0

“I measures how much γ differs from a line”

I (γ) = limε→0 limκ→0−κ logP [SLEκ stays ε-close to γ]

“γ driven by finite-energy drivers form a skeleton of SLEκ for small κ”

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 9 / 53



Guiding question

How may one characterize chords driven by finite-energy drivers?
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Conformal invariance

For λ > 0,

I (λγ) = I (t 7→ λW (λ−2t))

=
1

2

∫ ∞
0

W ′(λ−2t)2λ−2dt

=
1

2

∫ ∞
0

W ′(t)2dt

= I (γ)

=⇒ I is invariant under conformal automorphisms of (H, 0,∞)
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Conformal invariance

For any D ( C simply connected, a, b distinct prime ends of D, may
form Loewner energy for (D, a, b):

ID,a,b(γ) := IH,0,∞(φ−1 ◦ γ)

φ : (H, 0,∞)→ (D, a, b) conformal

Well-defined!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 12 / 53



Conformal invariance

For any D ( C simply connected, a, b distinct prime ends of D, may
form Loewner energy for (D, a, b):

ID,a,b(γ) := IH,0,∞(φ−1 ◦ γ)

φ : (H, 0,∞)→ (D, a, b) conformal

Well-defined!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 12 / 53



Conformal invariance

For any D ( C simply connected, a, b distinct prime ends of D, may
form Loewner energy for (D, a, b):

ID,a,b(γ) := IH,0,∞(φ−1 ◦ γ)

φ : (H, 0,∞)→ (D, a, b) conformal

Well-defined!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 12 / 53



Conformal invariance

Sample domain: (Σ := C \ R≥0, 0,∞)

φ−1

γ φ−1(γ)

IΣ,0,∞(γ) = IH,0,∞(
√
γ)
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J-energy

γH1

H2

Σ \ γ = H1 ∪ H2

h1

h2

H

H∗

Idea: γ is close to a line ⇐⇒ H1,H2 are close to half-planes

−→ Measure how much h1, h2 differ from an affine map
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J-energy

h1 : H1 → H, h2 : H2 → H∗ conformal

h∗j |dz |2 = |h′j |2|dz |2

= e2 log |h′j ||dz |2

=: e2σj |dz |2

hj affine ⇐⇒ σj constant

⇐⇒
∫
Hj

|∇σj |2|dz |2 = 0
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J-energy

So we define

J(γ) = J(h := h1 ∪ h2) =
1

π

∫
Σ\γ
|∇σ|2|dz |2

=
1

π

∫
Σ\γ

∣∣∣∣h′′h′
∣∣∣∣2 |dz |2

(well-defined)
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Equivalence of energies

Theorem (Y. Wang ’19): If γ is a simple chord in Σ from 0 to ∞, then

IΣ,0,∞(γ) = J(γ)

Proof: To be discussed in the sequel.
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Loop version of J-energy

0

∞

R≥0
γ

H1

H2

h1

h2

∞

γ

H1

H2

h1

h2

0

∞

R

H

H∗

Note: h1, h2 are more directly related to γ ∪ R≥0 than to γ

=⇒ may extend J to be defined on all loops passing through ∞!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 18 / 53



Loop version of J-energy

0

∞

R≥0
γ

H1

H2

h1

h2

∞

γ

H1

H2

h1

h2

0

∞

R

H

H∗

Note: h1, h2 are more directly related to γ ∪ R≥0 than to γ

=⇒ may extend J to be defined on all loops passing through ∞!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 18 / 53



Loop version of J-energy

0

∞

R≥0
γ

H1

H2

h1

h2

∞

γ

H1

H2

h1

h2

0

∞

R

H

H∗

Note: h1, h2 are more directly related to γ ∪ R≥0 than to γ

=⇒ may extend J to be defined on all loops passing through ∞!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 18 / 53



Loop version of J-energy

0

∞

R≥0
γ

H1

H2

h1

h2

∞

γ

H1

H2

h1

h2

0

∞

R

H

H∗

Note: h1, h2 are more directly related to γ ∪ R≥0 than to γ

=⇒ may extend J to be defined on all loops passing through ∞!

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 18 / 53



Loop Loewner energy

Should have a loop analogue of I -energy...

For γ : [0, 1]→ Ĉ simple loop, set

I L(γ, γ(0)) = lim
ε→0

IĈ\γ[0,ε],γ(ε),γ(1)
(γ[ε, 1])
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For γ : [0, 1]→ Ĉ simple loop, set

I L(γ, γ(0)) = lim
ε→0
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Loop Loewner energy

I L(γ, γ(0)) = lim
ε→0

IĈ\γ[0,ε],γ(ε),γ(1)
(γ[ε, 1])

I L Möbius invariant: for µ : Ĉ→ Ĉ Möbius,

I L(γ, γ(0)) = I L(µ(γ), µ(γ)(0))

I L independent of choice of root and orientation:

I L(t 7→ γ(t), γ(0)) = I L(t 7→ γ(s + t), γ(s)) = I L(t 7→ γ(−t), γ(0))

=⇒ I L is well-defined on the space of simple loops (i.e. loops not
equipped with a parametrization)
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Equivalence of loop energies

Applying a Möbius transformation so that γ(0) =∞, we have the general
identity:

Theorem (Y. Wang ’19): If γ is a simple loop in Ĉ through ∞, then

I L(γ,∞) =
1

π

∫
Ĉ\γ

∣∣∣∣h′′h′
∣∣∣∣2 |dz |2 = J(γ)

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 21 / 53



Equivalence of loop energies
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Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Observations: for γ loop of finite energy,

γ is a quasicircle (image of {|z | = 1} under quasiconformal map of Ĉ)

γ rectifiable (don’t have all quasicircles)

I L Möbius invariant, so may choose to identify loops by action of
Möbius transformations

Idea: identify finite energy loops as a subspace of universal Teichmüller
space!
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Teichmüller space

f

g

T (1) = {γ quasicircle}/Möb

'
{
f , g complementary conf. maps extending q.c.’ally to Ĉ

}
/ ∼

T (1) admits natural structure of a Hilbert manifold (Takhtajan-Teo ’06)
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Teichmüller space

f

g

Theorem (Takhtajan-Teo ’06) Let γ be a simple bounded loop. TFAE:

γ ∈ T0(1) (connected component of {|z | = 1})∫
D

∣∣∣ f ′′f ′ ∣∣∣2 |dz |2 <∞∫
Ĉ\D

∣∣∣g ′′g ′ ∣∣∣2 |dz |2 <∞

Such quasicircles γ are known as Weil-Petersson class.
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Characterization of finite-energy loops

Theorem (Y. Wang ’19) Let γ be a (bounded) simple loop in Ĉ. Then

I L(γ) <∞ ⇐⇒ γ ∈ T0(1)

Moreover,

I L(γ) =
1

π
S1(γ)

where S1 is the universal Liouville action T0(1)→ R, a Kähler potential
for the Weil-Petersson metric on T0(1).
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End of Part 1

End of part 1.

0

∞

R≥0
γ

H1

H2

h1

h2

0

∞

R

H

H∗

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 26 / 53



Part 2: Core steps

We now demonstrate some of the core steps in the proof of I = J in
the chordal case.
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Step 1a: Additivity

We may compute the energy of finite-length simple chords:

IH,0,∞(γ[0,T ]) =

∫ T

0

W ′(t)2

2
dt

=

∫ ∞
0

1

2

[
d

dt
W (t ∧ T )

]2

dt

= IH,0,∞

(
γ[0,T ]

)

where γ[0,T ] is the “completed” chord given by γ[0,T ] followed by the
geodesic from γ(T ) to ∞.
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Step 1a: I -Additivity

W (T )

W (t)

γ[0,T ]

W (t ∧ T )

γ[0,T ]
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Step 1a: I -Additivity

W (T )

W (t)

γ[0,T ]
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Step 1a: I -Additivity

0 ≤ t ≤ T ,

γ(t)

γ(T )

IH,0,∞(γ[0,T ])

IH,0,∞(γ[0, t])

IH\γ[0,t],γ(t),∞(γ[t,T ])

I -additivity:

IH,0,∞(γ[0,T ]) = IH,0,∞(γ[0, t]) + IH\γ[0,t],γ(t),∞(γ[t,T ])
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Step 1b: J-Additivity

Want to establish an analogous additivity result for J-energy.

May compute the J-energy for finite-length curves by extension:

H1

H2

h1

h2

H

H∗

J(γ[0,T ]) := J
(
γ[0,T ]

)
=

1

π

∫
H1∪H2

∣∣∣∣h′′h′
∣∣∣∣2 |dz |2
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Step 1b: J-additivity

γ(T )

h

Σ \ γ[0,T ]

0

Σ

Note: one choice of h = h1 ∪ h2 would be the mapping-out function

h : Σ \ γ[0,T ]→ Σ, h(γ(T )) = 0, h(z) = z + O(1)
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Step 1b: J-additivity

For 0 ≤ t ≤ T ,

γ(T )

hT

γ(t)

ht
hT ,t = hT ◦ h−1

t
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Step 1b: J-additivity

Proposition (J-additivity): Let γ[0,T ] be a simple chord in (Σ, 0,∞)
with finite Loewner energy. Then, for all 0 ≤ s < t ≤ T ,

J(ht) = J(hs) + J(ht,s)
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Step 1b: J-additivity

To prove the proposition, we need a lemma.

For Ω a domain, set

D(Ω) =

{
g ∈ C∞(Ω) :

∫
Ω
|∇g |2dz2 <∞

}

Lemma: If a finite capacity curve γ = γ[0,T ] in (Σ, 0,∞) satisfies:

γ ∪ R≥0 is C 1,α for some α > 0,

σhT ∈ D(Σ \ γ)

then, for all g ∈ D(Σ),∫
Σ\γ
∇g · ∇σhT (z)|dz |2 = 0
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Step 1b: J-additivity

Sketch of proof of Lemma: Denote Γ = γ ∪ R≥0 and H1,H2 the
components of C \ Γ.

We assume:

g compactly supported in C
g |H1

and g |H2
extend to C∞(H1) and C∞(H2)

Γ smooth

(for less smooth Γ, approximate by h−1
1,T (R + iε))
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Step 1b: J-additivity

Integrating by parts:

∫
Σ\γ
∇g · ∇σhT (z)|dz |2 =

∫
H1∪H2

∇g · ∇σhT (z)|dz |2

= −
∫
H1∪H2

g∆σhT (z)|dz |2

+

∫
Γ1∪Γ2

g(z)∂nσhT (z)dl(z)

=

∫
Γ1∪Γ2

g(z)∂nσhT (z)dl(z)
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Step 1b: J-additivity

General formula relating σhT to curvature:

∂nσhT (z) = k(hT (z))eσhT (z) − k0(z)

Along Γ, hT (z) ∈ ∂H which has curvature 0, so k(hT (z)) = 0.

Along R≥0, k0(z) = 0.
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Step 1b: J-additivity

Thus ∫
Σ\γ
∇g · ∇σhT (z)|dz |2 =

∫
Γ1∪Γ2

g(z)∂nσhT (z)dl(z)

= −
∫
γ

(g |H2
(z)− g |H1

(z))k0(z)dl(z)

= 0

since g extends continuously across γ.
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Step 1b: J-additivity

Proof of proposition (J-additivity):

γ(t)

γ̂ = hs(γ[s, t])

ht

γ(s)

hs
ht,s = ht ◦ h−1

s
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Step 1b: J-additivity

σht (z) = log |h′t | = log |(ht,s ◦ hs)′| = σht,s (hs(z)) + σhs (z)

πJ(ht) = πJ(hs) +

∫
Σ\γ
|∇(σht,s ◦ hs)(z)|2|dz |2

+ 2

∫
Σ\γ
∇(σht,s ◦ hs) · ∇σhs (z)|dz |2
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Step 1b: J-additivity

Dirichlet energy is a conformal invariant: thus

∫
Σ\γ
|∇(σht,s ◦ hs)(z)|2|dz |2

=

∫
Σ\γ

h∗s
[
|∇σht,s (z)|2|dz |2

]
=

∫
Σ\γ̂
|∇σht,s (z)|2|dz |2

= πJ(ht,s)
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Step 1b: J-additivity

Similarly,

2

∫
Σ\γ
∇(σht,s ◦ hs) · ∇σhs (z)|dz |2

= −2

∫
Σ\γ
∇(σht,s ◦ hs) · ∇(σh−1

s
◦ hs)(z)|dz |2

= −2

∫
Σ\γ

h∗s

[
∇σht,s · ∇σh−1

s
(z)|dz |2

]
= −2

∫
Σ\γ̂
∇σht,s · ∇σh−1

s
(z)|dz |2
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Step 1b: J-additivity

By assumption, J(ht,s) <∞, so σht,s ∈ D(Σ \ γ̂)

One may also compute∫
Σ
|∇σh−1

s
|2|dz |2 = πJ(hs) <∞

so σh−1
s
∈ D(Σ).

By the lemma,

−2

∫
Σ\γ̂
∇σht,s · ∇σh−1

s
(z)|dz |2 = 0
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Step 1b: J-additivity

Thus

πJ(ht) = πJ(hs) +

∫
Σ\γ
|∇(σht,s ◦ hs)(z)|2|dz |2

+ 2

∫
Σ\γ
∇(σht,s ◦ hs) · ∇σhs (z)|dz |2

= πJ(hs) + πJ(ht,s) + 0

as desired.
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Step 2: I = J for linear drivers

Proof that I (γ[0,T ]) = J(γ[0,T ]) when W is linear:

Let W (t) = λt.

I (γ[0,T ]) =

∫ T

0

λ2

2
dt =

λ2

2
T

Also have: T 7→ J(hT ) continuous, additive, hence linear.
Hence it suffices to show

I (γ[0,T ]) ∼ J(hT ) as T → 0
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Step 2: I = J for linear drivers

gt(z) =
√

ht(z2) + λt mapping-out function in H for
√
γ[0, t]

We may exploit the Loewner equation:

∂tgt =
2

gt − λt

Solving produces

σt(z) = −λt
2

(λt + Re (
√
ht(z))− Re (

√
z))

As a consequence, for t > 0,

|∇σt(z)| = O
(
|z |−1/2

)
for z small

|∇σt(z)| = O
(
|z |−3/2

)
for z large

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 47 / 53



Step 2: I = J for linear drivers

gt(z) =
√

ht(z2) + λt mapping-out function in H for
√
γ[0, t]

We may exploit the Loewner equation:

∂tgt =
2

gt − λt

Solving produces

σt(z) = −λt
2

(λt + Re (
√
ht(z))− Re (

√
z))

As a consequence, for t > 0,

|∇σt(z)| = O
(
|z |−1/2

)
for z small

|∇σt(z)| = O
(
|z |−3/2

)
for z large

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 47 / 53



Step 2: I = J for linear drivers

gt(z) =
√

ht(z2) + λt mapping-out function in H for
√
γ[0, t]

We may exploit the Loewner equation:

∂tgt =
2

gt − λt

Solving produces

σt(z) = −λt
2

(λt + Re (
√
ht(z))− Re (

√
z))

As a consequence, for t > 0,

|∇σt(z)| = O
(
|z |−1/2

)
for z small

|∇σt(z)| = O
(
|z |−3/2

)
for z large

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 47 / 53



Step 2: I = J for linear drivers

gt(z) =
√

ht(z2) + λt mapping-out function in H for
√
γ[0, t]

We may exploit the Loewner equation:

∂tgt =
2

gt − λt

Solving produces

σt(z) = −λt
2

(λt + Re (
√
ht(z))− Re (

√
z))

As a consequence, for t > 0,

|∇σt(z)| = O
(
|z |−1/2

)
for z small

|∇σt(z)| = O
(
|z |−3/2

)
for z large

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 47 / 53



Step 2: I = J for linear drivers

gt(z) =
√

ht(z2) + λt mapping-out function in H for
√
γ[0, t]

We may exploit the Loewner equation:

∂tgt =
2

gt − λt

Solving produces

σt(z) = −λt
2

(λt + Re (
√
ht(z))− Re (

√
z))

As a consequence, for t > 0,

|∇σt(z)| = O
(
|z |−1/2

)
for z small

|∇σt(z)| = O
(
|z |−3/2

)
for z large

Ben Johnsrude Equivalent characterizations of Loewner energy 18 Feb 2020 47 / 53



Step 2: I = J for linear drivers

Can apply Stokes:

J(hT ) =
1

π

∫
Γ1∪Γ2

σhT ∂nσhT (z)dl

=
1

π

∫
γ(t)∈Γ1∪Γ2

σhT ∂nσhT (γ(t))dl

=
λ2

4π

∫ T

0

[√
hT (γ(t)−)−

√
hT (γ(t)+)

]
Im
(
∂t
√
γ(t)

)
dt

=
λ2

4π

∫ T

0

[√
hT−t(0−)−

√
hT−t(0+)

]
Im
(
∂t
√
γ(t)

)
dt

using hT = hT−t ◦ ht , since W is linear.
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Step 2: I = J for linear drivers

√
γ satisfies the backward Loewner equation:

∂t
√
γ(t) = − 2√

γ(t)
+ λ

Recall the asymptotics for t small:√
γ(t) = 2i

√
t + O(t)√

ht(0+) = 2
√
t + O(t)√

ht(0−) = −2
√
t + O(t)
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Step 2: I = J for linear drivers

Thus, as T → 0,

J(hT ) =
λ2

4π

∫ T

0

[√
hT−t(0+)−

√
hT−t(0−)

]
Im
(
∂t
√
γ(t)

)
dt

=
λ2

π
(1 + O(

√
T ))

∫ T

0

√
T − t√

t
dt

=
λ2

π
(T + O(T 3/2))

∫ 1

0

√
1− t√
t

dt

=
λ2

2
(T + O(T 3/2))
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Step 2: I = J for linear drivers

Since T 7→ J(hT ) is linear,

J(hT ) =
λ2

2
T = I (γ[0,T ])

the desired identity.
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Step 3: I = J for most drivers

Corollary: I = J when γ is driven by a piecewise linear function.
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Step 4: I = J by approximation

For W of finite Dirichlet energy, pick step functions approximating W ′ in
L2.

=⇒ have piecewise linear drivers approximating W uniformly and in
Dirichlet energy
=⇒ ... =⇒ I = J for general finite-energy drivers

(tools: J is lower semicontinuous, I and J additive)
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