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Abstract

We note that the subpolynomial factor for the ¢9L” small cap decoupling constants for the
truncated parabola P! = {(¢,#%) : |t| < 1} may be controlled by a suitable power of log R. This is
achieved by considering a suitable amplitude-dependent wave envelope estimate, as was introduced
in a recent paper of Guth and Maldague to demonstrate a small cap decoupling for the (2+1) cone;
we demonstrate that the version for P! may be taken with a loss controlled by a power of log R as
well.

1 Introduction

In this note, we record that the methods of [10] suffice to derive small cap decoupling estimates for
functions with Fourier support in the R~*-neighborhood of the truncated parabola P! = {(z,z?) : |z <
1} with constant of the form (log R)C.

Small cap decouplings were introduced in [4]; we recall the formulation here. For large parameters
R > 1, set Ng-1(P!) to be the R™1-neighborhood of the truncated parabola. Consider a Schwartz
function f : R? - C such that supp(f) € Ng-1(P!), where " denotes the Fourier transform. Let
B € [3,1]. Partition Nz-1(P') into a collection T'g(R™) of sets 7, which are the intersections of
Np-1(P) with sets of the form [c,c+ R™?] x R; one may note that such + are approximately boxes of
dimensions R x R7!, in the sense that for each v we may find a box B such that B ¢ v c CB for a
universal constant C', where C'B denotes dilation about the center of B. Set

fo(z) = L f(e)ericrag

to be the Fourier projection of f onto . Here and elsewhere all integrals will be with respect to
Lebesgue measure. If p,q € [1,00), set D, ,(R; ) to be the infimal constant such that

p/q
f|r§,,(R2)st,q<R;5)( > vall‘ip(Rz)) .

’yEFB(R_l)

The landmark paper [2] demonstrated the estimate D) o(R; %) Se REforalle >0 and 2 < p<6. The
authors of [8] provided the improved estimate Dg o2 (R; %) S (log R)® for a suitable constant C' > 0; the
authors of 7] sharpened this upper bound to C:(log R)'?*¢ for a bilinear variant over Q,, implying
a matching discrete restriction estimate (over R) with very good logarithmic constant. In another
direction, the authors of [4] introduced the constants D, ,(R;3) for 3 e (%,1], and showed that

Dy p(R; B) Se RPG79)* for all £ > 0 and 2 < p<2+ % (Theorem 3.1). Each of these bounds is sharp
up to the subpolynomial factors.
Our goal will be to show the following;:
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Theorem 1.1 (Small cap decoupling with logarithmic losses). There exists a constant E1 = E1(p) >0
depending only on p such that the following holds. Let p,q > 1 satisfy % + é <1, R>2, and B ¢ [%, 1].
Then the small cap decoupling constant satisfies

1_1
q

Dyy(R; B) s (log R)™ (1 + RPPgD-1, prg ). (1.1)

Our methods permit one to take E1 =30 + 3p.

This formulation of the decoupling estimate, with instead a factor of C: R® in place of the logarith-
mic factor, was originally proven in [5] (Corollary 5). For each triple (p, g, 3), the dominating term on
the right-hand side in [I.I] may be realized by a particular choice of f with large R, as demonstrated in
[5] (Section 2), up to the subpolynomial factor. Thus the power-law terms are each separately sharp
in the regime where they dominate.

In [1] (Remark 2), it was demonstrated using number theory methods that Dg2(R; %) > (log R)R.
It is not currently known if there is any other p, 8 with 2 < p < 2+ % such that the subpolynomial
factor is unbounded in R.

Our estimate is derived by first proving a version of an auxiliary wave envelope estimate, which
is precisely stated in Theorem We will write |S| to denote the Lebesgue measure of sets S.

Theorem 1.2 (Wave envelope estimate). There erists a constant Eo >0 such that the following holds
for all R> 1. Let f:R? - C be Schwartz with Fourier support in Ng-1(P'). Then, for any a >0,

ot lf@l>a) (gD Y Y Y Syl
R 12<5<1 7:4(7)=5UeG~
sdyadic

Our methods permit one to take Eo = 31.

Here we use the following notation: Ur g is a rectangle of dimensions R x sR, with long edge in
the direction of the normal vector to P! at the center of 7, centered at 0; the set G, is the subset of
the tiling of R? by translated copies of U, g for which the following holds:

2

Cog R)'UT™ | Tl > o

for suitable choice of C, D > 0. Here #7 denotes the number of 7 of a particular length for which
fr # 0. Lastly, we use Sy f to denote the restricted square function (Y e, | f9|2)‘U; one may observe
that the quantities s and R may be read off of the dimensions of U, and 7 is then uniquely determined
from the direction of U’s long edge, so this definition is well-formed.

Wave envelope estimates were introduced in [9] for the purpose of proving the reverse square
function estimate for the cone in R (Theorem 1.3). In [10], these wave envelope estimates were
refined to include only those envelopes corresponding to “high-amplitude” components of the various
square functions. The latter paper demonstrated that the wave envelope estimate could also be used
to derive the small cap results of [5]. Our argument closely follows that of |10], but with various
technical refinements to facilitate a logarithmic constant in the wave envelope estimate (e.g. a gentler
sequence of scales Ry).

We make use of the following notation. For A, B > 0, we say A $ B if A < CB for a suitable
constant C' which may vary from line to line, which does not depend on any variable parameters in
the problem unless explicitly indicated. We also write A ~ B if A < B and B < A. The expression
O(B) will be used to denote a quantity which is < B. We also note from the outset that we slightly
redefine the notation f to something better suited to our purposes than its usual meaning; see the
pruning section below.

(1.2)
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Throughout the paper, given a parallelogram B, we will write cp for the center of B. For a scalar
A >0, we will write AB for the box with the same center cg but with sidelengths increased by the factor
A. We will also use an asterisk * to denote a dual of parallelograms, that is, B* is the parallelogram
centered at 0 with the same edge directions but inverse lengths; note that this differs slightly from the
notion of the polar of a convex set, which is sometimes chosen to play essentially the same role as our
B*.

The remainder of the paper is organized as follows. In section 2 we first give an overview of the
argument, then provide the pruning and lemmas needed in the proof of Theorem In section 3} we
prove Theorem In section [ we show that Theorem [1.2] proves Theorem [I.1

2 Infrastructure for proving Theorem [1.2

2.1 Overview of the argument

We first recall the general intuition behind the shape of the right-hand side of Theorem without
considering the amplitude dependence. Consider a Schwartz function f : R? — C with Fourier support
contained in AVz-1(PP!). The L* square function estimate for P* implies that

Jits [ISinle

202)2 = S £12(€)2.
JISP@E= [ ISk

We study the latter integral by considering the contributions from different regimes of values of [¢].
Since each fy has Fourier support contained in the cap 6 of size ~ R™12x R, the support of the latter
integral is contained in the ball of radius 2R™/? centered at the origin, so we only need to consider
frequency contributions below this magnitude.
On the other hand,
‘/|;|<R‘1

for a suitable weight wp, which is ~1 on Bpr and rapidly decays outside of Bg; if we write the latter
integral as a sum of integrals over cubes Qg,

2 2
It o' 2 [ |07 ouf

By Plancherel,

SR 5 [ |10« 82w, |

Since Bp is a square of sidelength R, the convolution is approximately constant on such Qr. Thus

2
%[QR|;|f6|2*(R_ZwBR)|2SC;;|QR|_1 ([ WQRZG:UGF)

for suitable weights W, which are approximate cutoffs to the set Q. Thus

Jeen

which is one of the summands on the right-hand side of

2
ST s T1erl ([ W TIP)
0 Qr 0
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More generally, if we consider integrals of the form

Je

then we may instead make use of the approximate orthogonality of the families {3 4c; | f9|2}£(r)— 1

Zlfe|2(§)| Ler< R

notice that, by finite overlap,

e \Z\ferz(f)\ 2 oo,

> SR

and that the functions

2
Yol fol” * X,
ocr
are approximately constant on sets of the form U| U, r, where x., is a smooth cutoff to the annulus
|¢| ~ r. Thus, as above,
f|~7"

which is also of the right shape for our theorem.
We may observe from the preceding calculation that we would have proved Theorem if, for
each 7 and each U|U; g, we had the estimate

oct

SRl > wr "/ WUZW)

2

Clo BT [ S 1fof* > 5

or else Sy f is negligible, say O(R™19). It is natural therefore to split f into pruned pieces for which
the non-negligible Sy; f satisfy the “good” estimate above, at various scales. Our prunings, following
[10], will therefore be written as follows:

f=fn+f8
IN= I+ 18

fno1= fyoa+ R

fo=fi+f8

where f,, is given by trivializing the contributions Sy f, U|U- g, d(7) S (log R)™™, for which |1.2| fails.
To illustrate, the first phase of pruning is as follows. Take the wave packet expansion of f at scale

R, say
n Y Y i,
6 TGTQ
and define fy to be
IN=> > vrfe
6 TeTy

where Ty is the set of T' for which

Oé2

Collos YT [ 113 2 ga
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for a suitable pruning constant C,. If we apply the L* square function estimate/Plancherel /dyadic
pigeonholing argument outlined above to fy, then the contribution of the integral along [{| ~ r of fx
will be acceptable for Theorem when r 3 R™V/2.

However, the other annular integrals will involve wave envelopes of other dimensions which have not
yet been pruned, and it will be necessary to consider deeper prunings. In particular, if we decompose
SN = fn-1+ 5 by defining

n-1=) fn-10,
0

with fy_1¢ equal to the sum of the wave envelopes of scale ~ (log R)Rl/ 2 x R with appropriately high
amplitude square functions, then more of the integrals of fy_1 will be acceptable; on the other hand,
since f]l\g, is high-amplitude on small wave packets and low-amplitude on larger wave packets, it must
be that fjl\g, is dominated by high-frequency contribution (as otherwise low-dominance would imply
sufficient local constancy to reach a contradiction).

Proceeding inductively, we replace f by a sum of N functions f + 2%22 f,lz, where the “bad” func-
tions fnlfb have acceptable high-frequency contributions and are also dominated by those contributions,
and where the lowest function f; satisfies the wave envelope estimate by construction.

We remark on the difference between this work and the work in [8], where logarithmic bounds were
derived from canonical-scale decoupling. There, the critical problem was to provide good bounds on

integrals like f | Socr, |fol* * n’p |

pruning supplies a decomposition f = f; + Z%:z 1B such that each f2 satisfies good bounds on those
integrals by definition, and the problem instead becomes to reducing more general integrals to these.

One additional technical advantage in the current work is the use of wave packets with near-
exponential decay, which permits one to improve Schwartz-type decay to decay of the form e"’”'l_g,
while preserving compact support on the Fourier side. Such decay on the spatial side is sufficient
to prevent super-logarithmic losses in our setting, particularly when estimating the interference of
parallel wave packets via Cauchy-Schwarz. The authors of [8] handled this issue by appealing to wave

packets defined by Gaussian weights, which possess the technical difficulty of having noncompact
—c|a| 172

2 . . . .
, and the pruning was set up to assist this. In this paper, the

—cla]

Fourier support. Note too that, by analyticity, the decay e could not be improved to e
Lastly, we refine the argument of |10] by applying a modified broad/narrow argument and a

modified pigeonholing, which are chosen to avoid superlogarithmic losses. Each of these have appeared

elsewhere in the literature before; for example, the broad /narrow argument is adapted from [8].

2.2 Initial notation-setting

We begin by reproducing some of the language of [10], with minor modifications. Fix arbitrary a > 0,
and R €22 sufficiently large; we will occasionally assume that R is large enough that loglog R exceeds
a universal constant. Throughout the paper, we will use B to denote the ball of radius R centered
at 0. Let Uy = {x € Bg:|f(z)| > a}.

We will need a sequence of scales. Let N be the least integer greater than or equal to log R

2 loglog R*
Let Ry, := (logR)* for k = 0,...,N -1, and define Ry := RY2. Assuming R is large, we may take
CN < log R for suitable constants C. We note here that, as long as R > €2, then Ry, > 2¥, and so it
will suffice to prove Theorem with “s dyadic” replaced by “s € (log R)%.”

Next, let {8} be a partition of Nz-1(P") by approximate R~/? x R™! rectangles, and similarly let
{7} be a partition of N, R;! (P') by approximate R,;l X Rf rectangles; here and throughout the paper,

the notations 7y and 6 are interchangeable. We assume that for k£ < k' and each choice of 7, 7 we
either have 1 € 73, or 74 N 7 = F. We also write 79 for the full Nz (Pl).

By scaling, it will suffice to consider the case when maxy | fy| = 1; since we are bounding |Uy|, we
will assume also that o < RY/2. By considering the summand on the right-hand side of the inequality
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in Theorem corresponding to s = 1, it suffices to consider the case a > 1.

For each point p € P, let t, be the tangent vector to P! at p pointing in the positive-z direction.
Similarly, write n,, for the normal vector to P! at p pointing in the positive-y direction.

For each fixed 74, we will let U, g be a rectangle of dimensions (R/Ry) x R with long side parallel
ton., . Fix also a tiling of R? by translates U of U;,.r; we will denote the relationship between U
and U, gr by U|Uy, r, so that the tiling just described is the set {U|U;, r}.

Our next definition requires more ink, so we enclose it in a formal definition.

Definition 2.1 (Sufficiently rapid cutoffs). Fix a small constant ¢y > 0. Define py to be a smooth
function satisfying the following properties:

o supp(po) € [-1,1]°.

e po=1on[-1+ey,1-¢€]%

[p" ][0 S 1.
e There is a constant ¢ such that |pg(z)| < ekl for all 2 € R2.

For each box T, let pr = pg © Ry, where Ry is an affine transformation that scales and rotates T' to
[-3.3]%. Observe that pr =1 on (2 -26)T and pr = 0 outside of 27. Observe from the outset that
lprl1 = lpgli = O(1) by change-of-variable.

Additionally, we may note that, if {U||T*} is the fundamental tiling of R? by translates U of the
dual T of T, say with U having center ¢y, then the set of centers {c, : U||T*} form a lattice, and by
the Poisson summation formula

1 . 1

v 2mix-c

Pt cr) = —— ¥ eV prley) = ——.
U%T:* m(T) i m(T)

This is the reason for the extra factor of 2 in the definition of pr. We will interpret this calculation
as the statement that {m(7)py }yr+ form a partition of unity.
We will also write ¢y (x) = pf) (# — cpy) for any parallelogram U.

Remark 2.2. The function pg may be constructed as the infinite convolution over 10%1[,10_1”_2710_1”_2].

We will relate different square functions by means of analyzing their high- and low-frequency
components. To this end, set ¢ to be a smooth nonnegative radial bump function on R? such that
e(§)=1on|¢<1and (&) =0 on | >2. For each r >0, we define the cutoff functions

N (€) = o(r7 1), mer(€) = (&) —(r™8), nw (&) =p(r &) - p(2r7'¢).

Note in particular that 7<.(§) =1 on |{| < r and 7 (§) =0 on [£] > 2r, and n5,(§) =1 on 2r < [¢] < 1
and 7,(§) =0 on [¢] € (0,7) U (2, 00).
Next, let Wy denote the composition (W o T, )(x — ¢r7), where

1
w =
0= Ry Ry
and T, is the linear transformation which rotates 2U,, g to [-R/Ry, R/ Ry ]x[-R, R] and then rescales
o[-1,1]%. We define fo9:= |U|"! [ gWy for arbitrary g. Since W decays polynomially, we may assume
Yy $ Wy for every choice of U.
Next, for each k, let w; be the weight

C

wi(x) = (1+[22R; )10

with ¢ chosen so that |Jwg|; = 1.
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2.3 Pruning

For suitable constantﬂ Cp > 0, we define the pruned set Gy associated to ¢ as follows.

Definition 2.3. Set? ,

Gy = {U |Us.re: Cyllog R)' f 11 2 <7§6>2 }

Define the pruned functions as

fno= Y, Yufe, fn=) fne

U'Egg 0
For k < N and each 7, define

Ck2
ng = {U||U7k,R : Cp(logR)4 ﬁ Z |fk+1,6|2 2 }

0cTy (#Tk)2

and
fro= 2, Yufwe (where 7,20) and  fr =) fro.
Ueng 0
We set also fr — fr_1 = f,f, and f,ﬁe = ZU¢ng_l Yu frg, where 0 € 7,_q. If k' <k, then set f,ka, =

Z@ETk/ f]?:@ .
The following estimates will be needed:

Lemma 2.4 (Pruning lemmas). The pruned functions satisfy the following:

(a) fn=fi+Zmoalh
(b) [ fr6l < frsr0l <ol
(c) supp(m) C2(N -k) for all 6.

Proof. (a): This is just the calculation

N N
it 3 = fie 3 (= fmner) = fiv

=2

(b): Since Lueg,, Yu <1, it follows that

\frol = frerol] D vul<|feero

UeGr,.

Y

and similarly

\fnvol=1fol Y, o <|fol-

UeGr

(c): We first consider the case k= N. For each 0 and U|Uy g,

Puda(&) = [ ol fale - mdn,

'The size of Cy, is only constrained by the proof of Lemma
2Recall from above that we have repurposed the symbol fU- to mean |U\71 f Wy
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which vanishes when there does not exist 7 € 2U* ¢ B(0,2R™!) such that £ -7 € 0, i.e. when & ¢ Nop-16.
Thus fx ¢ has Fourier support in 6 + B(0, 2R™).
More generally, the same calculation gives
N-k
supp(fro) €0+2 YUY\,
7=0

where 7y_; is the cap of size RN _j X R? N_; containing 0. In particular,

supp(fi0) € 2(N = k)8 € (log R)6,

as claimed. n

2.4 Square functions

In this section, we record a series of lemmas that control the contribution of square functions at various
scales. The proofs of these are standard, and have been delayed to the appendix.

Our first lemma encodes that our frequency-localized functions fy and fﬁ,e are approximately
constant on small scales.

Lemma 2.5 (Pointwise local constancy lemmas).
(a) For any 0, |fol* < |fol* * Ipy-

(b) For any k,m and any x,
|fm,7k|2(x) S |fm,7’k|2 * ka(x)'

Our second lemma serves as a shorthand for passing between several integrals that are essentially
equivalent to the wave-envelope expansion.

Lemma 2.6 (Integrated local constancy lemmas). Let r >0 be dyadic.

(a) If r <2Ry.3/R, then

B 2 <1 R 2
| S 5P+ | stog |z|fm@| oo myv || -

0cTy, OcTy

(b) If k>m, then

J1Z 2o < gy, < % |U|( £ |f9|2)

0cTy, €Gry, OcTy

Next, we note that, on the superlevel set {| fl> a}, it is possible to replace f by fy, so we may
appeal to the decomposition fy = f1 + 2N _, £5.
Lemma 2.7 (Replacement lemma). |f(x) - fn(z)| S m
og
As a consequence, we will be able to control the size of the superlevel set U, by the size of the
auxiliary set Vg := {z : |fn(2)| > 0.
For the next lemma, we will need to define an adjacency relation.

Definition 2.8. For caps 74, 7}, of the same size, we say “7; near 75,/” if diSt(Tk, Trr) S (log R)diam (7 )

19

for a suitably chosen implicit constant. If 73, 7] do not satisfy this, we write “7; not near 7,”.
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Remark 2.9. As defined, we have that for each 7, #{7} : 7 near 7} $logR.
Remark 2.10. If 7, near 7, then 7, ¢ C'log R(7;, + (¢r,, — ¢;7)) and symmetrically.

We now mention the two key lemmas that facilitate an efficient wave-envelope estimate. These are
standard in high/low calculations, e.g. [4] (in the proof of Theorem 5.4), [9] (in the proof of Lemma
1.4), [5] (Lemmas 11, 12, 13), [6] (in the proof of Theorem 5), and [10] (Lemmas 4, 5, 6).

Lemma 2.11 (Low lemma). For any2<m<k<N, 0<s<k, and r < R;?,

P rnd@ =3 8 (B ) * ()

TkETs T;, near Ty,

for any x and any ;.

Lemma 2.12 (High Lemmas). For any m,k, and [ such that 2<m <N and k+[< N,
(a)

|2

)

/ ‘ Zg:|f§;,0

2
Q*U;Rk/R‘ SlogRZ[‘ Z |fm,€|2*77;Rk/R
Tk

o<ty

(b)

2
B B
SIS VE AP x| s Gog )Y [ 17511
Tk Tk

(¢)

[1Z % UGB IE )+ ni

Tk T] near Ty

2
$(og Ry [ 178,10
Tk

Next, we will need a tool to ensure that, when taking wave envelope contributions of the bad parts
fff“ we are allowed to disregard the low-frequency envelopes which have not yet been pruned.

Lemma 2.13 (Weak high-domination of bad parts). Let 2<m < N and 0 <k <m.

(a) We have the estimate

2
s . P #Tm1E )
| 2 ] *nsRmfl/R(m)‘NCpaogR)?(#Tmm?

Tm—1STk

(b) Suppose o $ (log R)|f£7k(a;)| Then

Z ‘f’nBl,Tm_1|2(x) s ‘ Z |f’nBl,Tm_1|2 * TI;Rmfl/R(‘T)|

Tm-1STk Tm-1STk

3 Proof of Theorem 1.2

3.1 Bounding the broad sets

This portion of the argument follows closely the approach of [10], Section 3. Recall that U, is defined

as the set
Ug ={z e Br:|f(2)| > a}.

We consider also the auxiliary set

Vo = {x € Br:|fn(x)| > %a}.
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To avoid trivialities, we assume |U,| > 0 for the remainder of this section. By the replacement lemma

27
Ua € Va

for large enough R. By the pruning lemmas
N
Vo fo e Vas 1) 2 N o U (e Vo 8160 2 NV w @)l
N
~uto Qo
m=2

so that
N

Ual < |Ual+ 3 U2,

m=2

We bound each of these sets in turn.
Proposition 3.1 (Case m =1).

2
41771 2 8 2
Ul s CRosr® 5 WI( £ T1aP)

UeGr,

Proof. Clearly it suffices to assume |U2}| > 0. Then there is some z € B such that |f;(z)| > ﬁa. Since

%ag|fl(:¢)|:|z > (@) fas(z)

71 0cT UeGry

<y ) >, Yo () foo(z) +]> D) > Yu () fa,0()],

T1 0cT1 UeGr, ;ze(log R)3U 71 071 UeG,, ;x¢(log R)3U
and, if z ¢ (log R)3U, the near-exponential decay of 1y implies

o (@) foo () s R,

whereby

122> )y Yu(x) fop(x)] < R,

T1 971 UeGr, sx¢(log R)3U

we conclude that there is some 71 and U € G,, with z € (log R)3U.
Since U||U;, g, U is a rectangle of dimensions logiR x R, and that by definition of G, we have

2
1
U‘lfW 2, @ .
U ] Wo 2 ool > s G g oy

In particular,
2
at < Cg(logR)8 (][U > |f9\2) ;
0

where we have used the pruning lemmas
The above calculation demonstrates that, for each x € U, satisfying |f(z)| < 4N|f1(x)|, there is
some 71 and U € G,, such that = € (log R)3U. Thus

LiscUndf(@)2NI @)} S 2. 2, Laog RS0

71 UeGr,

10



Ben Johnsrude

and upon integrating we achieve

{z eUa:|f (@) <2NIfi(@)]} <3 3. (logR)°|U|

T1 UegT1

2
<4a™'Ci(logR)"™ Y. (]g > |f9|2) :

71 UeGr, 0cr
which rearranges to the desired

2
' Ua] £ Cylog R) 3 3 (][ > |f912) -

71 UeGr, U o<ty

We will use the following local bilinear restriction result, demonstrated in [5]:

Theorem 3.2 (Bilinear restriction; Theorem 15 of [5]). Let S >4, 3 > E > S712 and X ¢ R? be
Lebesque measurable. Suppose that 7,7' are E-separated subsets of Ng-1(PY). Then, for a partition
Q= {wg} of Ng-1(PY) into ~ S7H? x S~ -caps, we have

SR P @ s B2 [ 5 sl wgia () de

SI/Q(X) ws

This will be our initial estimate when we try to estimate f in the broad case. We now define the
broad sets on which bilinear methods are appropriate.

Define the mth (2 < m < N) broad set in U, to be as follows. Fix any 7,7/ € 7,1 non-adjacent
caps with [ <m, and define

Bry(r,71) = {w € U | f o, (@)] < (log R o fm ool
Proposition 3.3 (Case 2<m < N).
2
RSN I OL NS YD YD o8 4] ' S 171 I
Brg! (71,7 m<k<N TkCT-1 U€G, U gcr,

Proof. Let (c,c?) denote the center of 7;_;. Write B for the affine transformation

B(&1,&) = (Ri-1 (& - ¢), Ry (& - 261 ¢+ ¢%)).

—_—

Then (f’féL,Tl_l
B(7]) have diameters ~ (log R)™!, and

o B71)Y has Fourier support contained in the set Ny RZ R-1- Additionally, B(7;) and

Pien (B e B 1= (FE 0 B

for each 7. € 77_1.
Write s = min(m + -2, N). Changing variables by B and applying bilinear restriction, after some
routine calculation we obtain

9

2
B 12, -
Z |fm77's | * mefl

m—-1 ) TsETI—1

B 4< 10 R 14
fBrgﬂ(n,rn'fm’”‘l' § (log ) Br7 (1,7))+T(Br

11
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where we have written T' for the linear transformation T'(&1,&) = (Rj-1&1, RY &) and 1R, , for
the function wg,, ,(z1,22) = cme_l(Rl‘_llxl,Rl__leg), with ¢ chosen so that |wg,, ,|1 = 1. Observe
that each | J‘;{?WJ2 is approximately constant on balls of radius ~ (log R)™'Rs > R,,_1. By the rapid
2 over Br™ ¢ U™, we may apply weak

decay of wg,,_, and the lower bound on . = . | ¥ Toela

high-domination to estimate

2
B 2, ~
Z |fm,7'5| *WR,, -1

/].%r&” (7 7TLI)+T(BRm71 ) TsCTI_1
2

B ~
Z |fm,‘rs‘2 *WR,,q * W;Rmde ’

m—1 ) TsETI—1

<

~

Ar’,}f (7 ,‘rl’)+T(BR

which we may now bound by

2
B -
/‘ Z ‘fm,Ts|2*me—1 *U;Rmf1/R| )

TsETI—1

We now pigeonhole to a dyadic scale. Let R,,_1/R<7<2NR_! | be dyadic such that

LIz

TsCETi—1

2

2
B 2 ~ B 2 ~
|fm,7’s| *WR,, 1 * n\Z/Rm_l/R| S lOgR 11;2 ‘ Z |fm77's| *WRy 1 * U;Rm_l/R * n'\\'/’f‘
Ts
By Young,

2
S OB P,

TsETI—1

2
<
S Jre

The remainder of the analysis will be silit into cases, depending on the size of r.

B 12, ~
‘/RZ| Z |fm,7’s‘ *me—l*’r];Rmfl/R*n:/r

TsETI—1

Case 1: r < R"'/2. By the low lemma

2

22[‘ > 2wl nk

0cT;_1 0’ near 6

[ 2 1B,

TsSTi—1

Let k be s.t. (logR)r < Ri/R < (log R)*r. Since we have assumed r > R,,_1/R, we must have k > m.
By the integrated local constancy lemma part (a), and Cauchy-Schwarz, we have

(13 5 uBrent] stosry® 5 [| 17821y

0cT1;_1 0’ near 6 TRETI-1 0cTy

2

By part (b) of the integrated local constancy lemma,

2. f’ZIfﬁ,alQ*lpiklzs >SN |U|(]€Z|f6|2) .

TRETI-1 ey TRETI-1 UeGr, ocTy,

‘We conclude that

2
fBrT,l(m,)lfﬁm,ll%(1ogR>18 > 2 lUl‘l( / Z|fe|2WU)

TEETI-1 Ueng 0cTy

as claimed.
Case 2: r > R™Y2 Let k be such that R,il <r < (log R)R,il; this time, from the assumption

r<2NR-!. we conclude that R,,_1 < 2NRj_1, i.e. k>m. By the low lemma m,

m—1»
2 —_— 2
RIS D SR SR V- L

TsETI-1 Tk—-2STI-1 T/ _, near Tj o

12
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By part (c) of the high lemma [2.12]

[IE. 5. Gl s 5 [

Tk-25Ti-1 T/ _, near T_o Trp_oCST1_1

SGogR) > [175. 0"

TEETI—1

By the reverse square function estimate for P! and by splitting f2 _ into O(log R) pieces with disjoint

m,Tk
Fourier support,

SR s GosB) [ [28

0cTy
So far, in case 2, we have reached the estimate

2
[Brm(n T/ |f5,,,7—171|45 (10gR)29 Z f‘ Z |f£’0|2‘

l TEETI-1 o<ty

for some k > m. We consider two sub-cases, depending on if the latter is high- or low-dominated.
Case 2a: Suppose that

> [IX s ¥

TRETI—1 ocTy, TRETI—1

2
B
/‘ Z |fm,9|2*77;/Rm/R‘ .
0cTy

Since m < k, we have R,,/R < Ri/R, so by part (a) of the integrated local constancy lemma (2.6 we

have ) )
SN MWV RT A I S B DI AT

TRETI—1 OcTy, TRETI—1 0cTy,

Then trivially (using k > m)

2 2
)N DT I Y A D Vol

TRETI-1 o<y, TEETI-1 o<y,
2
B |2
D A DT
TmSET|-1 0STm

and by the integrated local constancy lemma (b) we have
) 2
> [Tl s T X W (]{, » |fe|2) .

TmET-1 0cTm T™mCT-1 UeGr,, 0cTm

Thus we have the desired

> [IS1EA s X 3 wll £ 3wl

2
TEET]-1 0cTy TmETI—1 Ueng ( 0cTm )

Case 2b: If we are not in case 2a, then

> [IS s ¥

TRETI—1 0cTy, TRETI—1

2
f‘ Z |f7§L,9|2 *nng/R‘ :
0cTy
Now let 1 be dyadic between R,,/R and R™Y2 such that

S ISR ] stosR S [ 15,

TRETI-1 ocTy, TLETI_1 0cTy,

2
2 Vv
*UNM .

13



Small cap decoupling for the parabola with logarithmic constant

If 41 < Ri/R, then by part (a) of the integrated local constancy [2.6] we have

N AT D s A DT F o

TECTI—1 OcTy TRETI-1 0cTy

2

)

and by integrated local constancy (b) we have

s [IZuteenl’s £ 5w f 5 ).

TRETI-1 0cTy TrETI-1 UeGr, 0cTy

and we conclude that

2
Sy il G 52 5 |U|( [ |fe|2) .

TKETI-1 Ueng OcTy

On the other hand, if > Ri/R, then pick p > k such that R,/R is nearest to p. Then by the high

lemma [2.12] ,
S [T B stogR) X [| X 1556 0

TLETI-1 0cTy TpETI-1 OcTp

2

)

2

and as above

2

2
IO AP0

TpETI-1 o<ty

Z /| Z |f775;,9|2 *773#

TpETI-1 Octp

JDWD) |U\(][UZ|fer?)2,

TpETI-1 UEng Ong
from which we have the estimate

2
fBrmw IR ORED VDYDY |U|( £ Z|fe|2)

k<v<N 10711 UeGr, ocTy,

and we are done.

3.2 Broad/narrow analysis

In Propositions and we produced the desired bounds on the subset of the superlevel set for
which f is sufficiently broad at some scale. In this subsection, we perform a broad/narrow analysis to
produced the desired wave envelope estimate in each cube of sidelength R.

As anote: for the remainder of the article, we suppress the constant C, from the pruning definition
as an implicit constant.

Proposition 3.4 (Local wave envelope estimate). For each cube Bp of sidelength R and each « > 0,

o!{zeBr:|f(@) >} s Qo) X ¥ X Ul ISufls.
R 1/2<s<1 T(7)=5UeG~
s dyadic

14
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We first note a technical obstruction. The common strategy in decoupling theory for performing
broad/narrow analysis can be summarized as follows. Fix some scale s and x € Bg, and fix 7. to be
the box of size d(74) = s which maximizes |fr, (x)|. Then since f(z) =Y, fr(x), it follows (Lemma 7.2
of [3]) that either

_3
F@IAlfn(@)] or [F@<s? max | [fo() (@)
where the maximum is taken over those boxes 7,7’ of diameter d(7) = d(7') = s. If we simplify the
above as

@) <4lfr (@) +572  max [fr(x) fr(2)[?

T not near 7

and iterate by first choosing s = Ry!, then breaking up the first summand by choosing s = R5' and
rescaling, etc., we achieve the estimate

/()] < 4Y max| fo(2)| + P(2),

for a suitable nonnegative quantity P(z). Note however that 4V = R%, which is larger than our
desired error (log R)°() (while nevertheless being O, (R®)).

As a consequence, the broad /narrow analysis will need to be carried out more efficiently. We follow
an approach demonstrated in Section 4 of [8], where a (log R)®™") error was obtained for canonical-
scale (8 = %) decoupling. Namely, the domain of integration for |f|* will be successively divided into
broad and narrow sets, ranging over many scales. If a point z is broad at some scale, we will be able to
productively use Propositions [3.1] and If instead x is narrow at all scales, then a trivial estimate
will suffice. As suggested by the above analysis, we will need to reduce 4 to a quantity that does not
grow too quickly under the iteration.

We proceed to the proof. We will express the various estimates as “decoupling” bounds, though
it is worth emphasizing that they are arranged pointwise (so this decomposition scheme is really a
decomposition of constants, not functions with special Fourier support); we do so because of the
convenient inductive structure of decoupling-style bounds.

Fix 2 <m < N. We first present a modification of Lemma 8 of [8], which serves to replace the
constant 4 in the prior calculation with a much smaller quantity.

Lemma 3.5 (Narrow lemma). For all sufficiently large R, the following holds. Suppose 1 <k < N and
Tk 1S an box of diameter R,;l. Let {741} be the boxes of diameter R];lrl with Tp11 € k. Then, for each
x, either

B @I<(ogR)®  max B (@)fE. (@) (3.1)
Tk+1 nOt near 7 Pkt
or
I (:U)]s(1+ ) max | Y 5 (@) (3.2)
m, Ty log R/ mk+17% Ty g TEAT Thyil T

Proof. Fix 7., € 7, which realizes the maximum
B _ B
78 e @) = mavx £ @)

Suppose fails. Then, since fﬁﬁk () =%r 1cn ffbﬁm ,(z), we have the inequality

1 -1
@ Y @l (o) G

o
Tk+17{’7'):+1 g R
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Small cap decoupling for the parabola with logarithmic constant

On the other hand,

|frlrgL,Tk (‘T) - Z fTéL,Tk+1 (‘T)| 2 |frlrsz,7'k(x)| - (#Tk+1) max |fTZ)’3L,Tk+1 ($)|7

* T, not near T,
Tht1FThq k+1 Bl

where we have used #7x,1 to denote #{7x,1 S 7% }; the above implies

-1
() oA, @ (12 (1 o) Bl

Tk+1 DOt near 7,7,
Relating the above to for each 7y C T,

e @ < Uy @) e (@),

.
Tk+1

and thus

1,1
J) e e @78 @

Tk+1 Dot mear ;7

78 @< ) (1- (1

The conclusion follows from the estimates

A
1-(1 SlogR
( ( +logR) ) o8

-1

R
#Tk+1 ~ ,k = 10g Ra
R

and

and taking R sufficiently large so that an extra factor of log R exceeds the above implicit constants.
O

We wish to use this to divide the integral of |f2|* into broad and narrow parts, with a small
constant on narrow parts. For the narrow component, we wish to relate [ [f5|*to ¥, [ | fnlzﬁ]‘l, so that
we may further decompose each fgm into broad and narrow components and proceed inductively.

Definition 3.6. We define Broad, ,, to be the set

Broady , = {x cU™: |f3(x) < (logR)> max

71 not near T

e 7@

|
1
The complementary set Narrowy ,, is defined as U[* \ Broad .

Remark 3.7. Tt follows that Broad; ,, may be covered by O(N?)-many Br”(7,7").

Lemma 3.8 (Decoupling the narrow part (k = 1)). There are a collection of boxes T, of diameter

~ R7! such that
2 4
B4 B 4
<1+ > f |
Aarrowl,m |fm| ( IOgR) = Narrowi, m |fm77—1 |

Proof. If x € Narrowy ,,, then by the narrow lemma

1
log R

£E@) < (14 )1 @)

16
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for a suitable rectangle 7 which is a union of three consecutive rectangles 7y, so certainly for the
decomposition {7} of N3 Ryl P! into rectangles of diameter ~ 3R7!, we have

1
log R

@I (1 g ) (S @)

and hence

2 4

B4 B 4
<1+ > f |
Aarrowl,m |fm| ( 10gR) = Narrow, m |fm77—1 |

Definition 3.9. Write, for each 77,

Broads ,, (17) := { « € Narrowy , : |ff} (z)] < (logR)®>  max ) |ffm(x)ff, m($)|1/2
’ T2 not near 74 2
T2, THCTy

where as usual each 7 has diameter ~ R; L Write also Narrows ,,, (77°) := Narrowy ,, \ Broads ,,, (77).

Definition 3.10. Let 2 < k < N. Suppose 7, ¢ 7;_; have diameter ~ R,;l,~ Rgll, respectively. We
inductively write

Broady1,m(7; ) = { @ € Narrowy, , (77_1) |ff* . (2)] < (log R)? max ]fi+17m(x)f5 m(:z:)|1/2
L Tk+1 DOt near 77, k+1

Tk+17TI;+1ETI:
and Narrowy 1 m (75 ) := Narrowy, o, (77_;)  Broadj.1,m (75)-

Lemma 3.11 (Decoupling the narrow part (k >2)). Fiz any 2 <k < N. Then, for each 1;_;,

4
B 4 2 ) f 5 u
* <1+ 2 _
/I;Tarrowk’m(frgl) |ka71,m| ( log R 7—*;* Narrowy ., (75_1) |ka ,m|
k=Tk-1

Proof. The argument is identical to |3.8 O

Combining Lemmas [3.§ and we conclude

. 9 AN
<|1+ E : f Z
\/T\JZ;” |fm| ( log R) o Narrow N, m (Tx_1) 7+ cr*
N

|
N-1 ='N-1

B 4 B4
* +
fer,m| ‘/]_;>road17m |fm|
2

N 4k 5 ,
+ 1+ f 2 )
kZ::2 ( IOg R) Tkzjl Broady,m (17_;) f7k71vm|

Remark 3.12. For 1 <k < N,

(1+ 9 )4k<(1+ 2 )IO%Rlogf{l}gR<1
logR/) ~ log R o

Our next steps are bounding each of the summands in turn.

17



Small cap decoupling for the parabola with logarithmic constant

Lemma 3.13 (Narrow bound). We have
2
> X s S W (1P eWu )
o Narrow §m (75_1) ThETh UeGy

Proof. Note that each 7y is either equal to some 6 or a union of three adjacent 6. In particular, for
each x € Narrow n m (7x_1),

S @3 T @l

* C * C *
TN=TN-1 0STN 1

hence

B 4
Z [ Z T, Z [ . Z |fm,9|
* Narrow n,m (Tx_1) 7+ tert N oo Narrow n,m (Tx_1) gc

*
TN-1 =TN-1

<Y [% Il

Brgery |

By the definition of the pruning, for each 6,

fBR |fN,0|4=/B IS wufelt= Y _[BR ol fol*.

R UeGy UeGy

Since each [¢y| < 1, we have the trivial bound
> [ Wl s ¥ [ woPifl
UeGy 7 Br UeGy 7 Br

By the local constancy lemma (a),

[, wollnls ¥ [ Wl (50 <)

UeGy ~ Br UeGy

= 5 [ wol@ ([ POl - nay)

UeGp

By Minkowski,

T o ol ([ 1E @i - )
< 5 ([ 1k ( [ o @i -nas) o)

UeGy
> ([ 190 ([ 1ot -va) ")

By the rapid decay of py outside of 6%,

2

U699

[ P @logR@ -y s swp wul@) [ 1o - yde s WiIUT!

rey+0*

and so

> ([ 18t ([ 1eoteiire-ve) ") as S o (f rromow)

UeGy UeGy

18
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and hence

>/ S s 3 ([ 1P wea)

arrow N m (Tx_1) +
TR N-1 CTN UEgG

as claimed. 0

Lemma 3.14 (Broad bound, k =1). We have

alBroads |5 (ox ) ¥ ¥ sl 2|f9|)

m<k<N 1:4(7)= R, 1UeG, oct

Proof. Suppose first m = 1. Then Broad; 1 € U}, so by [3.1| we have
|Br0ad1 1] s (logR)8 Z |U] (][ Z|f9| )
UeGry
Suppose next 2 <m < N. By the definition of the first broad set,

Broady , = U Brl (11,71),

71 not near T;
and so, since there are $log R -many 71,

o*[Broad; | § (log R)?a*  max By (11, 7)).
71 not near 7 1

By Prop. we conclude that

o*|Broady | § (log R)™° > Y. > U] (][ > el )

m<k<N 1:4(7)= R, 1UeG, ocr

Lemma 3.15 (Broad bound, 2 <k < N). We have

Z[B o s e R)Y Y |U|(f2|f£;9|)

) roadg m (T5_;) m<s<N rsert | UeGr OcTs

Proof. By the definition of the broad set, for each 7;_; and each x € Broady, ,,(7;_;) there is some pair
*! B 3| £B B 1/2
o, Ty €T, not near such |fm77271(x)| < (log R) |fm,T]: (x)fmm:,(:cﬂ 2 e,

Broady, m (7,_1) € U BTZL(TI:’TI:I)-

U
* * *
T Tk ET’C71
7,° not near 7;°
k k

Thus

4 < (log R)'2 f 4
*Z fBroadk,m(T;:_l)l T | (Og ) Z Z Bry (77,7 *! mTk 1|

-
k-1 k-1 ’Tk,Tk ETk 1

Tk not near Tk
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By Prop.

2T f e 50 % RS !U!(][Z!fe!2)

* 7
T * % * m<s<N Ts UeGr ocr
k=1 Tp,T) ETp_ 1

*
T not near Tk

where we have used that there are O((log R)?)-many pairs 7}, 7; ‘¢ Th -

Proof of Prop. [3.4. By the replacement lemma [2.7]
U, < V).
Write
4 J 41rrm
at|Val < ) ot |U]

m=1

and, by the definition of the broad/narrow sets above, we may write
oYUM = a*|Broady | + a*[Narrowy ).

Since Narrowy ,,, € UJ', we have the bound

a*|Narrowy | € f B,

Narrowi,m

By the definition of the broad/narrow sets,

. 2 AN
<|1+ f
>/Narrow17m |fm| ( IOgR) TZ Narrow n,m (T3_;) Z | TN |
N-1

* c
TN=TN-1

N 2 \* B i
(i) 3 B
fra) og _— Broady,m (1;_;)

By the narrow bound
> T s T ([ 1Pemem)
o Narrow n m (T5_1)

* *
TXETN 1 UeGp

By the broad bounds [3.14] and
a'Broad; | s (log R)' > ¥ Y |U (][ >, |fe|2)

m<k<N7-e(7-) R 1UeG, ocr
and
> [ 7Bl s R ¥ TS |U|( £ |fm9|2)
T, Broadkym( 1) m<s<N 7s UeG, OcTs
Thus

m<s<N Ts UeGr OcTs

S CIORIDNSID) |U|( £ Z|f:29|)

and hence, since N <log R,

o'lUal s Qog R 3 3 % |U|( £ Elf#ial)

1<s<N 75 UeGr Ugcr,

as claimed.
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3.3 Reduction to local estimates

In the above subsections we produced bounds on the measure of the set U, = {x € Bg :|f(z)| > a}. In
this subsection we note that, if we can prove Theorem in the special case that {z € R?: |f(z)| >
a} € Qg for a suitable cube Qg of radius R, then we can conclude that Theorem is true in the
general case.

Proof that Prop. implies Theorem [I.3. Fix a O(1)-overlapping cover of R? by cubes Qg of radius
R. Write pg,, for a Schwartz function satisfying the following criteria:

e pp, radially symmetric, real, and nonnegative.

PBgr 2 1Bg-

supp(pBg) € Bo/g-

ZQR pBR(CQR -)s L
¢ pp, decays rapidly outside of Bpg.

For each Qg, write pg, = pB,(cQy — ). By the triangle inequality, there is a subcollection © of the 6
such that, writing [’ = ¥ gcq fo, we have

o'|{z eR?: |f(2) > 10a}| s o*|{z e R?: |f'(2)] > a},

and such that the 2R !-neighborhoods of the ¢ € © are pairwise disjoint. Then f’pg, has Fourier
support in the ~ R~'-neighborhood of P!. By Prop. for each Q%,

oll{zeQrilfog @)l >alls X XN 3 U ISl gyl
R1/2<5<1 7:(T)=sUeG+
s dyadic

By trivial bounds on f and the rapid decay of pp,,

{zeR?:|f'pgy ()| > a} € 2Q%,

and so

g: aM{z e Qr:|f pgp, (2)l > a}l $ %ixa‘ll{w €Qr:1f pgr, ()] > a}l.

By Proposition for each Qg,

a'{z e Qr:|f'pg, (¥)] > a}| s (log R)* 3 DN U A1)
R12<s<1 74(7)=s UeGr
s dyadic

Adding over all Q7%, we get

> a'{zeQr:|f'pg (@) >a}[sQogR)* Y. > ¥ ¥ UM Sulf pey ]l
Qr,Q% = R_3/2Sds~£1 TU(T)=s UeGr
s dyadic

If we commute the sum over Q7% to the inside and use a trivial estimate we conclude

> o'z eQr:1f pg, (@) >a} s (log R ¥ ¥ ¥ UITMNSulY Feg s
Qr,Q% R*il/?gds.g T(T)=s UeG~ Q'
s dyadic
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Small cap decoupling for the parabola with logarithmic constant

i.e.
Y all{zeR%:|fpg (@) >a}| s (log R >0 > ¥ U7 Suf]2
Q' R_;/ZS&S‘Sl T(T)=s UeGr
s dyadic

Finally, by rapid decay,

> atl{z R : |f'pgy (2)] > a}| 2 o*[{z e R?: |f'(2)] 2 a}],
Qr

whereas trivially Sy f > Sy f’ pointwise, so we conclude

HreR i f@lzalls gD T ¥ ¥ U sufl
R 12<s<1 Ti(T)=s UG-
s dyadic

Since this is true for all choices of «, we may change variables to conclude

ollfz e R2:|f(x)| > ) s Qlog B)* 5 30 5 U Sufl.
R 1/2<s<1 T:4(7)=s UG~
s dyadic

as claimed.

4 Proof of Theorem 1.1

In this section we verify that the wave envelope estimate [1.2] is strong enough to imply Theorem
This is essentially proven in section 4 of [10], but the latter included O.(R®)-lossy pigeonholing
steps. Here we perform a more restricted pigeonholing which suffices for the result, and then quote
the corresponding incidence geometry calculation in [10].

We will focus on the case p > 4, where we will have an upper bound for Theorem with power

RA-G-1-1 3
) P
bound max (1, R’ (%75)) is needed; this is handled in section 4 of |10], and the proof there requires no
modification for our purposes.

We begin with the partial decoupling statement in the case p > 4.

law Under the assumption £ + % < 1, the remaining case is 3 < p < 4, where an upper

Proposition 4.1. Suppose p > 4. Let 1 < k < N be arbitrary, and fix a canonical scale cap 7.
Suppose as before that I's(R™1) is a partition of Nz1(P!) into approximate R x R™! boxes 7.
Assume f =3 f, satisfies the following regularity properties:

(@) |fylloo ~1 or fy =0 for each 7.
() | £45 ~p | f+|3 for each v and each p > 1.
Write -y, for approximate boxes of dimensions ~ max(R™?, R;/R) x R™'. Then

2
2 'U'(Ji > |fe|2) S(log R (7)o

UeGr, Ocy,

[NIiS]

-1
<(max e < frem)” XL,

Cc
VYeETk VT

where Fj5 is as in the statement of Theorem
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Proof. For each 6 € 74, the small caps 7, € 6 are either adjacent or are ~ max(R™®, R./R) > Ry/R-
separated. Fix any U € G;,. Since U|U;, r has dimensions R/Ry x R, we conclude that the f,, are
locally orthogonal on U. Thus

f Wo 3% 1ol s f Wo 3 1wl
OcTy VST
and so, appealing to the definition of G,

o’

Ghoye S Qs DU [0 3 17,

where we have suppressed the dependence on C,. Multiplying the left-hand side of by the (g -2)-
power of the latter display, we obtain the estimate

D

UG%|U|( £ |f9|2) (#m)at P (log RY™ 3 |U|( £ |f%|2) SR

0cTy, Ueng Yk ETE
Uniformity assumption (a) implies

> 1l oo 5 [max #(y € 3)] % #(7 € 7).

YeETE

By removing factors of | 3., c;, |f.|*[ee from we obtain

GCTk

2
|U|( £x |f9|2) S(#m)" e (log R)"™
Ueng

1\3\"@

-1

(maX#(v Vi) % #(’YCTk))

5

<Y [ Wo ¥ I

UeGr, VST

and by local orthogonality and uniformity assumption (b)

fWU |ka|25f POV R I WAt 7

UeGr, YeETk YETK YETK

Together we get the estimate

) |U|(][ > |f6|) S(log )P~ (#m,)P '

UEng BCTk

N\'B

-1
<(max ey #em) T 141
v VETk

as claimed. O

Remark 4.2. Suppose that p =2+ 2/ and ¢ = p. Plugging in the bounds #7j, < Ry, max,cr, #(7v €
1) <max(1, R°Ry), and #(y € 73,) < R,;lRB, and Ry, < RY2, this immediately implies the estimate

2
|U|( £y W) S (log R * PRI S 1
Ueng

QCTk YETK
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and hence, by Theorem

o|Ua| 5 (log R)P=PSRP22L 57 | 1 |
v

as claimed. It essentially remains to remove assumptions (a) and (b) above, and to track the depen-
dence on q.

Proof of Theorem for p > 4. Consider the decomposition

f: Z fﬂ/-

velg(R™)

By scaling we may assume that maxg | fy|c = 1. Then we may write

—-1000
= Z Z f'y +R n,
R-OM<A<ROM) nel'g(R7Y)
If oo ~A

where the A range over dyadic numbers, and 7 is rapidly decaying outside of Br. We abbreviate

T3(RY) ={yeTs(R™): [ fy]eo ~ A}.

Then, for each A, consider the wave envelope expansion

z f’}’_ Z Z¢Uf7,

vel3(R1) vel3(RY) U

where each U has dimensions ~ R? x R and has long edge parallel to n. . Since v € I’g(R_l), there is
some U such that |1y f[e ~ A. If we write Uy = U, for the set of U for which |1t fy] e ~ A, then for
all v eT3(R™)

| > dufily ~ GADIUIN,

UEZ/{,\

and so

1
I3 3 wuhll~ UV~ I5 3 vuhls

A Ueldy Ueldy

For each 1 < v < R dyadic and each A\, write F)‘ "(R7) to be the collection of v € I'} (R 1) such that
#U) ~ . Define for v e ') s(R )

GV =L s g

)\ UEU/\

and

PO N S

»yerg“(R-l)

Then for each A, ¢, and a > 0 we have

a[{z : |Ag™(2)] > a}| £ (log R)*? DD |U|(][ S |Ag (Ar)|)

1<k<N T Ueg.,-k OcTy,
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where we have written G, [a] to record that the pruning is with respect to the parameter a. For each

1<k<Nandeach1<s< RY? let Ti(s) denote the collection of 7 such that #{v < 7} : g,(y)"t) 0} ~s.
By pigeonholing, for each k we may find s, = s* such that

2
at|{z : g™ (2)] > a}| $ (log R) P2+ > 3 Z |U\ (][ > |)\g()‘ t)’2)

1<k<N Tke'];c(gk) UGgT QCTk

By Prop. [£.1] we have

S}

-1
@ g @) > )l Qg R Y FTE) Y (fmax o) Y P

1<k<N T€Th (%) k=Tk VETK

2

and by pigeonholing to a single dyadic 1 < k. < N <log R we have
o’[{z : ]\g) ()] > a}

S (log R)P> P2 (#Ty,, (sh )yt (5’? max #(v ¢ m)) > Iagdh

k Vhs ETky cT,
Thox €Thy (857) VEThs

[NIiS]

[}
|

1
- (log RYF72 (475, (%))~ (‘f max #(7 € w) S AU,
Yk

We now appeal to the following lemma, which is essentially proved in [10]:
Lemma 4.3 (Case 2 of the proof of Theorem 5 in [10]).

p
P-1

p_
FT (5P s5 max  #(yeyw)| s RIPTEDT(sE x #T (s5))

Vs EThy
k
Thx E,Tk* (5**)

Consequently,
ap|{x : |)\g(’\’t)(x)| > a}|
$p (log RY> 2RI D71 (47 (al))

~p (log R)P2 72 Ae=i=)- 1(Z||g(“) I2)

p
q

k«\E\p
iﬁ* a )\ 'C‘Ul (43)
q

On the other hand,
f _ Z )\g(k) + R_IOOOTI,
R-OM<A\<RO1)

and consequently, for a suitable A,,

ofa:lf(@)>al<a? Y [z V(@2
R-O(M)<\<RO(D)

o 7|

s (bgR)pH(é)pHm g (@) 2 1ogR}|’

and hence, for a suitable t,

Pz |f(x)]>a}| S (logR)zp“(ﬁ)p‘{l‘ g0 (@) 2 ﬁ}‘y
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which by applied to a = m, implies

D
q

_ _P_1)=
o¥l{w:|f(x)] > a}] 5 (log R)#+ = R7P=a= D7 (37 2 g+ |2)
g

Finally, we note that each A, gg/\*’t) is obtained by taking a subsum of a partition of unity applied to
f, so we conclude that

r
q

oz ¢ |f(2)] > a| s (log RY P+ L RP-5-D1 (52 1)
vy

as claimed. O

5 Appendix: Proofs of square function lemmas

In this appendix, we record the proofs of the critical lemmas for the high/low method in Fourier
analysis that are appropriate for our sequence of scales. The proofs are essentially identical to those
in [10], but we record them for completeness, in addition to verifying that the losses are as claimed.

Lemma 5.1 (Pointwise local constancy lemmas). (a) For any 0, |fol*> < |fol* * |-

(b) For any k,m and any x,
|fm,Tk|2(‘T) S ‘fmﬂ'k’Q * ka(x)~

Proof. (a): Note first that

2

£o) = 1o = 03P Cw) <| [ ol ool 2y = 2)lpol 2y - )=

)

by considering the Fourier support. By Hoélder,

2
| [l loal' G - Dol = 23| < o (15ol? * Il) ().

Note that, by change-of-variable, |py |1 = |pg[1 = O(1) independent of R. Thus

[fol? 5 1fol* * 13|

as claimed.

(b): By the pruning lemma, |f, -, |* has Fourier support contained in Up gre,, (N —m +2)(6 - 60'),
which is in turn contained in the set B L(log R)R; " Let pr be a real smooth radially symmetric cutoff
function that is equal to 1 on B 1(log R)R;! and is supported in B(j,, p) R By the same calculation as
in (a),

|fm,7’k|2 = |fm,7’k|2 * p;c/ S |fm,7’k|2 * |p;<;/|

On the other hand, we clearly have |p)| S wg,, and we are done.

Lemma 5.2 (Integrated local constancy lemmas). (a) If r < %R;Hg/R, then

1T 155 6P <,

fcTy,

2

B 2 Vv 2
$ [T 1756l 1otgmyu |-
HETk Tk
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(b) If k >m, then

ALY

OcTy

2
2
2 2
*’p(vlogR)U;k’R” SU%: \U\(]é Y. |fel ) :
€Gry.

OcTy
Proof. (a): The Fourier support of Ygc,, | f£79|2 1Y, is contained in the set

(N-m+2) J(0-0)n By, < (logR)’U} g,

OcTy

where U;fh g is a rectangle of dimensions Rj,/R x R~! with long edge parallel to te,, - Thus

B 2 v 2 2
f| Z ’fm,&l *Nop| = / Z |f£,9|277~7‘
0cTy, OcTy
I 2
5[ > |f£79|2p(logR)3U:k’R’

ocTy,

B 2 v ’
S[ Z |fm,9| *|p(logR)3U:k’R||

0cTy

as claimed.
(b): Since k> m, |f5 ol <|frol <|frsr0

< |fe| by the pruning lemmas, so

B 12 |V 2 24 1pY, ’
‘ > [ fml *|p(logR)3U:k7R|| S | > |frol *|p(logR)3U,’fk,R|‘ '

0cTy ocTy

By the definition of the pruning,

f[ Z |fk»92*|p¥10gR)3Uik,R|]2=[[ Z ]| Z

0cT 0ST U€g7k

2
QPUJ”1<:+1,0(Q)|2|PZ1ogR)-‘iU;kJJ(aC - y)dy] dz,

which, since ZUeng 1Yy <1, may be bounded from above by

JIZJ 2

2
YU Fo )P 10fiog myve (@ =y)dy| da.
OET]C Ueng, Tk

We may remove the ¢y from the dy integral by replacing it with ¢y (z) = MaX.ez+U,, g [Yu(2)]; note
that for each y and x € y + Uy, g we have ¢y (y) <4y (z). Thus

9 2
J1Z ] T vl ooy =)y do
o, 7 UeGr, ke

~ 2
S5 0@ & [ 0P gy, o= ]

0cTy

2
2
v f [z ) D SR L 1O i e Rt K

€Gr,,

= (I) + (ID).
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Note that |pE’lOgR)3U* | decays almost-exponentially outside of (log R) U, g, so when y ¢ z + U, g
TR
we have ]p(vlo mape (=) S R By Minkowski, (I7) may be controlled via
g ) TR

2
/ [9; ‘[ \(x"'U‘rk R) Ueg de(y)|f0(y)|2|p\(/10gR)3U:qu|(l'_y)dy] “

1/2 2
(er pa > vuWfe(y)l? [/RQ\(wUk » |P\(/10gR)3U:k,R|2($—y)dx:| dy)
CT1 Ue Th Tk

2
SR_QOO( > /¢U(y) > |f9(y)|2dy) <R

Ueng 0cT
On the first integral (I), we may estimate

2
/|: > Yu(z) Y f v R|f6 (W) |P(1ogR)3U* |(z - y)d?/] dx

U<Gr, =

/ > wU(x)[

UeGr,

0cTy,

2
Z f ’f@(y | ’p(logR)3U*" ](w—y)dy] dx.

By Minkowski,

2
Z f|f9(y)| |p(logR)3U* |(x - y)dy] dx

> [ @ !

UEQTk octy,
12 \?
SUng ([Q;k |f9| (y) [[ @Z}U x)lp(logR)SU* | (33 y)dﬂf:l dy)
2
S(oxR) 3 U 1( [we ¥ 15 (y)dy) .
UEng OcTy,

We conclude that

AR

OcTy

0cTy

2
$(ogR) ¥ U ( [ wo S sl (y)dy)
UeGr,.

as claimed.

Lemma 5.3 (Replacement lemma). |f(z) - fn(2)| S —m——-
C,'"(log R)

Proof. Consider the difference

[f(@) = fn(@) <3 Y du(@)lfo()l.

0 U¢G
By an analogue of local constancy (a),

1/2

W fol S (W fol” * 1p3])
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SO

f (@)= In@)] <3 3 (ool + |P§9\)1/2

0 U¢Gy
1/2
> ([ ot el -ydy)

UtGo

Next, since ¥y $ Wy,
1/2
@ - i@l < 5 ([ WoIal s Wkl - vdy)
9 UtGo

1/2
< S ( [ WoInl W)
1/2
- (supwU(yﬂp;er—y))
UGy \ Y

by Cauchy-Schwarz. By the rapid decay of 1y outside of U and local constancy of p3y,

> 1w ()psp(@ =)= (r2) $ %: lp39(x =) o= (vr)

U¢Ge
ST [ pyp(a - e
U

= U p3pllpr mey
sl

so that

1/2

@)= I S 0T ([ Wolso? )i

Finally, by the definition of Gy,

|f(z) = fn(2)] S Zg;agx (#9)01/2(10g3) ;/z(logR)

as claimed.

Lemma 5.4 (Low lemma). For any 2<m<k<N, 0<s<k, and r < R;?,

B @= N Y (BaE) b

TkSTs T, 1T, mear T,
for any x and any 5.

Proof. Indeed,

1B ent @) = [ 175 P = y)nt, (y)dy
= [, FE + P () |ner ()€
- 2 []R T TE L TE () ]ner(©)e.
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Note that each frlfl ., has support in the set Ugcr, (N —m+2)0 € (N —m +2)7; thus the convolution in
the latter integrand is supported in the set (N —m+2)(7; - 7;,) € (log R) (7, — 73,), which is contained

in the ball By(joq g) R (¢r,, —cry) for suitable universal constant C'. Since 1<, has support in the ball of

radius 2R,;1, and the diameter of each 7 is ~ R,;l, we conclude that for each 73 there are < log R-many

neighboring 7; such that the support of fTLZJk * fﬁﬁé has nontrivial intersection with the support of

N<r. Thus
—2mix-§ B—
T %97'5 ‘/R2 [fm Tk fmJIg (f)]nSr (f)df
= Z, RQ —27TZQ?§|:fm Tk m’rk(g):l/rl<r(£)d§
TkyTRETs
T), near Ty,
By Plancherel again, we conclude. 0

Lemma 5.5 (High Lemmas). For any m,k, and | such that 2<m <N and k+1< N,

(a)
JISiar

B 2
JEDXI e
Tk k

77>Rk/R| <10gRZf Z ’me, 77>Rk/R|

0cTy

(b)

2
StogR) Y [ 1751
Tk

(c) - 2
f Z Z ( mrkfﬁﬂ—l;) *UZR;L

Tk 'r near Tk

$(og )Y [ 1751
Tk
Proof. (a): By Plancherel,

/|;|f$,9|2 *U;Rk/R‘Q = f\§|sz/R‘Z Z |f7761 9|2(5)77>Rk/R(§)’

T OST

The supports of the summands Ygc,, | /5 ,[2(&)nsr, /r(€), ranging over distinct 73, have greatest over-
lap on the circle of radius Ry/R, where the overlap is O(N). By Cauchy-Schwarz,

Sl = TP R ] = (og )Y [

Tk 0C7—k

| ) 7B P n©)] -

lEl=Ry/R " g

We conclude by enlarging the domain of integration on the right-hand side and using Plancherel.
(b): By Plancherel,
2
- f €[z R !

JRDXI -
Tk k

Each |ffI |7 is supported in the set (N —m + 2)(7’k -7k) € (log R) (1% — Tk) and the maximal overlap
between these for distinct 7, in the region |¢] > R;! occurs when |¢| = R;', where the overlap is  log R.
By Cauchy-Schwarz and Plancherel,

Jeorg

A FE AP ©nn )

z|f57k|2<s>n>R1<§>| slog RS [ |If7 "+ W
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Lastly, 711 =0(1) by a change-of-variable, thus
="k

2
[ IS A ] 5
Tk k

(logR) Y, [ 151

as claimed.

(c): Reasoning as in (b), note that [ B I8 - ] N'p-1 has Fourier support in the set (N -
k+1

m +2)(r; — 7;). Note that 7, — 77 is contained in a set of the form (cr, - cr) + C(log R)(7y, — 73) <

C'(log R)*(7—7%) (c.f. Remark[2.10). As this is the case for each 7, for which 7] near 7%, we conclude

that 3 rr.r near =, [ffl i T,] 1”51 has Fourier support in the set C’(log R)?(1x —71). On the circle
? " T et

of radius ka the overlap between these sets is O((log R)!*?), so

JIE 8 T | s0sm S [| 18P el [

Tk T}, near Ty T, near Ty

By Cauchy-Schwarz,

2
B 2
Zf Z |fm,7‘k| *UZR;L S

7] near Ty

9

1 R B 2 \% 2
( og ) Z |fm,‘rk| * an;}rl
Tk

and since ”angll 1 = O(1) we conclude that

[ % BB ) *nins

Tk ‘r near Tk

"SRy [ 1751
Tk

as claimed.

Lemma 5.6 (Weak high-domination of bad parts). Let 2<m < N and 0 < k <m.

(a) We have the estimate

2(#7 1CTk)
FE Prnln (e il
|2 el | S G oy R e

(b) Suppose o $ (log R))| mTk(x)| Then

Y B P@ S| Y P nta, e

Tm-15Tk Tm-15Tk
Proof. (a): By the low lemma,

S APt e =SS (FEofE )t uln,  r(@).

TrETk 0cTE 0’ near 6

By the definition of “near,”

2 |anm_1/R|($)-

| > S (BB nin, ()] s (ogR) Y IFE,

6cTi 0’ near 6 0cTy
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By local constancy,

Z ‘f£,9|2 * |n;Rm71/R|(x) N Z ’fﬁ,e

OcTy OcTy

*1pog myol * 2R,y rl(2)-
If 9 c Tm—l,

2
115 0 *100og myol * 02 @) = [ |2 b0 fma] @) (1Pliogyel * 11, ) (& = ).
U¢g7—m71

Since Yy are all real and nonnegative,

f‘ Y Yufme

‘2
U¢g7'm—1

(y)(|PZ10gR)9| * |77;Rm,1/3|)($ -y)dy

[ T @il @ T b0 @) (10liog ryol * Mg, yrl) @ - 9y,

U¢g7m—1 U/¢g7—m—l

Since {¢y}ys form a partition of unity, ZU,¢ng_1 Yy (y) <1, and so
[ 8 wndl @) Y @) (1o ol * 1k, rl) @ - 1)y
U¢g7'mfl U/¢g7—mfl

<[ ol (18og ryol * 1,1 gl) (@ = )y,

U¢g7'm—1

which by Hélder is bounded from above by

> el @ (0tg ol * ) =) [ 0 P @)y

U Tm-1

Note that, for each z, the function y ~ |p(vlO . R)9| * n’g /R|(:1c - y) is approximately constant on

rectangles of dimensions ~ (log R) ™' R x R/R,,, with long edge parallel to n.,. By rapid decay of ¥y
outside of U,

Y e (heg myel < irrl) @ =) s X |I6eg el * nn i@ )]

UHU‘rm—lvR v U”U"'m—lﬁR LZO(U)
< Z Z ”‘p\(/logR)G‘ * ’U;Rm/RK?E - y)HLw v
UUr,y . Ve(log R) R/ Ry, 7
veU
-1
> O U [ EA T ]
Y

Ul\Ux,,_,,r V~(log R) " RxR/Rm
VeUu

_ -1 \Y; \
= (log R)lU’ H‘p(logR)Q‘ * ’nng/RK'r N y)‘ L3(R?)

s (log R)|U|™.
Additionally, the polynomial decay of Wy allows us to take lbé// 2 < Wy, so in total we get

*(y)dy.

B 2
0l 10iog ronl * 10,y pl(2) 5 (08 ) mis 1

Tm-1
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If we sum over all 6 € 7,,,_1, and use the hypothesis U ¢ G, _,, we see that

> > |f5,9

Tm—-1STk ST -1

2

* |P(vlogR)9| * |77;Rm,1/R|(95)

S(logR)* > sup ][ > Afmol? (y)dy

Tm-1ETk U¢g7—m_1 OCT -
QQ(#Tm_l ETk) 1
(#7m-1)?  Cy(log R)?

(b): Write f5 = Yo cr fho. s where 5= Yy Yy Yecr, ., fme- By Cauchy-
Schwarz,

1/2
&S(#Tm—lng)l/Q(IOgR)( >, |f5,7m1|2($)) :

Tm-1STk

We assume for the sake of contradiction that

Y A P@ <GP Y 1 P e, (@)

Tm—-1STk Tm-1STk
By (a),
QQ(#Tm_l C )
1B i P(2) 5 G2 :
2 Wmen P S G 536, log 2

On the other hand, we assumed the estimate

o’ S (#rma cm)(logR): > |f5 . [P(2),

Tm-1STk
so that ( )2 ( )2
log R H#Tm-1 C Tk B 2
(@) $ G i (@),
2 mena D S G o R G, 21, s
ie.

c 51,

If Cy is chosen as a sufficiently large universal constant (i.e. independently of f, R), then we conclude
by contradiction that

DY AN o € B el I S N LN )

)

Tm—-1STk Tm-1STk
ie.
(71/2
B 2 P B 2
Y e P@ <= T Um0l (@)
Tm-1STk Cp — 1 mpo1emi

: : o .
Since Cy is chosen to be a large constant, we conclude that the prefactor ﬁ is O(1), so we are
12

done. O
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