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Background: Loewner evolution

Setting:
e H={zeC:Im(z)> 0}
e ¢ = {v:[0,00) — H simple,y(0) = 0,v(0,00) C H,~(t) — oo}

@ % is the collection of “simple chords in H from 0 to co”
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gt(7(t))

@ For each t > 0,H \ [0, t] is simply-connected
e Have conformal maps g¢ : H\ [0, t] — H, g¢(z) = z + 0,5500(1)
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Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 3/53



Background: Loewner evolution

8t

gt(7(t))

For each t > 0,H \ 7|0, t] is simply-connected

Have conformal maps g; : H \ [0, t] — H, g¢(z) = z + 0,00(1)
Reparametrizing 7y gives g¢(z) = z+ 2 + 0, ,00(z7 1)

Track special value W(t) = g(7(t))
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Background: Loewner evolution

8t

ge(1(t)) = W(t)

For each t > 0,H \ 7|0, t] is simply-connected

Have conformal maps g; : H \ [0, t] — H, g¢(z) = z + 0,00(1)
Reparametrizing 7y gives g¢(z) = z+ 2 + 0, ,00(z7 1)

Track special value W(t) = g(7(t))

(gt)e>0 are the mapping-out functions, t — W(t) is the driving
function
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Background: Loewner evolution

e W(0) =0, W real-valued, continuous
@ v — W is known as the Loewner transform

@ One may derive the Loewner differential equation:

2
Orgt = m, go(z) =z

{sufficiently nice W € Co([0, +00))} <« {simple paths in H from 0 to oo}
=%

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 4/53



Background: Loewner evolution

Sample driver: W =0
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Background:Loewner evolution

Sample driver: W(t) =t

W(t)

Substitute: F¢(z) = gt(z) — t + 2log(2 — g¢(z) + t)
OiFr = -1, Fo(z) = z+2log(2 — z)

Fi(~(t) +t) =2log2+t
Asymptotics: y(t) = 2iy/t + %t + O(t%/?)

Rescaling: W(t) = At = 7(t) = 24(A\2t) = 2Vt + 2At + O(3/?)
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Background:Loewner evolution

Sample driver: W(t) =t

W(t)

Substitute: F¢(z) = gt(z) — t + 2log(2 — g¢(z) + t)
OiFr = -1, Fo(z) = z+2log(2 — z)

Fi(~(t) +t) =2log2+t
Asymptotics: y(t) = 2iy/t + %t + O(t%/?)
Rescaling: W(t) = At = 3(t) = 27(A\2t) = 2iv/t + 2At + O(£3/?)
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Background: Loewner evolution

{sufficiently nice W € Co([0, +00))} not fully understood...
o Includes 1/2-Holder drivers of small norm
e Includes \/kB; where 0 < k < 4 and B; Brownian motion (SLE,)
@ Less regular W generate families of hulls, rather than paths

@ Regularity correspondence: for 0 < oo < 1, # 1/2, have

v e CHY0,00) = W e C1/2(0, 0)
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Loewner energy

Here we choose to study curves driven by finite energy drivers:
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Loewner energy

Here we choose to study curves driven by finite energy drivers:

oowlt2
()dt<oo

1) = I(W) = /0

For W not absolutely continuous, set /() = co.
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Loewner energy

Here we choose to study curves driven by finite energy drivers:

00 W/(t)2

dt < oo

1) = I(W) = /0

For W not absolutely continuous, set /() = co.

I(y) is the Loewner energy of .
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Loewner energy

For v € € with I(y) < oc:
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Loewner energy

For v € € with I(y) < oc:
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a <1
Leo(H)
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(W quasiconformal <= w homeo,
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e v = w(iR>p) for some w : H — H quasiconformal (a quasichord)

osw

—_— <1
Loo (H)

(W quasiconformal <= w homeo, Bow
@ 7 is rectifiable
e ((§) ~ |z — w| as diam(%) — 0, 4 C ~ with endpoints z, w
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Loewner energy

For v € € with I(y) < oc:

e v = w(iR>p) for some w : H — H quasiconformal (a quasichord)

osw

—_— <1
Loo (H)

o,w

(W quasiconformal <= w homeo,

@ 7 is rectifiable

e ((§) ~ |z — w| as diam(%) — 0, 4 C ~ with endpoints z, w
“~ has no corners”

0 /(7)=0 <= 7=iR>p
“I measures how much ~ differs from a line”
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Loewner energy

For v € € with I(y) < oc:

e v = w(iR>p) for some w : H — H quasiconformal (a quasichord)
<1
Loo (H)

e ((§) ~ |z — w| as diam(%) — 0, 4 C ~ with endpoints z, w

osw

27
O,w

(W quasiconformal <= w homeo,

@ 7 is rectifiable

“~ has no corners”
0 /(7)=0 <= 7=iR>p
“I measures how much ~ differs from a line”
o /() = lim.0lim,—0 —k log P [SLE, stays e-close to ]
“~ driven by finite-energy drivers form a skeleton of SLE, for small "
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Guiding question

How may one characterize chords driven by finite-energy drivers?
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Conformal invariance

For A > 0,
I(Ay) = I(t — AW(X721))
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Conformal invariance

For A > 0,
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/ W/ (A~2t)°\"2dt
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Conformal invariance

For A > 0,
I(A\y) =I(t — )\W()\ t))

/ W/ (A~2t)°\"2dt
_/ W'(t)2dt
2 Jo
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Conformal invariance

For A > 0,
I(A\y) =I(t — )\W()\ ))

/ W’ (A A2 dt
_2/0 W' (t)?dt
=1(7)
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Conformal invariance

For A > 0,
I(A\y) =I(t — )\W()\ t))

/ W/ (A~2t)°\"2dt
_ = ! 2
= 2/0 W'(t)“dt
=1(v)

= [ is invariant under conformal automorphisms of (H, 0, c0)
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Conformal invariance

For any D C C simply connected, a, b distinct prime ends of D, may
form Loewner energy for (D, a, b):

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 12 /53



Conformal invariance

For any D C C simply connected, a, b distinct prime ends of D, may
form Loewner energy for (D, a, b):

Ip.ab(7) = l000(¢" 0 7)

¢ : (H,0,00) = (D, a, b) conformal
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Conformal invariance

For any D C C simply connected, a, b distinct prime ends of D, may
form Loewner energy for (D, a, b):

ID,2,6(7) = h,0,00 (¢ 07)
¢ : (H,0,00) = (D, a, b) conformal
Well-defined!
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Conformal invariance

Sample domain: (X := C\ Rxg, 0, 00)
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Conformal invariance

Sample domain: (X := C\ Rxg, 0, 00)

™__ o1

I 0,00 () = I,0,00(v/7)
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J-energy

Hy v Mmoo H
o ho -

Z\’y:HlUHz
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J-energy

Hy v Mmoo H
o ho -

Z\’y:HlUHz

Idea: ~ is close to a line <= Hji, H» are close to half-planes
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Hl v _—
H2 hy -

Z\’y:HlUHz

Idea: ~ is close to a line <= Hji, H» are close to half-planes

— Measure how much hy, hy differ from an affine map
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J-energy

hy : Hy = H, hy:H, — H* conformal

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020



J-energy

hy : Hy = H, hy:H, — H* conformal

beldof? = |12
_ e2 Iog|hj’.\ |d2’2

=: €| dz|?
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hy : Hy = H, hy:H, — H* conformal

beldof? = |12
_ e2 Iog|hj’.\ |d2’2

=: €| dz|?

h; affine <= o; constant

— / Voy2ldzl? = 0
H;
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J-energy

So we define
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So we define

1
J(v) =J(h:=h1Uhy) = = /):\ Vo |?|dz|?
g

_1/ ?
T JE\y

/!
|dz|?

hl
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So we define

1
J(v) =J(h:=h1Uhy) = = /):\ Vo |?|dz|?
g

_1/ ?
T JE\y

/!
|dz|?

hl

(well-defined)
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Equivalence of energies

Theorem (Y. Wang '19): If vy is a simple chord in X from 0 to oo, then

I.0,00(7) = J(7)
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Equivalence of energies

Theorem (Y. Wang '19): If vy is a simple chord in X from 0 to oo, then

I.0,00(7) = J(7)

Proof: To be discussed in the sequel.
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Loop version of J-energy

0 R
hy
H> - H*
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Loop version of J-energy

h
H, o H
0 R
ho
H, E— H*

Note: h1, ho are more directly related to v U R>¢ than to v
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Note: h1, ho are more directly related to v U R>¢ than to v
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Loop version of J-energy

h
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Note: h1, ho are more directly related to v U R>¢ than to v

=—> may extend J to be defined on all loops passing through oo!
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Loop Loewner energy

Should have a loop analogue of /-energy...

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 19 /53



Loop Loewner energy

Should have a loop analogue of /-energy...
For v:[0,1] — C simple loop, set

/L(%'Y(O)) = EI'_TO /(c\,y[o el () ( [e,1])
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Loop Loewner energy

IL(% 7(0)) = EI'_’PO I(C\'y[o el )y (7[5 1])
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Loop Loewner energy

L
I1%(v,~(0)) —al'_’Po /@\7[0 el )y ( [e,1])
o /L Mdbius invariant: for i : C — C Mébius,

157, 7(0)) = IM(u(y), 1(7)(0))
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Loop Loewner energy

L
I1%(v,~(0)) —al'_’Po /@\7[0 el )y ( [e,1])
o /L Mdbius invariant: for i : C — C Mébius,

157, 7(0)) = IM(u(y), 1(7)(0))

o /L independent of choice of root and orientation:

1H(t = y(£),7(0) = 15(t = (s + £),7(s)) = 1H(t = 7(~1),7(0))
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Loop Loewner energy

L
I1%(v,~(0)) _ah—% /@\7[0 el )y ( [e,1])
o /L Mdbius invariant: for i : C — C Mébius,

157, 7(0)) = IM(u(y), 1(7)(0))

o /L independent of choice of root and orientation:

1H(t = y(£),7(0) = 15(t = (s + £),7(s)) = 1H(t = 7(~1),7(0))

— /L is well-defined on the space of simple loops (i.e. loops not
equipped with a parametrization)
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Equivalence of loop energies

Applying a Mobius transformation so that v(0) = oo, we have the general
identity:
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Equivalence of loop energies

Applying a Mobius transformation so that v(0) = oo, we have the general
identity:

Theorem (Y. Wang '19): If v is a simple loop in C through oo, then

1
‘e =1 [
i

2
|dz|* = J(v)

/!

2

Ben Johnsrude

Equivalent characterizations of Loewner energ 18 Feb 2020

21/53



Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 22 /53



Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Observations: for v loop of finite energy,

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 22 /53



Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Observations: for v loop of finite energy,

@ ~ is a quasicircle (image of {|z| = 1} under quasiconformal map of @)

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 22 /53



Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Observations: for v loop of finite energy,
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@ 7 rectifiable (don’t have all quasicircles)
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Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Observations: for v loop of finite energy,
@ ~ is a quasicircle (image of {|z| = 1} under quasiconformal map of @)
@ 7 rectifiable (don’t have all quasicircles)

o /L Mdbius invariant, so may choose to identify loops by action of
Mobius transformations
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Loops of finite energy

New problem: What are the loops of finite Loewner/J energy?

Observations: for v loop of finite energy,
@ ~ is a quasicircle (image of {|z| = 1} under quasiconformal map of @)
@ 7 rectifiable (don’t have all quasicircles)

o /L Mdbius invariant, so may choose to identify loops by action of
Mobius transformations

Idea: identify finite energy loops as a subspace of universal Teichmiiller
space!
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Teichmiiller space
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Teichmiiller space

g

/\

T(1) = {~ quasicircle} /M&b
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Teichmiiller space

g

/‘\

T(1) = {~ quasicircle} /M&b

~ {f,g complementary conf. maps extending qg.c.'ally to (AZ} / ~
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Teichmiiller space

g

/‘\

T(1) = {~ quasicircle} /M&b

~ {f,g complementary conf. maps extending qg.c.'ally to (AZ} / ~

T(1) admits natural structure of a Hilbert manifold (Takhtajan-Teo '06)
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Teichmiiller space

g

/‘\

Theorem (Takhtajan-Teo '06) Let y be a simple bounded loop. TFAE:
@ y€ To(l) (connected component of {|z| =1})

° In|7

o fop|& ) |dz|? < o

LG ]dz]2 < 00
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Teichmiiller space

g

/‘\

Theorem (Takhtajan-Teo '06) Let y be a simple bounded loop. TFAE:
@ y€ To( ) (connected component of {|z| = 1})

° In|7

o fop|& ) |dz|? < o

f" |dz|? < o0

Such quasicircles v are known as Weil-Petersson class.
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Characterization of finite-energy loops

Theorem (Y. Wang '19) Let v be a (bounded) simple loop in C. Then

IL(7) < oo < y€ To(1)
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Characterization of finite-energy loops

Theorem (Y. Wang '19) Let v be a (bounded) simple loop in C. Then
I"(y) < 00 = v € To(1)

Moreover,

I*(7) = %51(7)

where S1 is the universal Liouville action To(1) — R, a Kihler potential
for the Weil-Petersson metric on Ty(1).

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 25 /53



End of Part 1

End of part 1.

h
H1 41> H
0 R
ho
H> - H*
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Part 2: Core steps

We now demonstrate some of the core steps in the proof of [ = J in
the chordal case.
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Step la: Additivity

We may compute the energy of finite-length simple chords:
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Step la: Additivity

We may compute the energy of finite-length simple chords:

T !
.00 (3]0, T]) = / w ét)zdt

0
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Step la: Additivity

We may compute the energy of finite-length simple chords:

T !
.00 (3]0, T]) = / w ét)zdt

0
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Step la: Additivity

We may compute the energy of finite-length simple chords:

Twlt2
()dt

2000 (1[0, T]) = /0

~1
e
0

= h,0,00 (7[07 T])
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Step la: Additivity

We may compute the energy of finite-length simple chords:

T !
.00 (3]0, T]) = / w ét)zdt

0

:/OOO; [;/tW(t/\ T)rdt

= /H,O,oo (W)

where [0, T] is the “completed” chord given by [0, T] followed by the
geodesic from (T) to oc.
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Step la: /-Additivity

W(T) 7[0, T]
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Step la: /-Additivity

W(t)
/ ............................... 7[0, T]
W(tAT)
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Step la: /-Additivity

0<t<T,
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Step la: /-Additivity

0<t<T,
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Step la: /-Additivity

0<t<T,
Y(T)

® I,0,00(7[0, T])
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Step la: /-Additivity

0<t<T,

® I,0,00(7[0, T])

@ IH,O,oo ('7[07 t])
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Step la: /-Additivity

0<t< T,

@ IH,O,oo ('7[07 T])

® I,0,00(7[0, t])

o fe\a[o,e]0(t),00(Y[Es TT)

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 30/53



Step la: /-Additivity

0<t<T,
v(T)
°® I 0,00(7[0, T])
v(t)
® I,0,00(7[0; t])
o fe\a[o,e]0(t),00(Y[Es TT)
[-additivity:

/H,O,oo(7[07 T]) = /H,O,oo(7[07 t]) + IH\w[O,t],w(t),oo(V[ta T])
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Step 1b: J-Additivity

Want to establish an analogous additivity result for J-energy.
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Step 1b: J-Additivity

Want to establish an analogous additivity result for J-energy.

May compute the J-energy for finite-length curves by extension:
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Step 1b: J-Additivity

Want to establish an analogous additivity result for J-energy.

May compute the J-energy for finite-length curves by extension:

H: o H
o \
H2 h2 H*
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Step 1b: J-Additivity

Want to establish an analogous additivity result for J-energy.

May compute the J-energy for finite-length curves by extension:

Hy o H
o SN
H2 h2 H*
1 12
sl Y= I (GOT) = 1 [ | e
UM

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 31/53



Step 1b: J-additivity

Note: one choice of h = h; U hy would be the mapping-out function

h:E\4[0,T] = X, h(x(T))=0, h(z)=z+O0(1)
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Step 1b: J-additivity

For0<t<T,
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Step 1b: J-additivity

For0<t<T,

’Y(D/\ b
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Step 1b: J-additivity

For0<t<T,

hy
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Step 1b: J-additivity

For0<t<T,

h
g hre=hroht
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Step 1b: J-additivity

Proposition (J-additivity): Let v[0, T] be a simple chord in (¥, 0, c0)
with finite Loewner energy. Then, forall0 <s<t< T,

J(ht) = J(hs) + J(ht,s)
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Step 1b: J-additivity

To prove the proposition, we need a lemma.
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Step 1b: J-additivity

To prove the proposition, we need a lemma.
For 2 a domain, set

2(Q) = {g € C>®(Q): /Q |Vg|2dz? < oo}
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Step 1b: J-additivity

To prove the proposition, we need a lemma.
For 2 a domain, set

2(Q) = {g € C>®(Q): /Q |Vg|2dz? < oo}

Lemma: If a finite capacity curve v = [0, T] in (X, 0, c0) satisfies:
e YURsq is C1@ for some o > 0,

° O-hTE‘@(Z\/}/)
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Step 1b: J-additivity

To prove the proposition, we need a lemma.
For 2 a domain, set

2(Q) = {g € C>®(Q): /Q |Vg|2dz? < oo}

Lemma: If a finite capacity curve v = [0, T] in (X, 0, c0) satisfies:
e YURsq is C1@ for some o > 0,
° op € Z(X\ )

then, for all g € 2(Y),

Vg -Vou(2)|dz]? =0
T\y
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Step 1b: J-additivity

Sketch of proof of Lemma: Denote ' =5 UR>q and Hy, H> the
components of C\ T.

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 36 /53



Step 1b: J-additivity

Sketch of proof of Lemma: Denote ' =5 UR>q and Hy, H> the
components of C\ I'. We assume:

@ g compactly supported in C
o g|y, and gy, extend to C>®(Hi) and C*°(Hs)

@ [ smooth
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Step 1b: J-additivity

Sketch of proof of Lemma: Denote ' =5 UR>q and Hy, H> the
components of C\ I'. We assume:

@ g compactly supported in C

e gl and gl extend to C>®(Hy) and C*°(H,)
@ [ smooth

(for less smooth I, approximate by hl_ﬁ-(]R{ + ig))
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Step 1b: J-additivity

Integrating by parts:
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Step 1b: J-additivity

Integrating by parts:

/ Vg - Vo, (2)|dz]? = / Vg - Vo, (z)|dz?
T\y Hi{UH>
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Step 1b: J-additivity

Integrating by parts:
/ Vg - Vo, (2)|dz]? = / Vg - Vo, (z)|dz?
T\y Hi{UH>
= —/ gAahT(z)\dz\2
H{UH>

+ /rlurg g(2)0non, (2)dl(z)
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Step 1b: J-additivity

Integrating by parts:
/ Vg - Vo, (2)|dz]? = / Vg - Vo, (z)|dz?
T\y Hi{UH>
—— [ gty (e
H{UH>
+ / &(2)0h0n, (2)dI(2)
rurp

- / £(2)0n0n, (2)dl(2)
ulrs
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Step 1b: J-additivity

General formula relating o, to curvature:
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Step 1b: J-additivity

General formula relating o, to curvature:

Onohr (2) = k(h7(2))e™ ) — ko(2)
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Step 1b: J-additivity

General formula relating o, to curvature:

Onohr (2) = k(h7(2))e™ ) — ko(2)

Along I, ht(z) € OH which has curvature 0, so k(ht(z)) = 0.
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Step 1b: J-additivity

General formula relating o, to curvature:

Oy (2) = K(h7(2))e” @) — ko(z)
Along I, ht(z) € OH which has curvature 0, so k(ht(z)) = 0.

Along Rzo, ko(Z) =0.
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Step 1b: J-additivity

Thus

Vg - Vo, (2)|dz|? = / &(2)9non (2)dI(2)

T\y M ur;
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Step 1b: J-additivity

Thus

Vg - Vo, (2)|dz|? = / &(2)9non (2)dI(2)

T\y M ur;

- / (&l (2) — &l (2))kol(2)dl(2)

5
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Step 1b: J-additivity

Thus

Vg - Vo, (2)|dz|? = / &(2)9non (2)dI(2)

T\y M ur;

- / (&l (2) — &l (2))kol(2)dl(2)
—0

since g extends continuously across 7.
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Step 1b: J-additivity

Proof of proposition (J-additivity):

v(s)

v(t) "\
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Step 1b: J-additivity

Proof of proposition (J-additivity):

7(})/\ e
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Step 1b: J-additivity

Proof of proposition (J-additivity):

"/‘//’\ ht
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Step 1b: J-additivity

Proof of proposition (J-additivity):

v(f)/\ "

hs
\ %; == ht (¢] hs_l
~ 7 = hs(vls: t])
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Step 1b: J-additivity

on(2) = log |hy| = log|(hts © hs)'| = o, ,(hs(2)) + on,(2)
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Step 1b: J-additivity

on(2) = log |hy| = log|(hts © hs)'| = o, ,(hs(2)) + on,(2)

7 J(he) = wJ(hs) + /Z V(om0 )1

+ 2 V(O-ht‘,s © hs) : vO-hs(z)|dz|2
T\y
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Step 1b: J-additivity

Dirichlet energy is a conformal invariant: thus
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Step 1b: J-additivity

Dirichlet energy is a conformal invariant: thus

/ IV (0h. o he)(2)Pldzl?
T\y
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Step 1b: J-additivity

Dirichlet energy is a conformal invariant: thus

/ IV (0he. 0 hs)(2) 2|2 = / e [[Von . (2)PldzP]
Z\y T\y
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Step 1b: J-additivity

Dirichlet energy is a conformal invariant: thus

/ IV (0he. 0 hs)(2) 2|2 = / e [[Von . (2)PldzP]
T\y T\y
— / Von.(2)]dz]?
\§
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Step 1b: J-additivity

Dirichlet energy is a conformal invariant: thus

/ IV (0he. 0 hs)(2) 2|2 = / e [[Von . (2)PldzP]
Z\y T\y

— / Von.(2)]dz]?
£\
:WJ(ht7s)
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Step 1b: J-additivity

Similarly,
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Step 1b: J-additivity

Similarly,

2/ V(0h,, © hs) - Vou,(2)|dz|
T\y
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Step 1b: J-additivity

Similarly,

2/ V(0h,, © hs) - Vou,(2)|dz|
T\y

=-2 V(oh,, ohs) - V(o,-10 hs)(z)|dz|?
T\y ’
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Step 1b: J-additivity

Similarly,

2/ V(0h,, © hs) - Vou,(2)|dz|
T\y

=-2 V(oh,, ohs) - V(o,-10 hs)(z)|dz|?
T\y ’

=2 / h [Vaht’s'Vah_l(z)|dz|2
=\y °
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Step 1b: J-additivity

Similarly,

2/ V(0h,, © hs) - Vou,(2)|dz|
T\y

=-2 V(oh,, ohs) - V(o,-10 hs)(z)|dz|?
T\y ’

=2 / h [Vaht’s'Vah_l(z)|dz|2
=\y °

=-2 [ Vop,  Vo,1(z)|dz|?
T\F )
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Step 1b: J-additivity

By assumption, J(hts) < 00, so ap,, € Z(X\ 5)
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Step 1b: J-additivity

By assumption, J(hts) < 00, so ap,, € Z(X\ 5)
One may also compute

/ Vo, 1 |?|dz|* = nd(hs) < oo
z S

so 0,1 € Z(X).
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Step 1b: J-additivity

By assumption, J(hts) < 00, so ap,, € Z(X\ 5)
One may also compute

/ Vo, 1 |?|dz|* = nd(hs) < oo
z S

so 0,1 € Z(X).
By the lemma,

i / Von,. - Vo, 1(z)|dzP = 0
=\y °
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Step 1b: J-additivity

Thus

7 J(he) = wJ(hs) + /z V(om0

+2 V(oh,, o hs) - Vou,(z)|dz|?
T\
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Step 1b: J-additivity

Thus
7 J(he) = mJ(hs) + / V(0 0 he)(2)|dzf?
T\y
2 [ V(on, ohs) Vou(2)|def
T\y
=mJ(hs) +mJ(hs)+0
as desired.

Ben Johnsrude Equivalent characterizations of Loewner energ 18 Feb 2020 45/53



Step 2: | = J for linear drivers

Proof that /(y[0, T]) = J(7[0, T]) when W is linear:
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Step 2: | = J for linear drivers

Proof that /(y[0, T]) = J(7[0, T]) when W is linear:

Let W(t) = At.
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Step 2: | = J for linear drivers

Proof that /(y[0, T]) = J(7[0, T]) when W is linear:

Let W(t) = At.

T>\2 )\2
I(v[o, T :/ Zat=2T
G0.T)= [ =7
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Step 2: | = J for linear drivers

Proof that /(y[0, T]) = J(7[0, T]) when W is linear:

Let W(t) = At.
T )\2 )\2

Also have: T — J(ht) continuous, additive, hence linear.
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Step 2: | = J for linear drivers

Proof that /(y[0, T]) = J(7[0, T]) when W is linear:

Let W(t) = At.

TN
([0, T _—/ Zd=2T

Also have: T — J(ht) continuous, additive, hence linear.
Hence it suffices to show

I(v[0, T]) ~J(ht) as T —0
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Step 2: | = J for linear drivers

e gi(z) = \/ht(z?) + At mapping-out function in H for /7|0, t]
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Step 2: | = J for linear drivers

e gi(z) = \/ht(z?) + At mapping-out function in H for /7|0, t]

@ We may exploit the Loewner equation:
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Step 2: | = J for linear drivers

e gi(z) = \/ht(z?) + At mapping-out function in H for /7|0, t]

@ We may exploit the Loewner equation:

2
8t — At

Otgr =
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Step 2: | = J for linear drivers

e gi(z) = \/ht(z?) + At mapping-out function in H for /7|0, t]

° We may exploit the Loewner equation:

2
— At

Otgr =
8t

@ Solving produces

oo(z) = — 2 > (At + Re (v/hi(2)) — Re (v2))
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Step 2: | = J for linear drivers

e gi(z) = \/ht(z?) + At mapping-out function in H for /7|0, t]

° We may exploit the Loewner equation:

2
— At

Otgr =
8t

@ Solving produces
At
oi(z) = — )\t—i-Re(\/ht — Re(v/2))

@ As a consequence, for t > 0,

|[Voi(z)|= O <|z\*1/2> for z small

|Voi(z)] = O (]z|73/2> for z large
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Step 2: | = J for linear drivers

Can apply Stokes:
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Step 2: | = J for linear drivers

Can apply Stokes:

1
Shry =1 /r by Ohne(2)d]
1 2

™
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Step 2: | = J for linear drivers

Can apply Stokes:

1
Shry =1 /r by Ohne(2)d]
1 2

™

1
=- / Oy Onhr (1))l
T Jy(t)elrury

18 Feb 2020 48 /53
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Step 2: | = J for linear drivers

Can apply Stokes:

1
J(hr) =+ / s O (2)dl
T Jriurs

1
_1 / Oy Onrny (1(£))dl
(t)€F1UF2

)\2

MT (07 = Vhr (O] Im (9:v/3(1)) ae
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Step 2: | = J for linear drivers

Can apply Stokes:

1
J(hr) =+ / s O (2)dl
T Jriurs

1
_1 / Oy Onrny (1(£))dl
(t)erury

_ X / ' [\/hr(v(f)‘) ~Vhr ()] Im (9:/A(0)) dt

47
_ 2; / (VAT 07) ~ Vhr—o(0%)] Im (0e/3(2)) ot

using ht = hr_; o hg, since W is linear.
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Step 2: | = J for linear drivers

\/7 satisfies the backward Loewner equation:
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Step 2: | = J for linear drivers

\/7 satisfies the backward Loewner equation:

2
O/ (t) = — + A

V(t)
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Step 2: | = J for linear drivers

\/7 satisfies the backward Loewner equation:

2
O/ (t) = — + A

V(t)

Recall the asymptotics for t small:
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Step 2: | = J for linear drivers

\/7 satisfies the backward Loewner equation:

\/7_

+ A

V v(t)
Recall the asymptotics for t small:
Vi(t) = 2iVe + O(t)

Vh(0F) = 2/t + O(t)
he(07) = =2Vt + O(t)
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Step 2: | = J for linear drivers

Thus, as T — 0,
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Step 2: | = J for linear drivers

Thus, as T — 0,
J(ht) = jjr/oT [\/hT_t(0+) — \/hT_t(O*)] Im (at ’y(t)) dt
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Step 2: | = J for linear drivers

Thus, as T — 0,

J(ht) = 2;/ [\/hr (0F) — V/hr_o ]lm (at ’y(t)) dt
_ ):(1 + O(ﬁ))/o v fft_ gt
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Step 2: | = J for linear drivers

Thus, as T — 0,

J(ht) = 2;/ [\/hr (0F) — V/hr_o ]lm (at ’y(t)) dt

~ X+ O(ﬁ))/o v fft_ e
)\2

“(T+0(T*?) )/01 : 1\/;tdt
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Step 2: | = J for linear drivers

Thus, as T — 0,

J(ht) = 2;/ [\/hr (0F) — V/hr_o ]lm (at ’y(t)) dt

~ X+ O(ﬁ))/o v fft_ e
)\2

“(T+0(T*?) )/01 : 1\/;tdt

= 7(T +0(T3%/?))

Ben Johnsrude
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Step 2: | = J for linear drivers

Since T — J(h7) is linear,
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Step 2: | = J for linear drivers

Since T — J(h7) is linear,

)\2
Jhr) = ST = 1(5[0, T))

the desired identity.
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Step 3: | = J for most drivers

Corollary: | = J when ~ is driven by a piecewise linear function.
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Step 4: | = J by approximation

For W of finite Dirichlet energy, pick step functions approximating W’ in
L2,
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Step 4: | = J by approximation

For W of finite Dirichlet energy, pick step functions approximating W’ in
L2.

— have piecewise linear drivers approximating W uniformly and in
Dirichlet energy
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Step 4: | = J by approximation

For W of finite Dirichlet energy, pick step functions approximating W’ in
L2,
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Step 4: | = J by approximation

For W of finite Dirichlet energy, pick step functions approximating W’ in
L2,

— have piecewise linear drivers approximating W uniformly and in
Dirichlet energy

= ... = | = J for general finite-energy drivers

(tools: J is lower semicontinuous, / and J additive)
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