
UCLA Analysis qualifying exam solutions

Ben Johnsrude

These are solutions to old analysis qualifying exams for UCLA, accessible on the math UCLA website.
Varying levels of detail are presented, and not every problem after the first solved problem is solved. Please
send any corrections to johnsrude (at) math.ucla.edu; if you did not obtain this document directly from
the source, please first check that I have not already made that correction.

Note that Adam Lott has compiled solutions back to 2009, accessible here. The solutions presented
here are my own; the solutions presented there are the compiled work of many individuals and should
probably be treated as rather more reliable.

I lastly make several remarks contrasting features of the solutions presented here and those of the so-
lutions that would be expected, or desirable, in the qualifying exam itself. Firstly, these have been prepared
outside of a testing environment, slowly over a long period of time, in part as preparation for teaching
(though I almost always avoid using outside sources, except to recall this-or-that technical condition for
a theorem). Secondly, they are much longer than a typical submission on the exam: I attempt to clearly
spell out as many details as are needed for someone to understand the solution, assuming that they have no
idea how to solve it themselves. As such, these look much more like homework submissions than exam sub-
missions; in the latter, one is writing a sketch directed at a seasoned examiner, who knows the question
and knows how people are likely to solve the question.

Next, I do not take too much care to restrict the methods used in the solutions to those which are
covered in the 245A/B/C, 246A/B classes, which are expected to be known to those students. In part, this
is logistically necessary: the exams are in part written by the faculty who teach those courses (who vary
from year-to-year), and so each year’s exam is slightly biased towards the particular topics that professor
focused on. As such, it would be too much work to make sure that all my methods are geared towards
solving problems from the perspective of someone who has just taken those classes.
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1 Spring 2019
Spring 2019 Problem 1. Let f ∈ C2(R) be a real-valued function that is uniformly bounded on R.
Prove that there exists a point c ∈ R such that f ′′(c) = 0.

Proof. We will show the contrapositive: if f ′′ is nowhere vanishing, then f is unbounded. Replacing f by
−f if necessary, we may assume that f ′′ > 0 on all of R. We divide into cases, depending on the sign of
f ′:

Case 1: Suppose there is some x0 ∈ R such that ε := f ′(x0) > 0. Then, for each y ≥ x0,

f ′(y) = f ′(x0) +

∫ y

x0

f ′′(t)dt ≥ f ′(x0) = ε

so that, for each z ≥ x0,

f(z) = f(x0) +

∫ z

x0

f ′(y)dy ≥ f(x0) + ε(z − x0)

Taking z to be large, we conclude that f is not bounded above, as was to be shown.
Case 2: Suppose f ′(x0) = 0 for some x0 ∈ R. Then, if y > x0,

f ′(y) = f ′(x0) +

∫ y

x0

f ′′(t)dt > f ′(x0) = 0

so that f ′(y) > 0, and we may apply Case 1.
Case 3: If we are not in one of the previous cases, then f ′ < 0 on all of R. Since f ′′ > 0, we have that

f ′ is increasing, so writing f ′(0) =: −ε < 0 we have

y < 0 =⇒ f ′(y) ≤ f ′(0) = −ε

Then, for z < 0,

f(z) = f(0)−
∫ 0

z

f ′(y)dy ≥ f(0) + ε|z|

so that f is unbounded as z → −∞, as was to be shown.

Spring 2019 Problem 2. Let µ be a Borel probability measure on [0, 1] that has no atoms (this means
that µ({t}) = 0 for any t ∈ [0, 1]). Let also µ1, µ2, . . . be Borel probability measures on [0, 1]. Assume
that µn converges to µ in the weak∗ topology. Denote F (t) := µ([0, t]) and Fn(t) := µn([0, t]) for each
n ≥ 1 and t ∈ [0, 1]. Prove that Fn converges uniformly to F .

Proof. We recall that µn ⇀ µ weak-∗’ly on [0, 1] if, for each f ∈ C([0, 1];R), we have∫
fdµn →

∫
fdµ, (n→∞)

Since the functions F, Fn are monotone and F is continuous, it will suffice to show pointwise conver-
gence; we will establish the implication to uniform convergence at the end. Note that Fn(1) = 1 = F (1)
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and for each n, so we need to consider t < 1. Let 0 < t < 1, and for k ∈ N sufficiently large so that
2
k
< 1− t we write

hk(x) =


1 0 ≤ x ≤ t

1− k|x− t| t ≤ x ≤ t+ 1
k

0 t+ 1
k
≤ x ≤ 1

Then {hk}k is a sequence of functions uniformly bounded by the integrable function 1[0,1], and limit
pointwise to the indicator 1[0,t]. By the dominated convergence theorem,

F (t) =

∫
1[0,t]dµ = lim

k→∞

∫
hkdµ, Fn(t) =

∫
1[0,t]dµn = lim

k→∞

∫
hkdµn

We also write, for each k,

uk(x) =



0 x ≤ t− 1
k

k(x− t+ 1
k
) t− 1

k
≤ x ≤ t

1 t ≤ x ≤ t+ 1
k

1− k(x− t− 1
k
) t+ 1

k
≤ x ≤ t+ 2

k

0 x ≥ t+ 2
k

Note that each uk is continuous, uk ≤ 1[t− 1
k
,t+ 2

k
], and hk − 1[0,t] ≤ uk.

Let now ε > 0. By the atomless condition and finiteness of µ, continuity from above implies that
there exists k ∈ N such that

µ([t− 1

k
, t+

2

k
]) <

ε

2

It follows then that

lim sup
n→∞

|Fn(t)− F (t)| ≤ lim sup
n→∞

∫
|1[0,t] − hk|dµn + lim sup

n→∞

∣∣ ∫ hkdµn −
∫
hkdµ

∣∣
+ lim sup

n→∞

∫
|hk − 1[0,t]|dµ

≤ lim sup
n→∞

∫
ukdµn + 0 + lim sup

n→∞

∫
ukdµ

= 2

∫
ukdµ < ε

Since ε was arbitrary, we conclude that Fn(t)→ F (t) as n→∞ for each t ∈ (0, 1].
We’ll omit the t = 0 case, as it is similar but technically somewhat simpler than what is already done

above. So now we accept that Fn → F pointwise on [0, 1].
We next demonstrate uniform convergence. Let ε > 0 be arbitrary. Let δ be an ε-modulus of conti-

nuity forF , i.e. |x− y| < δ implies |F (x)−F (y)| < ε; sinceF is continuous on a compact domain, this
exists. Let 0 = t1 < . . . < tN = 1 be a δ/2-net of [0, 1], i.e. a finite subset such that any t ∈ [0, 1] has
some tj such that |t− tj| < δ

2
. Let n1, . . . , nN ∈ N be such that

kj ≥ nj =⇒ |Fkj(tj)− F (tj)| < ε
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Then, for each t ∈ [0, 1], if tj ≤ t ≤ tj+1, then |t − tj| < δ and |t − tj+1| < δ, so for n ≥
max(n1, . . . , nN),

|Fn(t)− F (t)| ≤ |Fn(t)− F (tj+1)|+ |F (tj+1)− F (t)| < |Fn(t)− F (tj+1)|+ ε

Note that, by monotonicity,
Fn(t) ≤ Fn(tj+1) ≤ F (tj+1) + ε

and
Fn(t) ≥ Fn(tj) ≥ F (tj)− ε ≥ F (tj+1)− 2ε

so that
|Fn(t)− F (tj+1)| < 2ε

Thus we have justified that, for each ε > 0, we may find Nε large enough so that t ∈ [0, 1] and n ≥ Nε

implies |Fn(t)− F (t)| < 3ε. In particular, Fn → F uniformly, as was to be established.

Spring 2019 Problem 3. (a) Let f be a positive continuous function on R such that lim|t|→∞ f(t) = 0.
Show that the set {hf : h ∈ L1(R,m), ‖h‖1 ≤ K} is a closed nowhere dense set in L1(R,m), for any
K ≥ 1 (m denotes the Lebesgue measure on R).

(b) Let {fn}n be a sequence of positive continuous functions on R such that for each n we have
lim|t|→∞ f(t) = 0. Show that there exists g ∈ L1(R,m) such that g/fn 6∈ L1(R,m) ∀n.

Proof. (a): Throughout we will writeH for the set in question. We begin by showing thatH has no interior.
Since H is the image of a linear mapping h 7→ hf on L1(R,m), H is a linear subspace, so it will suffice
to show that 0 is not interior. Let ε > 0 be arbitrary. Let R > 0 be such that |t| ≥ R implies |f(t)| <
10−2K−1ε. Let then g = ε1[R,R+1]; then g ∈ L1(R,m) and ‖g‖1 = ‖g − 0‖1 ≤ ε. On the other hand,
g 6∈ H : if h ∈ L1(R,m) is such that g = hf , then for any R ≤ t ≤ R + 1

ε = g(t) = f(t)h(t), so f(t) 6= 0 and h(t) =
ε

f(t)

and so
‖h‖1 ≥

∫ R+1

R

ε

f(t)
dt >

∫ R+1

R

102Kdt = 102K

So any h ∈ L1(R,m) satisfying g = hf must have ‖h‖1 6≤ K . In particular, g 6∈ H . Since we have
found an element of Hc in every open ball about 0, we conclude that 0 is not interior to H . As remarked
previously, this implies thatH has empty interior.

We next show thatH is closed. Suppose gn = hnf is a sequence inH and g ∈ L1(R,m) is such that
gn → g in L1. It remains to show that g/f has finite L1 norm.

For n ∈ N, write 1 > εn > 0 for a number such that f > εn on [−n, n]. Let Kn ∈ N be such that
k ≥ Kn implies ‖gk − g‖L1 < 2−nε2

n. Then∫ n

−n

∣∣gKn
f
− g

f

∣∣dm ≤ ε−1
n

∫
|gKn − g|dm ≤ 2−nεn

and hence ∫ n

−n

∣∣∣ g
f

∣∣∣dm ≤ ∫ n

−n
|hKn|+

∫ n

−n

∣∣gKn
f
− g

f

∣∣dm ≤ K + 2−nεn
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so that ∫
| g
f
|dm = lim sup

n→∞

∫ n

−n

∣∣∣ g
f

∣∣∣dm ≤ K <∞

as was to be established.
(b): For each n,K ∈ N, write Un,K for the set

Un,K = {g ∈ L1(R,m) :

∫
|g|
fn

> K}

By (a), each Un,K is a dense open subset of L1(R,m). By Baire category, there exists g ∈
⋂∞
n,K=1 Un,K .

We verify that g satisfies the conditions required. For each n, we have

g ∈
∞⋂

n,K=1

Un,K

so that
∀K

∫
|g|
fn

> K

i.e. g
fn
6∈ L1(R,m). Since this holds for each n, we are done.

Spring 2019 Problem 4. Let V be the subspace of L∞([0, 1], µ) (where µ is the Lebesgue measure on
[0, 1]) defined by

V = {f ∈ L∞([0, 1], µ) : lim
n→∞

n

∫
[0,1/n]

fdµ exists}

(a) Prove that there existsϕ ∈ L∞([0, 1], µ)∗ (i.e., a continuous functional onL∞([0, 1], µ)) such that
ϕ(f) = limn→∞ n

∫
[0,1/n]

fdµ for every f ∈ V .
(b) Show that, given any ϕ ∈ L∞([0, 1], µ)∗ satisfying the condition in (a) above, there exists no

g ∈ L1([0, 1], µ) such that ϕ(f) =
∫
fgdµ for all f ∈ L∞([0, 1], µ).

Proof. (a): Note first that, for each n,

|n
∫

[0,1/n]

fdm| ≤ ‖f‖∞ × n
∫

[0,1/n]

dm = ‖f‖∞

so the linear map ϕ0 : V → R, ϕ0(f) = limn→∞ n
∫

[0,1/n]
fdm satisfies the bound

|ϕ0(f)| ≤ sup
n
‖f‖∞ = ‖f‖∞

By Hahn-Banach, there existsϕ : L∞([0, 1],m)→ R linear with norm bounded by 1 such that ϕ|V = ϕ0,
as was to be shown.

(b): Suppose to the contrary that g ∈ L1([0, 1],m) is such that, for any f ∈ L∞([0, 1],m),

ϕ(f) =

∫
fgdm
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where ϕ is as in (a). In particular, testing against f = 1 ∈ V ,

1 = ϕ(1) =

∫
gdm

so certainly ‖g‖1 ≥ 1. On the other hand, for any ε > 0 and any f ∈ L∞([0, 1],m) such that f |[0,ε] ≡ 0,
we have

0 = ϕ(f) =

∫
fgdm

In particular, g|(ε,1] ≡ 0 a.e. Since ε > 0 was arbitrary, we conclude that g has essential support contained
in {0}, i.e. g ≡ 0 as an element of L1([0, 1],m). But this contradicts the estimate ‖g‖1 ≥ 1 from earlier,
and we’re done.

Spring 2019 Problem 5. (a) Prove that Lp([0, 1], µ) are separable Banach spaces for 1 ≤ p < ∞ but
L∞([0, 1], µ) is not (where µ is Lebesgue measure on [0, 1]).

(b) Prove that there exists no linear bounded surjective map T : Lp([0, 1], µ)→ L1([0, 1], µ).

Proof. (a): For each 1 ≥ s > r > 0, we have

‖1[0,s] − 1[0,r]‖∞ = ‖1(r,s]‖∞ = 1

so the family {B(1[0,r],
1
2
)}0<r≤1 of nonempty open sets is pairwise disjoint and uncountable, hence

L∞([0, 1]) is not separable.
Fix now 1 ≤ p <∞. It is unclear what is expected to be assumed for the purposes of this problem; we

choose to take for granted that continuous functions are dense inLp, and the Stone-Weierstrass theorem.
We claim that polynomials with rational coefficients are dense in Lp([0, 1], µ). To see this, fix f ∈

Lp([0, 1], µ) and ε > 0. By the density of continuous functions, there is some g ∈ C([0, 1]) such that
‖f − g‖p < ε/2. By the Stone-Weierstrass theorem, we may find some polynomial P such that

‖P − g‖∞ <
ε

4

Let the form of P be
P (x) = anx

n + . . .+ a1x+ a0

with a0, . . . , an ∈ R. By the density of Q in R, we may find b0, . . . , bn ∈ Q satisfying the estimates

|bk − ak| ≤
ε

4(n+ 1)
, (0 ≤ k ≤ n)

If we then writeQ(x) = bnx
n + . . .+ b1x+ b0, we compute

‖Q− P‖L∞([0,1]) ≤
n∑
k=0

|bk − ak| ≤
ε

4

so that, by Hölder,

‖g −Q‖p ≤ ‖g − P‖p + ‖P −Q‖p ≤ ‖g − P‖∞ + ‖P −Q‖∞ <
ε

2
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and hence
‖f −Q‖p ≤ ‖f − g‖p + ‖g −Q‖p < ε

as was to be established. Since polynomials with rational coefficients form a countable set, we conclude
that Lp is separable.

(b): Suppose, for the sake of contradiction, p > 1 and T : Lp([0, 1], µ) → L1([0, 1], µ) is a continu-
ous linear surjection. Abusing notation slightly, we write T ∗ for the induced dual map L∞([0, 1], µ) →
Lp
′
([0, 1], µ), where p′ is the usual dual exponent in [1,∞). Observe that T ∗ is linear and bounded; we

claim that further there is c > 0 such that ‖T ∗g‖ ≥ c‖g‖ for each g ∈ L∞([0, 1], µ).
Indeed, we may compute by duality

‖T ∗g‖Lp′ = sup
‖f‖p<1

〈T ∗g, f〉 = sup
‖f‖p<1

〈g, Tf〉 = sup{〈g, h〉 : h ∈ T [B(0, 1)]}

(writing B(0, 1) for the open unit ball in Lp). If g 6= 0, then there is h ∈ L1([0, 1], µ) with ‖h‖ ≤ 1
2

and 〈g, h〉 ≥ 1
4
‖g‖∞. Since T is surjective, the open mapping theorem implies that T [B(0, 1)] is open,

so there is some λ > 0 such that λh ∈ T [B(0, 1)]. Hence

‖T ∗g‖Lp′ ≥ 〈g, λh〉 = λ〈g, h〉 ≥ λ

4
‖g‖∞

so the desired conclusion holds with c = λ
4

.
Finally, we use this estimate to reach a contradiction. Let {gα}α be an uncountable family of elements

ofL∞([0, 1];µ) such that any pair α 6= α′ have ‖gα− gα′‖∞ ≥ 1. Then, by the preceding, {T ∗gα}α is an
uncountable family of elements ofLp′ which are≥ c-separated, so the metric balls of radius c

2
centered at

the T ∗gα are disjoint. However, this contradicts the fact from (a) that Lp′([0, 1], µ) is separable. As such,
no such T exists.

Spring 2019 Problem 6. Let H be a Hilbert space and {ξn}n a sequence of vectors in H such that
‖ξn‖ = 1 for all n.

(a) Show that if {ξn}n converges weakly to a vector ξ ∈ Hwith ‖ξ‖ = 1, then limn→∞ ‖ξn− ξ‖ = 0.
(b) Show that if limn,m→∞ ‖ξn + ξm‖ = 2, then there exists a vector ξ ∈ H such that limn→∞ ‖ξn −

ξ‖ = 0.

Proof. (a): Observe that

‖ξn − ξ‖2 = 〈ξn − ξ, ξn − ξ〉
= ‖ξn‖2 + ‖ξ‖2 − 2Re〈ξn, ξ〉
= 2− 2Re〈ξn, ξ〉
→ 2− 2Re〈ξ, ξ〉 = 0

as was to be shown.
(b): Write H′ = span{ξn : n ∈ N}; thus H′ ⊆ H is the closed subspace spanned by the ξn. By

construction, H′ is separable, so the Banach-Alaoglu theorem implies that the unit ball of H′ is weakly
sequentially compact. Thus there is some ξ ∈ H that is a weak limit point for {ξn}n, i.e. there is a
subsequence such that ξnk ⇀ ξ weakly. By (a), ‖ξnk − ξ‖ → 0.
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Fix now 1 > ε > 0 and letN ∈ N be sufficiently large so that n,m ≥ N implies ‖ξn + ξm‖ ≥ 2− ε,
and if nk ≥ N we have ‖ξnk − ξ‖ < ε. Then, for each n ≥ N , and any k such that nk ≥ N ,

‖ξn − ξ‖ ≤ ‖ξn − ξnk‖+ ‖ξnk − ξ‖
< ‖ξn − ξnk‖+ ε

whereas
(2− ε)2 ≤ ‖ξn + ξnk‖2 = 2 + Re〈ξn, ξnk〉

so that
Re〈ξn, ξnk〉 ≥ 2− 2ε+ ε2

Consequently,
‖ξn − ξnk‖2 = 2− 2Re〈ξn, ξnk〉 ≤ 2ε− ε2

so that
‖ξn − ξ‖ < ε+

√
2ε− ε2

Thus, for each 0 < ε < 1, we have found N so that n ≥ N implies the preceding inequality. It follows
directly that ‖ξn − ξ‖ → 0 as n→∞, as was to be shown.

Spring 2019 Problem 7. Let f : C→ C be entire non-constant, and let us set

T (r) =
1

2π

∫ 2π

0

log+ |f(reiϕ)|dϕ.

Here log+ s = max(log s, 0). Show that T (r)→∞ as r →∞.

Proof. We separately handle the cases where f is polynomial, and where f is transcendental. Suppose first
that f is a polynomial of degree n. Then, for R sufficiently large, there is c > 0 such that for all |z| ≥ R,

|f(z)| ≥ c|z|n

Then, for r ≥ R large enough that rnc > 1,

T (r) ≥ log(rnc) = log c+ n log r

and we conclude that T is divergent as r →∞.
Now we assume that f is entire and nonpolynomial. Under the assumption, we may find |α| ≤ 1

such that fα := f − α has infinitely many zeroes, and 0 is not one of them. For R > 1 such that fα is
nonvanishing on |z| = R, letBR(z) be the (rescaled) Blaschke factor

n∏
j=1

(z/R)− (zj/R)

1− (zj/R)(z/R)

where z1, . . . , zn are the zeroes of fα on {|z| < R}. Then there exists a zero-free holomorphic function
gR defined on a neighborhood of {|z| ≤ R} for which

fα(z) = gR(z)BR(z)
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Observe that |BR(Reiθ)| = 1 for all θ. Consequently,

log |fα(Reiθ)| = log |gR(Reiθ)|

Notice that z 7→ log |gR(z)| is harmonic. Thus∫ 2π

0

log |gR(Reiθ)|dθ = 2π log |gR(0)| = 2π log |fα(0)| − 2π
n∑
j=1

log
|zj|
R

Since |zj| ≤ R for each j,

1

logR

∫ 2π

0

log |gR(Reiθ)|dθ ≥ 2π

logR
|log |fα(0)||+ 2π log 2#{z ∈ C : f(z) = 0, |z| ≤ R

2
}

The quantity counted in the previous display diverges asR→ +∞. Consequently,

lim
R→+∞

∫ 2π

0

log |fα(Reiθ)|dθ = +∞

Finally, observe that, for each z,

max(log |f(z)− α|, 0) ≤ max(log |f(z)|, 0) + max(log |α|, 0) + log 2 = max(log |f(z)|, 0) + log 2

so that ∫ 2π

0

max(log |f(Reiθ)|, 0) ≥ −2π log 2 +

∫ 2π

0

log |f(Reiθ|)dθ

from which the desired conclusion follows.

Spring 2019 Problem 8. Show that

sin z − z cos z =
z3

3

∞∏
n=1

(
1− z2

λ2
n

)
, z ∈ C,

where (λn)n≥1 is a sequence in C, λn 6= 0 for all n, such that
∞∑
n=1

1

|λn|2
<∞.

Proof. Let f be the function on the left-hand side. First, taking expansions at 0,

sin z − z cos z = z − z3

3!
+O(z5)− z +

z3

2!
+O(z5) =

z3

3
+O(z5)

hence f vanishes to order 3 at 0. Next, from the easy estimates

| sin z| . e|z|, |z cos z| . |z|e|z| = e|z|+log |z| = e|z|(1+o(1))
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we see that f has order at most 1. It follows that the zeroes {ηn}n ⊆ C \ {0} of f away from 0 satisfy∑
n

1

|ηn|1+1
<∞

On the other hand, it is immediate to see that f is even. Thus the zeroes ηn come in plus/minus pairs. Let
{λn}n be a choice of representatives; thus, λn 6= ±λm for n 6= m, and each ηn is equal to some ±λm.
Then the preceding bound implies ∑

n

1

|λn|2
<∞

as was to be established.
Next, we note that f has infinitely many zeroes. Indeed, for k an integer,

f(kπ) = (−1)k+1kπ

so by the intermediate value theorem we have a zero between kπ and (k + 1)π for each integer k.
Next, since f has order 1, it has the Hadamard factorization

f(z) = z3eg
∞∏
n=1

(1− z

ηn
)ez/ηn

with g a polynomial of degree at most 1. Collecting together the± pairs of the zeroes, this factorization
rearranges as

f(z) = z3eg
∞∏
n=1

(1− z2

λ2
)

Indeed, the infinite product converges locally uniformly, so we may rearrange freely. It remains to con-
sider the polynomial g.

Finally, observe that
f ′

f
=

3

z
+ g′ +

∞∑
n=1

−2z

λ2
n − z2

The infinite series isO(z) near 0; additionally,

f ′

f
=

z sin z

sin z − z cos z
=

3

z
+O(z)

near 0, so g′ = O(z). Thus g is constant. Since we have already identified f(z) to have leading expansion
z3

3
+ O(z5), and this agrees with the z3

3

∏
n(1 − z2

λ2n
) quantity to leading order, we conclude that in fact

g = 0. Thus the desired factorization holds.

Spring 2019 Problem 9. Let D = {z ∈ C : |z| < 1} and letA(D) be the space of functions holomor-
phic in D and continuous in D. Let

U = {f ∈ A(D); |f(z)| = 1 for all z ∈ ∂D}.

11



Show that f ∈ U if and only if f is a finite Blaschke product,

f(z) = λ
N∏
j=1

z − aj
1− ājz

,

for some aj ∈ D, 1 ≤ j ≤ N <∞ and |λ| = 1.

Proof. We only attend to the forward direction, as the reverse direction is trivial. Let f ∈ U . Suppose
first that f has no zeroes in D. If f is constant, then we are done; otherwise, by the maximum principle,
|f(0)| < 1. Write c = f(0) and

φ : D→ D, φ(z) =
z − c
1− c̄z

Then certainly φ is holomorphic in D and continuous on D. Additionally, note that for |z| = 1

|z − c|2 = |z|2 − zc̄− z̄c+ |c|2

= 1− zc̄− z̄c+ |c̄z|2

= |1− c̄z|2

so that |φ(z)| = 1. Consequently, f ◦ φ is another element of U . But (f ◦ φ)(c) = 0, so f(φ(c)) = 0,
so φ(c) is a zero of f . Since φ is analytic, nonconstant, and takes magnitude 1 on ∂D, we conclude that
|φ(c)| < 1, so f does have a zero. By contradiction, we conclude that any element of U without zeroes is
a constant, and we are done in this case.

We now consider the case that f hasN zeroes for someN ∈ N. Counting multiplicity, write them as
a1, . . . , aN ∈ D (observe that the boundary condition necessitates that no aj ∈ ∂D). Write then

g(z) = f(z)
N∏
j=1

1− ājz
z − aj

Then g is analytic in D, and (since the linear factors in the numerator vanish at 1/āj 6∈ D) have no zeroes
in D. Since each factor has magnitude 1 on ∂D, we have that g ∈ U . By the previous case, g ≡ λ for some
λ ∈ ∂D, i.e.

f(z) = λ
N∏
j=1

z − aj
1− ājz

on D, as was to be shown.
Lastly, suppose f ∈ U has infinitely many distinct zeroes {an}n. Then the latter set accumulates to

some element a of D. Since f is continuous on D and takes magnitude 1 on ∂D, a ∈ D. But then by the
uniqueness principle, f ≡ 0, whereas f must extend continuously to nonzero quantities on the boundary,
a contradiction. Thus we are done in all cases.

Spring 2019 Problem 10. For a > 0, b > 0, evaluate the integral∫ ∞
0

log x

(x+ a)2 + b2
dx.

12



Proof. We will evaluate the integral as∫ ∞
0

log x

(x+ a)2 + b2
=

1

4b
arctan(b/a) · log(a2 + b2)

via integrating (log z)
(z+a)2+b2

around a keyhole contour.
Write log z for the branch of the logarithm with cut alongR≥0, defined to have imaginary part between

[0, 2π]; we will freely write log x ∈ R and log x ∈ R + 2πi, as context warrants. For 1 > ε > 0 and
R > 1 two parameters, write γj = γ

(ε,R)
j (1 ≤ j ≤ 4) for the curves

γ1(t) = t
(
ε ≤ t ≤ R

)
,

γ2(t) = Reit (0 ≤ t ≤ 2π),

γ3(t) = R− t
(
0 ≤ t ≤ R− ε

)
,

γ4(t) = εei(2π−t) (0 ≤ t ≤ 2π)

Let also Γ = Γ(ε,R) for the closed curve given by traversing γ1, γ2, γ3, γ4 in that order. Then the function

f(z) =
(log z)2

(z + a)2 + b2

has singularities at z = −a+ ib and z = −a− ib, and is otherwise holomorphic in the domain cut out by
Γ. We will always assume thatR is sufficiently large, and ε sufficiently small, so that−a+ ib is contained
in that domain.

Considering the factorization

(z + a)2 + b2 = (z + a+ ib)(z + a− ib)

we see that f has a simple pole at−a+ ib, so

Res [f(z),−a+ ib] = Res

[
(log z)2/(z + a+ ib)

(z + a− ib)
,−a+ ib

]
=

(log(−a+ ib))2

2ib

Similarly, there is a simple pole at−a− ib with residue

Res [f(z),−a− ib] = Res

[
(log z)2/(z + a− ib)

(z + a+ ib)
,−a− ib

]
= −(log(−a− ib))2

2ib

Thus, by the residue theorem,∫
Γ

f(z)dz =
π

b

(
(log(−a+ ib))2 − (log(−a− ib))2

)
=: ca,b

We now analyze the components of
∫

Γ
=
∑4

j=1

∫
γj

. First,∫
γ1

f(z)dz =

∫ R

ε

(log x)2

(x+ a)2 + b2
dx

Next, ∫
γ3

f(z)dz =

∫ ε

R

(log x+ 2πi)2

(x+ a)2 + b2
dx = −

∫ R

ε

(log x)2 + 4πi log x− 4π2

(x+ a)2 + b2
dx

13



will be related to the preceding integral. Next,∫
γ2

f(z)dz =

∫ 2π

0

(logR + it)2

(Reit + a)2 + b2
iReitdt = i

(logR)2

R

∫ 2π

0

1 + it
logR

(eit + a
R

)2 + (b/R)2
eitdt

For R sufficiently large, the integrand is pointwise dominated by 4 in magnitude. Thus, by a trivial esti-
mate,

lim
R→∞

∫
γ2

f(z)dz = 0

Finally, ∫
γ4

f(z)dz =

∫ 2π

0

(log ε+ i(π − t))2

(εei(π−t) + a)2 + b2
(−iεei(π−t))dt

For ε sufficiently small, the integrand is pointwise bounded by 4πε(log ε)2

a2+b2
in magnitude. Thus, by the

dominated convergence theorem,

lim
ε→0+

∫
γ4

f(z)dz =

∫ π

0

0dt = 0

where we are of course using the estimate ε(log ε)2 = o(1).
Now we combine the components. Note that∫

γ1

f(z)dz +

∫
γ3

f(z)dz = −
∫ R

ε

4πi log x− 4π2

(x+ a)2 + b2
dx

so that, sending ε→ 0 andR→∞ in
∫

Γ
=
∑4

j=1

∫
γj

,∫ ∞
0

log x

(x+ a)2 + b2
dx = − ca,b

4πi
+
π

i

∫ ∞
0

1

(x+ a)2 + b2
dx

Analyzing the second summand using real-variable techniques,∫ ∞
0

1

(x+ a)2 + b2
dx =

1

a

∫ ∞
1

1

x2 + (b/a)2
dx =

1

b

∫ ∞
a
b

1

x2 + 1
dx

which is just ∫ ∞
0

1

(x+ a)2 + b2
dx =

1

b

(π
2
− arctan(

a

b
)
)

and hence ∫ ∞
0

log x

(x+ a)2 + b2
dx =

ca,b
4πi

+
π

bi

(π
2
− arctan(

a

b
)
)

Finally, recalling
ca,b =

π

b

(
(log(−a+ ib))2 − (log(−a− ib))2

)
and letting θ = arctan(b/a) and r =

√
a2 + b2, we have

log(−a+ ib) = log r + i(π − θ), log(−a− ib) = log r + i(π + θ)

14



so that
(log(−a+ ib))2 − (log(−a− ib))2 = 4πθ − 2iθ log r

and thus (using arctan(a/b) = π
2
− arctan(b/a))∫ ∞

0

log x

(x+ a)2 + b2
dx = − 1

4bi
(4πθ − 2iθ log r) +

π

bi
θ

=
θ log r

2b

=
1

4b
arctan(b/a) · log(a2 + b2)

Spring 2019 Problem 11. Let u ∈ C∞(R) be smooth 2π-periodic. Show that there exists a bounded
holomorphic function f+ in the upper half-plane Imz > 0 and a bounded holomorphic function f− in
the lower half-plane Imz < 0, such that

u(x) = lim
ε→0+

(f+(x+ iε)− f−(x− iε)), x ∈ R.

Proof. needs finishing
It is clear that we may freely add constants to uwithout altering the truth of the question; as such, we

may assume
∫ 2π

0
u(x)dx = 0. For each n ∈ N, write

an =
1

2π

∫ 2π

0

u(x)e−inxdx

and
bn =

1

2π

∫ 2π

0

u(x)einxdx

Note that these integrals all converge. We first remark on the size of the an, bn. Trivially we have

|an| ≤
1

2π

∫ 2π

0

|u(x)|dx ≤ ‖u‖∞

and similarly for the bn; thus these coefficients are uniformly bounded. Moreover, since u is smooth, for
each n ∈ N we may integrate by parts to obtain∫ 2π

0

u(x)e−inxdx = − 1

n2

∫ 2π

0

u(x)
d2

dx2

[
e−inx

]
dx = − 1

n2

∫ 2π

0

u(2)(x)e−inxdx

so that
|an| ≤

1

2πn2

∫ 2π

0

|u(2)(x)|dx ≤ ‖u
(2)‖∞
2π

and hence {an}n∈N is summable. Similarly, {bn}n∈N is summable.

15



Define the auxiliary functions g+, g− by

g+(z) =
∞∑
n=1

anz
n, g−(z) = −

∞∑
n=1

bnz
−n

Since the coefficients are bounded, the series converge on the unit disk D = {|z| < 1} and C \ D,
respectively. Further, since the coefficients are summable, we obtain

|g+(z)| ≤
∞∑
n=1

n−2‖u(2)‖∞|z|n ≤ ‖u‖∞ +
∞∑
n=1

n−2‖u(2)‖∞

for all z ∈ D, and we may find a similar upper bound on g−; thus the g+, g− are bounded on D and C\D,
respectively.

We now define
f+(z) = g+(eiz) (Im(z) > 0)

and
f−(z) = g−(eiz) (Im(z) < 0)

Note then that

f+(x+ iε)− f−(x− iε) =
1

2π

∞∑
n=1

∫ 2π

0

u(t)(ein(−t+x+iε) + ein(t−x+iε))dt

=
1

π

∞∑
n=1

∫ 2π

0

e−nεu(t) cos(n(x− t))dt

=
i

π

∫ 2π

0

∞∑
n=1

e−nεu(t) cos(n(x− t))dt

where in commuting the sum into the integral we are using the exponential decay to guarantee enough
summability to use Fubini-Tonelli. As a consequence,

f+(x+ iε)− f−(x− iε) =
1

π

∫ 2π

0

u(t)Re
[ ei(−t+x+iε)

1− ei(−t+x+iε)

]
dt

=
1

π
Re

[∫ 2π

0

u(t)
1

ei(t−x−iε) − 1
dt

]
It remains to estimate the integration kernel. Without loss of generality we will take x = 0. Then the
kernel takes the form

1

eit+ε − 1

16



which has mean zero on t ∈ [0, 2π]. It is also (2π)-periodic, so for each 1� η > 0 we may write

f+(x+ iε)− f−(x− iε) =
1

π
Re

[∫
|t|≤η

u(t)
1

eit+ε − 1
dt+

∫
η≤|t|≤π

u(t)
1

eit+ε − 1
dt

]
=

1

π
Re

[∫
|t|≤η

u(t)
1

eit+ε − 1
dt

]
+

1

π

∫
η≤|t|≤π

u(t)Re

[
1

eit+ε − 1

]
dt

=
1

π
Re

[∫
|t|≤η

u(t)
1

eit+ε − 1
dt

]
− 1

2π

∫
η≤|t|≤π

u(t)dt

=
1

π
Re

[∫
|t|≤η

u(t)
1

eit+ε − 1
dt

]
+

1

2π

∫
|t|≤η

u(t)dt

=
1

2π

∫
|t|≤η

u(t)Re

[
eit+ε + 1

eit+ε − 1

]
dt

Considering the kernel 1[−η,η](t)
eit+ε+1
eit+ε−1

, we wish to argue that for η = ε we have that the distribution
tends to 2πδ0 as ε→ 0+. Since, for each |t| ≤ η, we have

eit+ε + 1

eit+ε − 1
=

e2ε − eit+ε + e−it+ε − 1

(eε cos t− 1)2 + e2ε sin2 t
=
e2ε − 1 + 2ieε sin t

e2ε − 2eε cos t+ 1

for which ∣∣∣∣∣∣
Im
[
eit+ε+1
eit+ε−1

]
Re
[
eit+ε+1
eit+ε−1

]
∣∣∣∣∣∣ =

2eε| sin t|
e2ε − 1

. ε−1η

where we have used the small-angle approximation sin t ∼ t and the first-order expansion e2ε ∼ 1 + 2ε.
Thus, if η � ε, ∣∣∣∣eit+ε + 1

eit+ε − 1

∣∣∣∣ =

√∣∣∣∣Re

[
eit+ε + 1

eit+ε − 1

]∣∣∣∣2 +

∣∣∣∣Im [eit+ε + 1

eit+ε − 1

]∣∣∣∣2
=

∣∣∣∣Re

[
eit+ε + 1

eit+ε − 1

]∣∣∣∣ (1 +O(ε))

On the other hand,∣∣∣∣eit+ε + 1

eit+ε − 1

∣∣∣∣ =
|eit+ε + 1|
|eit+ε − 1|

=
eε + 1 +O(ε2)

ε+O(ε2)
= ε−1(eε + 1)(1 +O(ε))

so that
Re

[
eit+ε + 1

eit+ε − 1

]
= ε−1(eε + 1)(1 +O(ε))

Using this, and the first-order Taylor expansion of u, we obtain the estimate

f+(x+ iε)− f−(x− iε) =
1

2π

∫
|t|≤ε2

u(t)ε−1(eε + 1)(1 +O(ε))dt

=

17



Thus
Re

[
eit+ε + 1

eit+ε − 1

]
≤
∣∣∣∣eit+ε + 1

eit+ε − 1

∣∣∣∣ . Re

[
eit+ε + 1

eit+ε − 1

]

1

eit+ε − 1
= ...

Spring 2019 Problem 12. LetH be the vector space of entire functions f : C→ C such that∫
C
|f(z)|2dµ(z) <∞.

Here dµ(z) = e−|z|
2
dλ(z), where dλ(z) is the Lebesgue measure on C.

1. Show thatH is a closed subspace of L2(C, dµ).

2. Show that for all f ∈ H, we have

f(z) =
1

π

∫
C
f(w)ezw̄dµ(w), z ∈ C.

Hint for 2): Show that the normalized monomials

en(z) =
1

(πn!)1/2
zn, n = 0, 1, . . .

form an orthonormal basis ofH.

Proof. Throughout this problem, we will simply write ‖ · ‖2 for the exponentially weighted L2 norm
indicated in the problem.

(1): It will suffice to show that, if {fn}n is a sequence of elements of H and f ∈ L2(C, dµ) with
limn→∞ ‖fn − f‖2 = 0, then f ∈ H.

To this end, fix such {fn}n and f . We will show a locally uniform Cauchy condition on the fn. Fix
z ∈ C; then we have for each n,m ∈ N and r > |z|,

fn(z)− fm(z) =
1

2πi

∫
|w|=r

fn(w)− fm(w)

w − z
dw

so that, for eachR > ρ > 2|z|,

fn(z)− fm(z) =
1

2πiI(ρ,R)

∫ R

ρ

∫
|w|=r

fn(w)− fm(w)

w − z
e−r

2

dwrdr

where we have written
I(ρ,R) =

∫ R

ρ

e−r
2

rdr

18



Thus
|fn(z)− fm(z)| ≤ 1

2πI(ρ,R)

∫∫
ρ≤|w|≤R

|fn(w)− fm(w)|e−|w|2 |w|
|w| − |z|

dλ(w)

which by Cauchy-Schwartz supplies

|fn(z)− fm(z)| ≤ 1

2πI(ρ,R)

(∫∫
C
|fn(w)− fm(w)|2e−|w|2dλ(w)

)1/2

×

(∫∫
ρ≤|w|≤R

e−|w|
2

[
|w|

|w| − |z|

]2

dλ(w)

)1/2

Observe that ρ ≥ 2|z|, so for any |w| ≥ ρ we have

|w|
|w| − |z|

=
1

1− |z/w|
≤ 1

1− 1
2

= 2

and hence (∫∫
ρ≤|w|≤R

e−|w|
2

[
|w|

|w| − |z|

]2

dλ(w)

)1/2

≤ (8πI(ρ,R))1/2

Thus we have
|fn(z)− fm(z)| ≤ 1√

2πI(ρ,R)
‖fn − fm‖2

for any R > ρ ≥ |z|. On the other hand, we may compute

I(ρ,R) =
1

2

(
e−ρ

1/2 − e−R1/2
)
&

1

4
e−ρ

1/2

for allR sufficiently large. Thus

|fn(z)− fm(z)| . e
1
2
ρ1/2‖fn − fm‖2

uniformly over |z| < 1
2
ρ and n,m ∈ N. It follows that the {fn}n are uniformly Cauchy on each compact

set, hence fn → f locally uniformly, hence f is the locally uniform limit of analytic functions, hence is
analytic. We conclude f ∈ H, as was to be shown.

(2): We follow the hint. Note that, for any n,m ∈ Z≥0,∫
C
en(z)em(z)dµ(z) =

1

π(n!)1/2(m!)1/2

∫ ∞
0

rn+m

∫ 2π

0

ei(n−m)e−r
2

rdθdr

=
2

(n!)1/2(m!)1/2

∫ ∞
0

rn+m+1e−r
2

δn=mdr

= δn=m
2

n!

∫ ∞
0

r2n+1e−r
2

dr

= δn=m
1

n!

∫ ∞
0

une−udu

= δn=m
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where in the last step we use the well-known Gamma integral∫ ∞
0

tne−tdt = n!

provable by induction and integration-by-parts.
Thus {en}n form an orthonormal family. We claim that it is complete. Suppose f ∈ H is orthogonal

to all en. Then, writing

f(z) =
∞∑
k=0

akz
k

we have

0 =

∫
f(z)en(z)dµ(z) =

1

(πn!)1/2

∫ ∞∑
k=0

akz
kz̄ne−|z|

2

dλ(z)

Pick now any R > 0. Since the series defining f has infinite radius of convergence, for each ε > 0 we
may find Cε > 1 such that |ak| ≤ Cεε

k for all k by the Cauchy-Hadamard formula for the radius of
convergence. Thus, taking ε� R−1,∫

|z|≤R

∞∑
k=0

∣∣akzkz̄n∣∣e−|z|2dλ(z) ≤ Cε

∫
|z|≤R

∞∑
k=0

εk|z|n+ke−|z|
2

dλ(z)

≤ Cεε
−n
∫
|z|≤R

∞∑
k=0

εk|z|ke−|z|2dλ(z)

= Cεε
−n
∫
|z|≤R

1

1− |εz|
e−|z|

2

dλ(z) <∞

so that, for eachR, ∫
|z|≤R

∞∑
k=0

akz
kz̄ne−|z|

2

dλ(z) =
∞∑
k=0

∫
|z|≤R

akz
kz̄ne−|z|

2

dλ(z)

and the latter is equal to
∞∑
k=0

δk=n

∫ R

0

akr
k+n+1e−r

2

dr =

∫ R

0

anr
2n+1e−r

2

dr

TakingR→∞, we conclude that

0 =

∫
C

∞∑
k=0

akz
kz̄ne−|z|

2

dλ(z) = an

∫ ∞
0

r2n+1e−r
2

dr = ann!

so that an = 0. Since this holds for each n, we conclude that f =
∑

n anz
n is the zero function. Thus the

kernel of the complement of span({en}n) inH is trivial, so span({en}n) = H, as claimed.
We now attack the problem at hand. Since {en}n are an orthonormal (topological) basis for H, we

have the reproducing formula

f =
∞∑
n=0

〈f, en〉en
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Expanding this,
∞∑
n=0

〈f, en〉en(z) =
∞∑
n=0

zn

πn!

∫
C
f(w)w̄ndµ(w)

We wish to commute the sum into the integral. We verify this by demonstrating absolute integrability,
namely,
∞∑
n=0

∫
C

∣∣∣ zn
πn!

f(w)w̄n
∣∣∣dµ(w) =

∞∑
n=0

|z|n

πn!

∫ ∞
0

∫ 2π

0

|f(reit)|rn+1e−r
2

dtdr

=
1

π

∫ ∞
0

∫ 2π

0

|f(reit)|e−r2
∞∑
n=0

|rz|n

n!
dtrdr

=
1

π

∫ ∞
0

∫ 2π

0

|f(reit)|e−r2+r|z|dtrdr

=
1

π

∫ ∞
0

∫ 2π

0

|f(reit)|e−
1
2
r2e−

1
2
r2+r|z|dtrdr

≤ 1

π

(∫ ∞
0

∫ 2π

0

|f(reit)|2e−r2dtrdr
)1/2(∫ ∞

0

∫ 2π

0

e−r
2+2r|z|dtrdr

)1/2

<∞

so that
∞∑
n=0

zn

πn!

∫
C
f(w)w̄ndµ(w) =

∫
C

∞∑
n=0

zn

πn!
f(w)w̄ndµ(w) =

∫
C
f(w)ezw̄dµ(w)

as was to be established.
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2 Fall 2019
Fall 2019 Problem 1. Given σ-finite measures µ1, µ2, ν1, ν2 on a measurable space (X,X ), suppose
that µ1 � ν1 and µ2 � ν2. Prove that the product measures µ1 ⊗ µ2 and ν1 ⊗ ν2 on (X ×X,X ⊗ X )
satisfy µ1 ⊗ µ2 � ν1 ⊗ ν2 and the Radon-Nikodym derivatives obey

d(µ1 ⊗ µ2)

d(ν1 ⊗ ν2)
(x, y) =

dµ1

dν1

(x)
dµ2

dν2

(y)

for ν1 ⊗ ν2 almost every (x, y) ∈ X ×X .

Proof. LetN ∈ X ⊗ X be ν1 ⊗ ν2-null. Observe that µ1 ⊗ µ2 and ν1 ⊗ ν2 are σ-finite. Then

0 = (ν1 ⊗ ν2)(N) =

∫
X×X

1N(x, y)d(ν1 ⊗ ν2)(x, y)

Since the integrand is nonnegative and ν1 ⊗ ν2 is σ-finite, Fubini-Tonelli implies∫
X×X

1N(x, y)d(ν1 ⊗ ν2)(x, y) =

∫
X

∫
X

1N(x, y)dν1(x)dν2(y)

Since the preceding vanishes, it follows that there is a ν2-nullset N2 such that for every y ∈ X \ N2 we
have ν1({x ∈ X : (x, y) ∈ N}) = 0.

We use this to show that µ1 ⊗ µ2 � ν1 ⊗ ν2. Similarly as above,

(µ1 ⊗ µ2)(N) =

∫
X×X

1N(x, y)d(µ1 ⊗ µ2)(x, y)

Since the integrand is nonnegative and µ1 ⊗ µ2 is σ-finite, Fubini-Tonelli implies∫
X×X

1N(x, y)d(µ1 ⊗ µ2)(x, y) =

∫
X

∫
X

1N(x, y)dµ1(x)dµ2(y)

Since µ2 � ν2, we have µ2(N2) = 0. Thus∫
X

∫
X

1N(x, y)dµ1(x)dµ2(y) =

∫
X\N2

∫
X

1N(x, y)dµ1(x)dµ2(y)

For each y ∈ X \N2, the interior integral is µ1({x ∈ X : (x, y) ∈ N}). By the last paragraph, the latter
set is ν1-null, hence is µ1-null by absolute continuity. Thus

(µ1 ⊗ µ2)(N) = 0

and we reach the conclusion that µ1 ⊗ µ2 � ν1 ⊗ ν2.
Let

A = {A ∈ X ⊗ X : (µ1 ⊗ µ2)(A) =

∫
X×X

1A(x, y)
dµ1

dν1

(x)
dµ2

dν2

(y)d(ν1 ⊗ ν2)(x, y)}

We first claim that A is a σ-algebra. It is clear that A is closed under countable disjoint unions. In the
event thatA = X ×X is the full set, then

(µ1⊗µ2)(A) = µ1(X)µ2(X) =

(∫
X

dµ1

)(∫
X

dµ2

)
=

(∫
X

dµ1

dν1

(x)dν1(x)

)(∫
X

dµ2

dν2

(y)dν2(y)

)
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and Fubini implies that A ∈ A. Finally, these last two facts and a straightforward demonstration imply
thatA is closed under complementation, so it is a σ-algebra.

Next, if A,B ∈ X , then by Fubini∫
X×X

1A×B(x, y)
dµ1

dν1

(x)
dµ2

dν2

(y)d(ν1 ⊗ ν2)(x, y)

=

(∫
X

1A(x)
dµ1

dν1

(x)dν1(x)

)(∫
X

1B(y)
dµ2

dν2

(y)dν2(y)

)
= µ1(A)µ2(B)

so that A × B ∈ A. Since A is a σ-algebra, it follows that X ⊗ X ⊆ A. Since the reverse inclusion is
true definitionally, it follows that

(µ1 ⊗ µ2)(A) =

∫
X×X

1A(x, y)
dµ1

dν1

(x)
dµ2

dν2

(y)d(ν1 ⊗ ν2)(x, y)

for all A ∈ X ⊗ X . Since Radon-Nikodym derivatives are equal (ν1 ⊗ ν2)-a.e., it follows that

d(µ1 ⊗ µ2)

d(ν1 ⊗ ν2)
(x, y) =

dµ1

dν1

(x)
dµ2

dν2

(y)

for (ν1 ⊗ ν2)-a.e. (x, y) ∈ X ×X .

Fall 2019 Problem 2. Let µ be a finite Borel measure on R with µ({x}) = 0 for all x ∈ R and let
ϕ(t) =

∫
R e

itxdµ(x). Prove that

lim
T→∞

1

2T

∫ T

−T
|ϕ(t)|2dt = 0

Proof. Let χ : R→ R be smooth and compactly supported. Then∫
R
|ϕ(t)|2χ(t)dt =

∫∫∫
eit(x−y)χ(t)dµ(x)dµ(y)dt

Since µ is finite, the triple integral is over a σ-finite measure space. Note too that∫∫∫
|eit(x−y)χ(t)|dµ(x)dµ(y)dt =

∫∫∫
|χ(t)|dµ(x)dµ(y)dt = µ(R)2

∫
|χ(t)|dt <∞

so we are in a setting to apply Fubini. Consequently we may write∫∫∫
eit(x−y)χ(t)dµ(x)dµ(y)dt =

∫∫ (∫
eit(x−y)χ(t)dt

)
dµ(x)dµ(y)

The inside integral may be evaluated directly as∫
eit(x−y)χ(t)dt = χ̂(x− y)

where ·̂ represents the (non-unitary) Fourier transform.
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Consider now the special case where χ(t) = χ0(T−1t), χ0 & 1[−1,1], |χ̂0| . 1. Then χ̂(t) =
T χ̂0(Tt). Then we see∫ T

−T
|ϕ(t)|2dt .

∫
R
|ϕ(t)|2χ(t)dt = T

∫∫
χ̂0(T (x− y))dµ(x)dµ(y)

It remains to establish that the latter double integral is oT→∞(1). We first claim that (µ ⊗ µ)(∆) = 0,
where ∆ ⊆ R× R is the diagonal. To demonstrate this, note by Fubini that

(µ⊗ µ)(∆) =

∫∫
1∆(x, y)d(µ⊗ µ)(x, y) =

∫ (∫
1∆(x, y)dµ(x)

)
dµ(y) = 0

where we have used that µ({x}) = 0 for all x ∈ R.
Next, µ ⊗ µ is Borel and finite, hence is outer regular. Thus, for every ε > 0 there is δ = δ(ε) > 0

such that (µ⊗ µ)({(x, y) : |x− y| < δ}) < ε.
We use this to reach our conclusion. Given ε > 0, let δ = δ(ε) as in the previous paragraph. Since

χ0 ∈ C∞c (R), it in particular follows that there is T0 > 0 such that |χ̂0(t)| ≤ ε for all t ≥ T0. For
T > δ−1T0, we then have∫ T

−T
|ϕ(t)|2 . T

∫∫
|x−y|<δ

χ̂0(T (x− y))dµ(x)dµ(y) + T

∫∫
|x−y|≥δ

χ̂0(T (x− y))dµ(x)dµ(y)

By the choice of δ, the first summand isO(εT ). Since T > δ−1T0, it follows that each value χ̂0(T (x−y))
in the second integral is . ε. Since (µ ⊗ µ)(R2) < ∞, it follows that the second integral is .µ εT .
Consequently, ∫ T

−T
|ϕ(t)|2dt .µ εT

for all T sufficiently large depending on ε > 0. Consequently,

1

T
lim sup
T→∞

|ϕ(t)|2 . ε

for all ε > 0; the desired result follows.

Fall 2019 Problem 3. Consider a measure space (X,X ) with σ-finite measure µ and p ∈ (1,∞). Let
Lp,∞ be the set of measurable f : X → R with [f ]p = supt>0 tµ(|f | > t)1/p finite. Let

‖f‖p,∞ = sup
E∈X

µ(E)∈(0,∞)

1

µ(E)1−1/p

∫
E

|f |dµ

Prove that there exist c1, c2 ∈ (0,∞) – which may depend on p and µ – such that

∀f ∈ Lp,∞ : c1[f ]p ≤ ‖f‖p,∞ ≤ c2[f ]p

Proof. We first show that c1 = 1 suffices for the first inequality. For f ∈ Lp,∞, the sets Ut = {|f | > t}
all have finite measure. If µ(Ut) > 0, then

tµ(Ut) ≤
∫
Ut

|f |dµ ≤ ‖f‖p,∞µ(Ut)
1−1/p
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which implies
tµ(Ut)

1/p ≤ ‖f‖p,∞
This holds for all t > 0 such that µ(Ut) > 0. Observe that the latter inequality holds trivially when
µ(Ut) = 0, so we conclude the easy estimate

[f ]p ≤ ‖f‖p,∞

We now consider the reverse estimate. Let E ∈ X have µ(E) ∈ (0,∞). For t > 0, we have the two
trivial estimates

µ(E ∩ Ut) ≤ µ(E), µ(E ∩ Ut) ≤ t−p[f ]pp

Then, by a standard distribution function manipulation,∫
E

|f | =
∫ ∞

0

µ(E ∩ Ut)dt

≤
∫ µ(E)−1/p[f ]p

0

µ(E)dt+

∫
µ(E)−1/p[f ]p

t−p[f ]ppdt

= µ(E)1−1/p[f ]p +
1

p− 1
[f ]pµ(E)1−1/p

=
p

p− 1
µ(E)1−1/p[f ]p

so that
1

µ(E)1−1/p

∫
E

|f |dµ ≤ p

p− 1
[f ]p

for allE ∈ X with µ(E) ∈ (0,∞). Thus

[f ]p ≤ ‖f‖p,∞ ≤
p

p− 1
[f ]p

for all f ∈ Lp,∞, as was to be shown.

Fall 2019 Problem 4. Let A ⊆ R be measurable with positive Lebesgue measure. Prove that the set
A − A = {z − y : z, y ∈ A} has non-empty interior. Hint: Consider the function ϕ(x) =

∫
χA(x +

y)χA(y)dy, where χA is the characteristic function ofA.

Proof. We begin by claiming that, for each f ∈ L1(R), the function τ·f , t 7→ τtf , τtf(x) = f(x + t),
is continuous as a function R → L1(R). Note that this clearly holds when f ∈ Cc(R) by uniform
continuity. On the other hand, each individual τt is an isometry of L1. As a consequence, if f ∈ L1(R)
and ε > 0, then fix g ∈ Cc(R) such that ‖f − g‖1 < ε/4 and let δ > 0 be such that ‖τtg − g‖1 < ε/4
for all |t| < δ. Then, for any |t| < δ,

‖τtf − f‖1 ≤ ‖τtf − τtg‖1 + ‖τtg − g‖1 + ‖g − f‖1 <
ε

4
+
ε

4
+
ε

4
< ε

so the function t 7→ τtf is continuous at 0. By the group property of τ·, it follows that the function is
continuous on all of R.
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Next, since integration against L∞(R)-functions is continuous on L1(R), we see that the function

t 7→
∫
τtf(y)g(y)dy

is continuous for each fixed f ∈ L1(R), g ∈ L∞(R). In particular, the function ϕ is continuous. On the
other hand,

ϕ(0) =

∫
χA(y)χA(y)dy = m(A) > 0

writingm for Lebesgue measure. Thus there is an interval (−ε, ε) with ε > 0 over which ϕ > 0.
Finally, note that for any x ∈ R,∫

χA(x+ y)χA(y)dy =

∫
χA−x(y)χA(y)dy = m((A− x) ∩ A)

In particular, for all |x| < ε there exists z ∈ (A − x) ∩ A; that is to say, there exist z, y ∈ A such that
y − x = z, i.e. x = y − z. Thus we have shown that A − A contains the interval (−ε, ε), as was to be
established.

Fall 2019 Problem 5. Prove the following claim: LetH be a Hilbert space with the scalar product of x
and y by (x, y) and letA,B : H → H be (everywhere-defined) linear operators with

∀x, y ∈ H : (Bx, y) = (x,Ay)

ThenA andB are both bounded (and thus continuous).

Proof. For each y ∈ H, write Ty : H → C be the linear map x 7→ (x,Ay). Then, for each fixed x ∈ H,

|Ty(x)| = |(Bx, y)| ≤ ‖Bx‖ · ‖y‖

so that
sup
‖y‖≤1

|Ty(x)| <∞ ∀x ∈ H

By the uniform boundedness theorem,

sup
‖y‖,‖x‖≤1

|Ty(x)| <∞

so there is a constant C <∞ so that

‖Ty‖ ≤ C‖y‖, ∀y ∈ H

Thus
‖Ay‖2 = (Ay,Ay) = Ty(Ay) ≤ C‖Ay‖‖y‖

which implies
‖Ay‖ ≤ C‖y‖, ∀y ∈ H

and henceA is bounded. By the symmetry betweenA andB, we may also conclude thatB is bounded, as
was to be shown.
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Fall 2019 Problem 6. Recall that `∞(N) = {x = {xn}∞n=1 : supn≥1 |xn| < ∞} is a Banach space
(over R) with respect to the norm ‖x‖∞ = supn≥1 |xn|.

(1) Prove that there exists a continuous linear functional φ on `∞(N) such that

φ(x) = lim
n→∞

xn

whenever this limit exists.

(2) Prove that this φ is not unique.

Proof. (1): LetA ⊆ `∞(N) be the set of convergent sequences. ThenA is a linear subspace. Furthermore,
we claim thatA is closed. Suppose k 7→ x(k) is a sequence inA and y ∈ `∞(N) is such that ‖x(k)−y‖∞ →
0 as k → ∞. Given ε > 0, write K ∈ N such that ‖x(k) − y‖∞ < ε

4
for all k ≥ K . Let N ∈ N be such

thatm,n > N implies |x(K)
m − x(K)

n | < ε
4

. It follows that, for any m,n > N ,

|yn − ym| ≤ |yn − x(K)
n |+ |x(K)

n − x(K)
m |+ |x(K)

m − ym| < 3
ε

4
< ε

Thus we have demonstrated that y is a Cauchy sequence, so y ∈ A. ThusA is closed, as was to be verified.
Write φ0 : A→ R for the function φ0(x) = limn xn. Clearly φ0 is linear. Moreover,

|φ0(x)| = | lim
n
xn| ≤ lim sup

n
|xn| ≤ ‖x‖∞

so φ0 is bounded by the global norm ‖ · ‖∞. By Hahn-Banach, it follows that φ0 extends to a continuous
linear functional on `∞(N) which evaluates limits on Cauchy sequences, as was to be shown.

(2): Write A′ for the linear subspace of `∞(N) spanned by A and b = {bn}n≥1, with bn = (−1)n.
Then, for any x ∈ A′, there by definition exists a scalar α and y ∈ A such that

x = αb+ y

Then observe that, since {yn}∞n=1 converges, from the identity

xn+1 − xn = 2(−1)n+1α + (yn+1 − yn)

we in particular have
1

2
lim
k→∞

(x2k+2 − x2k+1) = α (1)

and
y = x− 1

2
lim
k→∞

(x2k+2 − x2k+1) (2)

Define linear maps φ1, φ2 : A′ → R via

φ1(αb+ y) = α + lim
n→∞

yn

φ2(αb+ y) = −α + lim
n→∞

yn

By (1) and (2), these are well-defined. They are also clearly linear. We wish to prove a bound that allows
us to use Hahn-Banach again. To this end, write y∞ = limn yn. Then

|α|+ |y∞| = lim sup
n→∞

|(−1)nα + yn| ≤ ‖αb+ y‖∞
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so that, for i = 1, 2, we have

|φi(αb+ y)| ≤ |α|+ |y∞| ≤ ‖αb+ y‖∞

Thus φ1, φ2 both extend to bounded linear maps `∞(N)→ R that extend the linear functional onA.
Since they disagree on the element b, we conclude that the extension in part (a) is not unique.

Fall 2019 Problem 7. Let J ⊆ R be a compact interval, and let µ be a finite Borel measure whose
support lies in J . For z ∈ C \ J define

Fµ(z) =

∫
R

1

z − t
dµ(t)

Prove that the mapping µ 7→ Fµ is one-to-one.

Proof. By Morera’s theorem it follows immediately that each Fµ(z) is analytic on C \ J . Moreover, if
K ⊆ C \ J is compact, then

1

z − t
=
∞∑
n=0

tnz−n−1

converging uniformly over (z, t) ∈ K × J . Consequently,

Fµ(z) =
∞∑
n=0

1

zn+1

∫
R
tndµ(t)

By the uniqueness of power series, if Fµ(z) = Fν(z) for all z ∈ C \ J then∫
R
tndµ(t) =

∫
R
tndν(t) ∀n ≥ 0

It trivially follows that ∫
R
P (t)dµ(t) =

∫
R
P (t)dν(t) ∀P ∈ R[t]

By Stone-Weierstrass, we then have∫
R
f(t)dµ(t) =

∫
R
f(t)dν(t) ∀f ∈ C(J)

By the Riesz-Markov-Kakutani representation theorem, it follows directly that µ = ν . Recalling our
assumption Fµ = Fν , we see that the mapping µ 7→ Fµ is one-to-one, as was to be shown.

Fall 2019 Problem 8. A function f : C → C is entire and has the property that |f(z)| = 1 when
|z| = 1. Prove that f(z) = azn for some integer n ≥ 0 and some a ∈ C with |a| = 1.

Proof. Let u(z) = 1
z̄

for z ∈ C \ {0}, and define

g : C→ C, g(z) =

{
f(z) |z| ≤ 1

(u ◦ f ◦ u)(z) |z| > 1
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Since u fixes {|z| = 1} pointwise, it follows that g is continuous. Since each u is antiholomorphic and
f is holomorphic, it follows that g is holomorphic on C \ {|z| = 1}. By a standard Morera’s theorem
argument, g is entire.

If f is constant, then it is trivial to verify that we are done. Otherwise, we may find an entire function
h : C→ C such that h(0) 6= 0 and f(z) = zkh for some k ≥ 0. Consider the power series

g(z) =
∑
n≥0

anz
n, z ∈ C

Then, for |z| > 1,
u(f(u(z))) =

∑
n≥0

anz
n

so that, for 0 < |z| < 1,
u(f(z̄)) =

∑
n≥0

anz
−n

Recalling the factorization of f ,

1

zkh(z̄)
=
∑
n≥0

anz
−n, 0 < |z| < 1

from which we obtain
1

h(z)
=
∑
n≥0

anz
k−n, 0 < |z| < 1

On the other hand, h is nonvanishing near z = 0, so the meromorphic expansion in the preceding display
has no singular terms. Thus

an = 0 ∀n > k

which is to say

g(z) =
k∑

n=0

anz
n

On the other hand, g and f are two entire functions that agree on |z| < 1, so g = f everywhere. Thus

f(z) =
k∑

n=0

anz
n

On the other hand, recalling that f(z) = zkh(z) with h holomorphic, it follows that an = 0 for n < k.
Thus f(z) = akz

k; the result follows directly.

Fall 2019 Problem 9. Determine the number of zeroes of the polynomial

P (z) = z6 − 6z2 + 10z + 2

in the annulus {z ∈ C : 1 < |z| < 2}. Prove your claim.
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Proof. When |z| = 1,
|z6 − 6z2 + 2| ≤ 9 < |10z|

so that
|P (z)| ≥ |10z| − |z6 − 6z2 + 2| > 0

Thus, by Rouché’s theorem, P and z 7→ 10z have the same number of zeroes in |z| ≤ 1, i.e. 1. On the
other hand, for |z| = 2,

|z6 − P (z)| = |6z2 − 10z − 2| ≤ 24 + 20 + 2 = 46 < 64 = |z6|

Thus by Rouché’s theorem, P and z 7→ z6 have the same number of zeroes in {|z| ≤ 2}, i.e. 6. Since all
but one of the zeroes of P are outside {|z| ≤ 1}, it follows that P has 5 zeroes in the annulus {z ∈ C :
1 < |z| < 2}.

Fall 2019 Problem 10. Evaluate
lim
x→∞

∫ x

0

sin(t2)dt

Justify all steps.

Proof. We abbreviate f(z) = eiz
2 . ForR > 0, let γ1 be the path from 0 toR in C, γ2 the circular arc from

R to Reiπ4 , and γ3 the line segment from Rei
π
4 to 0. Write ΓR for the composed path γ1 → γ2 → γ3, i.e.

the closed path traversing the previous three in a CCW way. Observe that∫
ΓR

f(z)dz = 0

because f is entire. Note too that∫
γ1

f(z)dz =

∫ R

0

(cos(t2) + i sin(t2))dt (3)

and ∫
γ3

f(z)dz = −ei
π
4

∫ R

0

e−t
2

dt (4)

We need to more carefully study the last integral. It may be expressed as∫
γ2

f(z)dz = iR

∫ π/4

0

eiR
2e2iθeiθdθ

The magnitude of the last integrand is

|eiR2e2iθeiθ| = e−R
2 cos(2θ)

Note that, for 0 ≤ θ ≤ π
4

,

cos(2θ) ≥ 1− 4

π
θ

and so ∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ R

∫ π/4

0

e−R
2(1− 4

π
θ)dθ = Re−R

2

∫ π/4

0

e
4
π
θR2

dθ = Re−R
2 π

4R2

[
eR

2 − 1
]
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which immediately implies ∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ . R−1, (R > 1) (5)

We now put the pieces together. From 4, we see that∫
γ3

f(z)dz = −ei
π
4

√
π

2
+ o(1)

(here and on, o(1) will be asR→ +∞). From 5,∫
γ2

f(z)dz = o(1)

Thus

0 =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz

=

∫ R

0

(cos(t2) + i sin(t2))dt− ei
π
4

√
π

2
+ o(1)

from which it follows[∫ R

0

cos(t2)dt−
√
π

2
cos(

π

4
)

]
+ i

[∫ R

0

sin(t2)dt−
√
π

2
sin(

π

4
)

]
= o(1)

From the form of the complex norm in terms of the real and imaginary parts, it in particular follows that

lim
R→∞

∫ R

0

cos(t2)dt =

√
π

2
cos(

π

4
) =

√
2π

4

as was to be calculated.

Fall 2019 Problem 11. Find a conformal map of the domain

D = {z ∈ C : |z − 1| <
√

2, |z + 1| <
√

2}

onto the open unit disk centered at the origin. It suffices to write this map as a composition of explicit
conformal maps.

Proof. Let f1 be the map
f1(z) = −z − i

z + i

Then the two boundary curves of f1(D) are lines through 0, which are bisected by a line through 0 con-
taining the point

f1(0) = 1

i.e. R. Thus f1(D) is an angular sector with corner at 0, containing R>0, and is symmetric about z 7→ z̄.
It remains to identify the angle of the sector. Note that the tangent vector to {|z − 1| =

√
2} at i is

orthogonal to the displacement vector from 1 to i, and the tangent vector to {|z + 1| =
√

2} at i is

31



orthogonal to the displacement vector from−1 to i. Thus the internal angle ofD at i is π
2

; the same holds
for−i. We conclude that

f1(D) = {z ∈ C : Re(z) > 0, |Im(z)| ≤ Re(z)}
Next, if f2(z) = iz2, then f2(f1(D)) is the upper half-plane. Lastly, it is standard that f1 carries the

upper half-plane to the unit disk. Thus a suitable conformal mapping is φ = f1 ◦ f2 ◦ f1.
Fall 2019 Problem 12. Show that

F (z) =

∫ ∞
1

tz√
1 + t3

dt

is well defined (by the integral) and analytic in {z ∈ C : Re(z) < 1
2
}, and admits a meromorphic

continuation to the region {z ∈ C : Re(z) < 3
2
}.

Proof. We address the claims in order. First, if Re(z) < 1
2

, then for t ∈ (1,∞),∣∣∣∣ tz√
1 + t3

∣∣∣∣ . t−
3
2

+Re(z)

Since the exponent is strictly less than −1, it follows that the left-hand side of the preceding display is
integrable over (1,∞). Consequently, the integral defining F converges absolutely.

We now validate that F is analytic via Morera’s theorem. Let T be any triangle in {z ∈ C : Re(z) <
1
2
}. Then, by compactness of T , there is some ε > 0 such that, for all z ∈ T one has Re(z) ≤ 1

2
− ε. We

would like to commute integrals: note that∫
T

∫ ∞
1

∣∣∣∣ tz√
1 + t3

∣∣∣∣ dt|dz| . ∫
T

∫ ∞
1

t−
3
2

+ 1
2
−εdt|dz| <∞

so by Fubini ∫
T

F (z)dz =

∫ ∞
1

1√
1 + t3

∫
T

tzdzdt = 0

and it follows that F is analytic.
We now study the meromorphic extension. FixR > 0 large. Integrating by parts, for any Re(z) < 3

2
,∫ R

1

tz−
3
2

t
3
2

√
1 + t3

dt

=
tz−

3
2

1 + t3

(
3

2
t1/2(1 + t3)1/2 − 3

2
t
3
2 (1 + t3)−1/2t2

)∣∣∣∣∣
R

t=1

− 3

2

1

z − 1
2

∫ R

1

tz

(1 + t3)3/2
dt

Then

F (z) = lim
R→∞

[
−3

2

1

z − 1
2

∫ R

1

tz

(1 + t3)3/2
dt+

3

2

tz−1

(1 + t3)3/2

∣∣∣∣R
t=1

]
, Re(z) <

1

2

Write

g1,R(z) = −3

2

∫ R

1

tz

(1 + t3)3/2
dt, g2,R(z) =

3

2

tz−1

(1 + t3)3/2

∣∣∣∣R
t=1

Then each gi,R is holomorphic on {z ∈ C : Re(z) < 3
2
} and converges locally uniformly there. It follows

that F extends to a meromorphic function on {z ∈ C : Re(z) < 3
2
}, as was to be shown.
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3 Spring 2020
Spring 2020 Problem 1. Assume f ∈ C∞c (R) satisfies∫

R
e−tx

2

f(x)dx = 0 for any t ≥ 0

Show that f(x) = −f(−x) for any x ∈ R.

Proof. Taking the even part of f , that is, f(x)+f(−x)
2

, we see that the claim holds if and only if

f even, C∞c (R) orthogonal to centered Gaussians =⇒ f = 0

Suppose f satisfies the left-hand side of the above implication. Note that

0 =

∫
R
e−tx

2

f(x)dx =

√
π

t

∫
R
e−π

2ξ2/tf̂(ξ)dξ

for all t > 0, which implies that f̂ is also orthogonal to centered Gaussians. Since f is even and real-valued,
f̂ is also even and real-valued. Since f is compactly supported, the integral

f̂(z) =

∫
R
e−2πizxf(x)dx

is well-defined and continuous for z ∈ C. If ∆ is any triangle in C, then Fubini provides∫
∆

f̂(z)dz =

∫
∆

∫
R
e−2πizxf(x)dxdz

=

∫
R

∫
∆

e−2πizxf(x)dzdx since the integrand is continuous and compactly-supported

= 0 since e−2πizx is analytic in z for each x ∈ R

so by Morera we have that f̂ extends to an entire function. Thus f̂ on R is given by a convergent real
power series

f̂(ξ) =
∞∑
n=0

anξ
n

and, since f̂ is even, an = 0 for all odd n. But then, for any t > 0,

0 =

∫
R
e−tξ

2

f̂(ξ)dξ =
∞∑
n=0

an

∫
R
e−tξ

2

ξndξ =

√
π

t

∞∑
k=0

a2k
(2k − 1)!!

(2t)k

Thus the real power series
∞∑
k=0

a2k
(2k − 1)!!

(2t)k

which converges uniformly in a neighborhood of ∞, and hence defines an analytic function there, is
identically 0 on a non-discrete set, and hence has zero coefficients. Thus each an is equal to 0, which
implies that f was zero from the start.
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Spring 2020 Problem 2. 1 Assume fn : R→ R is a sequence of differentiable functions satisfying∫
R
|fn(x)|dx ≤ 1 and

∫
R
|f ′n(x)|dx ≤ 1.

Assume also that for any ε > 0 there existsR(ε) > 0 such that

sup
n

∫
|x|≥R(ε)

|fn(x)|dx < ε

Show that there exists a subsequence of {fn} that converges in L1(R).

Proof. Note that the second condition implies that the {fn} have total variation bounded by 1. Since each
fn is absolutely integrable, |fn| ≤ 1 everywhere since otherwise the total variation condition would imply
that |fn| > ε > 0 everywhere, contradicting integrability. Thus the {fn} are uniformly bounded.

Now let {φε}ε be approximations to the identity. Then, for I ⊆ R compact,

‖fn − fn ∗ φε‖L1(I) =

∫
I

∣∣∣∣∫
R
(fn(x)− fn(x− y))φε(y)dy

∣∣∣∣ dx
=

∫
I

∣∣∣∣∫
R
(fn(x)− fn(x− εy))φ(y)dy

∣∣∣∣ dx
≤
∫
R

∫
I

|fn(x)− fn(x− εy)|dxφ(y)dy

≤ ε|I|

Thus, for each ε > 0, we choose I ⊆ R compact so that all fn satisfy

sup
n

∫
R\I
|fn| < ε

and for this choice of I , choose δ0 > 0 such that

‖fn − fn ∗ φδ‖L1(I) < ε ∀δ0 ≥ δ > 0

For each such δ > 0, the sequence fn ∗ φδ is uniformly bounded and equicontinuous: first, by Young,

‖fn ∗ φδ‖L∞(I) ≤ ‖fn‖L∞(R)‖φδ‖L1(R) ≤ 1

Secondly,

‖(fn ∗ φδ)′‖L∞(I) = ‖fn ∗ φ′δ‖L∞(I) ≤ ‖fn‖L∞(R)‖φ′δ‖L1(R) ≤ δ−2‖φ′‖L1(R) <∞

with the latter expression independent of n. Thus the family {fn ∗ φδ}n is uniformly bounded and
equicontinuous for each δ > 0, and hence by Arzelà-Ascoli there is a continuous function fδ on I and
a subsequence nk such that fnk ∗ φδ → fδ uniformly on I . As such, there is a K ∈ N such that, for all
k > K ,

‖fnk ∗ φδ − fδ‖L1(I) < ε

1keyword: Helly’s selection theorem
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All together, we see that, for j, k > K ,

‖fnj − fnk‖L1(I) ≤ ‖fnj − fnj ∗ φδ‖L1(I) + ‖fnj ∗ φδ − fδ‖L1(I)

+ ‖fδ − fnk ∗ φδ‖L1(I) + ‖fnk ∗ φδ − fnk‖L1(I)

< 4ε

and hence
‖fnj − fnk‖L1(I) < 5ε

for sufficiently large j, k. Thus we may construct the convergent subsequence as desired.

Spring 2020 Problem 3. Prove that L∞(Rn) ∩ L3(Rn) is a Borel subset of L3(Rn).

Proof. Note that, for f ∈ L3(Rn),

f ∈ L∞(Rn) ⇐⇒ ∃K ∈ N such thatm({|f | > K}) = 0

We claim that
m({|f | > K}) = 0 ⇐⇒

∫ r

q

|f | ≤ K(r − q)∀q < r ∈ Q (6)

The forward implication is clear. For the reverse implication, suppose that there is some bounded set
S ⊆ R with m(S) > 0 such that |f | > K + ε on S, where ε > 0. Then for every δ > 0, the definition
of Lebesgue measure (with some minor tweaks) supplies a finite disjoint union of open intervals with
rational endpoints

U = (q1, r1) ∪ · · · ∪ (qn, rn)

such that
S ⊆ U,m(U) < m(S) + δ

Then we have ∫
U

|f | =
∫
S

|f |+
∫
U\S
|f | > (K + ε)m(S) = (K + ε)

n∑
j=1

(rj − qj)

If the right-hand side of 6 still holds, the above provides

K
n∑
j=1

(rj − qj) +

∫
U\S
|f | > (K + ε)

n∑
j=1

(rj − qj)

or ∫
U\S
|f | > ε

n∑
j=1

(rj − qj) = εm(S) > 0

However, the left-hand side of the above can be expanded via Hölder as∫
U\S
|f | = ‖fχU\S‖L1(Rn) ≤ ‖f‖L3(Rn)‖χU\S‖L3/2(Rn) = ‖f‖L3(Rn)m(U \ S)2/3 < ‖f‖L3(Rn)δ

2/3
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so we conclude that, for our given f ∈ L3(Rn), there is some m(S) > 0 and ε > 0 such that for every
δ > 0 we have

‖f‖L3(Rn)δ
2/3 > εm(S) > 0

Since ‖f‖L3(Rn) < +∞, we may send δ → 0 to obtain a contradiction.
Thus we have shown 6. Since each χ(q,r) belongs to L3/2(Rn) = (L3(Rn))∗, we see that integrating

f against χ(q,r) is a continuous functional on L3(Rn). Thus the collection of f satisfying the RHS of 6 is
Borel; taking a countable union overK ∈ N provides thatL∞(Rn)∩L3(Rn) is a Borel subset ofL3(Rn),
as desired.

Spring 2020 Problem 4. 2 Fix f ∈ L1(R). Show that

lim
n→∞

∫ 2

0

f(x) sin(xn)dx = 0

Proof. For each n, ∫ 2

0

f(x) sin(xn)dx =

∫ 1

0

f(x) sin(xn)dx+

∫ 2

1

f(x) sin(xn)dx

We analyze each term separately. Note that

sin(xn)
n→ 0 pointwise for x ∈ (0, 1)

and so
f(x) sin(xn)

n→ 0 pointwise for x ∈ (0, 1)

Thus, by DCT, since f(x) sin(xn) ≤ |f(x)| ∈ L1(R) for each n,

lim
n→∞

∫ 1

0

f(x) sin(xn)dx =

∫ 1

0

lim
n→∞

f(x) sin(xn)dx = 0

which is the desired result for the first term. Note that
1

inxn−1

d

dx
eix

n

= eix
n

For the second term, assuming first that f ∈ C∞c ((1, 2)),∫ 2

1

f(x) sin(xn)dx = Im
[∫ 2

1

f(x)eix
n

dx

]
= Im

[∫ 2

1

f(x)

inxn−1

d

dx
eix

n

dx

]
= −Im

[∫ 2

1

eix
n d

dx

(
f(x)

inxn−1

)
dx

]
= −Im

[∫ 2

1

eix
n f ′(x)

inxn−1
dx+

(n− 1)

in

∫ 2

1

eix
n f(x)

xn

]
dx

=

∫ 2

1

cos(xn)
f ′(x)

nxn−1
dx+

(n− 1)

n

∫ 2

1

cos(xn)
f(x)

xn

2keyword: oscillatory integral
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and hence, by the triangle inequality and DCT,∣∣∣∣∫ 2

1

f(x) sin(xn)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 2

1

cos(xn)
f ′(x)

nxn−1
dx

∣∣∣∣+

∣∣∣∣(n− 1)

n

∫ 2

1

cos(xn)
f(x)

xn
dx

∣∣∣∣
n→ 0

Thus we have the desired limit in the
∫ 2

1
term for all f ∈ C∞c (1, 2). By a standard fact, for general

f ∈ L1((1, 2)) we may find a sequence {fn}∞n=1 in C∞c ((1, 2)) such that fn → f in L1. For each ε > 0,
let j ∈ N be such that ‖fj − f‖L1 < ε/2. By the above, there is some n ∈ N such that, for all k ≥ n,∣∣∣∣∫ 2

1

fj(x) sin(xk)dx

∣∣∣∣ < ε/2

All together we have∣∣∣∣∫ 2

1

f(x) sin(xk)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 2

1

fj(x) sin(xk)dx

∣∣∣∣+

∣∣∣∣∫ 2

1

[fj(x)− f(x)] sin(xk)dx

∣∣∣∣
< ε/2 +

∫ 2

1

|fj(x)− f(x)|dx since | sin(t)| ≤ 1 everywhere

< ε

for all k ≥ n; letting ε→ 0 we obtain the desired∫ 2

1

f(x) sin(xn)dx
n→ 0

which together with the limit on for
∫ 1

0
provides the desired result.

Spring 2020 Problem 5. Rigorously determine the infimum of∫ 1

−1

|P (x)− |x||2dx

over all choices of polynomials P ∈ R[x] of degree not exceeding three.

Proof. Some details omitted. Write a general degree≤ 3 polynomial as Pabcd(x) = ax3 + bx2 + cx+ d.
We claim first that, for any particular choice of (a, b, c, d),

E(a, b, c, d) =

∫ 1

−1

|Pabcd(x)− |x||2 ≥
∫ 1

−1

|P0b0d(x)− |x||2 = E(0, b, 0, d) (7)

Differentiating E by a, c we see that the function

(a, c) 7→ E(a, b, c, d)

has a unique critical point at a = c = 0. At this point, the Hessian of E in a, c is

Ha,cE =

[
4/7 4/5
4/5 4/3

]
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which has positive determinant and trace, hence is positive definite. Thus (7) holds and we may restrict
attention to even polynomials.

Now, differentiatingE against b, d,

∂bE = 4b/5 + 4d/3− 1, ∂dE = 4b/3 + 4d− 2

which defines a vector field in the b, d plane. The inner-product of this vector field with an outer-pointing
vector field is given by

Db,dE(b,d) ·
1√
2

(b, d) =
1√
2

(
4b2

5
+

8bd

3
+ 4d2 − b− 2d

)
which is positive for sufficiently large ‖(b, d)‖, which implies that E achieves a global minimum some-
where. This happens whenDb,dE(b,d) = 0, or when

b =
15

16
, d =

3

16

and here we achieve
inf E = E(0,

15

16
, 0,

3

16
) =

1

96

as the infimum value.

Spring 2020 Problem 6. Let us define a sequence of linear functionals on L∞(R) as follows:

Ln(f) =
1

n!

∫ ∞
0

xne−xf(x)dx.

(a) Prove that no subsequence of this sequence converges weak-∗.
(b) Explain why this does not contradict the Banach-Alaoglu Theorem.

Proof. (a): Suppose {Lnk}k is a subsequence; we show that this sequence does not converge weak-∗’ly.
Since each integrand 1

n!
xne−x converges locally uniformly to 0, we may choose a sequence of compact

intervals Ik ⊆ R satisfying
1

nk!

∫
R+\Ik

xnke−xdx <
1

10

and
inf Ik

k→∞−→ ∞

Choose a subsequence {Ikj}j whose intervals are pairwise disjoint. Then

f =
∞∑
j=1

(−1)jχIkj

is in L∞(R). Then, for each j,

Lnkj (f) = Lnkj ((−1)jχIkj ) + Lnkj (
∑
`6=j

(−1)`χIk` ) = (−1)j +O(
1

10
)
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where the implicit constant is at most 2. Thus the sequence

{Lnk(f)}k

is not Cauchy, and so does not converge. Thus {Lnk}k does not converge weak-∗’ly, as desired.
(b): SinceL∞(R) is non-separable, Banach-Alaoglu only shows that the unit ball of (L∞(R))∗ is com-

pact, not sequentially compact.

Spring 2020 Problem 7. 3 LetFM be the set of functions holomorphic on D = {z ∈ C : |z| < 1} and
continuous on D = {z ∈ C : |z| ≤ 1} that satisfy∫ 2π

0

|f(eit)|dt ≤M <∞.

Show that every sequence {fn} in FM contains a subsequence that converges uniformly on compact
subsets of D.

Proof. Note first thatFM is locally uniformly bounded and locally equicontinuous: forK ⊆ D a compact
ball, set r = dist(K,D) > 0. Then, for any f ∈ FM , and any z ∈ K ,

|f(z)| =
∣∣∣∣ 1

2πi

∫
∂D

f(w)

w − z
dw

∣∣∣∣
≤ 1

2π

∫
∂D

|f(w)|
|w − z|

ds(w)

≤ 1

2πr

∫
∂D
|f(w)|ds(w) ≤ M

2πr

and

|f ′(z)| =
∣∣∣∣ 1

2πi

∫
∂D

f(w)

(w − z)2
dw

∣∣∣∣
≤ M

2πr2

which implies, for any w ∈ K ,

|f(z)− f(w)| ≤ |z − w||f ′(t)| ≤ M

2πr2
|z − w|

where t is some point inK on the segment connecting z and w.
Thus, for each k ≥ 2 natural, the sequence {fn} is uniformly bounded and equicontinuous on

B(0, 1− 1
k
). By Arzelà-Ascoli, we may iteratively refine {fn} (keeping the first k terms on each step)

to be uniformly convergent on each of these balls; this provides the locally uniformly convergent subse-
quence as desired.

3keyword: normal family
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Spring 2020 Problem 8. For each z ∈ C, let

F (z) =
∞∑
n=0

(−1)n
(z/2)2n

(n!)2
.

(a) Show that F is an entire function and satisfies |F (z)| ≤ e|z|.
(b) Show that there is an infinite collection of numbers an ∈ C, so that

F (z) =
∞∏
n=1

(
1− z2

a2
n

)
and the product converges uniformly on compact subsets of C.

Proof. (a): Note that

|F (z)| ≤
∞∑
n=0

|z|2n

22n(n!)2
=
∞∑
n=0

|z|2n

(2n)!

(
2n

n

)
2−2n ≤

∞∑
n=0

|z|2n

(2n)!
≤ e|z|

using the fact that
2n∑
j=0

(
2n

j

)
= 22n

which implies thatF converges absolutely onC, hence is an entire function satisfying the desired estimate.
(b): Define the function

G(z) =
∞∑
n=0

(−1)n
zn

22n(n!)2

Thus F (z) = G(z2). If {an} are the zeros of F (n ranging over Z \ {0} and a−n = −an), then a2
n =: bn

are the zeros ofG (here n ranges over N). From |F (z)| ≤ e|z| we see that F has order≤ 1, and thus∑
n 6=0

1

|an|2
<∞

which implies
∞∑
n=1

1

|bn|
<∞

so thatG has order< 1. Hadamard’s canonical representation then provides

G(z) =
∞∏
n=1

(
1− z

bn

)
and hence

F (z) =
∞∏
n=1

(
1− z2

a2
n

)
converging locally uniformly in C.
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Spring 2020 Problem 9. Let f ∈ L1(C) ∩ C1(C). Show that the integral

u(z) = − 1

2π

∫∫
C

f(ζ)

ζ − z
dλ(ζ)

defines a C1 function on the whole complex plane that satisfies(
∂

∂x
+ i

∂

∂y

)
u(x+ iy) = f(x+ iy)

In this problem, dλ(ζ) denotes (planar) Lebesgue measure on C and C1 is meant in the real-variables
sense.

Proof. Since f is L1 and 1
ζ−z is bounded near∞, the integrand is integrable near∞. Since f is C1 and

1
ζ−z is locally integrable, the integrand is locally integrable. Thus the integrand is globally integrable and
so u is well-defined for every z ∈ C.

Note that, by Cauchy-Pompeiu,

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ − 1

2π

∫∫
D

(∂x + i∂y)f
1

ζ − z
dλ(ζ)

for any domain D containing z. Since f is L1, there is a sequence of radii Rj such that∫
|z−ζ|=Rj

|f | ds
2πRj

= avg|z−ζ|=Rj |f | → 0

If this weren’t true, then the above integral would be above ε > 0 for all sufficiently largeR > 0; however,
we would then have

∞ >

∫
|ζ−z|≥1

∣∣∣∣ f(ζ)

ζ − z

∣∣∣∣ dλ(ζ)

=

∫ 2π

0

∫ ∞
1

|f(z +Reiθ)|
R

RdRdθ

=

∫ ∞
1

2πavg|z−ζ|=R|f |dR

≥ 2πε

∫ ∞
R0

dR =∞

a contradiction. Thus we have the desired sequence Rj , and so∣∣∣∣∣ 1

2πi

∫
|z−ζ|=Rj

f(ζ)

ζ − z
dζ

∣∣∣∣∣ ≤ 1

2πRj

2πRjavg|z−ζ|=Rj |f | → 0

SettingD = Dj = {z : |z − ζ| ≤ Rj} and taking a limit, we find

f(z) = lim
j→∞
− 1

2π

∫∫
Dj

(∂x + i∂y)f
1

ζ − z
dλ(ζ) = − 1

2π

∫∫
C
(∂x + i∂y)f

1

ζ − z
dλ(ζ)

41



where the latter integral is in the sense of principal value.
Assuming first that f is compactly supported,

∂

∂x
u(x+ iy) = lim

R3h→0
− 1

2πh

∫∫
C

f(ζ)

ζ − (z + h)
− f(ζ)

ζ − z
dλ(ζ)

= lim
R3h→0

− 1

2πh

∫∫
C

f(ζ)

(ζ − h)− z
− f(ζ)

ζ − z
dλ(ζ)

= lim
R3h→0

− 1

2πh

∫∫
C

f(ζ + h)

ζ − z
− f(ζ)

ζ − z
dλ(ζ) by a change of variables

= lim
R3h→0

− 1

2π

∫∫
C

f(ζ + h)− f(ζ)

h

1

ζ − z
dλ(ζ)

= − 1

2π

∫∫
C

∂xf(ζ)

ζ − z
dλ(ζ)

where we justify the last exchange of integral and limit by DCT, since∣∣∣∣f(ζ + h)− f(ζ)

h

1

ζ − z

∣∣∣∣ ≤ sup
w∈supp(f)

|f ′(w)| 1

|ζ − z|
χBR(0)(ζ)

for sufficiently largeR and small h. Similarly,

∂

∂y
u(x+ iy) = − 1

2π

∫∫
C

∂yf(ζ)

ζ − z
dλ(ζ)

so that (
∂

∂x
+ i

∂

∂y

)
u(x+ iy) = − 1

2π

∫∫
C

(∂x + i∂y)f(ζ)

ζ − z
dλ(ζ) = f(x+ iy)

by the Cauchy-Pompeiu calculation above. If χj is a sequence of smooth cutoff functions satisfying

0 ≤ χj ≤ χj+1, χj
j→ 1, χj ≡ 1 onBj(z), supp(χj) ( Bj+1(z)

then, setting uj to be the function constructed in the problem using the function fχj ,(
∂

∂x
+ i

∂

∂y

)
uj(x+ iy) = − 1

2π

∫∫
C

(∂x + i∂y)[f(ζ)χj(ζ)]

ζ − z
dλ(ζ)

= − 1

2π

∫∫
C

f(ζ)(∂x + i∂y)χj(ζ)

ζ − z
dλ(ζ)

− 1

2π

∫∫
C

χj(ζ)(∂x + i∂y)f(ζ)

ζ − z
dλ(ζ)

= χj(x+ iy)f(x+ iy)

As j →∞, the right-hand side of the above has local uniform limit f(x+ iy). Thus

lim
j→∞

(
∂

∂x
+ i

∂

∂y

)
uj(x+ iy) = f(x+ iy)

whereas
uj → u pointwise
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Since
(
∂
∂x

+ i ∂
∂y

)
uj converges locally uniformly, it follows that

f(x+ iy) = lim
j→∞

(
∂

∂x
+ i

∂

∂y

)
uj(x+ iy) =

(
∂

∂x
+ i

∂

∂y

)
u(x+ iy)

as desired.

Spring 2020 Problem 10. Evaluate the improper Riemann integral∫ ∞
0

x2 − 1

x2 + 1

sinx

x
dx.

Justify all manipulations.

Proof. Since the integrand is even,∫ ∞
0

x2 − 1

x2 + 1

sinx

x
dx =

1

2

∫
R

x2 − 1

x2 + 1

sinx

x
dx

LetCR denote the upper half circle with radiusR, that is, the circular arc in the upper half plane connecting
R to−R. Let DR denote the curve formed by a straight line from−R to− 1

R
, travels a half-circle in the

upper half plane to 1
R

, and then travels by a straight line segment toR. Let ΓR denote the curveCR∪DR.
Then forR ≥ 2 the residue theorem provides∫

ΓR

z2 − 1

z2 + 1

eiz

z
dz = 2πiRes

[
z2 − 1

z2 + 1

eiz

z
dz, i

]
= 2πi

−2

2i

e−1

i
= 2πe−1i

By Jordan’s lemma, ∣∣∣∣∫
CR

z2 − 1

z2 + 1

eiz

z
dz

∣∣∣∣ ≤ πmaxz∈CR
∣∣∣∣ z2 − 1

z(z2 + 1)

∣∣∣∣ ≤ π

R
· 100

so that
lim
R→∞

∫
CR

z2 − 1

z2 + 1

eiz

z
dz = 0
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By the fractional residue theorem,

lim
R→∞

∫
DR

z2 − 1

z2 + 1

eiz

z
dz = − lim

R→∞

∫
|z|= 1

R
,Im(z)>0

z2 − 1

z2 + 1

eiz

z
dz

+ lim
R→∞

∫
(−R,− 1

R
)∪( 1

R
,R)

z2 − 1

z2 + 1

eiz

z
dz

= −1

2
2πiRes

[
z2 − 1

z2 + 1

eiz

z
dz, 0

]
+ lim

R→∞

∫
(−R,− 1

R
)∪( 1

R
,R)

Re
(
z2 − 1

z2 + 1

eiz

z

)
dz

+ i lim
R→∞

∫
(−R,− 1

R
)∪( 1

R
,R)

Im
(
z2 − 1

z2 + 1

eiz

z

)
dz

= πi+ 0 (since the integrand is odd)

+ i lim
R→∞

∫
(−R,− 1

R
)∪( 1

R
,R)

x2 − 1

x2 + 1

sinx

x
dx

= πi+ i

∫
R

x2 − 1

x2 + 1

sinx

x
dx

Together we have ∫ ∞
0

x2 − 1

x2 + 1

sinx

x
dx =

1

2

∫
R

x2 − 1

x2 + 1

sinx

x
dx

=
1

2i

[
2πe−1i− πi

]
= πe−1 − π

2

Spring 2020 Problem 11. Let T = {z ∈ C : |z| = 1} and letK ( T be a compact proper subset.
(a) Show that there is a sequence of polynomials Pn(z) so that Pn(z)→ z̄ uniformly on K .
(b) Show that there is no sequence of polynomials Pn(z) for which Pn(z)→ z̄ uniformly on T.

Proof. (a): Since C\K contains D,C\D, and some point of ∂D, we see that C\K is path connected and
hence connected. By Runge’s theorem, we may find a sequence of polynomials {Pn} such thatPn(z)→ 1

z

uniformly on K . Since z = 1
z

onK ⊆ ∂D, this is the desired result.
(b): Suppose for the sake of contradiction that Pn is a sequence of polynomials converging uniformly

on T to z. Then, for each z ∈ C \ D,

0 = lim
n→∞

1

2πi

∫
∂D

Pn(w)

w − z
dw =

1

2πi

∫
∂D

w̄

w − z
dw =

1

2πi

∫
∂D

1

w(w − z)
dw = −1

z

a contradiction.
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Spring 2020 Problem 12. 4 Let u be a continuous subharmonic function on C that satisfies

lim sup
|z|→∞

u(z)

log |z|
≤ 0

Show that u is constant on C.

Proof. Since subharmonic functions are preserved by conformal changes-of-coordinate, the function

v(z) := u

(
1

z

)
is subharmonic on C \ {0} and satisfies

v(z) = o(log |z|) as z → 0

For each ε > 0, the function v(z) − ε log |z| satisfies the maximum principle on D \ {0}. By the decay
estimate on v at 0,

v(z)− ε log |z| → −∞ as z → 0

and hence, for any z ∈ D \ {0},
v(z)− ε log |z| ≤ max

z∈∂D
v(z)

Since ε > 0 was arbitrary, we conclude

v(z) ≤ max
z∈∂D

v(z)

for all z ∈ D \ {0}. Thus v is bounded above near 0, so u is bounded above near∞. Since uwas assumed
to be continuous, it is locally bounded, and hence is globally bounded above. By a standard fact, globally
bounded above subharmonic functions onC are constant (by e.g. the super-averaging principle) and hence
u is constant.

4keyword: Phragmén-Lindelöf
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4 Fall 2020
Fall 2020 Problem 1. (a) Suppose f : [0, 1] × [0,∞) → [0, 1] is continuous. Prove that F : [0, 1] →
[0, 1] defined by

F (x) = lim sup
y→∞

f(x, y)

is Borel measurable.
(b) Show that for any Borel setE ⊆ [0, 1] there is a choice of continuous function f : [0, 1]×R→ [0, 1]
so that F agrees almost everywhere with the indicator function ofE.

Proof. (a): Since half-open intervals of the form (a,∞) with a ∈ R generate as a σ-algebra the full Borel
σ-algebra B, it suffices to show that

F−1((a,∞)) ∈ B
for arbitrary a ∈ R. The left-hand side may be written as

F−1((a,∞)) = {x ∈ [0, 1] : ∃n ∈ N ∀q ∈ Q ∩ [0,∞)∃p ∈ Q ∩ (q,∞) s.t. f(x, p) ∈ (a+
1

n
,∞)}

=
∞⋃
n=1

⋂
q∈Q∩[0,∞)

⋃
p∈Q∩(q,∞)

{x ∈ [0, 1] : f(x, p) ∈ (a+
1

n
,∞)}

=
∞⋃
n=1

⋂
q∈Q∩[0,∞)

⋃
p∈Q∩(q,∞)

f(·, p)−1(a+
1

n
,∞)

Since f is continuous, the latter set is Borel; hence F is Borel, as desired.
(b): (Currently in the works)
We claim that, if A1, A2, . . . are Borel subsets of [0, 1] and f1, f2, . . . : [0, 1] × [0,∞) → [0, 1] are

continuous such that
lim sup
y→∞

fn(x, y) = 1An(x) a.e. x ∈ [0, 1]

for each n, then there exists f : [0, 1]× [0,∞)→ [0, 1] continuous such that

lim sup
y→∞

f(x, y) = 1⋂
n

⋃
k≥n Ak

(x) a.e. x ∈ [0, 1]

Note that, for each n ∈ N,

[0, 1] \ An =
⋃
r∈N

{x ∈ [0, 1] : sup
y>r

fn(x, y) ≤ 1/2n}

modulo nullsets. By continuity from below of measures, there exists some rn such that

Bn := {x ∈ [0, 1] : sup
y>rn

fn(x, y) ≤ 1/2n}

is a subset (mod null) of [0, 1] \ An, and satisfies

m([0, 1] \ (An ∪Bn)) < 2−n.

Note next that
sup
y>rn

f(x, y) = 1 for a.e. x ∈ An
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so that, modulo nullsets, we have

An =
⋃
s>rn

{x ∈ [0, 1] : sup
rn<y<s

f(x, y) > 1− 1/2n}

By continuity from above of finite measures, there is some sn > rn such that

Cn := {x ∈ [0, 1] : sup
rn<y<sn

f(x, y) > 1− 1/2n}

has
m(An \ Cn) < 2−n

and Cn \ An is null.
Next, we claim that ⋂

n

⋃
k≥n

Ak =
⋂
n

⋃
k≥n

Ck

mod nullsets. Note that

m

(⋂
n

⋃
k≥n

Ak

)
= lim

n→∞
m

(⋃
k≥n

Ak

)

= lim
n→∞

m

(⋃
k≥n

Ck ∪
⋃
k≥n

Ak \ Ck

)

≤ lim
n→∞

[
2−n+1 +m

(⋃
k≥n

Ck

)]

= m

(⋂
n

⋃
k≥n

Ck

)

The reverse inequality is trivial, so in fact

m

(⋂
n

⋃
k≥n

Ck

)
= m

(⋂
n

⋃
k≥n

Ak

)

From the equality

m

(⋂
n

⋃
k≥n

Ck

)
+m

({⋂
n

⋃
k≥n

Ak

}
\

{⋂
n

⋃
k≥n

Ck

})
= m

(⋂
n

⋃
k≥n

Ak

)

we conclude that

m

({⋂
n

⋃
k≥n

Ak

}
∆

{⋂
n

⋃
k≥n

Ck

})
so that ⋂

n

⋃
k≥n

Ck =
⋂
n

⋃
k≥n

Ak
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modulo nullsets.
Next, we claim that ⋃

n

⋂
k≥n

[0, 1] \ Ak =
⋃
n

⋂
k≥n

Bk

modulo nullsets. Since Bk \ ([0, 1] \ Ak) is null for all k, it follows that{⋃
n

⋂
k≥n

Bk

}
\

{⋃
n

⋂
k≥n

[0, 1] \ Ak

}

is null. We consider the other difference. We compute

m

(⋃
n

⋂
k≥n

[0, 1] \ Ak

)
= lim

n→∞
m

(⋂
k≥n

[0, 1] \ Ak

)

= lim
n→∞

m

(⋂
k≥n

Bk ∪ ([0, 1] \ (Ak ∪Bk))

)

= lim
n→∞

lim
`→∞

m

(⋂̀
k=n

Bk ∪ ([0, 1] \ (Ak ∪Bk))

)

≤ lim
n→∞

lim
`→∞

m

(⋂̀
k=n

Bk

)
+
∑̀
k=n

2−n

= lim
n→∞

m

(
∞⋂
k=n

Bk

)
+ 2−n+1

= m

(⋃
n

⋂
k≥n

Bk

)

so that we may conclude

m

(⋃
n

⋂
k≥n

[0, 1] \ Ak

)
= m

(⋃
n

⋂
k≥n

Bk

)
Lastly, we write

Nn,0 = Bn \ ([0, 1] \ An)

Nn,1 = Cn \ An
Nn,2 = {x ∈ An : lim sup

y→∞
fn(x, y) 6= 1}

Nn,3 = {x ∈ [0, 1] \ An : lim sup
y→∞

fn(x, y) 6= 0}

N∞,1 =

{⋂
n

⋃
k≥n

Ak

}
∆

{⋂
n

⋃
k≥n

Ck

}

N∞,2 =

{⋃
n

⋂
k≥n

[0, 1] \ Ak

}
∆

{⋃
n

⋂
k≥n

Bk

}
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and

N = N∞,1 ∪N∞,2 ∪
∞⋃
n=1

(Nn,0 ∪Nn,1 ∪Nn,2 ∪Nn,3)

By assumption, each of the sets in the above union is null, soN is null.
We now construct f . For n ∈ N and t ∈ [1/4, 3/4], we set

f(x, n+ t) = fn(x, 2(t− 1/4)(sn − rn) + rn)

and, for 0 ≤ t ≤ 1/4,
f(x, n+ t) = 4tfn(x, rn)

and, for 3/4 ≤ t < 1,
4(t− 3/4)f(x, sn)

and f(x, y) = 0 for y < 1. Observe then that we have arranged for f to be a continuous function over the
desired domain, taking values in [0, 1]. We claim that f has the appropriate limsup almost everywhere.
Suppose x ∈

⋂
n

⋃
k≥nAk with x 6∈ N . Then x ∈

⋂
n

⋃
k≥nCk , so x ∈

⋃
k≥nCk for all n, so there are

n1 < n2 < · · · ∈ N such that x ∈ Cnk for all k. Thus

sup
rnk<y<snk

fnk(x, y) > 1− 1/2nk

so that
sup

nk<y<nk+1
f(x, y) > 1− 1/2nk

and hence
lim sup
y→∞

f(x, y) = 1

Assume now that x 6∈
⋂
n

⋃
k≥nAk and x 6∈ N . Then x ∈

⋃
n

⋂
k≥nBk , so x ∈

⋂
k≥nBk for some

n ∈ N. Thus
sup
y>rk

fn(x, y) ≤ 1/2k

and so (by the construction of f )
sup
y>nk

f(x, y) ≤ 1/2k

from which
lim sup
y→∞

f(x, y) = 0

Thus we have demonstrated

lim sup
y→∞

f(x, y) = 1⋂
n

⋃
k≥n Ak

(x)

for a.e. x ∈ [0, 1]. We now study the family

E = {A ⊆ [0, 1] : A Borel and ∃f : [0, 1]× [0,∞)→ [0, 1] continuous
s.t. 1A(x) = lim sup

y→∞
f(x, y) for a.e. x ∈ [0, 1]}

By the previous portion of the argument, E is closed under countable unions and countable intersections.
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We now demonstrate that E contains intervals. For brevity, we only consider the case of closed inter-
vals. Suppose a < b ∈ [0, 1]. Then the function

f(x, y) =


0 x 6∈ (a− 1

1+y
, b+ 1

1+y
)

(1 + y)(x− (a− 1
1+y

)) x ∈ [a− 1
1+y

, a]

1 x ∈ (a, b)

−(1 + y)(x− b) x ∈ [b, b+ 1
1+y

]

is clearly continuous on [0, 1]× [0,∞) and satisfies

lim
y→∞

f(x, y) = χ[a,b]

as claimed.
Finally, observe that E contains the ring of finite unions of intervals. Since E is a monotone class, E

contains the σ-algebra generated by intervals, i.e. E contains all Borel sets, as was to be shown.

Fall 2020 Problem 2. Show that there is a constant c ∈ R so that

lim
n→∞

∫ 1

0

f(x) cos(sin(nπx))dx = c

∫ 1

0

f(x)dx

for every f ∈ L1([0, 1]). The limit is taken over those n ∈ N.

Proof. We first show that ∫ 1

0

cos(sin(rπx))dx
r→∞−→ c

for some constant c ∈ R. To do this, define the functions

G(r) :=

∫ 1

0

cos(sin(πrx))dx =
1

r

∫ r

0

cos(sin(πx))dx

and
F (r) =

∫ r

0

cos(sin(πx))dx = rG(r)

for 0 < r ∈ R. Note that

F (r + 1) = F (r) +

∫ r+1

r

cos(sin(πx))dx

= F (r) +

∫ 1

0

cos(sin(π(x− brc)))dx

= F (r) +

∫ 1

0

cos(± sin(πx))dx

= F (r) + F (1)

from which we conlude
F (r) = brcF (1) + F (r − brc)
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whenever r 6∈ N, and
F (n) = nF (1)

for n ∈ N. Thus
G(n) =

F (n)

n
= F (1)

and, for r 6∈ N,
G(r) =

F (r)

r
= F (1)− (brc − r)F (1)

r
+
F (r − brc)

r
from which we easily see that

G(r)
r→∞−→ F (1) ∈ R

which is our c. Thus, for any interval [a, b] ⊆ [0, 1] of positive length,∫ 1

0

χ[a,b](x) cos(sin(nπx))dx =

∫ 1

0

(χ[0,b] − χ[0,a]) cos(sin(nπx))dx

= bG(bn)− aG(an)

n→∞−→ (b− a)c = c

∫
χ[a,b]

if a 6= 0, and ∫ 1

0

χ[0,b](x) cos(sin(nπx))dx = bG(bn)
n→∞−→ bc = c

∫
χ[0,b]

Summing, we see that for any simple function f ,

lim
n→∞

∫ 1

0

f(x) cos(sin(nπx))dx = c

∫ 1

0

f(x)dx

Now suppose f ∈ L1([0, 1]) and f1, f2, . . .
L1

→ f are simple functions. Let ε > 0, and fix k ∈ N such
that ‖fk − f‖L1 < ε/3 and ‖fk − f‖L1 < ε/(3c). Lastly, pickN ∈ N such that, for all n > N ,∣∣∣∣∫ 1

0

fk(x) cos(sin(nπx))dx− c
∫ 1

0

fk(x)dx

∣∣∣∣ < ε/3 (8)

Then we have, for such n,∫ 1

0

f(x) cos(sin(nπx))dx =

∫ 1

0

fk(x) cos(sin(nπx))dx+

∫ 1

0

[f − fk](x) cos(sin(nπx))dx

= c

∫ 1

0

fk(x)dx+

(∫ 1

0

fk(x) cos(sin(nπx))dx−
∫ 1

0

fk(x)dx

)
+

∫ 1

0

[f − fk](x) cos(sin(nπx))dx

= c

∫ 1

0

f(x)dx+ c

∫ 1

0

[f − fk](x)dx

+

(∫ 1

0

fk(x) cos(sin(nπx))dx−
∫ 1

0

fk(x)dx

)
+

∫ 1

0

[f − fk](x) cos(sin(nπx))dx

= c

∫ 1

0

f(x)dx+ I + II + II
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Since ‖fk − f‖L1 < ε/(3c), we see that |I| < ε/3. Since ‖fk − f‖L1 < ε/3 and | cos(sin(nπx))| ≤ 1
everywhere, we see that |III| < ε/3. Lastly, by 8, |II| < ε/3. Thus, for all n > N ,∣∣∣∣∫ 1

0

f(x) cos(sin(nπx))dx− c
∫ 1

0

f(x)dx

∣∣∣∣ < ε

and so
∫ 1

0
f(x) cos(sin(nπx))dx

n→ c
∫ 1

0
f(x)dx for arbitrary f ∈ L1([0, 1]), as desired.

Fall 2020 Problem 3. 5 Let dµn be a sequence of probability measures on [0, 1] so that∫
f(x)dµn(x)

converges for every continuous function f : [0, 1]→ R.
(a) Show that ∫∫

g(x, y)dµn(x)dµn(y)

converges for every continuous function g : [0, 1]2 → R.
(b) Show by example that under the above hypotheses, it is possible that∫∫

0≤x≤y≤1

dµn(x)dµn(y)

does not converge.

Proof. (a): We first show this in the case g(x, y) = f(x)f ′(y) for continuous functions f, f ′ on [0, 1]. In
this case,∫∫

g(x, y)dµn(x)dµn(y) =

∫∫
f(x)f ′(y)dµn(x)dµn(y) =

(∫ 1

0

f(x)dµn(x)

)(∫ 1

0

f ′(y)dµn(y)

)
is a product of convergent sequences, hence converges.

We claim that the algebra A generated by such products are dense in C([0, 1]2) with respect to the
L∞ norm. To show this we use Stone-Weierstrass: since [0, 1]2 is a compact metric space, it suffices
to show that A contains the constants and separates points. Clearly we have all constants. Suppose
(x, y), (x′, y′) ∈ [0, 1]2 are distinct, say x 6= x′. Then let f be continuous on [0, 1] such that f(x) =
1, f(x′) = 0. Then g(x, y) = f(x) is a product of two continuous functions on [0, 1] which separates
(x, y) from (x′, y′); thusA is dense in C([0, 1]2).

SinceA is in fact linearly generated by such tensor product pairs, we see from the computation∫∫
ag(x, y) + bg′(x, y)dµn(x)dµn(y) = a

∫∫
g(x, y)dµn(x)dµn(y) + b

∫∫
g′(x, y)dµn(x)dµn(y)

that the desired convergence holds for all elements ofA.
We conclude by approximation: suppose g ∈ C([0, 1]2) and let g1, g2, . . . ∈ A such that gj

L∞→ g. If
ε > 0, fix j ∈ N such that ‖gj − g‖L∞ < ε/3. Then letN ∈ N such that∣∣∣∣∫∫ gj(x, y)dµn(x)dµn(y)−

∫∫
gj(x, y)dµm(x)dµm(y)

∣∣∣∣ < ε/3

5keyword: Stone-Weierstrass
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for all n,m > N . Then, for such n,m,∣∣∣∣∫∫ g(x, y)dµn(x)dµn(y)−
∫∫

g(x, y)dµm(x)dµm(y)

∣∣∣∣
≤
∣∣∣∣∫∫ g(x, y)dµn(x)dµn(y)−

∫∫
gj(x, y)dµn(x)dµn(y)

∣∣∣∣
+

∣∣∣∣∫∫ gj(x, y)dµn(x)dµn(y)−
∫∫

gj(x, y)dµm(x)dµm(y)

∣∣∣∣
+

∣∣∣∣∫∫ gj(x, y)dµm(x)dµm(y)−
∫∫

g(x, y)dµm(x)dµm(y)

∣∣∣∣
< ε/3 + ε/3 + ε/3 = ε

from which we conclude that
n 7→

∫∫
g(x, y)dµn(x)dµn(y)

is Cauchy, hence convergent. Thus the result holds for every continuous real-valued g, as desired.
(b): Define µn as

µn =

{
δ1 n odd∑n

k=1
1
n
δ1−k/n2 n even

Then clearly every continuous function [0, 1]→ R satisfies∫
f(x)dµn(x)→ f(1)

as n→∞; however, ∫∫
0≤x≤y≤1

dµn(x)dµn(y) = 1

for n odd, whereas for n even ∫∫
0≤x≤y≤1

dµn(x)dµn(y) = 1/2 +
n∑
k=1

1

n2

= 1/2 + 1/n

which has limit 1/2. Thus the above sequence fails to converge over n ∈ N.

Fall 2020 Problem 4. Let X be a separable Banach space over R and let F : X → R be norm-
continuous and convex. Suppose now that a sequence xn inX converges weakly to x ∈ X . Show that

F (x) ≤ sup
n
F (xn)

Proof. By a standard fact of functional analysis, there are convex linear combinations

yn = tn1x1 + . . .+ tnnxn

such that yn → x strongly. Since F is (strongly) continuous, F (yn)→ F (x). By convexity,

F (yn) ≤ tn1F (x1) + . . .+ tnnF (xn) ≤ sup
1≤j≤n

F (xn)
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For every ε > 0, there is someN ∈ N such that, for each n > N ,
F (x) ≤ F (yn)− ε ≤ sup

1≤j≤n
F (xn)− ε ≤ sup

n
F (xn)− ε

Sending ε to 0, we conclude that
F (x) ≤ sup

n
F (xn)

as desired.
Fall 2020 Problem 5. 6 Suppose f ∈ L1([0, 1]) has the property that

(∗)
∫
E

|f(x)|dx ≤
√
|E|

for every Borel E ⊆ [0, 1]. Here |E| denotes the Lebesgue measure ofE.
(a) Show that f ∈ Lp([0, 1]) for all p < 2.
(b) Give an example of an f satisfying (∗) that is not in L2([0, 1]).
Proof. (a): Fix p < 2. For n ∈ Z, write Ln = {x ∈ [0, 1] : 2n ≤ |f(x)| < 2n+1}. Then we have

2n|Ln| ≤
∫
Ln

|f(x)|dx ≤ |Ln|1/2

so that 2n|Ln|1/2 ≤ 1. Let q ∈ (2p− 2, 2); then 2qn|Ln|
q
2 ≤ 1 as well. We may also write

‖f‖1 ≥
∑
n∈Z

2n|Ln|

so that the right-hand side is finite.
Finally, we compute:∫

[0,1]

|f(x)|pdx ≤ 2p
∑
n∈Z

2np|Ln|

≤ 22p

2p − 1
+ 2p

∑
n≥1

2n(p−1− q
2

) · 2n(1− q
2

)|Ln|1−
q
2 · 2qn|Ln|

q
2

≤ 22p

2p − 1
+ 2p

(∑
n≥1

2
n(2p−2−q)

q

) q
2
(∑
n≥1

2n|Ln|

)1− q
2

Observe that the first series in the latter display is a geometric series with common ratio in (0, 1), hence
converges. The second series in the latter display is finite, by the previous comparison to ‖f‖1. Thus,
f ∈ Lp([0, 1]), as claimed.

(b): Let f(x) = 1
4
√
x

. Note that f ∈ L1 but not L2, so it remains to show that f satisfies (∗). Suppose
E ⊆ [0, 1] is Borel. We will write |E| = λ(E). Then∫

E

|f(x)|dx =

∫
E∩[0,|E|]

|f(x)|dx+

∫
E∩(|E|,1]

|f(x)|dx

≤
∫ |E|

0

1

4
√
x
dx+

|E|
4
√
|E|

=
1

2

√
|E|+ 1

4

√
|E| ≤

√
|E|

6keyword: dyadic decomposition; Lorentz spaces
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as claimed.

Fall 2020 Problem 6. Prove that the following inequality is valid for all oddC1 functions f : [−1, 1]→
R: ∫ 1

−1

|f(x)|2dx ≤
∫ 1

−1

|f ′(x)|2dx

By odd, we mean that f(−x) = −f(x).

Proof. We compute ∫ 1

−1

f(x)2dx =

∫ 1

−1

(∫ x

0

f ′(t)dt

)2

dx

≤
[∫ 1

−1

|f ′(t)||1− t|1/2dt
]2

by Minkowski

≤
[∫ 1

−1

f ′(t)2dt

] [∫ 1

−1

|1− t|dt
]

by Hölder

=

∫ 1

−1

f ′(t)2dt

as desired.

Fall 2020 Problem 7. Let ∆j = {z : |z− aj| ≤ rj}, 1 ≤ j ≤ n be a collection of disjoint closed disks,
with radii rj ≥ 0, all contained in the open unit disk D of the complex plane. Let Ω = D \ (∪j∆j), and
let u : Ω→ R be harmonic. Prove that there exist real numbers c1, . . . , cn such that

u(z)−
n∑
j=1

cj log |z − aj|

is the real part of a (single valued) analytic function on Ω. Show also that the choice of c1, . . . , cn is unique.

Proof. Consider the one-form
v(z) =

∂u

∂z
dz

on Ω, where ∂
∂z

= 1
2
( ∂
∂x
−i ∂

∂y
) is a Wirtinger derivative. Sinceu is harmonic, v is holomorphic (in the sense

that the coefficient function is holomorphic). For each 1 ≤ j ≤ n, set Cj to be a counterclockwise loop
in Ω around ∆j that doesn’t enclose any other ∆k; by standard algebraic topology, {Cj}1≤j≤n determine
a basis forH1(Ω;R).

Now, for each j, set
cj =

1

πi

∫
Cj

v

A standard calculation shows ∫
Cj

cj
∂

∂z
log |z − aj|dz = πicj =

∫
Cj

v
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so that

w(z) := u(z)−
n∑
j=1

cj log |z − aj|

is a harmonic function on Ω satisfying ∫
Cj

∂

∂z
w(z)dz = 0

for all j. Since {Cj} generate all ofH1(Ω;R), we see that, for h(z) = ∂
∂z
w(z),

h holomorphic on Ω and
∫
γ

h(z)dz = 0

for all piecewise smooth loops γ in Ω. Thus, for fixed z0 ∈ Ω, the path integral

g(z) = w(z0) +

∫ z

z0

h(t)dt

is well-defined (that is, independent of path chosen) and is an analytic antiderivative for h on Ω.
Thus we find

∂

∂z
g(z) = h(z) =

∂

∂z
w(z), g(z0) = w(z0)

and sow is equal to g+ awhere a is a conjugate-analytic function on Ω vanishing at z0; sincew is purely
real-valued, Im(a) = −Im(g) and so ā is an analytic function on Ω whose imaginary part agrees with
that of g everywhere on Ω. Thus a and g agree up to a real additive constant; since a(z0) = 0 we see that
w = g + ḡ − g(z0). Thusw = 2Re(g)− g(z0), sow is indeed the real part of an analytic function on Ω.

Finally, if

u(z)−
n∑
j=1

dj log |z − aj| = Re(q)

for constants d1, . . . , dn and analytic function q on Ω, then∫
Cj

∂q

∂z
dz = 0

for each z, by e.g. examining the Laurent series about each aj . Taking real parts,∫
Cj

∂u

∂z
dz = djπi

which implies that dj = cj from before, so these constants are unique.

Fall 2020 Problem 8. 7 Let f : D→ D be holomorphic and satisfy f(1
2
) = f(−1

2
) = 0. Show that

|f(0)| ≤ 1

4
.

7keyword: Blaschke factors
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Proof. Note that f̃ , defined by

f̃(z) =
1− z/2
z − 1/2

1 + z/2

z + 1/2
f(z)

is analytic in D and takes values in D, by standard Blaschke factor theory. Thus

|f(0)| =
∣∣∣∣1/21

∣∣∣∣ ∣∣∣∣1/21

∣∣∣∣ |f̃(0)| ≤ 1

4

as desired.

Fall 2020 Problem 9. Consider the following region in the complex plane:

Ω = {x+ iy : 0 < x <∞ and 0 < y <
1

x
}.

Exhibit an explicit conformal mapping f of Ω onto D = {z ∈ C : |z| < 1}.

Proof. We first claim that, for f1(z) = z2,

f1(Ω) = {z ∈ C : Im(z) ∈ (0, 2)}

and that f1 is a conformal map between these two domains. To show this, note first that Ω doesn’t contain
any pairs z1, z2 with z2 = −z1; since f1 is clearly analytic, f1 is a conformal map Ω→ f1(Ω).

We show that its image is as claimed. First note that, for any x+ iy with y < 1/x,

f1(x+ iy) = x2 − y2 + i2xy, 2xy < 2

so f1(Ω) ⊆ {z : Im(z) < 2}. Similarly, since x > 0, y > 0 for all x+ iy ∈ Ω, f1(Ω) ⊆ {z : Im(z) > 0,
so we conclude that

f1(Ω) ⊆ {z ∈ C : Im(z) ∈ (0, 2)}
We claim that every point of this domain lies in the image of f1. If

√
· denotes the branch of the inverse

of z 7→ z2 for which
√
i ∈ Ω, we see that

w =
√
reiθ =

√
r(cos θ + i sin θ) =

√
r(cos(θ/2) + i sin(θ/2))

satisfies

Re(w), Im(w) > 0 and Im(w)Re(w) = r cos(θ/2) sin(θ/2) =
r

2
sin(θ) < 1

whenever r sin(θ) = Im(w) < 2, i.e. when w is in the putative image of f1. Thus f1(Ω) = {z ∈ C :
Im(z) ∈ (0, 2)}, as claimed.

The remainder of the problem is routine: Ω1 := π
2
f1(Ω) satisfies

z 7→ exp(z) : Ω1 → H = {z ∈ C : Im(z) > 0}

conformally, and finally the Möbius transformation

z 7→ z − i
z + i

carries H onto D conformally. Thus the composition

z 7→ e
π
2
z2 − i

e
π
2
z2 + i

maps Ω conformally onto D, as required.
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Fall 2020 Problem 10. Let K ⊆ C be a compact set of positive area but empty interior and define a
function F : C→ C via

F (z) =

∫∫
K

1

w − z
dµ(w),

where dµ denotes (planar) Lebesgue measure on C.
(a) Prove that F (z) is bounded and continuous on C and analytic on C \K .
(b) Prove that {F (z) : z ∈ C} = {F (z) : z ∈ K}.
Hint: If a ∈ F (C) \ F (K) and F−1(a) = {z1, . . . , zn} ⊆ C \ K , then the argument principle can be
applied toG(z) = F (z)−a∏

j(z−zj)
to get a contradiction.

Proof. (a): We use the fact that translation is continuous in Lp(C), for every 1 ≤ p < ∞. If τεf(·) =
f(· − ε), we note that

|(τεF − F )(z)| ≤ ‖(τε
1

· − z
− 1

· − z
)χK‖L1(C)

= ‖ 1

· − z
(τ−εχK − χK)‖L1(C)

≤ ‖ 1

· − z
χB(0,R)‖L3/2(C)‖τ−εχK − χK‖L3(C) for sufficiently large R > 0

ε→0−→ 0

whereR > 0 is sufficiently large so thatK ⊆ B(0, R− 1), and where the limit holds becausew 7→ 1
w−z

is locally L3/2 and translation is continuous in L3(C). Thus

F (z − ε)→ F (z)

as C 3 ε→ 0, for arbitrary z ∈ C; that is, F is continuous on all of C.
Next, we argue that F is bounded on C: if R > 0 is sufficiently large so that K ⊆ B(0, R/2), then

for every z 6∈ B(0, R)

|F (z)| ≤ 2

R
µ(K)

which implies that F (z)→ 0 as z →∞; thus F extends to a continuous function on the compact space
C ∪ {∞}, so F is bounded.

If ∆ is a triangle in C \K which does not bound any part ofK , we compute∫
∆

F (z)dz =

∫
∆

∫∫
K

1

w − z
dµ(w)dz

=

∫∫
K

∫
∆

1

w − z
dzdµ(w) by Fubini, since ∆ andK are compact

= 0 since w ∈ K and ∆ doesn’t enclose any ofK

and so by Morera’s theorem we conclude that F is analytic on C \K .
(b): Note that, if a ∈ F (C)\F (K), thenF−1(a) is finite (since otherwise there would be an accumu-

lation point inside C \K , which would imply that F is constant, which contradicts a ∈ F (C) \ F (K)).
Thus we may assume F−1(a) = {z1, . . . , zn} for some n > 0, listed with multiplicity; we will reach a
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contradiction from this. We assume for simplicity that 0 6∈ K ; by translating, the general case will follow.
Since a 6∈ F (K), and F (K) is compact, we see that

G(z) =
F (z)− a∏

(z − zj)

is continuous on all of C ∪ {∞} with G(∞) = 0, hence bounded. Furthermore, since the zj were listed
with multiplicity,∞ is the unique zero ofG. Thus, setting

H(z) = G(1/z)

the argument principle provides
1

2πi

∫
|z|=ε

H ′(z)

H(z)
dz = n

for sufficiently small ε > 0, and, changing variables,

1

2πi

∫
|z|=1/ε

G′(z)

G(z)
dz = −n

Thus G({|z| = 1
ε
}) is a (rectifiable) curve that has winding number−n 6= 0 with respect to 0. For each

0 < r ≤ 1
ε

, let γr denote the curve {|z| = r}, traced counterclockwise. SinceG doesn’t vanish anywhere
in C, the winding number of G ◦ γr with respect to 0 is well-defined for all r, though we may need to
understand “winding number” as coming from the identification π1C\{0} ∼= Z due to lack of regularity.
It is also continuous and integer-valued, so in particular is equal to −n for all r. Since 0 6∈ K , we have
thatB(0, r) ⊆ Kc for sufficiently small r > 0. SinceG is analytic onKc, we reach a contradiction from
the conclusion thatG ◦ γr has winding number−n < 0.

Fall 2020 Problem 11. Let {fn} be a sequence of analytic functions on a (connected) domain Ω such
that |fn(z)| ≤ 1 for all n and all z ∈ Ω. Suppose the sequence {fn(z)} converges for infinitely many z
in a compact subsetK of Ω. Prove that {fn(z)} converges for all z ∈ Ω.

Proof. We claim that there is some analytic function f on Ω such that every subsequence of {fn} has
a further subsequence which converges locally uniformly to f ; the result follows. Since |fn(z)| ≤ 1
uniformly, {fn} is a normal family, so every subsequence has a locally uniformly convergent further sub-
sequence. Suppose f 1, f 2 are two such limit functions; they are clearly analytic. Since the collection of
points z ∈ K such that fn(z) converges is infinite, and that limit value must equal f 1(z) = f 2(z), we
see that f 1(z) = f 2(z) for infinitely many points ofK . SinceK is compact, {z : f 1(z) = f 2(z)} has an
accumulation point inside of Ω. Thus by the uniqueness principle f 1 = f 2 on Ω, and so any subsequence
of the {fn} refines to a further subsequence which converges to the same limit function f .

Fall 2020 Problem 12. Let Ω = {z ∈ C : −2 < Im z < 2}. Show that there is a finite constant C so
that

|f(0)|2 ≤ C

∫ ∞
−∞

[|f(x+ i)|2 + |f(x− i)|2]dx

for every holomorphic f : Ω→ D for which the right-hand side is finite.
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Proof. By Cauchy’s integral theorem, for eachR > 0,

f(0) =
1

2πi

∫
ΓR

f(z)

z
dz

where ΓR is the counterclockwise-oriented rectangle in Ω with top and bottom along the lines {Im(z) =
±1} and left/right edges along the lines {Re(z) = ±R}. Let LR andRR denote the left/right hand sides
of this rectangle; then ∣∣∣∣∫

LR

f(z)

z
dz

∣∣∣∣ ≤ 2

R

R→∞−→ 0

and similarly forRR. Thus

f(0) = lim
R→∞

1

2πi

∫ R

−R

f(t+ i)

t+ i
+
f(−t− i)
−t− i

dt

By Hölder’s inequality,

|f(0)| ≤ 1

2π
lim
R→∞

(∫ R

−R
|f(t+ i)|2 + |f(−t− i)|2dt

)1/2(∫ R

−R

2

|t+ i|2
dt

)1/2

= C

(∫ R

−R
|f(t+ i)|2 + |f(−t− i)|2dt

)1/2

where

C =
1√
2π

(∫
R

1

1 + x2
dx

)1/2

=
1√
2π

Thus
|f(0)|2 ≤ 1

2π

∫ ∞
−∞

[|f(x+ i)|2 + |f(x− i)|2]dx

as desired.
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5 Spring 2021
Spring 2021 Problem 1. Let µ be a positive Borel probability measure on [0, 1] and let

C = sup

{
µ(E) : E ⊆ [0, 1] with |E| = 1

2

}
where |E| denotes the Lebesgue measure ofE. Show that there exists a Borel set F ⊆ [0, 1] such that

|F | = 1

2
and µ(F ) = C

Hint. When dµ = fdx, one can sometimes take F = {x ∈ [0, 1] : f(x) > λ}, for a suitable λ ≥ 0.

Proof. Throughout, we make implicit use of the well-known fact that, if 0 < c < |A| with A Borel, then
there is a Borel subset B ⊆ A with |B| = c. By the Lebesgue decomposition theorem, we may write
dµ = fdx+ µ1, where f ≥ 0 is Borel measurable and µ1 ⊥ µ is a positive Borel measure. Denote byX
some Borel set satisfying

µ1(X) = 0,

∫
[0,1]\X

f(x)dx = 0

For each c ≥ 0 we denote
Ec := {f(x) > c}

Set
λ := inf{c > 0 : |Ec| ≤

1

2
}

By Markov, since
∫
|f |dx =

∫
fdx ≤

∫
µ = 1, we have that λ ∈ [0, 2]. Note that

Eλ =
∞⋃
n=1

Eλ+ 1
n
, Eλ ∪ {f(x) = λ} =

∞⋂
n=1

Eλ− 1
n

and so
|Eλ| = lim

n→∞
|Eλ+ 1

n
| ≤ 1

2

and
|Eλ|+ |{f(x) = λ}| = lim

n→∞
|Eλ− 1

n
| ≥ 1

2

Thus there is some Borel setA ⊆ {f(x) = λ} such that |Eλ ∪ A| = 1
2

Finally, we set
F = Eλ ∪ A ∪X

Note that |F | = 1
2

, since X \ [Eλ ∪ A] is contained in a set of Lebesgue measure 0. We claim that any
otherE ⊆ [0, 1] with |E| = 1

2
satisfies µ(E) ≤ µ(F ).

First, |E| = |E ∪X| and µ(E) ≤ µ(E ∪X), so we may assume thatE ⊇ X . IfEλ 6⊆ E, then either
|Eλ \ E| = 0 or |Eλ \ E| > 0. In the former case,E may be replaced by E ∪ Eλ; in the latter,

1

2
= |E| = |E \ Eλ|+ |E ∩ Eλ| = |E \ Eλ|+ |Eλ| − |Eλ \ E| ≤ |E \ Eλ|+

1

2
− |Eλ \ E|
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(where we have used |Eλ| ≤ 1
2

) and hence

|E \ Eλ| ≥ |Eλ \ E|

IfB denotes a Borel subset ofE \ Eλ for which |B| = |Eλ \ E|, then∫
B

f(x)dx ≤
∫
Eλ\E

f(x)dx

and it follows that

µ([E \B] ∪ Eλ ∪X) = µ1(X) +

∫
[E\B]∪Eλ

f(x)dx ≥ µ1(X) +

∫
E

f(x)dx ≥ µ(E)

so we may assume thatEλ ⊆ E.
We have reduced to the setting E ⊇ X ∪ Eλ. Then |E \ Eλ| = |E| − |Eλ| and

µ([E \ Eλ] ∪X) = µ1(X) +

∫
E\Eλ

f(x)dx ≤ µ1(X) +

∫
A

f(x)dx = µ(F )

whereA ⊆ {f = λ} is Borel such that |A| = |E| − |Eλ|. Thus in every case µ(E) ≤ µ(F ), as was to be
shown.

Spring 2021 Problem 2. Let µ and ν be two finite positive Borel measures on Rn.
(a): Suppose that there exist Borel setsAn ⊆ X so that

lim
n→∞

µ(An) = 0 and lim
n→∞

ν(X \ An) = 0

Show that µ and ν are mutually singular.
(b): Suppose there are non-negative Borel functions {fn}n≥1 so that fn(x) > 0 for ν-a.e. x and

lim
n→∞

∫
fn(x)dµ(x) = 0 and lim

n→∞

∫
1

fn(x)
dν(x) = 0

Proof. (a): Note that the conclusion is immediate if one of µ, ν are the zero measure; hence after rescaling
we may as well assume that µ, ν are probability measures. Refining the sequence {An}n, we may also
assume

µ(An) ≤ 2−n, ν(X \ An) ≤ 2−n

Now set

A =
∞⋃
n=1

∞⋂
k=n

An

Then

µ(A) = lim
n→∞

µ

(
∞⋂
k=n

An

)
≤ lim

n→∞
µ(An) = 0

and

ν(X \ A) = ν

(
∞⋂
n=1

∞⋃
k=n

[X \ An]

)
= lim

n→∞
ν

(
∞⋃
k=n

[X \ An]

)

≤ lim
n→∞

∞∑
k=n

ν(X \ An) = lim
n→∞

2−n+1 = 0

62



so µ, ν are mutually singular.
(b): Set

An := {fn ≥ 1} Borel

Then ∫
fn(x)dµ(x) ≥

∫
An

1dµ(x) = µ(An) ≥ 0

so µ(An)→ 0. Similarly,∫
1

fn(x)
dν(x) ≥

∫
X\An

1dν(x) = ν(X \ An) ≥ 0

so ν(X \ An)→ 0. By (a), µ, ν are mutually singular.

Spring 2021 Problem 3. Let f ∈ L2(R). For n ≥ 1 we define

fn(x) =

∫ 2π

0

f(x+ t) cos(nt)dt

Prove that fn converges to zero both almost everywhere in R and in the L2(R) topology, as n→∞.

Proof. We first note the estimate

‖fn‖L2(R) =

(∫
R
|fn(x)|2dx

)1/2

=

(∫
R

∣∣∣∣∫ 2π

0

cos(nt)f(x+ t)dt

∣∣∣∣2 dx
)1/2

≤
∫ 2π

0

| cos(nt)|
(∫

R
|f(x+ t)|2dx

)1/2

dt by Minkowski

= ‖f‖L2(R)

∫ 2π

0

| cos(nt)|dt

≤ 2π‖f‖L2(R)

Let ε > 0, and fix g ∈ C∞c (R) such that

‖g − f‖L2(R) <
ε

4π
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We estimate

‖gn‖2
L2(R) =

∫
R
gn(x)ḡn(x)dx

=

∫
R
ḡn(x)

∫ 2π

0

cos(nt)g(x+ t)dtdx

=

∫ 2π

0

cos(nt)

∫
R
g(x+ t)ḡn(x)dxdt

=

∫ 2π

0

1

n

d

dt
[sin(nt)]

∫
R
g(x+ t)ḡn(x)dxdt

= − 1

n

∫ 2π

0

sin(nt)
d

dt

[∫
R
g(x+ t)ḡn(x)dx

]
dt

= − 1

n

∫ 2π

0

sin(nt)

∫
R
g′(x+ t)ḡn(x)dxdt

≤ 1

n
2π‖g′‖L2(R)‖gn‖L2(R)

≤ 1

n
4π2‖g′‖L2(R)‖g‖L2(R) → 0

and so we may take someN > 0 such that for all n ≥ N we have

‖gn‖L2(R) <
ε

2

Thus together we have

‖fn‖L2(R) ≤ ‖gn‖L2(R) + ‖(g − f)n‖L2(R) <
ε

2
+
ε

2
= ε

for all n ≥ N ; we conclude that fn → 0 in L2(R).
We now show that the mapping f 7→ fn is bounded fromL2(R) toL∞(R): this follows immediately

from the estimate

|fn(x)| ≤
∫ 2π

0

|f(x+ t) cos(nt)|dt ≤ ‖f‖L2(R)‖ cos(n·)‖L2([0,2π]) . ‖f‖L2(R)

For any g ∈ C∞c (R) and any x ∈ R,

gn(x) =

∫ 2π

0

g(x+ t) cos(nt)dt

= − 1

n

∫ 2π

0

sin(nt)g′(x+ t)dt

= O

(
1

n
‖g′‖L2(R)

)
→ 0

so gn(x)→ 0 for every x ∈ R, as n→∞. The final conclusion follows from the estimate

|fn(x)| ≤ |gn(x)|+ |(f − g)n(x)| . |gn(x)|+ ‖f − g‖L2(R)

and hence fn(x)→ 0 as well.
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Spring 2021 Problem 4. Define

I(f) :=

∫ 1

0

(
1

2
(f ′(x))2 + sin(f(x)) + f 4(x)

)
dx

for any f ∈ C1([0, 1];R). Let fn ∈ C1([0, 1];R) be such that

I(fn)→ inf
f∈C1([0,1];R)

I(f)

Show that the sequence {fn} has a limit point in the space C([0, 1];R).

Proof. We first show that {fn} is equicontinuous. For any x, y ∈ [0, 1], and any n,

|fn(y)− fn(x)| =
∣∣∣∣(y − x)

∫ 1

0

f ′n(x+ t(y − x))dt

∣∣∣∣
≤ |x− y| × ‖f ′n‖L1([0,1])

≤ |x− y| × ‖f ′n‖L2([0,1]) by Hölder

Since I(fn) is bounded, we see that

1

2
‖f ′n‖2

L2([0,1]) ≤
∫ 1

0

(
1

2
(f ′n(x))2 + [1 + sin(fn(x))] + f 4

n(x)

)
dx = 1 + I(fn)

is uniformly bounded; hence there is a constant C independent of n, x, y such that

|fn(y)− fn(x)| ≤ C|y − x|

from which we conclude that the family {fn}n is equicontinuous. From this we can also conclude uniform
boundedness: for each n and each y ∈ [0, 1], we have the upper bound

‖fn‖4
L4([0,1]) =

∫ 1

0

|fn(x)|4dx

=

∫ 1

0

|fn(y) + fn(x)− fn(y)|4dx

≥
∫ 1

0

max(|fn(y)| − C|x− y|, 0)4dx

In particular,

‖fn‖4
L4([0,1]) ≥

∫ 1

0

max(‖fn‖L∞([0,1]) − C, 0)4dx

As before, we have the bound
‖fn‖4

L4([0,1]) ≤ 1 + I(fn)

uniform in n, hence ‖fn‖L∞([0,1]) is uniformly bounded. Thus the family {fn}n is a uniformly bounded
and equicontinuous family of continuous functions on a compact domain, hence (by Arzelà-Ascoli) pos-
sess a limit point.
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Spring 2021 Problem 5. Let x ∈ RN be such that the series
∞∑
i=1

xiyi

converges for all y ∈ RN such that limn yn = 0. Show that the series
∑∞

n=1 |xn| converges.

Proof. We show the contrapositive: supposing
∑∞

n=1 |xn| diverges, we wish to construct some y ∈ RN

such that limn yn = 0 and
∑
xiyi diverges. By the divergence of

∑
|xi|, we may iteratively construct a

sequence of natural numbers n1 < n2 < n3 < . . . satisfying∑
nj≤i<nj+1

|xi| ≥ 1

Define
yi =

sgn(xi)

j
where i is such that nj ≤ i < nj+1

Then clearly yi → 0, and
∞∑
i=1

xiyi =
∞∑
j=1

∑
nj≤i<nj+1

|xi|
j
≥

∞∑
j=1

1

j
= +∞

as desired.

Spring 2021 Problem 6. We say that the linear operatorT : C([0, 1])→ C([0, 1]) is positive ifT (f)(x) ≥
0 for all x ∈ [0, 1], whenever f ∈ C([0, 1]) satisfies f(x) ≥ 0 for all x ∈ [0, 1]. Let

Tn : C([0, 1])→ C([0, 1])

be a sequence of positive linear operators such that Tn(f)→ f uniformly on [0, 1] if f is a polynomial of
degree less than or equal to 2. Show that

Tn(f)→ f uniformly on [0, 1]

for every f ∈ C([0, 1])).
Hint. Let f ∈ C([0, 1]). Show first that for every ε > 0 there exists Cε > 0 such that

|f(x)− f(y)| ≤ ε+ Cε|x− y|2 for all x, y ∈ [0, 1]

Proof. Assume the estimate given in the hint. Fix ε > 0. Let 1 denote the constant-1 function on [0, 1].
Since f is continuous on [0, 1], it is uniformly continuous, and so there is a partition 0 = x1 < . . . <
xn = 1 such that, whenever xj ≤ x ≤ xj+1,

|f(xj)− f(x)| < ε

8
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We compute

|Tn[f ](x)− f(x)| ≤ |f(x)− Tn[f(x)](x)|+ Tn[f ](x)− Tn[f(x)](x)|
≤ |f(x)||1− Tn[1](x)|
+ |Tn[f − f(xj)](xj)|
+ |f(xj)− f(x)||Tn[1](xj)|
+ |f(x)||Tn[1](xj)− Tn[1](x)|
= I + II + III + IV

Since Tn[1] → 1 uniformly, and |f | is uniformly bounded, there is some N1 > 0 such that whenever
n ≥ N1 we have

I <
ε

4

Similarly, there is someN3 > 0 such that

|Tn[1](xj)| ≤ 2

for all n ≥ N3; together with the uniform continuity assumption above,

III <
ε

4

To handle IV , note that since Tn[1] → 1 uniformly we must have that for n � 0 we must have Tn[1]
within ε

8‖f‖∞ of 1; it follows that there isN4 > 0 for which

IV ≤ ‖f‖∞(|Tn[1](xj)− 1|+ |1− Tn[1](x)|) < ε

4

for all n ≥ N4.
We turn to II . Since each Tn is positive, it is order-preserving; from the inequalities

−ε
8
− Cε/8(xj − y)2 ≤ f(y)− f(xj) ≤

ε

8
+ Cε/8(xj − y)2

we see that

Tn[−ε− Cε(xj − ·)2](xj) ≤ Tn[f − f(xj)](xj) ≤ Tn[ε+ Cε(xj − ·)2](xj)

and so, for n sufficiently large,
−ε

4
≤ Tn[f − f(xj)](xj) ≤

ε

4

Thus there is someN2 > 0 such that, for all n ≥ N2 and j = 1, . . . , n,

−ε
4
≤ Tn[f − f(xj)](xj) ≤

ε

4

from which we conclude
II ≤ ε

4

Thus we have in total
|Tn[f ](x)− f(x)| < ε
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when n ≥ max(N1, N2, N3, N4), if we assume the hinted estimate.
We now prove the estimate in question. Fix ε > 0. Since f is continuous on [0, 1], it is uniformly

continuous, there is some δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε

LetCε > 0 be sufficiently large so thatCεδ2 > 2‖f‖∞. Let x, y ∈ [0, 1]. If |x− y| < δ, then the desired
estimate follows from uniformity. Otherwise,

ε+ Cε(x− y)2 ≥ ε+ Cεδ
2 > ε+ 2‖f‖∞ > |f(x)− f(y)|

as desired; the argument is now finished.

Spring 2021 Problem 7. Let Ω = {z ∈ C : Re z > 0 and Im z > 0}. Show that there exists a unique
bounded harmonic function u : Ω→ R such that for all x > 0 and y > 0,

lim
t→0

u(x+ it) = 0 and lim
t→0

u(t+ iy) = 1

Proof. Note thatu(z) = 2
π

Arg(z) is one solution, where Arg denotes the principal argument taking values
in (−π, π].

It remains to handle uniqueness. For u, v solutions to the given problem, we see that w := u− v is a
bounded harmonic real-valued function on Ω satisfying

lim
t→0

w(x+ it) = 0 and lim
t→0

w(t+ iy) = 0

Set η(z) := w(φ(z)), for φ−1(z) = z2−i
z2+i

the conformal map Ω → D sending 0 to−1 and∞ to 1. Then
η is a bounded real-valued harmonic function on D such that

lim
γθ3z→eiθ

η(z) = 0

where γθ is the analytic arc φ−1(s + iR) or φ−1(R + is) for suitable fixed s, depending on if θ ∈ (0, π)
or ∈ (π, 2π).

Let µ := φ∗λ be the pushforward of the Lebesgue measure on ∂D onto ∂Ω. For each b ∈ ∂Ω∩ iR>0,
define

σ(b, ε) := sup{r > 0 : |w(b+ s)| < ε/2 ∀0 < s ≤ r}

and similarly define σ(b, ε) for b ∈ Ω ∩ R>0. If we choose ε > 0 and 0 < δ < ‖w‖∞ε, then let ε′ be
sufficiently small so that

µ({b : σ(b, ε′) < ε}) < δ

and let C = {z : |z| = r} for some 0 < r < 1 sufficiently close to 1 so that

λ({θ ∈ (0, π) : Reφ(reiθ) ≥ σ(φ(eiθ), ε′)} ∪ {θ ∈ (π, 2π) : Imφ(reiθ) ≥ σ(φ(eiθ), ε′)}) < δ

Together this implies that η|r∂D is L1-close to 0, for all r < 1 large depending on ε > 0. We conclude by
the reproducing formula for harmonic functions that η is in fact 0, so u = v and we have uniqueness.
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Spring 2021 Problem 8. Show that there exists a non-zero entire function f : C → C and constants
b, c ∈ C satisfying

f(0) = 0, f(z + 1) = ebzf(z), f(z + i) = eczf(z)

Proof. Define
g(z) =

∑
n∈Z

(−1)ne−πn
2−πn+2πinz

It is clear that the series converges locally uniformly in z, so defines an entire function. Clearly g(z+1) =
g(z) for all z. Additionally,

g(z + i) =
∑
n∈Z

(−1)ne−πn
2−πn+2πin(z+i)

=
∑
n∈Z

(−1)ne−πn
2−3πn+2πinz

= −e2πe−2πiz
∑
n∈Z

(−1)n+1e−π(n+1)2−π(n+1)+2πi(n+1)z

= −eπe−2πizg(z)

and

g(0) =
∑
n∈Z

(−1)ne−πn
2−πn

=
∑
n∈Z

(−1)ne−πn(n+1)

=
∑
n∈Z

(−1)1−ne−π(1−n)(−n)

= −
∑
n∈Z

(−1)ne−πn(n+1)

= −g(0)

so that g(0) = 0. Using this, define
f(z) = eπz

2−πzg(z)

Then certainly f(0) = 0 and f is entire. We compute

f(z + 1) = eπz
2−πze2πzg(z + 1) = e2πzf(z)

and
f(z + i) = eπz

2−πze2πize−π−πig(z + i) = e−2πizf(z)

so this f has the appropriate properties with b = 2π, c = −2πi.

Spring 2021 Problem 9. Let Ω1 ⊆ Ω2 be bounded Jordan domains in C. We also assume that 0 ∈ Ω1.
Now suppose f1 : D → Ω1 and f2 : D → Ω2 are Riemann mappings, satisfying f1(0) = f2(0) = 0.
Show that

|f ′1(0)| ≤ |f ′2(0)|
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Proof. f−1
2 ◦ f1 is a holomorphic map D→ D taking 0 to 0, hence

|f ′2(0)|−1|f ′1(0)| = |(f−1
2 )′(f1(0))f ′1(0)| = |(f−1

2 ◦ f1)′|(0) ≤ 1

by the Schwartz lemma, which implies the desired

|f ′1(0)| ≤ |f ′2(0)|

Spring 2021 Problem 10. Define

f(z) =

∫ 1

0

tz

et − 1
dt, z ∈ C,Re z > 0

Show that f is an analytic function in {z ∈ C : Re z > 0} and that it admits a meromorphic continuation
f̂ to the region {z ∈ C : Re z > −1}. Compute the residue of f̂ at z = 0.

Proof. Note that the integrand, as a function of t, is continuous on (0, 1] and is O(tRe(z)−1), hence is
absolutely integrable for all Re z > 0. Thus f(z) is well-defined in the right half-plane.

Let ∆ be an arbitrary triangle in the right half-plane. Then∫
∆

f(z)dz =

∫
∆

∫ 1

0

tz

et − 1
dtdz

∗
=

∫ 1

0

∫
∆

tz

et − 1
dzdt by Fubini

=

∫ 1

0

0 dt since z 7→ tz is analytic for each t > 0

= 0

which by Morera’s implies that f is analytic in the right half-plane. To justify the use of Fubini in (∗), note
that ∫

∆

∫ 1

0

∣∣∣∣ tz

et − 1

∣∣∣∣ dt|dz| = ∫
∆

∫ 1

0

O(tRe(z)−1)dt|dz| =
∫

∆

O

(
1

Re z

)
|dz|

= O(length(∆)× dist(∆, iR)−1) <∞

so Fubini’s applies.
Now, fix 0 < a < b ≤ 1. We have the computation∫ b

a

tz

et − 1
dt =

∫ b

a

tz−1 t

et − 1
dt

=
tz

z

t

et − 1

∣∣∣∣b
a

−
∫ b

a

tz

z

d

dt

[
t

et − 1

]
dt

=
bz

z

b

eb − 1
− az

z

a

ea − 1
+O

(
|z|−1bRe z+1

)
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valid for Re z > −1, z 6= 0. Define

g(a, z) =

∫ 1

a

tz

et − 1
dt+

az

z

a

ea − 1

for 0 < a ≤ 1 and Re z > −1, z 6= 0. The prior estimate shows that for each fixed such z,

a 7→ g(a, z)

is (locally uniformly in z) Cauchy as a→ 0+, and hence there is some ζ(z) ∈ C such that

lim
a→0+

g(a, z) = ζ(z)

Since each g(a, z) is analytic in z, so is the mapping z 7→ ζ(z). For Re(z) > 0, we have shown that

lim
a→0+

[
g(a, z)− az

z

a

ea − 1

]
= f(z)

from which we conclude that

f(z)− ζ(z) = − lim
a→0+

az

z

a

ea − 1
= 0

Thus f(z) = ζ(z) on Re(z) > 0, hence f extends analytically to Re(z) > −1, z 6= 0 by ζ .
It remains to examine the isolated singularity at z = 0.
For each a > 0, the integral ∫ 1

a

tz

et − 1
dt

is entire in z, and the function
az

z

a

ea − 1

is meromorphic in z with a single simple pole at z = 0. Thus g(a, z) has a pole at z = 0 of residue a
ea−1

.
That is,

1

2πi

∫
|z|= 1

2

g(a, z)dz =
a

ea − 1

and, taking a limit as a→ 0+,
1

2πi

∫
|z|= 1

2

ζ(z)dz = 1

which is the residue of ζ at z = 0.
Lastly, we demonstrate that z = 0 is actually a pole of ζ : applying our initial estimate,

g(2−n, z)− g(1, z) =
n−1∑
j=0

g(2−j−1, z)− g(2−j, z)

=
n−1∑
j=0

O(|z|−12−j(Re(z)+1))

= O

(
|z|−1 1

1− 2−(Re(z)+1)

)
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and hence

ζ(z) = g(1, z) +O

(
|z|−1 1

1− 2−(Re(z)+1)

)
=

1

z(e− 1)
+O

(
|z|−1 1

1− 2−(Re(z)+1)

)
In particular, z = 0 is a simple pole, so f does indeed extend meromorphically to Re(z) > −1.

Spring 2021 Problem 11. For an entire function f(z) = f (0)(z), we define

f (n)(z) = f(f (n−1)(z)) for all n ≥ 1

(a): Show that if there exists an n ≥ 1, such that f (n) is a polynomial, then f is a polynomial.
(b): Prove that for any n ≥ 1 we have f (n)(z) 6= ez .

Proof. (a): Slightly informal. Suppose f is not a polynomial. Then∞ is an essential singularity, so for
every R > 0 we have that f({z : |z| > R}) is either C or C \ {p} for some p ∈ C. In either case,
f({z : |z| > R}) contains such a neighborhood of∞, so inductively f (n)({z : |z| > R}) is either C or
C \ {p} for every choice of R > 0.

But for any (nonconstant) polynomial P , P extends to a continuous self-map of the Riemann sphere,
and so P maps a small neighborhood of∞ to a small neighborhood of∞; in particular, a sufficiently
small neighborhood of infinity will be mapped to a non-dense subset of the sphere. We conclude that f (n)

is not a polynomial for any n ≥ 1, as long as f is not a polynomial.
(b): Suppose f, n ≥ 1 are such that f (n)(z) = ez . Clearly f is not a polynomial. Note also that f is not

surjective as a map C→ C, since otherwise f (n)(z) would be surjective, whereas ez is not. Thus there is
exactly one p ∈ C such that f(C) = C \ {p}. Since f (n) is entire (and nonconstant), f (n)(C) omits at
most one (finite) value, and also omits p. Since f (n)(C) = C \ {0}, we conclude that

f(C) = C \ {0}

Thus f(z) = eg(z) for some nonconstant entire function g. Then

ez = eg(f
(n−1)(z))

for all z, so there is some k ∈ Z such that

z + 2πik ≡ g(f (n−1)(z))

Now, the left-hand side will map a small neighborhood of∞ to a small neighborhood of∞. The right-
hand side is of the form g(exp(h(z))), where g and h(z) are nonconstant entire; so h will send a neigh-
borhood of∞ to a neighborhood of∞, which under exp gets mapped to an open dense subset of C,
which under g gets mapped to an open dense subset of C. This is a contradiction.

Spring 2021 Problem 12. Find all entire functionsf : C→ C that satisfy the following two properties:

1. |f(z)| ≤ e|z|
2 for all z ∈ C,

2. f(n1/3) = n for all n ∈ N.

Hint: f(z) = z3 is one of them.
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Proof. We claim that f(z) = z3 is the only solution. If f is any solution, and g(z) = f(z)− z3, then g is
entire of order ρ ≤ 2 by the estimate (1). If g 6= 0, then the zerosan are isolated and are bρc+1-summable,
i.e.

∞∑
n=1

1

|an|bρc+1
< +∞

But the an include the numbers n1/3, and if we take p = bρc ≤ 2 then
∞∑
n=1

1

|an|p+1
≥

∞∑
n=1

1

n
p+1
3

≥
∞∑
n=1

1

n
= +∞

a contradiction. Thus g ≡ 0, so f(z) = z3 is the only solution.
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6 Fall 2021
Fall 2021 Problem 1. Let f : [0, 2π]→ C belong to L1 and assume that∫ 2π

0

f(x)

(
∂2ϕ

∂x2
+
∂4ϕ

∂x4

)
dx = 0

whenever ϕ : R→ C is smooth and (2π)-periodic. Prove that

f(x) = a+ beix + ce−ix a.e.

for some complex scalars a, b, c.

Proof. Define the scalars a, b, c by
a := f(0)

b :=
1

2π

∫ 2π

0

f(x)e−ixdx

c :=
1

2π

∫ 2π

0

f(x)eixdx

Set g(x) = f(x) − a − beix − ce−ix. Note that, if ϕ is smooth and (2π)-periodic, then it possesses
an L2-convergent Fourier expansion

ϕ(x) =
∞∑

n=−∞

bne
inx

and by Plancherel∫ 2π

0

(a+ beix + ce−ix)

(
∂2ϕ

∂x2
+
∂4ϕ

∂x4

)
dx =

∫ 2π

0

(a+ beix + ce−ix)
∑
n∈Z

bn{−n2 + n4}einxdx

= 2π(ab0{−02 + 04}+ bb−1{−(−1)2 + (−1)4}+ cb1{−12 + 14})
= 0

Consequently, g satisfies the integral condition∫ 2π

0

f(x)

(
∂2ϕ

∂x2
+
∂4ϕ

∂x4

)
dx = 0

for each ϕ as above.
Now, fix n 6∈ {−1, 0, 1}. Then∫ 2π

0

g(x)einxdx =
1

−n2 + n4

∫ 2π

0

g(x)(−n2 + n4)einxdx

=
1

−n2 + n4

∫ 2π

0

g(x)

(
∂2[einx]

∂x2
+
∂4[einx]

∂x4

)
dx = 0

while, for k ∈ {−1, 0, 1}, ∫ 2π

0

g(x)eikxdx = 0

74



by construction. Thus g is orthogonal to every polynomial in eix. However, by Stone-Weierstrass, poly-
nomials in eix are L∞-dense in C[0, 2π], so we conclude that∫ 2π

0

g(x)h(x)dx = 0 ∀h ∈ C[0, 2π]

using g ∈ L1. Thus g = 0 a.e., and hence

f(x) = a+ beix + ce−ix a.e.

as claimed.

Fall 2021 Problem 2. Let f1, f2, . . . ∈ L1([0, 1]) satisfy∫ 1

0

|fi|2dx =∞ for every i

• (a): Prove that the set

Ai,M :=

{
g ∈ L1([0, 1]) : M <

∫ 1

0

|fig|dx ≤ ∞
}

is open in the norm topology of L1 for every integer i and everyM > 0.

• (b): Prove that some g ∈ L1 satisfies∫ 1

0

|fig|dx =∞ for every i

Proof. (a): Fix arbitrary i and M > 0. Let g ∈ Ai,M . It suffices to demonstrate that there is some ε > 0
such that, for all ‖h‖1 < ε, g + h ∈ Ai,M .

Suppose for the sake of contradiction that there is a sequence hj → 0 in L1 for which∫ 1

0

|fi(g + hj)|dx ≤M for all j

Then, by Fatou, ∫ 1

0

lim inf
j→∞

|fi(g + hj)|dx ≤ lim inf
j→∞

∫ 1

0

|fi(g + hj)|dx ≤M

Since hj → 0 in L1, hj → 0 in measure; in particular,

lim inf
j→∞

|fi(g + hj)| = |fig| a.e.

so that ∫ 1

0

|fig|dx ≤M

which contradicts out assumption.
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(b): Define

g(x) =
∞∑
k=1

|fk|(x)

2k‖fk‖1

The sum converges in L1; furthermore, by Fubini, for each i,∫ 1

0

|fig|dx =

∫ 1

0

|fi|
∞∑
k=1

|fk|
2k‖fk‖1

dx =
∞∑
k=1

1

2k‖fk‖1

∫ 1

0

|fifk|dx = +∞

since one of the summands is infinite, and the others are all nonnegative. Note that, since each ‖fi‖2 =
+∞, none of these fi are 0 in L1, so the division is fine.

Fall 2021 Problem 3. Let ϕ : [0, 1] → [0, 1] be Borel measurable. Prove that there is a Borel set B ⊆
ϕ([0, 1]) such thatm(ϕ−1(B)) = 1. Herem denotes Lebesgue measure on [0, 1].

Proof. By Lusin’s theorem, for each n ∈ N there is a compact Kn ⊆ [0, 1] such that ϕ|Kn is continuous
andm(Kn) > 1− 1

n
. Define

B =
∞⋃
n=1

ϕ(Kn)

Note that B ⊆ ϕ([0, 1]). Note too that each ϕ(Kn) is compact, hence closed, and so B is Borel. Lastly,
note that for each n

m(ϕ−1(B)) ≥ m(ϕ−1(ϕ(Kn))) ≥ m(Kn) > 1− 1

n

whereasm(ϕ−1(B)) ≤ 1 trivially; hencem(ϕ−1(B)) = 1 as claimed.

Fall 2021 Problem 4. Let r1 > r2 > · · · > 0. For each positive integer n, let Cn be a pairwise disjoint
collection of 2n closed disks of radius rn in [0, 1]2, and assume that every member of Cn contains exactly
two members of Cn+1. Let Kn be the union

⋃
D∈Cn D, and letK =

⋂∞
n=1Kn.

• (a): Prove that there is a Borel probability measure µ such that µ(K) = 1 and µ(D) = 2−n for
every D ∈ Cn.

• (b): Prove that K is the support of µ; that is, it is the smallest closed set whose measure equals 1.

Proof. (a): For each n, set µn to be the measure given by restricting Lebesgue measure toKn and rescaling
it to have µn(D) = 2−n for each D ∈ Cn. Since each µn is supported inside of the compact set K1, the
sequence is tight, hence is sequentially precompact; that is, there is a subsequence µnj which converges in
the weak-* topology on C(R2)∗ to some µ ∈ C(R2)∗; clearly µ is a probability measure.

More generally, for D ∈ Cn, let χ be a bump function which is equal to 1 on D and whose support is
disjoint from all otherD′ ∈ Cn. Then

〈µnj , χ〉 = 2−n for all nj ≥ n

so in particular
〈µ, χ〉 = 2−n

Since this holds for any χ as described, letting χ→ 1D we produce µ(D) = 2−n. Summing, this implies
µ(K) = 1; we have all the desired properties.
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(b): We have seen that the support is contained insideK . If x ∈ K and x ∈ U is open, thenU contains
a disk of some radius ε > 0 centered at x. If rn < ε, then U contains some D ∈ Cn, so µ(U) ≥ 2−n;
since U was a generic open neighborhood of x, we conclude that x belongs to the support of µ. Since x
was a generic element ofK , we conclude that suppµ = K .

Fall 2021 Problem 5. Let 1 ≤ p ≤ ∞ and let ϕ and ψ be nonzero bounded linear functionals on
Lp(R). Assume that ‖ϕ + ψ‖ = ‖ϕ‖ + ‖ψ‖. For precisely which values of p does this imply that ϕ and
ψ are linearly dependent? Justify your answer.

Proof. We first demonstrate that, for p =∞, the implication is false. To do this, define

A : L∞(R)→ C, f 7→
∫ 1

0

f(x)dx

and
S : L∞(R)→ L∞(R); Sf(x) := f(x+ 1)

This A is given by pairing with the L1 function 1[0,1], hence is a continuous linear functional on L∞(R).
Note that

|Af | = |
∫ 1

0

f(x)dx| ≤ ‖f‖∞

so that ‖A‖ ≤ 1. Conversely,

A1 =

∫ 1

0

1dx = 1 = ‖1‖∞

so ‖A‖ = 1. By the same token, AS1 = 1 and ‖AS‖ ≤ ‖A‖‖S‖ = 1, so ‖AS‖ = 1 as well. Lastly,

(A+ AS)(1) = A1 + A1 = 2

and
‖A+ AS‖ ≤ ‖A‖+ ‖A‖‖S‖ = 2

so the equality
‖A+ AS‖ = ‖A‖+ ‖AS‖

holds. To demonstrate thatA andAS are linearly independent,

A(1[0,1]) = 1, AS(1[0,1]) = 0, A(1[1,2]) = 0, AS(1[1,2]) = 1

and the claim has been demonstrated.
Now consider p = 1. We claim the result is also false for this exponent; consider the linear functionals

formed from pairing with the L∞ functions

f = 2 · 1[0,1] + 1[1,2], g = 2 · 1[0,1]

Then f, g are obviously linearly independent, whereas

‖f‖∞ = ‖g‖∞ = 2, ‖f + g‖∞ = 4 = ‖f‖∞ + ‖g‖∞

Since L∞ norms agree with norms as functionals as L1, we have the desired counterexample.
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Now, if 1 < p < ∞, then all continuous linear functionals are given by pairwing with elements of
Lp
′
(R), 1

p
+ 1

p′
= 1, and the norm of the functional is just theLp′(R) norm of the function. Hence we are

investigating equations of the form

‖f + g‖p′ = ‖f‖p′ + ‖g‖p′ (9)

where 1 < p′ <∞. Suppose temporarily that we have found such f, g, and that they are both nonnega-
tive. SupposeE ⊆ R is measurable with positive measure such that

IfE ⊆ R is measurable s.t. ∫
E

f = λ

∫
E

g

for suitable λ ∈ R, and if F ⊆ R is measurable and disjoint fromE s.t.∫
F

f = µ

∫
F

g

for suitable µ ∈ R,

Fall 2021 Problem 6. LetK be a continuous function on R2 that is periodic in both coordinates:

K(x+ 1, y) = K(x, y + 1) = K(x, y).

Given any F ∈ L1([0, 1]× [0, 1]), show that∫
[0,1]2

K(x, y + nx)F (x, y)dm(x, y)→
∫ 1

0

(∫ 1

0

K(x, s)ds

)(∫ 1

0

F (x, y)dy

)
dx

as n→∞, wherem is two-dimensional Lebesgue measure.

Proof. We first present a Fourier-theoretic argument. First suppose that K and F happen to take the
particular forms

K(x, y) = e2πi(rx+my), F (x, y) = e2πi(lx+ky)

for somem, r, l, k integers. Then we have the computations∫
[0,1]2

K(x, y + nx)F (x, y)dm(x, y) =

∫ 1

0

∫ 1

0

e2πi(rx+my+mnx)e2πi(lx+ky)dxdy

=

(∫ 1

0

e2πix(r+mn+l)dx

)(∫ 1

0

e2πiy(m+k)dy

)
=

{
1 if r +mn+ l = 0 andm+ k = 0

0 otherwise

n→∞→

{
1 ifm = 0, k = 0, r + l = 0

0 otherwise
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(since, for n large, the equation r +mn+ l = 0 fails unlessm = 0), whereas∫ 1

0

(∫ 1

0

K(x, s)ds

)(∫ 1

0

F (x, y)dy

)
dx =

∫ 1

0

(∫ 1

0

e2πi(rx+ms)ds

)(∫ 1

0

e2πi(lx+ky)dy

)
dx

=

∫ 1

0

δm=0δk=0e
2πix(r+l)dx

=

{
1 ifm = 0, k = 0, r + l = 0

0 otherwise

which agrees with the prior limit.
Now, since both sides of the desired limit are linear in K and F separately, we conclude the result

whenever K and F are trigonometric polynomials.
We now take limits. Assume that the L∞ norm ofK is small. Then∣∣∣∣∫

[0,1]2
K(x, y + nx)F (x, y)dm(x, y)

∣∣∣∣ ≤ ‖K‖∞‖F‖1

is small for each n. In particular, if Kj → 0 uniformly,

lim sup
j→∞

lim sup
n→∞

|
∫

[0,1]2
Kj(x, y + nx)F (x, y)dm(x, y)| .F lim sup

j→∞
‖Kj‖∞ = 0

and similarly

lim sup
j→∞

|
∫ 1

0

(∫ 1

0

Kj(x, s)ds

)(∫ 1

0

F (x, y)dy

)
dx| = 0

Since general continuous periodic K can be approximated uniformly by trigonometric polynomials, we
conclude the formula∫

[0,1]2
K(x, y + nx)F (x, y)dm(x, y)→

∫ 1

0

(∫ 1

0

K(x, s)ds

)(∫ 1

0

F (x, y)dy

)
dx

for arbitrary K as in the setup, where F is still taken to be a trigonometric polynomial.
Lastly, since we also have the estimates

|
∫

[0,1]2
K(x, y + nx)F (x, y)dm(x, y)| ≤ ‖F‖∞‖K‖1

and
|
∫ 1

0

(∫ 1

0

K(x, s)ds

)(∫ 1

0

F (x, y)dy

)
dx| ≤ ‖F‖∞‖K‖1

we conclude the general statement by approximating F uniformly by trigonometric polynomials.

Fall 2021 Problem 7. Let f and g be functions that are continuous on D and holomorphic on D. Sup-
pose that Re(f) and Re(g) agree on ∂D. Prove that f − g is an imaginary constant on D.
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Proof. By assumption, i(f − g) is a continuous function on D that is holomorphic on D and maps ∂D to
R. By the Schwarz reflection principle, i(f − g) extends to an entire function h satisfying the functional
equation

h(1/z̄) = h(z)

for all z 6= 0. But since h is continuous on D, it is bounded on D \ {0}, while

h(D \ {0}) = [h(D \ {0})] = [h̄(D \ {0})] = [h(φ(D \ {0}))] = [h(C \ D]

so the latter is a bounded set; consequently, h(C) is a bounded set and we conclude that h is a bounded
entire function, hence constant. By the functional equation, h = h̄ everywhere, so h is real-valued. Thus
f − g = −ih is a purely imaginary constant, as claimed.

Fall 2021 Problem 8. Throughout this question, U, V, and W are proper nonempty subsets of C that
are open and simply connected, and u and v are fixed points in U and V respectively. We say that a
sequence of functions converges normally if it converges uniformly on compact sets.

• (a): Prove that, for any compact set K ⊆ U , there is a compact set L ⊆ V such that f(K) ⊆ L for
any holomorphic map f : U → V that satisfies f(u) = v.

• (b): Let f1, f2, . . . be a sequence of holomorphic maps U → V that all satsify fn(u) = v and that
converge normally to another holomorphic map f : U → V . Let g : W → U and h : V → W
be conformal equivalences. Prove that fn ◦ g converges normally to f ◦ g and h ◦ fn converges
normally to h ◦ f .

Proof. (a) is false if “simply connected” does not necessarily entail “connected,” so for the rest of the prob-
lem we assume that U, V, andW are connected.

(a): Assume first U = V = D and u = v = 0. Then, by the Schwarz lemma, any f : U → V
satisfying f(u) = v also satisfies |f(z)| ≤ |z| for all z ∈ U . IfK ⊆ U is compact, then it is contained in
{|z| ≤ r} for some r < 1. Set L = {|z| ≤ r}. By the Schwarz lemma, f(K) ⊆ L for any f : U → V
holomorphic with f(u) = v, as desired.

More generally, letφ1 : D→ U andφ2 : D→ V be conformal maps satisfyingφ1(0) = u, φ2(0) = v
by the Riemann mapping theorem. If K ⊆ U is compact, then φ−1

1 (K) is compact in D, so we may find
an associated compact L′ in D by the above. Set L = φ2(L′) compact. Then, for any f : U → V with
f(u) = v, the associated function

g = φ−1
2 ◦ f ◦ φ1

is holomorphic, maps from D to D, and has g(0) = 0; by the above, g(φ−1
1 (K)) ⊆ φ−1

2 (L), and hence
f(K) ⊆ L as desired.

(b): First fixK ⊆ W compact. Then g(K) is compact, so (fn ◦ g)|K = (fn|g(K)) ◦ (g|K) converges
uniformly to (f |g(K)) ◦ (g|K) = (f ◦ g)|K , as desired.

Similarly, fixing K ⊆ U compact, (h ◦ fn)|K = h ◦ (fn|K) converges uniformly to h ◦ (f |K) =
(h ◦ f)|K , so we have the desired result.

Fall 2021 Problem 9. Compute the number of solutions, including multiplicity, of the equation

z5 cos z + 5iz4 + 2 = 0

inside the unit disk |z| < 1.
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Proof. Note first that, for |z| = 1,

|z5 cos z| = | cos z| =
∣∣∣∣eiz + e−iz

2

∣∣∣∣ ≤ ey + e−y

2
≤ e+ e−1

2
< 2

by a few easy calculator-free estimates. Therefore

|z5 cos z + 2| < 4 < 5 = |5iz4|

for any |z| = 1. By Rouché’s theorem, the number of zeroes of the given function in the unit disk is equal
to the number of zeroes of 5iz4 in the same domain, which is 4.

Fall 2021 Problem 10. Find all entire functions f : C→ C that satisfy |f ′(z)| ≤ 2|f(z)| for all z ∈ C.

Proof. Clearly constants satisfy that inequality, so suppose f is not a constant. Then the log-derivative

f ′

f

has a simple pole at every zero of f , hence is unbounded; consequently, the inequality |f ′(z)| ≤ 2|f(z)|
cannot hold for z sufficiently close to any zero of f , and so we can assume f has no zeroes.

Any zero-free f may be written as eg (e.g. by integrating the entire function f ′

f
) for some entire g; the

given inequality then takes the form
|g′(z)eg| ≤ 2|eg|

or
|g′(z)| ≤ 2

Since g is entire, g′ is as well, so by Liouville we conclude that g′ is constant and so g = az + b for some
complex constants a, b with |a| ≤ 2. Thus the possible entire functions f satisfying the given inequality
are all of the form

f(z) = eaz+b, |a| ≤ 2

and it is immediate to verify that such functions are sufficient as well.

Fall 2021 Problem 11. For each p ∈ (−1, 1), compute the improper Riemann integral∫ ∞
0

xp

x2 + 1
dx.

Proof. For each p ∈ (−1, 1), there is a unique holomorphic branch of the function z 7→ zp on C \ iR≤0

which maps R>0 to R>0. For each 0 < ε < R < ∞ define the curve Γ = Γε,R to be composed of the
four curves γ1, γ2, γ3, γ4 where

• γ1 is the straight line segment connecting ε toR;

• γ2 is the half-circle connecting R to−R through the upper half-plane;

• γ3 is the straight line segment connecting−R to−ε;

• γ4 is the half-circle connecting−ε to ε through the upper half-plane.
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By the residue theorem, ∫
Γ

zp

z2 + 1
dz = 2πiRes

[
zp

z2 + 1
dz, i

]
= 2πi

zp

z − i

∣∣∣∣
z=i

= πe
πip
2

We now consider each of the γj separately. Clearly

lim
ε→0+,R→+∞

∫
γ1

zp

z2 + 1
dz =

∫ ∞
0

xp

x2 + 1
dx

Here we have used |p| < 1, so that the integrand is in L1(0,∞). Similarly, by the triangle inequality,∣∣∣∣∫
γ2

zp

z2 + 1
dz

∣∣∣∣ ≤ ∫ π

0

Rp

R2 − 1
Rdθ

= π
Rp+1

R2 − 1

R→∞→ 0 since p < 1

and ∣∣∣∣∫
γ4

zp

z2 + 1
dz

∣∣∣∣ ≤ ∫ π

0

εp

1− ε2
εdθ

= π
ε1+p

1− ε2

ε→0→ 0 since p > −1

Lastly, along γ3, z = reiπ with r varying fromR to ε; our branch of zp then evaluates to rpeiπp, so∫
γ3

zp

z2 + 1
dz =

∫ ε

R

rpeiπp

r2 + 1
eπidr

= eiπp
∫ R

ε

xp

x2 + 1
dx

ε→0,R→∞→ eiπp
∫ ∞

0

xp

x2 + 1
dx

Thus in total we conclude
πe

πip
2 =

(
1 + eiπp

) ∫ ∞
0

xp

x2 + 1
dx

so that ∫ ∞
0

xp

x2 + 1
dx =

π

e−
πip
2 + e

πip
2

=
π

2
cos(πp/2)

Fall 2021 Problem 12. Let f(z) be a holomorphic function on the set B = {z : |z| < 2} that satisfies
|f(z)| < 1 for all z ∈ B. Assume also that

f(1) = f(−1) = f(i) = f(−i) = 0
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• (a): Show that |f(0)| ≤ 1/16.

• (b): Show that there is such a function f : B → D with |f(0)| = 1/16.

Proof. We modify f in several steps. First set

f1(z) = f(2z), z ∈ D

Then f1 vanishes on±1/2,±i/2. By standard Blashke factor theory, f1 may be written as

f1(z) =
z − 1/2

1− 1
2
z

z + 1/2

1 + 1
2
z

z − i/2
1 + i

2
z

z + i/2

1− i
2
z
g(z)

for some g : D→ D holomorphic (this follows from Schwarz reflection over ∂D, say). Consequently,

|f(0)| = |f1(0)| = 1

16
|g(0)| ≤ 1

16

Setting g(z) = 1, we obtain an equality.

83



7 Spring 2022
Spring 2022 Problem 1. • (a): Given a finite Borel measure µ on R, its support is the set

S = {x ∈ R : µ((x− ε, x+ ε)) > 0 for every ε > 0}

Prove thatS is closed, that µ(R\S) = 0, and that any other set with these last two properties must
contain S.

• (b): Prove that there is a finite Borel measure µ on R such that

– µ has support equal to R
– µ and Lebesgue measure are mutually singular.

Proof. (a): Denotes Sc = R \ S. If x ∈ Sc, then there is some ε > 0 such that µ((x− ε, x+ ε)) = 0; but
then (x− ε, x+ ε) ⊆ Sc, so Sc is open, hence S is closed.

Notice that, since µ is finite Borel, µ is inner regular, so µ(Sc) = sup{µ(K) : Kcompact ⊆ Sc}. Fix
one suchK ; we will verify thatµ(K) = 0. For eachx ∈ K there is εx > 0 such thatµ((x−εx, x+εx)) =
0. By compactness, we may find x1, . . . , xn ∈ K and ε1, . . . , εn > 0 such that {(xj − εj, xj + εj)}nj=1

coverK and each interval has µ-measure 0. But then

µ(K) ≤
n∑
j=1

µ(xj − εj, xj + εj) = 0

so µ(K) = 0. By inner regularity, µ(Sc) = 0.
Finally, let T ⊆ R be closed with µ(R\T ) = 0. If x ∈ R\T is arbitrary, then there exists ε > 0 such

that (x− ε, x+ ε) ⊆ R \ T because T is closed, so µ((x− ε, x+ ε)) ≤ µ(R \ T ) = 0. Thus x ∈ R \ S
by the definition of S. Consequently, (R \ T ) ⊆ (R \ S), so S ⊆ T as was to be shown.

(b): Let {qn}∞n=1 be an enumeration of Q. Let µ0 be Cantor measure, supported on the usual middle-
thirds Cantor set C . Let τn : R→ R be translation by qn. Then we define

µ :=
∞∑
n=1

2−n(τn)∗µ0

Then µ is Borel, nonnegative, and has total mass ‖µ0‖ <∞. For any x ∈ R and ε > 0 fix qn ∈ (x, x+ε)
rational; then

µ((x− ε, x+ ε)) ≥ µn((x, x+ ε)) > 0

hence the support of µ is all of R. Lastly, note that, forA =
⋃∞
n=1 τn(C), we have

µ(R \ A) ≤
∞∑
n=1

2−nµn(
∞⋂
m=1

R \ τn(C)) ≤
∞∑
n=1

2−nµn(R \ τn(C)) = 0

whereas, since Lebesgue measurem is translation-invariant, andm(C) = 0,

m(A) ≤
∞∑
n=1

m(C) = 0

hencem and µ are mutually singular, as claimed.
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Spring 2022 Problem 2. LetF be an arbitrary collection of 1-Lipschitz functions, and for each f ∈ F
let

Lf := {(x, y) ∈ R2 : y ≤ f(x)}.

Let L :=
⋃
f∈F Lf .

• (a): Prove that L is a Lebesgue measurable subset of the plane.

• (b): Prove that L is not necessarily Borel measurable. You may quote without proof the fact that
there exists a non-Borel subset of R.

Proof. (a): First, note that (x, y) ∈ L if and only if f(x) ≥ y for some f ∈ F . If, for some x ∈ R there
are arbitrarily large y ∈ R such that (x, y) ∈ L, then by the 1-Lipschitz condition we have L = R2. For
the remainder of the problem, we assume that for each x ∈ R, the collection {y ∈ R : (x, y) ∈ L} is
bounded above.

Let h(x) = supf∈F f(x); then L = int(L) ] (L ∩ ∂L), where ∂L = graph(h). It suffices to argue
that graph(h) is a nullset in R2. Since h is 1-Lipschitz (being the supremum of a family of 1-Lipschitz
functions), it suffices to show that the graph of a 1-Lipschitz function is null.

It suffices to show that, if u : [0, 1] → R is 1-Lipschitz, then graph(u) is null. For each n, let An be
the set

An =
n−1⋃
j=0

An,j

where An,j is the triangle with vertices ( j
n
, u( j

n
)), ( j+1

n
, u( j

n
)− 1

n
), ( j+1

n
, u( j

n
) + 1

n
). Then An contains

graph(u), using the 1-Lipschitz condition.
Then

|graph(u)| ≤
n−1∑
j=0

|An,j| =
n−1∑
j=0

1

n2
=

1

n

which implies |graph(u)| = 0, as claimed.
Thus L is Lebesgue measurable, being the union of a Borel set and a nullset.
(b): LetA be a non-Borel subset of R. LetF be the unionF1 ∪ F2, where

F1 = {x 7→ 1− |x− a| : a ∈ A}

and
F2 = {x 7→ c : c ∈ (−∞, 1)}

Then L = R× (−∞, 1) ∪ A× {1}, which is not Borel.

Spring 2022 Problem 3. LetX be a real Banach space and let X∗ be its dual. If Y ⊆ X , then let

Y ⊥ := {` ∈ X∗ : `(y) = 0 ∀y ∈ Y }

On the other hand, if Z ⊆ X∗, then let

⊥Z := {x ∈ X : `(x) = 0 ∀` ∈ Z}.

• (a): Prove that ⊥(Y ⊥) is the closed linear span of Y inX for any Y ⊆ X .
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• (b): Provide an example of a real Banach spaceX and a subset Z ⊆ X∗ for which (⊥Z)⊥ is not the
closed linear span of Z inX∗.

Proof. (a): Let Y ⊆ X be an arbitrary subset. We first notice span Y ⊆ ⊥(Y ⊥): clearly Y ⊆ ⊥(Y ⊥) and
⊥(Y ⊥) is a linear subspace of X , so automatically span Y ⊆⊥ (Y ⊥). Note that ⊥(Y ⊥) is closed: it is the
intersection of closed subsets ofX . Thus span Y ⊆ ⊥(Y ⊥) as claimed.

We now show the reverse. Suppose y ∈ X \ spanY . By Hahn-Banach, we may find ` ∈ X∗ such that
`(spanY ) = {0} and `(y) 6= 0. Then ` ∈ Y ⊥, and so y 6∈ ⊥(Y ⊥). Thus we have shown the inclusion
X \ spanY ⊆ X \⊥ (Y ⊥), which is to say ⊥(Y ⊥) ⊆ spanY , as was to be shown.

(b): Let X = L1([0, 1],m), so that X∗ = L∞([0, 1],m). Let Z ⊆ L∞([0, 1],m) be the collection of
continuous mean-zero functions, i.e.

f ∈ Z ⇐⇒ f continuous and
∫ 1

0

f(x)dx = 0

ThenZ is its own closed linear span inL∞([0, 1],m). We claim ⊥Z is the collection of constant functions
inX : if g ∈ X is nonconstant, then we may find a pair of separated intervals I1, I2 ⊆ [0, 1] (i.e. intervals
of positive distance apart) withm(I1) = m(I2) and such that∫

I1

g(x)dx <

∫
I2

g(x)dx

But then we may let f = 1 on I1, f = −1 on I2, and zero outside of small neighborhoods of I1, I2

(interpolated to give a continuous function), which may be made mean zero and satisfying∫ 1

0

f(x)g(x)dx < 0

so that g 6 ⊥Z . Thus ⊥Z is the collection of constant functions, whereas (⊥Z)⊥ is the collection of mean-
zero functions inL∞([0, 1],m), which need not be continuous. This concludes the counterexample upon
recalling Z = span Z .

Spring 2022 Problem 4. Let f : [0,∞) → [0,∞). Assume that f(0) = 0 and that f is convex. Prove
that

f(x) =

∫ x

0

g(y)dy

for some increasing function g : [0,∞)→ [0,∞).

Proof. For x ∈ [0,∞), define g(x) to be the supremal λ such that

f(t) ≥ f(x) + λ(t− x), ∀t ∈ [0,∞)

Note that f(x) ≥ 0 everywhere, so g(x) ≥ 0 as well. By convexity, and elementary geometric consider-
ations, g is increasing as well.

Fix x ∈ [0,∞). To show the integral equality, we show the inequalities

f(x) ≥
∫ x

0

g(y)dy
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and
f(x) ≤

∫ x

0

g(y)dy

Since g is increasing, it is Riemann integrable. Thus∫ x

0

g(y)dy = sup
n

n−1∑
j=0

x

n
g(
jx

n
)

Since f(t) ≥ f( jx
n

) + g( jx
n

)(t− jx
n

) for all t, we in particular have

f(
(j + 1)x

n
)− f(

jx

n
) ≥ g(

jx

n
)
x

n

Thus
n−1∑
j=0

x

n
g(
jx

n
) ≤

n−1∑
j=0

f(
(j + 1)x

n
)− f(

jx

n
) = f(x)− f(0) = f(x)

so, taking a supremum over n,
f(x) ≥

∫ x

0

g(y)dy

For the reverse inequality, we consider the right Riemann sum, instead of the left: note that

f(
(j + 1)x

n
)− f(

jx

n
) ≤ g(

(j + 1)x

n

x

n

so

f(x) =
n−1∑
j=0

f(
(j + 1)x

n
)− f(

jx

n
) ≤

n−1∑
j=0

x

n
g(

(j + 1)x

n
)

so certainly
f(x) ≤

∫ x

0

g(y)dy

as claimed.

Spring 2022 Problem 5. Let µ be a Borel measure on R2, and assume it has the following property: for
every fixed r > 0, the quantity µ(B(x, r)) is finite and independent of x, where B(x, r) is the open ball
of radius r around x.

• (a): Prove that there is a finite constant c such that µ(B(x, r)) ≤ cr2 whenever 0 < r ≤ 1.

• (b): Prove that µ is a constant multiple of Lebesgue measure.

Proof. (a): We argue by geometric considerations. For each 0 < r ≤ 1, let cr be the unique constant such
that µ(B(x, r)) = crr

2 for each x ∈ R2. We note that, for λ� 1, there are Ω(λ2) disjoint disks of radius
r/λ that fit in any disk of radius r; this may be seen by considering the grid of points with separation r/λ,
centered at the center of the large disk, and considering a square inscribed in the large disk; by adding
a small disk at every other point in the grid in the square, we get Ω(λ2) small disks in the large disk, as
claimed.

87



Consequently,
crr

2 = µ(B(x, r)) ≥ Ω(λ2)cr/λ(
r

λ
)2 = cr/λΩ(1)r2

so
cr & cr/λ

independent of r, λ, as long as λ is sufficiently large. To finish, note thatB(x, r) can be covered byO(λ2)
disksB(x′, r/λ) for all λ ≥ 1, so

crr
2 . λ2cr/λ(

r

λ
)2

and
cr . cr/λ

for allλ ≥ 1. Thus the constants cr are all comparable, so we may find some c such thatµ(B(x, r)) ≤ cr2

independently of 0 < r ≤ 1.
(b): We omit some details. By part (a), µ is absolutely continuous with respect to Lebesgue measure

m: if N is a (Borel) nullset in R2, then for each ε > 0 we may find a cover of N by balls Bi such that∑
im(Bi) < ε; the latter implies µ(

⋃
iBi) . ε for a constant depending on the constant from (a), so

indeed µ(N) = 0.
Thus we may write dµ = fdm for some nonnegative locally integrable Borel function f . By the

assumption, the average of f onB(x, r) is independent of x. If f is nonconstant, then there is some ε > 0
and positive measure setsA,B such that supx∈A f(x)+ε < infx∈B f(x). By Lebesgue differentiation, a.e.
point ofA (resp. B) is a Lebesgue point forA (resp. forB). Consequently, we may find somex ∈ A, y ∈ B
and r > 0 such that µ(B(x, r)) < µ(B(y, r)), contradicting our assumption. Thus f is constant a.e., so
µ is a constant multiple of Lebesgue measure.

Spring 2022 Problem 6. Let f : R→ R be smooth and (2π)-periodic. Prove that∫ 2π

0

|f ′(t)|2dt+

∫ 2π

0

|f ′′(t)|2dt ≤
∫ 2π

0

|f(t)|2dt+

∫ 2π

0

|f ′′′(t)|2dt

Proof. Consider the Fourier expansion

f(t) =
∞∑

n=−∞

ane
int

Then, by Plancherel, ∫ 2π

0

|f(t)|2dt = 2π
∞∑

n=−∞

|an|2

∫ 2π

0

|f ′(t)|2dt = 2π
∞∑

n=−∞

|an|2n2

∫ 2π

0

|f ′′(t)|2dt = 2π
∞∑

n=−∞

|an|2n4

∫ 2π

0

|f ′′′(t)|2dt = 2π
∞∑

n=−∞

|an|2n6
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so the inequality to be demonstrated is just
∞∑

n=−∞

|an|2(n2 + n4) ≤
∞∑

n=−∞

|an|2(1 + n6) (10)

But note that n6 − n4 − n2 + 1 = (n2 − 1)(n4 − 1) ≥ 0 for all n ∈ Z; thus n2 + n4 ≤ 1 + n6 for all n,
and (10) follows immediately.

Spring 2022 Problem 7. Let f : D(0, 1) → C ∪ {∞} be a meromorphic function in the unit disk
D(0, 1) = {z ∈ C : |z| < 1} that extends continuously to the boundary {z ∈ C : |z| = 1}. Suppose
also that |f(z)| = 1 whenever |z| = 1. Show that f is a rational function, in the sense that there exist
polynomials P,Q : C→ C with Q not identically zero such that f(z) = P (z)/Q(z) whenever |z| ≤ 1
andQ(z) 6= 0.

Proof. Set S be the collection of poles of f in D(0, 1). Let u(z) = 1
z̄

for all z ∈ C \ {∞}; we adopt the
usual convention that u exchanges 0 and∞. Then u ◦ f ◦u is holomorphic on C \ (D(0, 1)∪u(S)), and
has a pole at each element of u(S). Furthermore, u◦f ◦u is equal to f on {|z| = 1}, since u fixes that set
pointwise. Consequently, f ∪ (u ◦ f ◦ u) is a continuous function C→ C ∪ {∞} that is meromorphic
on C \ {|z| = 1}. If we assume that by “extends continuously to the boundary” we mean C-valued, then
f ∪ (u ◦ f ◦ u) extends continuously to the boundary, in the sense that poles do not accumulate to the
boundary and the extension to {|z| = 1} is C-valued, then by Morera’s theorem we conclude that the
extension is holomorphic on a neighborhood of {|z| = 1}.

Call this extension g. Then g is meromorphic on the plane and has finite order at∞, hence is mero-
morphic on the Riemann sphere. If we setQ to be a polynomial which vanishes to sufficiently large order
at each pole of g, thenQg extends to be holomorphic on the plane and has finite order at∞; by consider-
ing the power series ofQg, we may only have finitely-many terms by the order at∞, soQg is a polynomial
P . Thus g = P/Q, and g agrees with f onD(0, 1); this concludes the argument.

Spring 2022 Problem 8. Let U be a connected open subset of C, let V be a nonempty open subset of
U , and let K be a compact subset of U . Show that for every ε > 0 there exists δ > 0 such that whenever
f : U → C is a holomorphic function that obeys the bounds |f(z)| ≤ δ for all z ∈ V and |f(z)| ≤ 1 for
all z ∈ U , then |f(z)| ≤ ε for all z ∈ K .

Proof. Suppose the statement is not true. Then there exists a sequence f1, f2, . . .of holomorphic functions
on U , and an ε > 0, such that |fj(z)| ≤ 1 on U , |fj(z)| → 0 uniformly on V , and |fj(zj)| > ε for some
zj ∈ K . Since the family {fn}∞n=1 is uniformly bounded, it is normal (by Montel’s theorem), so there is
some subsequence {fnj}∞j=1 which is uniformly convergent on compact sets, say to f .

Since |fnj(z)| → 0 on V , f vanishes identically on V . Since f is the local uniform limit of holomor-
phic functions, it is also holomorphic, so f ≡ 0 on U , using the fact that U is connected. On the other
hand, the sequence znj has a limit point z′ inK , and by the condition |fnj(znj)| > εwe have |f(z′)| ≥ ε,
a contradiction.

Spring 2022 Problem 9. Establish the identity∫ 1

0

log |1− re2πiθ|dθ = max(log r, 0)

for all 0 < r <∞.
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Proof. We first assume r 6= 1. In this case, from the identity

log |1− re2πiθ| = log(r|1− r−1e2πiθ|) = log r + log |1− r−1e2πiθ|

it suffices to prove the identity in the case 0 < r < 1.
In this case, 1 − re2πiθ is in the right half-plane for all θ. Thus log |1 − re2πiθ| = Re(Log(1 − z)),

where Log is the principal logarithm and z = re2πiθ . Consequently,∫ 1

0

log |1− re2πiθ|dθ = Avg|z−1|=rRe(Log(1− z)) = Re(Log(1)) = 0

where we have used the mean value principle for harmonic functions.
We now argue via DCT that the result extends to r = 1. We will only study the half of the integral

0 < θ < 1
2

for brevity, but one may notice that the analysis is entirely symmetric. The RHS of the
claimed inequality varies continuously in r, so we need to show that the LHS has the natural limiting
value. Observe that

1− re2πiθ = (1− e2πiθ) + (1− r)e2πiθ

Thus
1− re2πiθ = 1− e2πiθ +O(|1− r|)

Consequently, ∣∣log |1− re2πiθ|
∣∣ ≤ ∣∣log |1− e2πiθ|

∣∣+O(|1− r|)

Observe that
1− e2πiθ = −(2i)eπiθ sin(πθ)

so that
|1− e2πiθ| = 2| sin(πθ)|

and
log |1− e2πiθ| = log 2 + log | sin(πθ)|, (0 < θ < 1)

Since sin(πθ) ∼ πθ for θ ∼ 0, we have that∣∣log |1− e2πiθ|
∣∣ . | log θ|

for 0 < θ < 1
2

. All together, we have the inequality∣∣log |1− re2πiθ|
∣∣ . 1 + | log θ|+ |r − 1|

Over the interval r ∈ [1, 2], the preceding is uniformly bounded by a function integrable over θ ∈ [0, 1
2
].

Also, as r → 1+, we have the pointwise limit

log |1− re2πiθ| → log |1− e2πiθ|

Thus, by dominated convergence,

0 = lim
r→1+

log r = lim
r→1+

∫ 1

0

log |1− re2πiθ|dθ =

∫ 1

0

log |1− e2πiθ|dθ

as was to be shown.
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Spring 2022 Problem 10. Let n be a natural number, and let α be a complex number with |α| < 1. Let
f : C→ C be the function f(z) := ez(1− z)n − α.

• (a): Show that f has exactly n roots (counting multiplicity) in the right half-plane {z : Re z > 0}.

• (b): If α 6= 0, show that the n roots in (a) are all simple.

Proof. (a): For R > 0, let ΓR be the boundary of a half-disk, defined as the union of the diameter con-
necting iR to −iR and the half-circle {eiθR : θ ∈ [−π/2, π/2]. Since |f(z)| ≥ |z − 1|n − |α| in the
right half-plane, there are only finitely many such roots; additionally, note that f has no roots along the
imaginary axis, since |α| < 1. Thus, for R sufficiently large, the roots of f in the right half-plane are
enclosed by ΓR.

Let g(z) = ez(1− z)n. By the argument principle, the number of roots of f in the right half-plane is
equal to the winding number of the curve g(ΓR) around α. Along the diameter iR→ −iR, |ez| = 1 and
|1 − z|n ≥ 1n = 1; similarly, for z = eiθR, θ ∈ [−π/2, π/2]}, |ez| ≥ 1 and |1 − z|n ≥ (R − 1)n ≥ 1
(again, assuming R is sufficiently large). Thus {|z| < 1} ⊆ C \ g(ΓR), so the winding number of g(ΓR)
about α equals the winding number about 0. Thus, the number in question is the number of zeroes,
counting multiplicity, of g(z) = ez(1− z)n in the right half-plane, which is clearly n.

(b): If a root of f has multiplicity greater than 1, then f ′ vanishes at that root. However,

f ′(z) = ez(z − 1)n−1(z − 1 + n)

so the only possible roots of high multiplicity are at z = 1 and z = 1− n. Since f(1) = −α 6= 0, there
is not a root at z = 1; if n > 1 then 1 − n is not in the right half-plane, and for n = 1 we have already
argued that f has no zero at z = 0 ∈ iR. Thus f ′ never vanishes at any of the zeroes considered in part
(a), assuming α 6= 0, so the n roots are all simple.

Spring 2022 Problem 11. Let u : D(0, 1) → R+ be a non-negative harmonic function on the unit
diskD(0, 1) := {z ∈ C : |z| < 1} with u(0) = 1. Show that

1− |z|
1 + |z|

≤ u(z) ≤ 1 + |z|
1− |z|

for all z ∈ D(0, 1).

Proof. Let v be the unique harmonic conjugate to u on D(0, 1) such that v(0) = 0. Then f := u + iv is
a holomorphic functionD(0, 1)→ {z ∈ C : Re(z) ≥ 0} with f(0) = 1. Let φ(z) = z−1

z+1
. Then φmaps

{z ∈ C : Re(z) ≥ 0} ∪ {∞} to D(0, 1) and maps 1 to 0; thus g := φ ◦ f is a holomorphic function
D(0, 1)→ D(0, 1) with g(0) = 0.

If g is constant, then f is constant, and u is the constant 1 function; the inequality is trivial in this case.
Assume instead that g is not constant. By the open mapping theorem, g in fact takes values in D(0, 1).
Then, by the Schwarz lemma,

|g(z)| ≤ |z|

for all |z| < 1, i.e.
|f(z)− 1|
|f(z) + 1|

≤ |z|
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Note that
|f(z)− 1|
|f(z) + 1|

=

√
(u(z)− 1)2 + v2

(u(z) + 1)2 + v2
≥ |u(z)− 1|
|u(z) + 1|

so
|u− 1|
u+ 1

≤ |z|

Since u is nonnegative, case analysis (u ≤ 1 versus u > 1) and elementary estimates (x−1
x+1

is increasing on
(−1,∞)) give the result in question.

Spring 2022 Problem 12. Do the following:

• (a): Establish the identity ∑
n∈Z

1

(z − n)2
=

π2

sin2(πz)

for any z ∈ C \ Z.

• (b): Establish the identity
∞∑
n=1

1

n2
=
π2

6

Proof. (a):8 We start with the Weierstrass factorization of sinc(z): note that

sin(πz)

πz

is entire and has only simple zeroes, which are precisely at the nonzero integers. Thus it has a Weierstrass
product expansion

sin(πz)

πz
= eg(z)

∞∏
n=1

(
1− z2

n2

)
(where we have invoked the fact that, at least for |z| < 1, the quantities z2

n2 are absolutely summable), for
some entire function g. We skip over demonstrating that g = 0 in this case.

Thus
π2

sin2(πz)
=

1

z2

∞∏
n=1

(
1− z2

n2

)−2

=
1

z2

∞∏
n=1

n4

(z2 − n2)2
=

1

z2

∏
n6=0

n2

(z − n)2

8An alternate approach to this sort of problem is presented in the solution to Fall 2022 problem 8 below, which does not
depend on a pre-known factorization formula.

92



This gives us the desired expansion, by a partial fraction decomposition: ∏
|n|≤N

(z − n)2

∑
|n|≤N

1

(z − n)2

 =
∑
|n|≤N

∏
|j|≤N ;j 6=n

(z − j)2

=
N∏
n=1

(z − n)2(z + n)2 + z2
∑

1≤|n|≤N

∏
1≤|j|≤N ;j 6=n

(z − j)2

=

 ∏
1≤|n|≤N

n2

 N∏
n=1

(1− (
z

n
)2)2

+

 ∏
1≤|n|≤N

n2

 z2
∑

1≤|n|≤N

1

n2

∏
1≤|j|≤N ;j 6=n

(1− z

j
)2

which rearranges toz2
∏

1≤|n|≤N

(z − n)2

n2

∑
|n|≤N

1

(z − n)2

 =
N∏
n=1

(1− (
z

n
)2)2

+ z2
∑

1≤|n|≤N

1

n2

∏
1≤|j|≤N ;j 6=n

(1− z

j
)2

= 1 + oN→∞(1)

using a few elementary estimates from the theory of infinite products. Taking a limit asN →∞ of both
sides produces

sin2(πz)

π2

∑
n∈Z

1

(z − n)2
= 1

which is the desired result.
(b): For each N ∈ N, let ΓN be the rectangle contour with vertices±(N + 1

2
)± iN . Then

1

2πi

∫
ΓN

π2

z sin2(πz)
dz =

∑
1≤|n|≤N

Res
[

1

z(z − n)2
, n

]
+ Res

[
π2

z sin2(πz)
, 0

]
Note that

π2

z sin2(πz)
=
π2

z

1

π2z2

1

(1− π2z2

6
+O(z4))2

=
1

z3

1

1− π2z2

3
+O(z4)

=
1

z3
(1 +

π2z2

3
+O(z4))

=
1

z3
+
π2

3z
+O(1)

93



for z near 0; consequently,

Res
[

π2

z sin2(πz)
, 0

]
=
π2

3

Additionally,

Res
[

1

z(z − n)2
, n

]
= − 1

n2

so we have
1

2πi

∫
ΓN

π2

z sin2(πz)
dz = −

N∑
n=1

2

n2
+
π2

3

On the other hand, along the top/bottom edges of ΓN ,

| π2

z sin2(πz)
| ≤ π2

N

2

eN − e−N

so by an ML estimate the contribution from the top edge of the contour goes to 0 as N → ∞. On the
other hand, along the left and right edges,

| π2

z sin2(πz)
| ≤ π2

N

2

eπy + e−πy
≤ 2π2

N

1

1 + e−2π|y| e
−π|y| with z = x+ iy

and so the contribution along each of the edges is no more than

4π2

N

∫ N

0

e−πydy = O(N−1)

which tends to 0 asN →∞. Thus

0 =
π2

3
− lim

N→∞

N∑
n=1

2

n2
=
π2

3
−
∞∑
n=1

2

n2

so that
∞∑
n=1

1

n2
=
π2

6

as claimed.
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8 Fall 2022
Fall 2022 Problem 1. Let f ∈ L1(Rd) and let a ∈ Rd \ {0}. For each k ∈ N, determine the limit

lim
t→∞

∫ ∣∣∣∣∣
k∑
j=1

f(jx+ ta)

∣∣∣∣∣ dx.
Proof. We claim that

lim
t→∞

∫
|

k∑
j=1

f(jx+ ta)|dx = (
k∑
j=1

j−d)‖f‖1

By the triangle inequality and change-of-variable, it will suffice to show that

lim inf
t→∞

∫
|

k∑
j=1

f(jx+ ta)|dx > (
k∑
j=1

j−d)‖f‖1 − ε

for each ε > 0.
Fix ε > 0. Let R > 0 be sufficiently large so that∫

|x|>R
|f(x)|dx < ε

Let t be sufficiently large so that the R-balls centered at −ta,− t
2
a,− t

3
a, . . . ,− t

k
a (which we write as

BR( t
j
a)) are all disjoint. We may also take t sufficiently large so that |ta| > k(k + 1)R. Then∫

|
k∑
j=1

f(jx+ ta)|dx =
k∑
j=1

∫
BR(− t

j
a)

|
k∑
j=1

f(jx+ ta)|dx

+

∫
Rd\

⋃k
j=1BR(− t

j
a)

|
k∑
j=1

f(jx+ ta)|dx

=
k∑
j=1

Ij + II

We analyze each contribution separately. First, considering II ,∫
Rd\

⋃k
j=1BR( t

j
a)

|
k∑
j=1

f(jx+ ta)|dx ≥ 0

trivially. Next, considering Ij ,∫
BR( t

j
a)

|
k∑
j=1

f(jx+ ta)|dx ≥
∫
BR(− t

j
a)

|f(jx+ ta)|dx−
∑
j′ 6=j

∫
BR(− t

j
a)

|f(j′x+ ta)|dx

By a change-of-variable,∫
BR(− t

j
a)

|f(jx+ ta)|dx = j−d
∫
|y|<jR

|f(y)|dy ≥ j−d‖f‖ − j−dε
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and, if j′ 6= j, ∫
BR(− t

j
a)

|f(j′x+ ta)|dx = (j′)−d
∫
Bj′R((1− j′

j
)ta)

|f(y)|dy

Observe the containment

Bj′R((1− j′

j
)ta) ⊆ {x : |x| > 1

k
ta− j′R} ⊆ Rd \BR

where we have used the second assumption on t. Thus∫
BR(− t

j
a)

|f(j′x+ ta)|dx < (j′)−dε

We conclude that ∫
BR( t

j
a)

|
k∑

j′=1

f(j′x+ ta)|dx ≥ j−d‖f‖1 −
k∑

j′=1

(j′)−dε

and so

lim inf
t→∞

∫
|

k∑
j=1

f(jx+ ta)|dx ≥ ‖f‖1(
k∑
j=1

j−d)− εk
k∑
j=1

j−d

Since ε > 0 was arbitrary, we must have

lim inf
t→∞

∫
|

k∑
j=1

f(jx+ ta)|dx ≥ (
k∑
j=1

j−d)‖f‖1

and so we have concluded that

lim
t→∞

∫
|

k∑
j=1

f(jx+ ta)|dx = (
k∑
j=1

j−d)‖f‖1

Fall 2022 Problem 2. Let f ∈ Lp(Rd), for some 1 ≤ p < 2. Show that the series
∞∑
n=1

f(x+ n)√
n

converges absolutely for almost allx ∈ R. For each 2 ≤ p ≤ ∞, give an example of a function f ∈ Lp(R),
give an example of a function f ∈ Lp(R) for which the series diverges for every x ∈ R.

Proof. Let f ∈ Lp(R) with 1 ≤ p < 2. Let k ∈ Z be arbitrary. Then, writing p′ for the dual exponent,
we have ∫ k+1

k

(
∞∑
n=1

f(x+ n)√
n

)pdx ≤
∫ k+1

k

(
∞∑
n=1

|f(x+ n)|p)(
∞∑
n=1

n−
p′
2 )p/p

′
dx by Hölder

.p

∫ k+1

k

∞∑
n=1

|f(x+ n)|pdx since p′ > 2

=

∫
R
|f(x)|pdx <∞
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so certainly
∑∞

n=1
f(x+n)√

n
converges for a.e. x ∈ [k, k + 1]. Since k ∈ Z was arbitrary and the countable

union of null sets is null, we conclude that the series converges for a.e. x ∈ R, as claimed.
For the next part, consider the function

f(x) =
1

log x
√
x

1x>e+1

It is clear that f ∈ L∞(R); on the other hand, by a change-of-variable, one can verify that f ∈ L2(R) as
well, so by Hölder we see that f ∈ Lp(R) for each 2 ≤ p ≤ ∞. It will suffice to show that the series in
question diverges for this particular f .

Indeed, for x > e+ 1,
∞∑
n=1

1

log(x+ n)
√
x+ n

1√
n
≥
∑
n>x

1

log(x+ n)
√
x+ n

1√
n

≥
∑
n>x

1

log(2n)n
√

2

which diverges by an integral comparison.

Fall 2022 Problem 3. FixK > 0 and letMK(Rd) denote the space of finite positive Borel measures µ
on Rd with µ(Rd) ≤ K . When µ1, µ2 ∈ MK(Rd), write µ1 ≤ µ2 if µ1(U) ≤ µ2(U) for each Borel set
U ⊆ Rd. Show that the set

{(µ1, µ2) ∈MK(Rd)×MK(Rd) : µ1 ≤ µ2}

is compact for the weak-∗ topology. Here MK(Rd) is viewed as a subset of the space of finite Borel
measures on Rd, equipped with the weak-∗ topology.

Proof. Write the set under consideration as A. Denote also M(Rd) the space of finite positive Borel
measures on Rd. We argue first thatA is pre-compact, and second thatA is closed.

Step 1: Observe thatA ⊆ (KM1(Rd))× (KM1(Rd)). By Prokhorov’s theorem,M1(Rd) is weak-
∗ pre-compact inM(Rd); since scalar multiplication is weak-∗ continuous, we see that KM1(Rd) is
weak-∗ pre-compact. Finally, abstractly we have that the product of pre-compact sets is pre-compact in
the product topology, so (KM1(Rd)) × (KK1(Rd)) is pre-compact inM(Rd) ×M(Rd). A subset of
a pre-compact set is pre-compact, soA is pre-compact.

Step 2: Suppose {(µ(n)
1 , µ

(n)
2 )}∞n=1 ⊆ A converge weak-∗’ly to (ν1, ν2) ∈ M(Rd) ×M(Rd). Then,

for each f ∈ Cc(Rd) nonnegative, ∫
fdν2 = lim

n→∞

∫
fdµ

(n)
2

≥ lim sup
n→∞

∫
fdµ

(n)
1

=

∫
fdν1
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so that
∫
fdν1 ≤

∫
fdν2 for all f ∈ Cc(Rd) nonnegative. IfU ⊆ Rd is Borel, then by Urysohn and Borel

regularity there is a sequence k 7→ fk ∈ Cc(Rd) such that fk ≥ 1U for each k, and

lim
k→∞

∫
fkdν1 = ν1(U), lim

k→∞

∫
fkdν2 = ν2(U)

Since each
∫
fkdν1 ≤

∫
fkdν2, it follows that ν1(U) ≤ ν2(U). Thus ν1 ≤ ν2. Finally, observe that, for a

function f : Rd → R with f ∈ Cc(Rd), 0 ≤ f ≤ 1, and f ≡ 1 onB(0, 1),

νi(Rd) = lim
R→∞

∫
f(R−1x)dνi(x) = lim

R→∞
lim
n→∞

∫
f(R−1x)dµ

(n)
i (x) ≤ K, i = 1, 2

so indeed (ν1, ν2) ∈ A, as was to be shown.

Fall 2022 Problem 4. Suppose 2 ≤ p < ∞. If µ, ν are positive measures on Rd and f, fj are finitely
many functions in Lp(Rd) satisfying f =

∑
j fj , the inequality

‖f‖Lp(µ) ≤M

(∑
j

‖fj‖2
Lp(ν)

)1/2

(11)

is called an `2Lp decoupling inequality and M > 1 is called the decoupling constant. Show that if
µ =

∑
k µk and ν =

∑
k νk , where the sums are finite, and the `2Lp decoupling inequalities hold with

decoupling constantM ,

‖f‖Lp(µk) ≤M

(∑
j

‖fj‖2
Lp(νk)

)1/2

for all k, then 11 holds with the same decoupling constantM .

Proof. By Minkowski,

‖f‖pLp(µ) =
∑
k

‖f‖pLp(µk)

≤Mp
∑
k

(
∑
j

‖fj‖2
Lp(νk))

p/2

≤Mp(
∑
j

(
∑
k

‖fj‖pLp(νk))
2/p)p/2

= Mp(
∑
j

‖fj‖2
Lp(ν))

p/2

i.e.
‖f‖Lp(µ) ≤M(

∑
j

‖fj‖2
Lp(ν))

1/2

Fall 2022 Problem 5. Let us define Tf(x) =
∫ x

0
f(t)dt, x ∈ [0, 1], for f ∈ L2([0, 1]).
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(a) Prove that T : L2([0, 1]) → L2([0, 1]) is a linear continuous map which is compact, in the sense
that for any bounded sequence fn ∈ L2([0, 1]), the sequence Tfn has a convergent subsequence in
L2([0, 1]).

(b) Prove that T has no eigenvalues, i.e. prove that there is no λ ∈ C such that Tf = λf for some
nonzero f ∈ L2([0, 1]).

(c) Show that the spectrum of T is {0}, i.e. show that the map f 7→ Tf − λf is an isomorphism of
L2([0, 1]) for each 0 6= λ ∈ C, and that it is not an isomorphism of L2([0, 1]) for λ = 0.

Proof. (a): Fix any sequence {fn}∞n=1 which are in the closed unit ball in L2[0, 1], say. Then, for each
x ∈ [0, 1], by Hölder we have

|Tfn(x)| ≤ ‖fn‖2 ≤ 1

so {Tfn}∞n=1 is uniformly bounded. For each ε, if we set δ = ε2 then we see that, for any |x − y| < δ
with x < y, then

|
∫ y

x

fn(t)dt| ≤ |x− y|1/2‖fn‖2 < δ2 = ε

i.e. |Tfn(x) − Tfn(y)| < ε. Thus {Tfn}∞n=1 is equicontinuous. By Arzelà-Ascoli, we may find a subse-
quence {fnk}∞n=1 for which {Tfnk}∞k=1 converges uniformly to some continuous f . But then

‖Tfnk − f‖2 ≤ ‖Tfnk − f‖∞
k→∞−→ 0

so {Tfnk}∞k=1 converges in L2[0, 1]. Thus T (B1) is a compact subset of L2[0, 1], so T is a compact oper-
ator, as claimed.

(b): Supposeλ ∈ C is an eigenvalue ofT with eigenfunction f . Then, for anyn ∈ N and anyx ∈ [0, 1],

|λnf(x)| = |T nf(x)| = |
∫

0≤x1≤···≤xn≤x
f(x1)dx1 · · · dxn|

≤ ‖f‖2(
x

n!
)1/2

by Hölder. Thus, if we take ‖f‖2 = 1, we have

|λ| ≤ 1

(n!)1/2n
→ 0

by trivial estimates. Therefore the only potential eigenvalue is λ = 0. On the other hand, if f 6= 0 a.e.,
then either Re(f), Im(f) 6= 0 a.e., so we may assume f is real and nontrivial; by multiplying by −1 we
may also assume that f > 0 for a positive-measure subset of [0, 1]. Say An := {x : f(x) > 1

n
} has

positive measure. Then by Lebesgue differentiation we may find x ∈ An such that∫ x+δ

x−δ
f(x)dx > 0

But then Tf(x − δ) 6= Tf(x + δ). Since Tf is continuous, we conclude that Tf is not a.e. 0. Since f
was arbitrary nonzero, we conclude that 0 is not an eigenvalue. Thus T has no eigenvalues, as claimed.

(c): By (b), T −λ is injective for every λ. By (a), T is not surjective (since T is compact, hence bounded,
if it were surjective then by the open mapping theorem we would have T (B◦1) is open and, by (a), precom-
pact, which cannot happen since L2[0, 1] is infinite dimensional). Thus it remains to show that T − λ is
surjective for each λ 6= 0.
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We note that range(T − λ) contains all polynomials. First, it contains constants, since

(T − λ)[eλ
−1x] = λeλ

−1x − 1− λeλ−1x = −1

Next, by induction it contains the monomials, as for each n ≥ 1 we have

T (xn−1) =
1

n
xn − λxn−1

and the base case is covered by the argument for the constants above. Thus indeedP [x] ⊆ range(T −λ).
We claim that the range of T − λ is closed.

To see this, note that for each g we have

〈Tg, g〉 =

∫
0≤y≤x≤1

g(x)g(y)dydx =
1

2

∫
[0,1]2

g(x)g(y)dxdy =
1

2
(

∫
g(x))2 ≥ 0

so that, for each f ,

‖Tf‖2
2 + λ2‖f‖2

2 − 2Reλ〈Tf, f〉 = 〈Tf − λf, Tf − λf〉 ≥ 0

implies
‖Tf‖2

2 + λ2‖f‖2
2 ≥

1

2
(

∫
f)2

Fall 2022 Problem 6. Let E = {x = (x1, x2) ∈ R2 : x1 − x2 ∈ Q}. Show that E does not contain a
set of the formA1 × A2, whereA1, A2 ⊆ R are measurable, both of positive Lebesgue measure.

Proof. Let A1, A2 be Lebesgue measurable with finite positive measure. It suffices to show that E does
not containA1 × A2. Set f(x) = 1A1 ∗ 1−A2(x). Then∫

R
f(x)dx =

∫
1−A2(y)

∫
1A1(x− y)dxdy = m(A1)m(A2) > 0

In particular, there is some point x ∈ R for which f(x) > 0. On the other hand, f is continuous (which
we don’t prove here), so f(z) > 0 on an interval z ∈ (x− δ, x+ δ), which by the definition of f implies

(x− δ, x+ δ) ⊆ A1 − A2

and certainly (x−δ, x+δ) contains rational numbers. ThusE does not containA1×A2, as claimed.

Fall 2022 Problem 7. Let D = {z ∈ C : |z| < 1}.

(a) Let f : D → C be holomorphic injective and g : D → C be holomorphic such that g(0) = f(0)
and g(D) ⊆ f(D). Show that g(Dr) ⊆ f(Dr), for each 0 < r < 1. Here Dr = {z ∈ C : |z| < r}.

(b) Let g : D→ C be holomorphic such that g(0) = 0 and |Re g(z)| < 1 for all z ∈ D. Show that

|Im g(z)| ≤ 2

π
log

1 + |z|
1− |z|

, z ∈ D
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Proof. (a): Write h = f−1 ◦ g. Then h maps D to D holomorphically and h(0) = 0. By the Schwartz
lemma,

|h(seiθ)| ≤ s ∀seiθ ∈ D

i.e.
f−1(g(Ds)) ⊆ Ds

Taking a union over all s < r, we see
f−1(g(Dr)) ⊆ Dr

and so
g(Dr) ⊆ f(Dr)

as claimed.
(b): Write f(z) = 2i

π
Log(1+z

1−z ), where Log denotes the principal logarithm. Note that for each |z| < 1

one has that 1+z
1−z is in the right half-plane, so this is well-defined. The map z 7→ 1+z

1−z is a biholomorphic
map from D to the right half-plane, so the image of f is the set {w ∈ C : |Re(w)| < 1}. Since f(0) = 0,
by the previous part we have

g(Dr) ⊆ f(Dr)

for all 0 < r ≤ 1. In particular, for each |z| = r,

|Im(g(z))| ≤ sup
|w|≤r
|Im(f(z))|

On the other hand,
Im(f(w)) =

2

π
log |1 + w

1− w
|

By the triangle and reverse triangle inequalities,

|1 + w

1− w
| ≤ 1 + |w|

1− |w|

and so, for any |w| ≤ r,
|Im(f(w))| ≤ 2

π
log

1 + r

1− r
and hence

|g(z)| ≤ 2

π
log

1 + |z|
1− |z|

as claimed.

Fall 2022 Problem 8. Show that

π

sin πz
=

1

z
+ 2z

∞∑
n=1

(−1)n

z2 − n2
,

for all z ∈ C\Z, with the series in the right hand side converging uniformly on compact subsets of C\Z.
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Proof. We start by computing the residues of π
sinπz

at z ∈ Z. If n ∈ Z is even, then
π

sin π(n+ z)
=

π

sin πz

so it remains only to compute the residues at {0, 1}. To handle the former case,

Res
[ π

sin πz
, 0
]

=
π

π cos πz

∣∣∣
z=0

= 1

and, in the latter case,
Res
[ π

sin πz
, 1
]

=
π

π cosπz

∣∣∣
z=1

= −1

Consequently,
Res
[ π

sinπz
, n
]

= (−1)n ∀n ∈ Z

and we may observe that π
sinπz

has no other singularities in C.
We apply this to a Cauchy integral for the function under consideration. Let N ∈ N and define the

paths as follows: γ(1)
N is the straight-line path from−(N + 1

2
)− iN to (N + 1

2
)− iN ; γ(2)

N is the straight-
line path from (N + 1

2
) + iN ; γ(3)

N is the straight-line path from (N + 1
2
) + iN to−(N + 1

2
) + iN ; γ(4)

N

is the straight-line path from−(N + 1
2
)− iN . Lastly, use ΓN to denote the concatenated path formed by

γ
(1)
N → γ

(2)
N → γ

(3)
N → γ

(4)
N .

If z ∈ C \ Z is enclosed by ΓN , then

1

2πi

∫
ΓN

π

(w − z) sinπw
dw =

π

sin πz
+
∑
|n|≤N

(−1)n

n− z

We claim that the left-hand side has limit 0 as N → ∞; we may assume that |z| ≤ 1
2
N . We control the

contributions along the γ(i)
N . First we study γ(1)

N . For any w along γ(1)
N , we may write w = x − iN with

−(N + 1
2
) ≤ x ≤ N + 1

2
. Then

1

sin πw
=

2i

eπi(x−iN) − e−πi(x−iN)
= e−πN

2i

eπix − e−πixe−2πN

so that ∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ ≤ 2π

N
e−πN

1

1− e−2πN
≤ 2π

N
e−πN(1 + 2e−2πN) ≤ 4π

N
e−πN

by elementary estimates. Similarly, along γ(3)
N we have∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ ≤ 4πe−πN

N

so that ∫
γ
(1)
N ∪γ

(3)
N

∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ |dw| ≤ 16πe−πN

Along γ(2)
N , we have w = (N + 1

2
) + iy with−N ≤ y ≤ N . Then

1

sin πw
=

2i

eπi((N+ 1
2

)+iy) − e−πi((N+ 1
2

)+iy)
=

2(−1)N

e−πy + eπy
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so that, by elementary estimates, ∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ ≤ 4π

N
e−π|y|

and ∫
γ
(2)
N

∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ |dw| ≤ 2

∫ N1/2

0

4π

N
e−πtdt+ 2

∫ N

N1/2

4π

N
e−πtdt

which may be bounded as ∫ N1/2

0

1

N
e−πtdt ≤ N−1/2

∫ N

N1/2

1

N
e−πtdt ≤ e−πN

1/2

so that ∫
γ
(2)
N

∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ |dw| ≤ 8π
(
N−1/2 + e−πN

1/2
)

By the same token (e.g. directly using the symmetry on sin),∫
γ
(4)
N

∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ |dw| ≤ 8π
(
N−1/2 + e−πN

1/2
)

so we conclude ∫
ΓN

∣∣∣∣ π

(w − z) sinπw

∣∣∣∣ |dw| ≤ 16π
(
e−πN +N−1/2 + e−πN

1/2
)

which implies
lim
N→∞

∫
ΓN

π

(w − z) sinπw
dw = 0

and hence
π

sin πz
= − lim

N→∞

∑
|n|≤N

(−1)n

n− z

Finally, to compute the latter limit, notice that

(−1)n

n− z
+

(−1)−n

−n− z
= (−1)n

n− z + (−n− z)

(n− z)(−n− z)
=

2(−1)n+1z

z2 − n2

so that
π

sin πz
=

1

z
+ 2z

∞∑
n=1

(−1)n

z2 − n2

for each particular z ∈ C \ Z. Finally, observe that for any z ∈ C \ Z with dist(z,Z) > δ for some
δ ∈ (0, 1), if we setN ∈ N such thatN > 2|z|+ 1, then for any |w − z| ≤ δ we have, for n ≥ N ,

|2(−1)nw

w2 − n2
| ≤ 2|w| 1

n2

1

1− n−1(|z|+ δ)
≤ 4|w| 1

n2
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The latter is summable in n, so by the Weierstrass M-test we conclude that the series 2z
∑∞

n=1
(−1)n

z2−n2

converges uniformly on {w : |w − z| ≤ δ}. Since the series converges uniformly on a neighborhood
of each point z ∈ C \ Z, we conclude that the series converges locally uniformly on C \ Z, as was to be
shown.

Fall 2022 Problem 9. Let Ω ⊆ C be open connected and fj : Ω → C be a sequence of holomorphic
functions. Suppose that fj(a) converges as j → ∞, for some a ∈ Ω, and that the sequence Re fj con-
verges as j → ∞, uniformly on compact subsets of Ω. Show that fj converges as j → ∞, uniformly on
compact subsets of Ω.

Proof. Consider arbitrary compact setK ⊆ Ω. Then the functions {Re(fj)}j are uniformly bounded on
K , and so there is some R > 0 such that Re(fj)(z) ∈ [−R,R] for each z ∈ K . Then fj omits each
value in C \ ([−R,R] + iR) onK , and so {fj}j is normal inK◦ (the interior ofK) by Montel’s theorem.
Writing Ω as a union of compact sets Kn such that Kn ⊆ K◦n+1, we conclude that the family {fj}j is
normal.

We wish to show that fj converges uniformly on compact sets. Fix any holomorphic function f which
is a limit point of some subsequence of the fj . Suppose for the sake of contradiction that there is some
compact set K ⊆ Ω and ε > 0 and a subsequence fjk such that ‖f − fjk‖∞ ≥ ε for each k. By
normality, there is a further subsequence that is locally uniformly convergent; to abbreviate notation,
write this subsequence as {gk}k.

Fall 2022 Problem 10. Let f : C→ C be entire and set

m(r) =
1

2π

∫ 2π

0

log+ |f(reiϕ)|dϕ

Here log+ t = max(log t, 0). Suppose that

lim sup
r→∞

m(r)

log r
<∞

Show that f is a polynomial.

Proof. Under the finiteness assumption, there areR > 0 and C > 0 such that

m(r) ≤ C log r, ∀r ≥ R

Fix any a ∈ C, a 6= −f(0). Then

1

2π

∫ 2π

0

log |f(reiθ) + a|dθ ≤ log(1 + |a|) +
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ ≤ log(1 + |a|) + C log r

for each r ≥ R such that f does not take the value −a on the circle of radius r. On the other hand, by
Jensen’s formula, writing nr for the number of zeroes of f(z) + a in the disk of radius r,

1

2π

∫ 2π

0

log |f(reiθ) + a|dθ = log |f(0) + a| −
nr∑
k=1

log(
|zk|
r

)
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where {zk}∞k=1 is an enumeration of the zeroes of f(z)+a, counting multiplicity, with increasing moduli.
Then

nr +
log |f(0) + a|

log r
− 1

log r

nr∑
k=1

log |zk| ≤
log(1 + |a|)

log r
+ C

On the other hand, for each k ≤ nr we have |zk| ≤ r, so we must have that nr is bounded in r. Thus f
attains the value a at most finitely times. Since this is true for all a 6= −f(0), we see by the second Picard
theorem that f is not transcendental. Thus f is a polynomial, as claimed.

Fall 2022 Problem 11. Let f ∈ C(R) ∩ L1(R) and define

u(z) =
1

2πi

∫ ∞
−∞

f(t)

t− z
dt, Im z 6= 0

(a) Prove that u is a holomorphic function on C \ R such that u(z)→ 0 as |Im z| → ∞.

(b) Show that the limit
lim
y→0+

(u(z)− u(z̄)), z = x+ iy,

exists for each x ∈ R and compute it.

Proof. (a): To prove the first statement, fix any z0 ∈ C \ R; for simplicity, we assume Im(z0) > 0. Let T
be any triangle contained strictly in the upper half-plane whose interior contains z0. Then∫

R

∫
T

∣∣∣∣ f(t)

t− z

∣∣∣∣ |dz|dt ≤ length(T ) max
x+iy∈T

1

y

∫
R
|f(t)|dt <∞

(where we have used compactness of T ). Thus we may appeal to Fubini to obtain∫
T

u(z)dz =

∫
R

∫
T

f(t)

t− z
dzdt =

∫
R

0dt = 0

Thus, by Morera’s theorem, u is analytic in the upper half-plane. By an analogous argument, u is analytic
in the lower half-plane.

To prove the second statement, note that

|u(x+ iy)| ≤ 1

2πy
‖f‖L1(R)

so certainly u(z)→ 0 as Im(z)→∞.
(b): For each z,

u(z)− u(z̄) =
1

2πi

∫
R
f(t)

(
1

t− z
− 1

t− z̄

)
dt =

1

π

∫
R
f(t)

y

(t− x)2 + y2
dt

The latter integral may be divided for each δ > 0 as∫
R
f(t)

y

(t− x)2 + y2
dt =

∫ x+δ

x−δ
[f(t)− f(x)]

y

(t− x)2 + y2
dt

+

∫
(−∞,x−δ]∪[x+δ,∞)

[f(t)− f(x)]
y

(t− x)2 + y2
dt

+ f(x)

∫
R

y

(t− x)2 + y2
dt

= I + II + III
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We evaluate each summand separately. First, considering III ,∫
R

y

(t− x)2 + y2
dt =

1

y

∫
R

1

(t/y)2 + 1
dt =

∫
R

1

1 + u2
du = π

Next, for arbitrary ε > 0, pick δ > 0 such that |f(t)− f(x)| < ε if |t− x| < δ. Then, considering I ,

|
∫ x+δ

x−δ
[f(t)− f(x)]

y

(t− x)2 + y2
dt| ≤ ε

∫
R

y

(t− x)2 + y2
dt = επ

and, considering II ,∫
(−∞,x−δ]∪[x+δ,∞)

[f(t)− f(x)]
y

(t− x)2 + y2
dt ≤ 2

y

δ2 + y2
‖f‖1

Thus, for each ε,
lim sup
y→0+

|u(z)− u(z̄)− f(x)| ≤ ε

and hence
lim
y→0+

u(z)− u(z̄) = f(x)

Fall 2022 Problem 12. Let f : C → C be entire and assume that f is not of the form z 7→ z + a for
some a ∈ C.

(a) Show that the composition f ◦ f has a fixed point.

(b) Find an entire f : C→ C (not of the form z 7→ z + a) with no fixed points.
Hint: one approach centers on the function z 7→ [f(f(z))− z]/[f(z)− z].

Proof. (a): Write g(z) = f(f(z))−z
f(z)−z . Assuming f is entire and f ◦ f has no fixed points, we must have that

f has no fixed points as well, so g is entire and never takes the value 0. On the other hand, if g(z) = 1,
then f(f(z)) − z = f(z) − z, i.e. f(f(z)) = f(z), i.e. f(z) is a fixed point for f . Thus g cannot take
value 1. By Picard, g is constant, so there is some λ ∈ C \ {0, 1} such that

f(f(z))− z = λ(f(z)− z) ∀z ∈ C

i.e.
f(f(z)) = λf(z) + (1− λ)z

Differentiating this once we obtain

f ′(f(z))f ′(z) = λf ′(z) + 1− λ

which immediately implies f ′ is nowhere vanishing, since λ 6= 1. But then the left-hand side of the
preceding also never vanishes, so that λf ′(z) + 1− λ never takes the value 0; that is,

f ′(z) 6= λ− 1

λ
∀z

Since λ 6∈ {0, 1}, the right-hand side is some element of C \ {0}. In particular, f ′ also omits this value in
addition to 0, so by Picard once again we see that f ′ is constant. Thus f is affine, as was to be shown.

(b): The function g(z) = ez has no zeroes on C, so the entire function f(z) = ez + z has no fixed
points.
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9 Spring 2023
Spring 2023 Problem 1. LetP be the set of all Borel probability measures on [0, 1] and letmbe Lebesgue
measure.

(a) Prove that µ ∈ P satisfies µ� m if and only if for every ε > 0 there exists δ > 0 such that∫
fdµ < ε whenever f ∈ C([0, 1]), 0 ≤ f ≤ 1 and

∫
fdm < δ

[Hint: µ + m is a measure, so there are results about approximating one kind of function with
another in L1(µ+m).]

(b) Give P the weak-∗ topology via the Riesz representation theorem identifying C([0, 1])∗, and let

A = {µ ∈ P : µ� m}.

Prove thatA is a Borel subset of P for the weak-∗ topology.

Proof. (a): First assume that µ ∈ P satisfies the condition described above w.r.t. continuous functions.
We verify a (well-known) equivalent criterion for absolute continuity, namely

∀ε > 0∃δ > 0 s.t. ∀A ⊆ [0, 1] Borel,m(A) < δ =⇒ µ(A) < ε (12)

Let ε > 0 be as in 12, and define δ = 1
2
δ′, where δ′ is the quantity in the problem assumption associated

to 1
2
ε. Suppose A ⊆ [0, 1] has m(A) < δ. By regularity of Lebesgue measure, there exists U ⊇ A open

such thatm(U) < δ′.
For each n ∈ N, let

U1/n = {x ∈ U : dist(x,R \ U) ≥ 1

n
}

Since x 7→ dist(x,R \ U) is 1-Lipschitz (by the triangle inequality), the set U1/n is closed and disjoint
fromR\U . By Urysohn, we may find fn : [0, 1]→ R continuous such that fn|U1/n

≡ 1 and fn|R\U ≡ 0.
This limn fn ≡ 1U pointwise. By the dominated convergence theorem,

lim
n→∞

∫
fndµ = µ(U)

whereas ∫
fndm ≤

∫
U

dm < δ′

so that ∫
fndµ <

1

2
ε′

for every n. Putting the last three together, we see

µ(U) ≤ 1

2
ε′ < ε

and hence µ� m, as was to be shown.
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Next assume that µ ∈ P is such that µ� m. It follows that µ+m� m, so it follows that

∀ε > 0∃δ > 0 s.t. ∀A ⊆ [0, 1],m(A) < δ =⇒ µ(A) < ε (13)

We claim that

∀ε > 0∃δ > 0 s.t. ∀f : [0, 1]→ [0, 1] simple,
∫
fdm < δ =⇒

∫
fdµ < ε (14)

To prove the claim, letφ : (0, 1]→ (0, 1] be a strictly increasing continuous function such that limε→0+ φ(ε) =
0 and

A ⊆ [0, 1] Borel,m(A) < φ(ε) =⇒ µ(A) < ε

We may assume that φ(1) = 1, so that φ is invertible. Take f : [0, 1] → [0, 1] simple. Write f =∑n
i=1 ci1Ai for pairwise disjoint Borel setsAi ⊆ [0, 1] and distinct constants ci ∈ (0, 1]. For k ≥ 1, let

Ck = {1 ≤ i ≤ n : 2−k < ci ≤ 2−k+1}

and
A∼k =

⋃
i∈Ck

Ai

Suppose that
∫
fdm < δ. In particular, for eachk ≥ 0, we have 2−km(A∼k) ≤ δ. Thus, ifk < log2(δ−1),

m(A∼k) ≤ 2kδ < 1

and so
µ(A∼k) ≤ φ−1(2kδ)

from which it follows ∫
fdµ .

∑
k≥1

2−kµ(A∼k)

=

log2(δ−1)∑
k=0

2−kµ(A∼k) +
∑

k>log2(δ−1)

2−kµ(A∼k)

<

log2(δ−1)∑
k=0

2−kφ−1(2kδ) + δ

.
∫ 1

δ

φ−1(δt−1)dt+ δ

=

∫ δ1/2

δ

φ−1(δt−1)dt+

∫ 1

δ1/2
φ−1(δt−1)dt+ δ

≤ δ1/2 + φ−1(δ1/2) + δ

Consequently, if we take C > 1 sufficiently large and define ψ : (0, 1]→ (0, 1] such that, for any ε > 0,
the number δ := ψ(ε) satisfies

δ1/2 + φ(δ1/2) + δ ≤ C−1ε
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then we conclude

f : [0, 1]→ [0, 1] simple,
∫
fdm < ψ(ε) =⇒

∫
fdµ < ε

which is the desired claim 14. Finally, approximating continuous functions by simple functions, the de-
sired result follows.

(b): For each k ∈ N, defineAk to be the set

Ak = {f ∈ C([0, 1]) : ‖f‖∞ ≤ 1, f ≥ 0,

∫
fdm ≤ 1

k
}

Observe that C([0, 1]) is a separable metric space, so Ak is separable with the subspace topology. Let
{f (k)

m }∞m=1 be a countable dense subset of Ak , for each k.
Suppose µ ∈ P is such that

∫
f

(k)
m dµ ≤ 1

n
for all n. We claim that

∫
fdµ ≤ 1

n
whenever f ∈ Ak.

Indeed, for f ∈ Ak , write {f (k)
mj }∞j=1 for a subsequence such that f (k)

mj
j→∞−→ f in C([0, 1]). Then

lim sup
j→∞

∫
|f − f (k)

mj
|dµ ≤ lim sup

j→∞
‖f − f (k)

mj
‖∞ = 0

so that
∫
fdµ ≤ lim supj→∞

∫
f

(k)
mj ≤ 1

n
, as was to be shown.

Trivially, if
∫
fdµ ≤ 1

n
for all f ∈ Ak , then

∫
f

(k)
m dµ ≤ 1

n
for all m. As a consequence, if we define a

setB as

B =
∞⋂
n=1

∞⋃
k=1

{µ ∈ P : ∀f ∈ Ak,
∫
fdµ ≤ 1

n
}

then we have

B =
∞⋂
n=1

∞⋃
k=1

∞⋂
m=1

{µ ∈ P :

∫
f (k)
m dµ ≤ 1

n
}

Write the set inside the latter display as Bm,k,n ⊆ P . Then Bm,k,n is of the form ev−1
f (−∞, 1

n
], where

evf : P → R is defined as evf (µ) =
∫
fdµ. This is clearly a weak-∗ Borel subset of P , so we conclude

thatB is a weak-∗ Borel subset of P .
Finally, by (a) we see that B = {µ ∈ P : µ � m}, so we have verified that the latter set is weak-∗

Borel in P , as was to be shown.

Spring 2023 Problem 2. Here are two Banach spaces of real-valued functions on [0, 1]:

• Let C be the space of continuous functions with norm

‖f‖C = sup{|f(x)| : 0 ≤ x ≤ 1};

• Let L be the space of functions f for which the quantity

‖f‖L = |f(0)|+ sup
{ |f(x)− f(y)|

|x− y|
: 0 ≤ x < y ≤ 1

}
is finite. These are called the Lipschitz functions. You may assume without proof thatL is a vector
space and ‖ · ‖L is a complete norm onL, and thatL ⊆ C . LetBC andBL be the closed unit balls
of C and L, respectively.
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(a) Prove thatBL is a closed subset of C for the norm ‖ · ‖C .

(b) For any f ∈ C , define

Φ(f) =

∫ 1

0

f(x)4dx−
(∫ 1

0

f(x)dx

)4

.

Prove that Φ attains its maximum onBL.

(c) Prove that the functional Φ from part (b) does not attain its maximum on BC . [Hint: we certainly
have Φ(f) ≤ 1 for f ∈ BC . How close can it get?]

Proof. (a): Suppose {fn}n∈N ⊆ BL and fn → f ∈ C in the norm ‖ · ‖C . Then, for any 0 ≤ x < y ≤ 1,

|f(0)|+ |f(x)− f(y)|
|x− y|

= lim
n
|fn(0)|+ lim

n

|fn(x)− fn(y)|
|x− y|

≤ lim sup
n
‖fn‖L ≤ 1

hence
|f(0)|+ sup

{
|f(x)− f(y)|
|x− y|

: 0 ≤ x < y ≤ 1

}
≤ 1

so that f ∈ BL. ThusBL is closed in C for the uniform norm, as was to be shown.
(b): By (a),BL is closed in the uniform norm onC ; we demonstrate as well that it is compact. It suffices

to demonstrate that it is pre-compact. By the definition of the norm ‖ · ‖L,BL is bounded and uniformly
equicontinuous. By Arzelà-Ascoli, we conclude that BL is pre-compact, hence compact by (a).

we demonstrate that Φ is continuous with respect to the norm ‖ · ‖C . Clearly

C 3 f 7→
∫ 1

0

f(x)dx ∈ R

is continuous with respect to the uniform norm, hence

C 3 f 7→ −
(∫ 1

0

f(x)dx

)4

∈ R

is also continuous with respect to the uniform norm. Similarly, since by Hölder we have(∫ 1

0

f(x)4dx

)1/4

≤ ‖f‖C

the map f 7→ ‖f‖4 is continuous, so

C 3 f 7→
∫ 1

0

f(x)4dx ∈ R

is continuous as well. Thus Φ is a continuous function on C . Restricting Φ to the compact set BL, we
conclude that Φ achieves a maximum onBL, as was to be shown.

(c): Clearly, for each f ∈ BC ,

Φ(f) ≤
∫ 1

0

f(x)4dx ≤ ‖f‖4
C
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and in particular Φ ≤ 1 onBC . If we write fn for the function (n ≥ 4)

fn(x) =


1 0 ≤ x ≤ 1

2
− 1

n

−n(x− 1
2

+ 1
n
) + 1 1

2
− 1

n
≤ x ≤ 1

2
+ 1

n

−1 1
2

+ 1
n
≤ x ≤ 1

then
∫ 1

0
fn(x)dx = 0 and ∫

fn(x)4dx = (1− 2

n
) +

2

5n

Thus supf∈BC Φ(f) = 1. It remains to demonstrate that Φ(f) 6= 1 for all f ∈ BC . Observe that, if
f ∈ BC is such that

∫
f(x)dx 6= 0, then

Φ(f) <

∫ 1

0

f(x)4dx ≤ 1

so in particular Φ(f) 6= 1. Additionally, since Φ(f) ≤ ‖f‖4
C , we need only to consider the case ‖f‖C = 1

and
∫ 1

0
f(x)dx = 0.

Fix such an f . In particular, f(x) ∈ {−1, 1} for some 0 ≤ x ≤ 1; up to possibly exchanging f with
−f , we may assume f(x) = 1. Since f is continuous and

∫
f = 0, we must have f < 0 somewhere on

[0, 1], so by the intermediate value theorem we may find t ∈ [0, 1] such that f(t) = 0. By continuity,
there is 1

10
> δ > 0 such that |f | ≤ 1

2
on (t− δ, t+ δ). But then

Φ(f) ≤
∫
f(x)4dx =

∫
[0,1]∩(t−δ,t+δ)

f(x)4dx+

∫
[0,1]\(t−δ,t+δ)

f(x)4dx ≤ 1

8
δ + (1− δ) < 1

so in particular Φ(f) 6= 1. Thus Φ fails to achieve its maximum onBC , as was to be shown.

Spring 2023 Problem 3. Let (X,M) be a measurable space and let V be a separable real Banach space.
(Being ‘separable’ means that V has a countable dense subset for the norm topology.)

(a) Prove that there are dual vectors L1, L2, · · · ∈ V ∗ such that ‖Ln‖ = 1 for every n and

‖v‖ = sup
n
|Ln(v)| for all v ∈ V .

[Warning: the separability of V does not imply the separability of V ∗ in general.]

(b) Now let φ : X → V , and assume that L ◦ φ is measurable fromM to B(R) for every L ∈ V ∗.
Prove that φ is measurable fromM to the Borel σ-algebra generated by the norm topology of V .
[Hint: start by observing that every open subset of V is a countable union of open balls.]

Proof. (a): By the Banach-Alaoglu theorem, the closed unit ballB of V ∗ is weak-∗’ly metrizable compact.
In particular, it is totally bounded, so by taking finite 1/n-nets for every n we obtain a countable subset
ofB which is weak-∗’ly dense inB, say K1, K2, . . . ∈ V ∗.

Removing 0 from the sequence {Kn}∞n=1 if necessary, define Ln = Kn
‖Kn‖ for every n. This sequence

satisfies ‖Ln‖ = 1 for every n; we claim in addition that

‖v‖ = sup
n
|Ln(v)| for all v ∈ V .
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To prove this, fix any v ∈ V . By Hahn-Banach we may findL ∈ V ∗ such that ‖L‖ = 1 and |L(v)| = ‖v‖.
Since ‖L‖ = 1, we have that L ∈ V ∗ and thus L is a limit point of the sequence {Kn}∞n=1, say

L = lim
k→∞

Knk weak-∗’ly

In particular,
‖v‖ = |L(v)| = lim

k→∞
|Knk(v)|

Since |Knk(v)| ≤ ‖Knk‖‖v‖ ≤ ‖v‖, we get by squeezing that limk ‖Knk‖ = 1. Thus

|Lnk(v)| = |Knk(v)|
‖Knk‖

→ |L(v)|
1

= ‖v‖

and thus ‖v‖ is a limit point of the |Ln(v)|. Since |Ln(v)| ≤ ‖Ln‖‖v‖ = ‖v‖ for all n, we conclude that
‖v‖ = supn |Ln(v)|, as was to be shown.

(b): As suggested by the hint, we start by noting that every open subset of V is a countable union
of open balls. Indeed, if U ⊆ V is open, then, writing D for a countable dense subset of V , let U =
{(x, r) ∈ D ×Q>0 : B(x, r) ⊆ U}. Then U is a countable family of open balls,

⋃
B∈U B ⊆ U , and for

each y ∈ U we may find n ∈ N such that B(y, 2
n
) ⊆ U ; since D is dense, there exists z ∈ B(y, 1

n
) ∩D,

so y ∈ B(z, 1
n
) ⊆ U by the triangle inequality andB(z, 1

n
) ∈ U , so we conclude that

⋃
B∈U B = U .

In particular, if φ−1(B) ∈ M for every open metric ball B ⊆ V , then φ−1(U) ∈ M for every U
open subset of V , so φ is measurable in the desired sense. Thus it suffices to verify measurability on open
metric balls.

We start by verifying measurability on closed metric balls centered at 0. Given r > 0, we observe
that φ−1(B(0, r)) ⊆

⋂∞
n=1(Ln ◦ φ)−1[−r, r], where {Ln}∞n=1 are the dual vectors identified in part (a).

Indeed, if ‖φ(x)‖ ≤ r, then |Ln(φ(x))| ≤ ‖Ln‖‖φ(x)‖ ≤ r for each n.
On the other hand, if‖φ(x)‖ > r, then supn |Ln(φ(x))| > r, so there is somen such that |Ln(φ(x))| >

r, so x 6∈
⋂∞
n=1(Ln ◦ φ)−1[−r, r]. Thus we have the equality

φ−1(B(0, r)) =
∞⋂
n=1

(Ln ◦ φ)−1[−r, r]

so by the hypothesis that all Ln ◦ φ are measurable entails that φ−1(B(0, r)) ∈ M for each r > 0. By
taking countable increasing unions, we see that φ−1(B(0, s)) ∈M for every s > 0.

Finally, observe for every v ∈ V that the shift map y 7→ y − v preserves the family of open balls.
Additionally, writing ψ : X → V for the map x 7→ φ(x) − v, we see that L(ψ(x)) = L(φ(x)) − L(v)
is a constant shift of L(φ(·)), hence each L ◦ ψ is measurable, so in the preceding arguments we have
verified that ψ−1(B(0, r)) ∈ M for each r > 0. On the other hand, ψ−1(B(0, r)) = φ−1(B(v, r)),
so we conclude that φ pulls all metric open balls to elements ofM. By the discussion at the start of this
portion, we conclude thatφ is measurable fromM to the Borelσ-algebra generated by the norm topology
of V , as was to be shown.

Spring 2023 Problem 4. Let f1, f2, . . . and g1, g2, . . . be sequences in the unit ball of L2([0, 1]), and
assume that

(i) fn → f and gn → g Lebesgue almost everywhere,
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(ii) all these functions also lie in the unit ball of Lp([0, 1]) for some p ∈ [1,∞].

For which values of p do (i) and (ii) imply that 〈fn, gn〉 → 〈f, g〉? Justify your answers with proofs or
counterexamples.

Proof. We claim that the implication holds precisely when p > 2. We first show the negative direction,
namely that if p ≤ 2 then we may find sequences {fn}∞n=1 and {gn}∞n=1 such that fn → f and gn → g
a.e., such that all these functions belong to the unit balls of L2 and Lp. Observe that, by Hölder,

‖h‖Lp([0,1]) ≤ ‖h‖L2([0,1])

so it suffices to treat the case p = 2. Let fn = gn =
√
n1[0,1/n] and f = g = 0. Then ‖fn‖2 = 1 and

fn → f (similarly for the g’s). On the other hand,

〈fn, gn〉 = 1 6→ 0 = 〈f, g〉

so the implication indeed fails for p = 2, hence for all 1 ≤ p ≤ 2.
We now assume p > 2 and aim to demonstrate that (i) and (ii) imply that 〈fn, gn〉 → 〈f, g〉. We first

demonstrate the following claim:
Claim: For any C > 0 and any {fn}∞n=1, {gn}∞n=1 in the balls of radius C of L2 and Lp such that

fn → 0 a.e., we have 〈fn, gn〉 → 0.
Proof of claim: By Egorov’s theorem, for each ε > 0 we may find Aε ⊆ [0, 1] such that fn → 0

uniformly on Aε andm([0, 1] \ Aε) < ε. Then

|
∫
Aε

fngn| ≤
(∫

Aε

|fngn|p/2
)2/p

m(Aε)
1− 2

p ≤ Cε1− 2
p

Thus, for each ε > 0,
lim sup
n→∞

|
∫
fngn| ≤ Cε1− 2

p

so indeed 〈fn, gn〉 → 0, and the claim is proven.
To complete the problem, observe thatfn−f → 0 and gn−g → 0 a.e.. By the claim, 〈fn−f, gn−g〉 →

0. Expanding the inner product, the cross terms 〈f, gn〉 and 〈fn, g〉 limit to zero as well (applying the claim
again). We are done.

Spring 2023 Problem 5. Let e1, e2, e3 be the usual basis of R3, and let w ∈ R3.

(a) Prove that there does not exist any f ∈ L2(R3) such that

f(x) =
1

6

3∑
j=1

(f(x+ ej) + f(x− ej)) + eiw·x−|x|
2/2 for a.e. x.

(b) Prove that, for any ε > 0, there exists f ∈ L2(R3) such that

∫ ∣∣∣∣∣f(x)− 1

6

3∑
j=1

(f(x+ ej) + f(x− ej))− eiw·x−|x|
2/2

∣∣∣∣∣
2

dx < ε
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Proof. (a): Suppose for the sake of contradiction that such an f exists. Then the Fourier transform

f̂(ξ) =

∫
e−2πiξ·xf(x)dx

belongs to L2(R3) and satisfies

f̂(ξ) =
1

6

3∑
j=1

(e2πiξ·ej + e−2πiξ·ej)f̂(ξ) + e−|ξ−w|
2/2 for a.e. ξ

i.e.

f̂(ξ) =
1

3

3∑
j=1

cos(2πξ · ej)f̂(ξ) + e−|ξ−w|
2/2 for a.e. ξ

This we may write as

f̂(ξ) =
e−|ξ−w|

2/2

1− 1
3

∑3
j=1 cos(2πξ · ej)

for a.e. ξ such that the denominator is nonvanishing

In particular, if 0 < |ξ| < 1
10

, we have cos(2πξ · ej) ≥ 1− 10|ξ · ej|2; thus in this regime we have

1− 1

3

3∑
j=1

cos(2πξ · ej) ≤ 10|ξ|2

so that
|f̂(ξ)| ≥ 1

10
e−|ξ−w|

2/2|ξ|−2

for a.e. ξ satisfying 0 < |ξ| < 1
10

. But then∫
0<|ξ|< 1

10

|f̂(ξ)|2 ≥
∫

0<|ξ|< 1
10

1

100
e−|ξ−w|

2|ξ|−4 = +∞

which contradicts our previous assertion that f̂ ∈ L2(R3). Thus we have a contradiction, as was to be
shown.

(b): For δ > 0, define g = gδ ∈ L2(R3) by

g(ξ) =
e−|ξ−w|

2/2

1− 1
3

∑3
j=1 cos(2πξ · ej)

1R3\
⋃

n∈Z3 B(n,δ)(ξ)

Then

g(ξ)− 1

3

3∑
j=1

cos(2πξ · ej)g(ξ) = e−|ξ−w|
2/21R3\

⋃
n∈Z3 B(n,δ)(ξ)

so that, writing f = g∨,

f(x)− 1

6

3∑
j=1

(f(x+ ej) + f(x− ej)) = eix·w−|x|
2/2 −

∫
e2πix·ξe−|ξ−w|

2/2
∑
n∈Z3

1B(n,δ)(ξ)dξ
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Then ∫ ∣∣∣∣∣f(x)− 1

6

3∑
j=1

(f(x+ ej) + f(x− ej))− eix·w−|x|
2/2

∣∣∣∣∣
2

dx =

∫
⋃

n∈Z3 B(n,δ)

e−|ξ−w|
2

dξ

Since e−|ξ−w|2 is integrable in ξ, the dominated convergence theorem implies

lim
δ↓0

∫
⋃

n∈Z3 B(n,δ)

e−|ξ−w|
2

dξ = 0

Thus, for each ε > 0 we may find δ > 0 such that f = g∨δ satisfies

∫ ∣∣∣∣∣f(x)− 1

6

3∑
j=1

(f(x+ ej) + f(x− ej))− eix·w−|x|
2/2

∣∣∣∣∣
2

dx < ε

as was to be shown.

Spring 2023 Problem 6. Let φ : R→ R be continuous, let f ∈ L1(R2), and define

Arf(x, y) =
1

2r

∫ r

−r
f(x+ s, y + φ(x+ s)− φ(x))ds ((x, y) ∈ R2, r > 0)

whenever the integrand lies in L1(−r, r) as a function of s. With this definition, prove that Arf(x, y)
exists for Lebesgue almost every (x, y), that it satisfies∫

R2

Arf =

∫
R2

f for every r > 0,

and thatArf → f pointwise a.e. as r ↓ 0.
[Hint: start by understanding the case φ = 0, and then draw a picture to help you see a reduction of

the general case to that one.]

Proof. [Incomplete; the last claim is only established for φ ≡ 0.]
We first observe that, by Tonelli, for arbitrary r > 0,∫

R2

Ar|f | =
1

2r

∫ r

−r

∫ ∞
−∞

∫ ∞
−∞
|f(x+ s, y + φ(x+ s)− φ(x))|dydxds

=
1

2r

∫ r

−r

∫ ∞
−∞

∫ ∞
−∞
|f(x+ s, y)|dydxds by translation-invariance of Lebesgue measure

=
1

2r

∫ r

−r

∫ ∞
−∞

∫ ∞
−∞
|f(x, y)|dydxds by translation-invariance of Lebesgue measure

=

∫
R2

|f |

Since the latter expression is finite, we note in particular that Ar|f |(x, y) is finite for a.e. (x, y) ∈ R2;
thus Arf(x, y) exists for Lebesgue a.e. (x, y). Furthermore, since the integrals in the preceding display

115



are all finite, Fubini-Tonelli implies that the calculation remains valid when |f | is replaced by f in each
instance. In particular, ∫

R2

Arf =

∫
R2

f

for every r > 0.
Suppose φ = 0. Let Y ⊆ R be the set of y such that x 7→ f(x, y) is measurable and L1. Define the

function
g : R2 × (0,∞)→ R, g(x, y, r) = f(x, y)− 1

2r

∫ r

−r
f(x+ s, y)ds

when y ∈ Y , and 0 otherwise. Then, for each (x, y) ∈ R2, we see that r 7→ g(x, y, r) is continuous.
Consequently, we have an equality between the two sets

A :=

{
(x, y) ∈ R2 : ∀n ∈ N ∃k ∈ N ∀r ∈ R>0

(
r ≤ 1

k
=⇒ |g(x, y, r)| ≤ 1

n

)}
=

{
(x, y) ∈ R2 : ∀n ∈ N∃k ∈ N ∀r ∈ Q>0

(
r ≤ 1

k
=⇒ |g(x, y, r)| ≤ 1

n

)}
Observe thatA is the set of (x, y) such thatArf(x, y)→ f(x, y) as r → 0. The rightmost set in the last
display equals

∞⋂
n=1

∞⋃
k=1

⋂
r∈Q;0<r≤ 1

k

g(·, ··, r)−1 ([−1/n, 1/n])

Note that Fubini implies thatY is conull (hence Lebesgue measurable), so g(·, ··, r) is measurable for every
r > 0. Consequently,A is Lebesgue measurable. By Fubini,

m2(R2 \ A) =

∫
R2

1R2\A(x, y)dm2(x, y)

=

∫
R

∫
R

1R2\A(x, y)dxdy

For each y ∈ Y , Lebesgue differentiation implies that the set {x ∈ R : (x, y) ∈ A} is conull. Thus the
last display implies

m2(R2 \ A) = 0

as was to be shown.

Spring 2023 Problem 7. Let D = {z ∈ C : |z| < 1} and let f : D → D be holomorphic such that
sup|z|<1 |f(z)| ≤ r, for some r < 1.

(a) Show that f has a fixed point a ∈ D.

(b) Let
f (n) = f ◦ f ◦ · · · ◦ f

be the n-fold iterate of f . Show that f (n) → a uniformly on compact subsets of D.
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Proof. (a): By the fact sup|z|<1 |f(z)| ≤ r, we have in particular that the restriction of f to 1+r
2
D has range

contained in 1+r
2
D. By Brouwer’s fixed point theorem, f has a fixed point a ∈ 1+r

2
D ⊆ D.

(b): We start by assuming that a = 0; we will remove the assumption later. Write g(z) = 1
r−εf(z) for

some 0 < ε < r. Then g : D→ D is holomorphic. By the Schwarz-Pick theorem we have

|g′(z)|
1− |g(z)|2

≤ 1

1− |z|2

which we in particular write as
|g′(z)| ≤ 1

1− |z|2

Thus
|f ′(z)| ≤ r − ε

1− |z|2

for arbitrarily small ε > 0, so we have

|f ′(z)| ≤ r

1− |z|2

for all z ∈ D. Integrating, we see that, for each z 6= 0,

|f(z)| ≤
∫ |z|

0

|f ′(tz/|z|)|dt ≤
∫ |z|

0

r

1− t2
dt

In particular, if |z| ≤ s for some s ∈ (0, 1),

|f(z)| ≤ r

1− s2
|z|

Thus |f(z)| ≤ 1
1−s2 |z| for all |z| ≤ s. Taking iterates,

|f (n)(z)| ≤ r|f (n−1)(z)| ≤ · · · ≤ (
r

1− s2
)n|z|

on the disk |z| ≤ s. Suppose s is sufficiently small so that r
1−s2 < 1. Then f (n) → 0 uniformly on sD.

On the other hand, the family A = {f (n)}∞n=1 is a normal family, by Montel’s theorem (e.g. {i, 1}
are omitted by every iterate of f ). If g is a limit point of A in the topology of local uniform convergence,
then g ≡ 0 on sD, so g is the zero function. Thus 0 is the only limit point of the pre-compact set A, so
f (n) → 0 locally uniformly.

Next, suppose a ∈ D is general. Write φ(z) = z−a
1+āz

. Then, writing h := φ ◦ f ◦ φ−1, we observe that
h(0) = 0 and h(D) ⊆ φ(f(D)) ⊆ φ(rD), which is a compact subset of D, hence is contained in a closed
disk of the form ρD, ρ < 1. Consequently, h satisfies the hypotheses of f discussed previously, but with
a = 0; we have then verified that h(n) → 0 locally uniformly. But

f (n) = φ−1 ◦ h(n) ◦ φ

so that f → a locally uniformly, as was to be shown.
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Spring 2023 Problem 8. Let

f(z) =
∞∑
n=1

anz
n

be a conformal map from the unit disk D = {z ∈ C : |z| < 1} onto the domain {z ∈ C : |Re z| <
1, |Im z| < 1}. Show that an = 0 for all n 6= 4k + 1, k = 0, 1, 2 . . ..

Proof. Write g(z) for the function z 7→ −if−1(if(z)). Observe that, since multiplication by i is an
automorphism of f(D), g(z) is well-defined on D and defines an conformal self-map of D. Furthermore,
since f(0) = 0, we have g(0) = 0. Additionally,

g′(0) = −i(f−1)′(if(0))if ′(0) = (f−1)′(0)f ′(0) = 1

By the Schwarz lemma, g(z) = z; thus we have the identity

f(iz) = if(z)

In particular, plugging in to the power series for f ,
∞∑
n=1

ani
nzn =

∞∑
n=1

aniz
n ∀z ∈ D

i.e.
∞∑
n=1

anz
n(in − i) ≡ 0 (z ∈ D)

By the uniqueness of power series, we must have an(in − i) = 0 for all n ≥ 1. Thus an = 0 whenever n
is not of the form 4k + 1, k = 0, 1, 2, . . ., as was to be shown.

Spring 2023 Problem 9. Let f : C→ C be entire and set

u(z) = log(1 + |f(z)|2).

Suppose that
lim sup
r→∞

1

r2

∫∫
|z|<r

u(z)dm(z) <∞,

where dm(z) denotes the Lebesgue measure on C. Show that f is constant.

Proof. Write v(z) = log(|f(z)|2). We verify that v is harmonic: indeed, writing ∂, ∂ for the Wirtinger
derivatives,

∂∂v = ∂[
f ′f

|f |2
] = ∂[

f ′

f
] = 0

Then
lim sup
r→∞

1

r2

∫∫
|z|<r

v(z)dm(z) ≤ lim sup
r→∞

1

r2

∫∫
|z|<r

u(z)dm(z) <∞
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WriteD for a real number that is greater than the above limsup. By the mean value property for harmonic
functions,

v(w) =
1

πr2

∫∫
|z|<r

v(w + z)dm(z)

for each w ∈ C. Then

v(w) =
1

π
lim sup
r→∞

1

r2

∫∫
|z|<r

v(w + z)dm(z) ≤ 1

π
lim sup
r→∞

1

r2

∫∫
|z|<|w|+r

u(z)dm(z) ≤ D

π

so that v is bounded from above. By a standard fact, this implies (since v is harmonic) that v is constant,
so f is constant, as was to be shown.

Spring 2023 Problem 10. Let D = {z ∈ C : |z| < 1} and let n ≥ 1 be an integer. A function of the
form

B(z) = λ
n∏
j=1

z − aj
1− ājz

, z ∈ D,

where aj ∈ D, 1 ≤ j ≤ n, and |λ| = 1 is called a Blaschke product of degree n. Let α ∈ D. Show that
the function

z 7→ B(z) + α

1 + ᾱB(z)

is a Blaschke product of degree n.

Proof. Write the latter function as f . Observe that |f(z)| < 1 for all z ∈ D, that |f(z)| = 1 when |z| = 1,
and that f has poles precisely when B(z) = 1/ᾱ ∈ C \ D. In particular, f is analytic in a neighborhood
of D, and so has only finitely many zeroes in D. Since |f(z)| = 1 on |z| = 1, those zeroes all belong to D.
Consequently, the integral

1

2πi

∫
|z|=1

f ′(z)

f(z)
dz

is well-defined, and counts the zeroes of f . This integral takes the form

1

2πi

∫
|z|=1

1−|α|2
(1+ᾱB(z))2

B(z)+α
1+ᾱB(z)

B′(z)dz =
1− |α|2

2πi

∫
|z|=1

B′(z)

(1 + ᾱB(z))(B(z) + α)
dz

which is clearly a continuous function of α ∈ D. Since it is equal to the number of zeroes of f , it is
constant on D, so we conclude (by moving α to 0)

1

2πi

∫
|z|=1

f ′(z)

f(z)
dz =

1

2πi

∫
|z|=1

B′(z)

B(z)
dz = n

so f has n zeroes in D, counting multiplicity. Write these as b1, . . . , bn. Then

g(z) := f(z)
n∏
j=1

1 + b̄jz

z − bj

is holomorphic in a neighborhood of D, has |g(z)| = 1 on |z| = 1, and has no zeroes in D. Thus 1/g is
holomorphic in a neighborhood of D and has |1/g(z)| = 1 on |z| = 1, so |1/g(z)| ≤ 1 on D, so |g| ≥ 1
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onD by the maximum modulus principle. On the other hand, from |g| ≤ 1 on |z| = 1 we see also |g| ≤ 1
on D, so g(D) ⊆ {|z| = 1}. By the open mapping theorem, g is constant, i.e. there is |γ| = 1 so that
g ≡ γ. Thus

f(z) = γ

n∏
j=1

z − bj
1 + b̄jz

so indeed f is a Blaschke product of degree n, as was to be shown.

Spring 2023 Problem 11. Show that∫ ∞
−∞

e−2πiat

cosh(πt)
dt =

1

coshπa
,

for all a ∈ R. Here cosh(y) = (ey + e−y)/2. Justify all manipulations.

Proof. We define the following curves, depending on an integer parameter N ≥ 1: γ(1)
N from−N to N ;

γ
(2)
N fromN toN +Ni; γ(3)

N fromN +Ni to−N +Ni; γ(4)
N from−N +Ni to−N . Write ΓN for the

concatenation of the γ(j)
N in the obvious way. Write f = fa for the function

f(z) =
e2πiaz

cosh(πz)
, (z ∈ C \ (iZ +

i

2
))

We have modified the sign in the exponential, for the sake of convenience later. We consider first the case
a > 0.

Observe that f has a singularity at every point (n+ 1
2
)i, n ∈ Z. Since cosh has simple zeroes, we may

compute the residue as

Res
[
f(z), (n+

1

2
)i

]
= 2

e−2πa(n+ 1
2

)

eπi(n+ 1
2

) − e−πi(n+ 1
2

)
= −2i(−1)ne−2πa(n+ 1

2
)

so that ∫
ΓN

f(z)dz = 4π
N−1∑
n=0

(−1)ne−2πa(n+ 1
2

)

Thus (evaluating the geometric series)

lim
N→∞

∫
ΓN

f(z)dz =
4πe−πa

1 + e−2πa
=

2π

cosh(πa)

We control the integrals along γ(j)
N , 2 ≤ j ≤ 4. We first handle γ(3)

N . For z on γ(3)
N , we have z = x+iN

for−N ≤ x ≤ N , and

|f(x+ i(N +
1

2
))| = 2

e−2πaN

eπx + e−πx
≤ 2e−2πaN

so that
|
∫
γ
(3)
N

f(z)dz| ≤ 4Ne−2πaN → 0 (N →∞)
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We handle the integral along γ(2)
N . Points z along here may be written as z = N + iy, 0 ≤ y ≤ N . Then

|f(z)| = 2
e−2πay

|eπ(N+iy) + e−π(N+iy)|
≤ 4e−πN−2πay

and consequently
|
∫
γ
(2)
N

f(z)dz| ≤ 4Ne−πN → 0

Precisely the same analysis holds for γ(4)
N . Consequently,

lim
N→∞

∫
ΓN

f(z)dz =

∫ ∞
−∞

e2πiat

cosh(πt)
dt =

1

cosh πa
(a > 0)

Applying complex conjugation to both sides results in the desired formula, for a > 0. Replacing a by−a,
and using the fact that cosh is even, we have the result for all a 6= 0.

Finally, since the left-hand side is the Fourier transform of the integrable function t 7→ 1
cosh(πt)

, it is
continuous in a, so we obtain the result for all a by sending a→ 0.

Spring 2023 Problem 12. (a) Let f : C→ C and g : C→ C be entire functions that satisfy

f 2 + g2 = 1, or equivalently, (f + ig)(f − ig) = 1 (15)

throughout the complex plane. Show that there exists h : C→ C entire so that

f(z) = cos(h(z)) and g(z) = sin(h(z)) (16)

for all z ∈ C.

(b) Let f : C \ {0} → C and g : C \ {0} → C be holomorphic functions satisfying 15 in C \ {0}.
Show that there need not exist h : C \ {0} → C such that the representation 16 holds for all
z ∈ C \ {0}.

Proof. (a): Observe that 2ff ′ + 2gg′ = 0 on C; we write this as

−f
′

g
=
g′

f
when f 6= 0 6= g

Write η for the function in the above display. We claim that η has only removable singularities. Since
f 2 + g2 = 1, we see that f and g do not vanish simultaneously; consequently, if f ′/g has a singularity at
z0, then g′/f does not, so all singularities of η are removable.

Write h for a global antiderivative of η; we will specify the choice of constant later. Fix z0 ∈ C such
that h′(z0) 6= 0, and writew0 = h(z0). Then there is a holomorphic inverse of h nearw0, which we write
as h−1. Define f1, g1 by

f1 = f ◦ h−1, g1 = g ◦ h−1 near w0

Then
f ′1(w)

g1(w)
=
f ′(h−1(w))

g(h−1(w))
(h−1)′(w) = −h′(h−1(w))(h−1)′(w) = −1
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and
g′1(w)

f1(w)
=
g′(h−1(w))

f(h−1(w))
(h−1)′(w) = h′(h−1(w))(h−1)′(w) = 1

so that f1, g1 satisfy the system {
f ′1 = −g1

g′1 = f1

In particular, there areA,B ∈ C such that

f1(w) = A cosw +B sinw, g1(w) = −B cosw + A sinw

for all w near w0. Thus, for all z near z0, there is an identity

f(z) = A cos(h(z)) +B sin(h(z)), g(z) = −B cos(h(z)) + A sin(h(z))

Since f, g are entire, it follows that the previous display holds on all of C. Then

1 = f(z)2 + g(z)2 = A2 +B2

We omit details in the final steps. As is well-known, there is a constant ϕ depending onA,B such that

A cos(w) +B sin(w) =
√
A2 +B2 cos(w + ϕ) = cos(w + ϕ), (w ∈ C)

so by replacing h by a constant shift we may write f(z) = cos(h(z)); it follows that g(z) = ± sin(h(z)),
as was to be shown.

(b): Write
f(z) =

1

2

(
z +

1

z

)
, g(z) =

i

2

(
z − 1

z

)
.

Then
f(z)2 + g(z)2 =

1

4

[
z2 + 2 +

1

z2
− z2 + 2− 1

z2

]
= 1

on all of C \ {0}. To conclude, it suffices to show that there does not exist h : C \ {0} → C holomorphic
such that f(z) = cos(h(z) for all z ∈ C \ {0}.

Suppose otherwise. We consider the possible singularities of h at 0. If 0 is removable, then h(z)→ a
as z → 0 for some a ∈ C, and so cos(h(z))→ cos(a) as z → 0, which violates the fact that f = cos ◦h
has a pole at 0.

Suppose that h has a pole at 0. Then cos ◦h has an essential singularity at 0 by straightforward argu-
ments, which violates f = cos ◦h.

Supposeh has an essential singularity at 0. Thenh fails to be injective on any punctured neighborhood
at 0, so cos ◦h fails to be injective on any punctured neighborhood at 0, whereas f is clearly locally injective
near 0. Finally, by the usual classification of singularities theorem, the last three options are all there are,
so no such h can exist.
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10 Fall 2023
Fall 2023 Problem 1. Prove that finite linear combinations of functions from the family{

x 7→ b

(x− a)2 + b2
: a ∈ R and b ∈ R

}
are dense in L1(R).

Proof. Let A be the set of finite linear combinations of the preceding family. We claim that the following
holds:

∃ε > 0∀f ∈ L∞(R)∃g ∈ A s.t.
∫
fg ≥ ε‖f‖∞‖g‖1

Suppose for a moment that the claim is true. IfA 6= L1(R), then by Hahn-Banach there is f ∈ L∞(R) '
L1(R)∗ such that ‖f‖∞ = 1 and

∫
fg = 0 for all g ∈ A, which in particular violates the claim.

We now demonstrate the claim. Let f ∈ L∞ have unit norm. By replacing f by −f if necessary,
we may assume that f+ := max(f, 0) has unit norm. Write also f− = max(−f, 0). Then there is a
measurable F ⊆ R of positive measure such that f ≥ 1

2
1F . Let a ∈ F be a Lebesgue point of F . For

n ∈ N, consider the function gn ∈ A defined as

gn(x) =
1

π
n3/2 n−2

(x− a)2 + n−1

Note then that∫
|gn(x)|dx =

1

π
n1/2

∫
1

(n1/2x− n1/2a)2 + 1
dx =

1

π

∫
1

x2 + 1
dx = 1

Since a is a Lebesgue point of F ,

lim
n→∞

1

2
n1/2

∫
1[a− 1

n1/2
,a+ 1

n1/2
]1F = 1

On the other hand, notice that gn(a+ n−1/2) = 1
2π
n1/2, so that gn ≥ n1/2

2π
1[a−n−1/2,a+n−1/2]. Thus∫

f+gn ≥
n1/2

4π

∫
1F1[a−n−1/2,a+n−1/2]

so that, for n sufficiently large, ∫
f+gn ≥

1

4π
=

1

4π
‖f‖∞‖gn‖1
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We now consider f−. For θ > 0, write hn,θ = n1/2

2θ
1[a−θn−1/2,a+θn−1/2]. Then, for each n and θ,∫

f−hn,θ =

∫
(f+ − f)hn,θ

=

∫
F

(f+ − f)hn,θ +

∫
F c

(f+ − f)hn,θ

≤
∫

1F c(f+ −
1

2
1F )hn,θ

=

∫
1F cf+hn,θ

=

∫
f+hn,θ −

∫
1Ff+hn,θ

≤ 1−
∫

1Fhn,θ

by various trivial manipulations. The last integral has limit 1, since a is a Lebesgue point, so we find

lim sup
n

∫
f−hn,θ ≤ 1− 1 = 0

On the other hand, the integrand is nonnegative, so
∫
f−hn,θ → 0 as n → ∞. We compare the pairings

against hn,θ to those against gn. From the form

gn(x) =
1

π
n3/2 n−2

(x− a)2 + n−1
=
n1/2

π

1

(n1/2x− n1/2a)2 + 1

we see that, for eachR, there is a collection θ1, . . . , θN and scalars α1, . . . , αN > 0 such that

gn(x) ≤
N∑
j=1

αjhn,θ(x) for all n and all |x− a| ≤ n−1/2R

Note too that ∫
|x−a|>n−1/2R

gn(x)dx =

∫
|x−a|>R

g1(x)dx
R→∞−→ 0

Consequently, for eachR > 0, we may produce the estimate

lim sup
n

∫
f−gn ≤ lim sup

n

∫
|x−a|≥n−1/2R

f−(x)gn + (x) lim sup
n

∫
|x−a|≤n−1/2R

f−(x)gn(x)

≤ lim sup
n

∫
|x−a|≥n−1/2R

gn(x) +
N∑
j=1

αj lim sup
n

∫
|x−a|≤n−1/2R

f−(x)hn,θj(x)

≤
∫
|x−a|≥R

g1(x)

SendingR→∞, we see that
lim
n

∫
f−gn = 0
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and we reach the conclusion that, for n sufficiently large and ε > 0 sufficiently small,∫
fgn =

∫
f+gn −

∫
f−gn ≥ ε‖f‖∞‖gn‖1

as was to be demonstrated in the claim.

Fall 2023 Problem 2. LetE denote the set of real numbers in [0, 1] without the digit 9 in their decimal
expansion, that is, x ∈ E if it admits the representation

x =
∑
n≥0

an
10n

with an ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}.

(a) Show thatE is a Borel set.

(b) Show that E has Lebesgue measure zero.

Proof. If n ≥ 0 and 0 ≤ m0, . . . ,mn ≤ 9, writem = (m1, . . . ,mn) and

Im,n =

[
n∑
k=0

mk

10k
, 10−n +

n∑
k=0

mk

10k

)
We claim that

E =
∞⋂
n=1

⋃
m0,...,mn
0≤mk≤8

Im,n

For brevity we write E ′ for the right-hand side. To establish the claim, note first that, if x ∈ E, then we
may find {mk}k≥0 with 0 ≤ mk ≤ 8 for all k such that

x =
∑
k≥0

mk

10k

In particular, for each n we have
n∑
k=0

mk

10k
≤ x ≤ 9 · 10−n−1 +

n∑
k=0

mk

10k
< 10−n +

n∑
k=0

mk

10k

so that x ∈ Im,n. Thus, for each n there is a tuple m for which x ∈ Im,n, which is to say that x ∈ E ′.
Thus we have shown that

E ⊆ E ′

We now consider the reverse inclusion. To this end, note first that Im,n ∩ Im′,n = ∅ unless m = m′, and
for n′ > n we have

∀m ∈ {0, . . . , 8}n ∀m′ ∈ {0, . . . , 8}n′ (Im′,n′ ⊆ Im,n or Im′,n′ ∩ Im,n = ∅)

This is trivial to demonstrate, so we omit the proof. Suppose now that x ∈ E ′. By the previous fact, we
may find a sequencem(1),m(2), . . . for which

Im(1),1 ⊇ Im(2),2 ⊇ · · · , x ∈
∞⋂
k=1

Im(k),k
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In particular,m(k+1) extendsm(k). Thus there is a single sequencem1,m2, . . . such that x ∈ I(m1,...,mn),n

for all n. Since the diameter of any Im,n is 10−n, it follows that

x =
∑
n≥0

mn

10n

and eachmk ∈ {0, . . . , 8}, so x ∈ E. ThusE = E ′.
Finally, note that each Im,n is Borel, soE ′ is clearly Borel, soE is Borel.
(b): Write µ for Lebesgue measure. Observe that, for each n,

µ

 ⋃
m0,...,mn
0≤mk≤8

Im,n

 ≤ 9n+110−n

which limits to 0 as n→∞. FromE = E ′ above, it follows that µ(E) = 0, as was to be shown.

Fall 2023 Problem 3. Let U and V be closed subspaces of a Hilbert spaceH over R so that

sup{〈u, v〉 : u ∈ U and v ∈ V are unit vectors} < 1

Define
W = {u+ v : u ∈ U and v ∈ V }

(a) Show that each w ∈ W admits a unique decomposition w = u+ v with u ∈ U and v ∈ V .

(b) Show that the setW is closed inH.

(c) Show that there is a bounded linear map T : W → U so that

w − T (w) ∈ V for all w ∈ W.

Proof. (a): Suppose w = u0 + v0 = u1 + v1 with u0, u1 ∈ U , v0, v1 ∈ V . For t ∈ R, write

ut = tu1 + (1− t)u0, vt = tv1 + (1− t)v0

Then ut + vt = w for all t ∈ R, and

‖w‖2 = ‖ut‖2 + ‖vt‖2 + 2〈ut, vt〉

If ut 6= 0 6= vt,
‖w‖2 > ‖ut‖2 + ‖vt‖2 − 2‖ut‖‖vt‖ = (‖ut‖ − ‖vt‖)2

Differentiating,

0 = 〈u1 − u0, ut〉+ 〈v1 − v0, vt〉+ 〈u1 − u0, vt〉+ 〈ut, v1 − v0〉

and again,
0 = ‖u1 − u0‖2 + ‖v1 − v0‖2 + 2〈u1 − u0, v1 − v0〉

But u1 − u0 ∈ U and v1 − v0 ∈ V , so by the assumed inequality

‖u1 − u0‖2 + ‖v1 − v0‖2 + 2〈u1 − u0, v1 − v0〉 ≥ (‖u1 − u0‖ − ‖v1 − v0‖)2
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with equality iff u1 = u0 or v1 = v0. Since the left-hand side is 0, we conclude that this is the case; it
clearly follows from u0 + v0 = u1 + v1 that the other equality holds as well, as was to be shown.

(b): We first show a lower bound on the map (u, v) 7→ u+ v. Note

‖u+ v‖2 ≥ ‖u‖2 + ‖v‖2 − 2c〈u, v〉 ≥ ‖u‖2 + ‖v‖2 − 2c‖u‖‖v‖ ≥ (1− c)(‖u‖2 + ‖v‖2)

so that, if {un + vn}n converges to w, it is Cauchy, and from

‖(un − um) + (vn − vm)‖ ≥ (1− c)1/2(‖un − um‖2 + ‖vn − vm‖2)1/2

which implies that {un}n, {vn}n are Cauchy, hence convergent to u, v, respectively. By the boundedness
of (u, v) 7→ u+ v, we conclude that {un + vn}n is convergent to u+ v, so indeed w ∈ U + V = W .

(c): Define T : W → U by T (u+ v) = u. By (a), this is well defined as a function. Clearly T is linear,
and has the property that w − T (w) ∈ V for all w ∈ W .

We claim that T is bounded. Indeed, for each x ≥ 0, the function

y 7→ x2 + y2 − 2cxy

has a minimum at the root
2y − 2cx = 0, i.e. y = cx

from which
x2 + y2 − 2cxy ≥ x2 + c2x2 − 2c2x2 = (1− c2)x2

so that

(1− c2)‖u‖2 ≤ (‖u‖ − ‖v‖)2 + 2(1− c)‖u‖‖v‖ ≤ ‖u‖2 + ‖v‖2 − 2c|〈u, v〉| ≤ ‖u+ v‖2

and hence
‖u‖ ≤ (1− c2)−1/2‖u+ v‖

as was to be shown.

Fall 2023 Problem 4. For f ∈ C1([0, 1];R), we define

E(f) :=

∫ 1

0

(|f ′(x)|2 + |f(x)|6 − |f(x)|4)dx

(i) Show that
Emin = inf

f∈C1([0,1];R)
E(f) > −∞.

(ii) Show that if fn ∈ C1([0, 1];R) is a minimizing sequence, that is, E(fn)→ Emin as n→∞, then
the sequence {fn} admits a subsequence that converges in the space C([0, 1];R).

Proof. (i): The polynomial t 7→ t6 − t4 is even with positive leading coefficient, so there is some c ∈ R
such that t6 − t4 ≥ c for all t ∈ R. Thus for any f ∈ C1([0, 1];R)

E(f) ≥
∫ 1

0

cdx = c

and thusEmin ≥ c > −∞, as was to be shown.
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(ii): We show that any such family {fn}n is uniformly bounded and equicontinuous. We start with the
latter. For any 0 ≤ x < y ≤ 1,

|fn(y)− fn(x)| =
∣∣∣∣∫ y

x

f ′n(t)dt

∣∣∣∣ ≤ |x− y|1/2(∫ 1

0

|f ′n(t)|2dt
)1/2

LetA > 0 be such thatE(fn) < A for all n. Recall the number c from (i). Then∫ 1

0

|f ′n(t)|2dt ≤ −c+ E(fn) < A− c

so that
|fn(y)− fn(x)| ≤ |x− y|1/2|A− c|1/2

for all n and all 0 ≤ x < y ≤ 1. It follows that {fn}n is equicontinuous.
We now show that {fn}n is uniformly bounded. If x ∈ [0, 1] and |f(x)| = r, then taking small δ > 0

such that |fn(x)− fn(y)| ≤ 1 for all n and x, y with |x− y| ≤ δ,

E(fn) ≥ c+

∫
(x−δ,x+δ)∩[0,1]

|f ′(t)|2 + |f(t)|6 − |f(t)|4dt ≥ c+ 2δ(r − 1)

If r > 0 is so large that c+ 2δ(r − 1) > A, then we violate the hypothesis that E(fn) < A. Thus the fn
are uniformly bounded.

Finally, observe that Arzelà-Ascoli now implies the desired result.

Fall 2023 Problem 5. Let ω : R → (0,∞) be a locally integrable function to which we associate a
Borel measure via

ω(E) =

∫
E

ω(x)dx.

LetM denote the Hardy-Littlewood maximal function

(Mf)(x) = sup
r>0

1

2r

∫ x+r

x−r
|f(y)|dy.

Assume that the function 1
ω

is locally integrable and that there exists C > 0 so that

ω({x ∈ R : |(Mf)(x)| > λ}) ≤ C

λ2

∫
R
|f(x)|2ω(x)dx

uniformly in λ > 0 and functions f : R→ R for which the right-hand side above is finite. Prove that

sup
x∈R,r>0

(
1

2r

∫ x+r

x−r
ω(y)dy

)(
1

2r

∫ x+r

x−r

1

ω(y)
dy

)
<∞.

Hint: Apply the hypothesis to a well chosen function f and constant λ.

Proof. We exhibit a particular upper-bound to the expression in the supremum. Fix x ∈ R and r > 0.
Write f(y) = 1[x−r,x+r](y) 1

ω(y)
and λ = 1

8r

∫ x+r

x−r
1

ω(y)
dy, which we may assume is positive. Then

ω({y ∈ R : |(Mf)(y)| > λ}) ≤ 32Cr
1
2r

∫ x+r

x−r
1

ω(y)
dy
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If |y − x| ≤ r,

Mf(y) ≥ 1

4r

∫ x+r

x−r

1

ω(t)
dt = 2λ

so we reach the conclusion that {y ∈ R : |(Mf)(y) > λ} contains all of [x− r, x+ r]. Thus

ω({y ∈ R : |(Mf)(y) > λ}) ≥
∫ x+r

x−r
ω(y)dy

and we conclude by rearranging the first inequality that(
1

2r

∫ x+r

x−r
ω(y)dy

)(
1

2r

∫ x+r

x−r
ω(y)

)
≤ 16C

Since the bound holds for all choices of x, r, we are done.

Fall 2023 Problem 6. Consider the following sequence of functions:

fn : R→ R, fn(x) =
sin(n4x)

n3x

(a) Prove that fn does not converge to zero in L4(R).

(b) Prove that fn does converge to zero weakly in L4(R), that is, for any φ ∈ L4/3(R) we have∫
R
fn(x)φ(x)dx→ 0 as n→∞.

Proof. (a): Note that, for some ε > 0,∣∣∣∣sinxx
∣∣∣∣ ≥ ε1[−ε,ε](x) ∀x ∈ R

so that, changing variables, ∫ ∣∣∣∣sin(n4x)

n3x

∣∣∣∣4 dx =

∫ ∣∣∣∣sinuu
∣∣∣∣4 du & ε5 > 0

for all n; consequently, ‖fn‖4 is uniformly bounded away from 0, showing the result.
(b): For each φ and n, ∫

fn(x)φ(x) =

∫
sin(n4x)

n3x
φ(x)dx

= n−4

∫
sinu

u
φ(n−4u)du

Consider the special case φ = 1[a,b] for some 0 < a < b. Then∣∣∣∣∫ fn(x)φ(x)dx

∣∣∣∣ = n−4

∣∣∣∣∣
∫ n4b

n4a

sinu

u
du

∣∣∣∣∣
. n−4 + n−4

∫ n4b

n4a

∣∣∣cosu

u2

∣∣∣ du→ 0
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as n→∞.
Next, if φ = 1[0,a] for some a > 0,∣∣∣∣∫ fn(x)φ(x)dx

∣∣∣∣ = n−4

∣∣∣∣∣
∫ n4a

0

sinu

u
du

∣∣∣∣∣
. n−4 + n−4

∫ n4a

0

∣∣∣cosu

u2

∣∣∣ du→ 0

as n → ∞. By symmetry and linearity, it follows that
∫
fnφ → 0 whenever φ is the indicator of an

interval. By linearity, the same holds for linear combinations of such.
Next, for any φ ∈ L4/3(R) and any ε > 0, we may find ψ a finite linear combination of indicators of

intervals for which ‖φ− ψ‖4/3 < ε. Then

lim sup
n→∞

∣∣∣∣∫ fnφ

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∫ fnψ

∣∣∣∣+ lim sup
n→∞

∫
|fn(φ− ψ)|

≤ 0 + lim sup
n
‖fn‖4‖φ− ψ‖4/3

≤ ε lim sup
n
‖fn‖4

using Hölder. By the calculation in (a), the fn have constant L4 norm in n, so in fact

lim sup
n→∞

∣∣∣∣∫ fnφ

∣∣∣∣ . ε

Since this holds for arbitrary ε > 0, the desired result follows.

Fall 2023 Problem 7. Show that for every real number x that is not an integer, the series
∞∑
n=1

1

x2 − n2

is absolutely convergent, and sums to π cot(πx)
2x

− 1
2x2

.

Proof. We begin by demonstrating that the series converges absolutely for each x ∈ R \Z. For such an x
and n > 2|x|, ∣∣∣∣ 1

x2 − n2

∣∣∣∣ ≤ n−2 1

1− (x/n)2
≤ 2n−2

so that the series in question converges at least as fast as the sum over n 7→ n−2, which converges.
Next, we start verifying the identity by computing the residues of π cot(πz)

2z
at z ∈ Z. If n ∈ Z is

nonzero, then we compute

Res
[
π cot(πz)

2z
, n

]
=
π cos(πz)/z

2π cos(πz)

∣∣∣∣
z=n

=
1

2n

We now evaluate the residue at zero. Taking Laurent expansions,

π cot(πz)

2z
=

π

2z

1− π2z2

2
+O(z4)

πz +O(z3)
=

1

2z2

(
1− π2z2

2
+O(z3)

)
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which has zero residue. It is clear that the function in question has no other singularities in C.
We apply this to a Cauchy integral for the function under consideration. Let N ∈ N and define the

paths as follows: γ(1)
N is the straight-line path from−(N + 1

2
)− iN to (N + 1

2
)− iN ; γ(2)

N is the straight-
line path from (N + 1

2
) + iN ; γ(3)

N is the straight-line path from (N + 1
2
) + iN to−(N + 1

2
) + iN ; γ(4)

N

is the straight-line path from−(N + 1
2
)− iN . Lastly, use ΓN to denote the concatenated path formed by

γ
(1)
N → γ

(2)
N → γ

(3)
N → γ

(4)
N .

If z ∈ C \ Z is enclosed by ΓN , then by the preceding residue calculation

1

2πi

∫
ΓN

π cot(πw)

2w(w − z)
dw =

π cot(πz)

2z
− 1

2z2
+

∑
0<|n|≤N

1

2n(n− z)

Observe also that ∑
0<|n|≤N

1

2n(n− z)
=

N∑
n=1

1

n2 − z2

We claim that the contour integral has limit 0 asN →∞; we may assume that |z| ≤ 1
2
N . We control the

contributions along the γ(i)
N . First we study γ(1)

N . For any w along γ(1)
N , we may write w = x − iN with

−(N + 1
2
) ≤ x ≤ N + 1

2
. Then

1

sin πw
=

2i

eπi(x−iN) − e−πi(x−iN)
= e−πN

2i

eπix − e−πixe−2πN

and
cos(πw) =

eπNeiπx − e−πNe−iπw

2
= eπN

eiπx − e−2πNe−iπw

2

so that, for z ∈ R \ Z, ∣∣∣∣ π cot(πw)

2w(w − z)

∣∣∣∣ ≤ π

2N2

2

1− e−2πN
≤ π

N2

by elementary estimates. Similarly, along γ(3)
N we have, for z ∈ R \ Z,∣∣∣∣ π cot(πw)

2w(w − z)

∣∣∣∣ ≤ π

N2

so that ∫
γ
(1)
N ∪γ

(3)
N

∣∣∣∣ π cot(πw)

2w(w − z)

∣∣∣∣ |dw| ≤ 8πN−1

Along γ(2)
N , we have w = (N + 1

2
) + iy with−N ≤ y ≤ N . Then

1

sin πw
=

2i

eπi((N+ 1
2

)+iy) − e−πi((N+ 1
2

)+iy)
=

2(−1)N

e−πy + eπy

and

cos πw =
e−πyeiπ(N+ 1

2
) − eπye−iπ(N+ 1

2
)

2
= i(−1)N(eπy + e−πy)

so that, by elementary estimates, assuming |z| < N ,∣∣∣∣ π cot(πw)

2w(w − z)

∣∣∣∣ ≤ π

N(N + 1
2
− |z|)
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and ∫
γ
(2)
N

∣∣∣∣ π cot(πw)

2w(w − z)

∣∣∣∣ |dw| ≤ 2π

N + 1
2
− |z|

which limits to zero asN →∞. By the same token,

lim
N→∞

∫
γ
(4)
N

∣∣∣∣ π cot(πw)

2w(w − z)

∣∣∣∣ |dw| = 0

In total, we conclude that
lim
N→∞

∫
ΓN

π cot(πw)

2w(w − z)
dw = 0

i.e.

lim
N→∞

(
π cot(πz)

2z
− 1

2z2
+

N∑
n=1

1

n2 − z2

)
= 0

for any z ∈ R \ Z. Rearranging and substituting real-variable notation, we obtain
∞∑
n=1

1

x2 − n2
=
π cot(πx)

2x
− 1

2x2

for each x ∈ R \ Z, as was to be shown.

Fall 2023 Problem 8. For z1, z2 in the unit diskD(0, 1) := {z ∈ C : |z| < 1}, define the quantity

∆(z1, z2) :=

∣∣∣∣ z1 − z2

1− z̄1z2

∣∣∣∣ .
(i) Let α ∈ D(0, 1), and let g : D(0, 1)→ D(0, 1) denote the Möbius transformation

g(z) :=
z − α
1− ᾱz

.

Show that ∆(g(z1), g(z2)) = ∆(z1, z2) for all z1, z2 ∈ D(0, 1).

(ii) If f : D(0, 1)→ D(0, 1) is holomorphic and z1, z2 are elements ofD(0, 1), establish the inequality

∆(f(z1), f(z2)) ≤ ∆(z1, z2).

(iii) Determine when equality occurs in (ii).

Proof. (i): We first demonstrate the case z2 = 0. Then

g(z2) = −α

and
∆(z1, z2) = |z1|
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On the other hand,

∆(g(z1), g(z2)) =

∣∣∣∣∣
z1−α
1−ᾱz1 + α

1 + z̄1−ᾱ
1−αz̄1α

∣∣∣∣∣
=

∣∣∣∣∣
z1−α
1−ᾱz1 + α

1 + z1−α
1−ᾱz1 ᾱ

∣∣∣∣∣
=

∣∣∣∣ z1 − α + α− |α|2z1

1− ᾱz1 + ᾱz1 − |α|2

∣∣∣∣
= |z1| = ∆(z1, z2)

as was to be validated. Thus the invariance holds for arbitrary Möbius automorphism of the disk when
z2. For any other z2 ∈ D(0, 1), let

h : D(0, 1)→ D(0, 1), h(z) =
z + z2

1 + z̄2z

Then

∆(z1, z2) = ∆(h(h−1(z1)), h(0)) = ∆(h−1(z1), 0) = ∆((g◦h)(h−1(z1)), (g◦h)(0)) = ∆(g(z1), g(z2))

as was to be verified.
(ii): Write g(z) = z−f(z1)

1−f(z1)z
and h(z) = z+z1

1+z1z
. Then

∆(f(z1), f(z2)) = ∆(g(f(z1), g(f(z2))) = |g(f(z2))|

Observe that g◦f ◦h is a holomorphic mapD(0, 1)→ D(0, 1) for which 0 7→ 0. By the Schwarz lemma,

|g(f(h(z)))| ≤ |z| ∀z ∈ D(0, 1)

from which we have

|g(f(z2))| ≤ |h−1(z2)| = ∆(0, h−1(z2)) = ∆(h(0), z2)

i.e.
∆(f(z1), f(z2)) ≤ ∆(z1, z2)

(iii): Inspection of the proof in (ii) reveals that equality holds if and only if

|g(f(h(z)))| = |z| at z = h−1(z2)

Since z1 6= z2, h−1(z2) 6= 0. Thus equality holds if and only if g ◦ f ◦ h is of the form z 7→ eiθz for some
θ ∈ R. Since this is a special case of a Möbius transformation, by pre- and post-composing the functional
identity by h−1 and g−1, respectively, we see that f must be a Möbius transformation fixing the boundary
of the unit disk. By (i), this necessary condition is also sufficient.

Fall 2023 Problem 9. (i) Let f : C → C be an entire function, and suppose that there exist two
complex numbers ω1, ω2, linearly independent over the reals, as well as complex constants c1, c2,
such that f(z+ω1) = f(z)+ c1 and f(z+ω2) = f(z)+ c2 for all complex numbers z. Show that
f is a linear polynomial, that is to say there exist complex numbers a, b such that f(z) = az + b.
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(ii) For any real number a, letRa denote the closed rectangle

Ra := {x+ iy : 0 ≤ x ≤ a; 0 ≤ y ≤ 1}

Suppose there is a homeomorphism φ : Ra → Rb which is holomorphic on the interior ofRa, and
maps each of the four sides of Ra to the corresponding side of Rb (for instance, φ maps the right
side {a + iy : 0 ≤ y ≤ 1} of Ra to the right side {b + iy : 0 ≤ y ≤ 1} of Rb). Show that a = b.
(Hint: is there somehow a way to enlarge the domain of φ? You may find part (i) to be useful.)

Proof. (i) Fix z ∈ C. LetC > 0 be such that |ω1|, |ω2| ∈ (C−1, C). LetR�C 1 be sufficiently large. Let
K > 0 be such that |f(w)| ≤ K on |w − z| ≤ 10C . Then, by Cauchy,

f ′′(z) =
2

2πi

∫
|w−z|=R

f(w)

(z − w)3
dw

By repeatedly invoking the functional identities and the local upper bound, we conclude that

|f(w)| . K + CR ∀|w − z| = R

and hence
|f ′′(z)| . R(K + CR)R−3

which decays to 0 asR→∞. Thus f ′′(z) = 0 for all z ∈ C, so certainly f is linear.
(ii): Sketch, because this argument is annoying to write precisely. We perform a Schwarz reflection

on φ. Write f1(z) = 2a − z̄ and f2(z) = 2b − z̄. Then f2 ◦ φ ◦ f1 is holomorphic on the interior of
f1(Ra) = f−1

1 (Ra), and for any 0 ≤ y ≤ 1 we have

(f2 ◦ φ ◦ f1)(a+ iy) = (f2 ◦ φ)(a+ iy) = f2(b+ iy′) = b+ iy′

where y′ is such that φ(a + iy) = b + iy′. Thus φ and f2 ◦ φ ◦ f1 agree on the common boundary
Ra ∩ f1(Ra), so extend to a homeomorphism R2a → R2b which is analytic on the interior (and still has
the boundary mapping properties assumed).

Repeating this extension, first to the right to infinity and then to the left, we obtain an extension of φ
to the strip {x + iy : 0 ≤ y ≤ 1} defining an auto-homeomorphism on that domain, holomorphic on
the interior. Repeating the procedure again on the top/bottom edges, using reflection maps of the form
g1 = 2i+ z̄ and g2 = −2i+ z̄, we conclude that φ extends to an entire function.

We next verify that φ satisfies the hypotheses of (i). Write again f1(z) = 2a− z̄ and f2(z) = 2b− z̄,
and next h1(z) = 4a− z̄ and h2(z) = 4b− z̄. Then, in doing the Schwarz reflection, we have arranged
for φ to satisfy the functional equation

φ = h2 ◦ f2 ◦ φ ◦ f1 ◦ h1

Note that
f1(h1(z)) = −2a+ z, h2(f2(z)) = 2b+ z

so
φ(z) = φ(z − 2a) + 2b

Initially we may only have this relation on the interior of Ra, but by uniqueness we conclude that this
holds on all of C. Similarly,

φ(z) = φ(2i+ z)− 2i

on all of C. Thus the hypotheses of (i) are satisfied, so φ is linear. It is straightforward to verify that we
must have a = b.
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Fall 2023 Problem 10. Let f : R→ Cbe a smooth function with compact support, and letF : C\R→
R be the Cauchy integral

F (z) :=
1

2πi

∫ ∞
−∞

f(y)dy

y − z
.

(i) Explain why F is holomorphic on C \ R.

(ii) For any real number x, show that the principal value integral

p.v.
∫ ∞
−∞

f(y)dy

y − x
:= lim

ε→0+

∫
|y−x|≥ε

f(y)dy

y − x

exists, and establish the Sokhotski-Plemelj formulae

lim
ε→0+

F (x+ iε) =
1

2
f(x) +

1

2πi
p.v.
∫ ∞
−∞

f(y)dy

y − x

and
lim
ε→0+

F (x− iε) = −1

2
f(x) +

1

2πi
p.v.
∫ ∞
−∞

f(y)dy

y − x

Proof. (i): Let T be any triangle in C\R; it suffices to consider the case T is in the upper half-plane. Since
T is compact, there is ε > 0 such that Im(z) > ε for all z ∈ T . Consequently, we have an upper bound∣∣∣∣ f(y)

y − z

∣∣∣∣ ≤ ε−1|f(y)| ∀(y, z) ∈ R× T.

Thus ∫
T

∫ ∞
−∞

∣∣∣∣ f(y)

y − z

∣∣∣∣ |dz|dy ≤ length(T )‖f‖1ε
−1 <∞

so, by Fubini-Tonelli, we may commute integrals:∫
T

F (z)dz =
1

2πi

∫ ∞
−∞

f(y)

∫
T

1

y − z
dzdy

By Cauchy, and the fact that T is contained in the upper half-plane, the inner integral is zero. Thus the
integral of F (z) over any triangle in C \ R is zero, so F is holomorphic there.

(ii): We would like to show that the principal value integral exists. Translating, it suffices to takex = 0.
Let 0 < δ < ε < 1. Since f is smooth, there is α > 0 such that |f(x) − f(0)| ≤ α|x| for all |x| ≤ 1.
Then ∣∣∣∣∫

δ≤|y|≤ε

f(y)dy

y

∣∣∣∣ =

∣∣∣∣∫
δ≤|y|≤ε

f(y)− f(0)dy

y

∣∣∣∣ (using y 7→ 1

y
odd)

≤ α

∫
δ≤|y|≤ε

dy = 2α(ε− δ)

The left-most expression is just ∫
|y|>δ

f(y)dy

y
−
∫
|y|>ε

f(y)dy

y
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so that the family

r 7→
∫
|y|>r

f(y)dy

y

is Cauchy along any decreasing sequence rn → 0. It follows that the limit of the previous function of r
exists as r → 0+, which is to say that the principal value integral exists.

We turn to the formulae. Note first the change-of-variable calculation

F (−z) =
1

2πi

∫ ∞
−∞

f(y)dy

y + z

= − 1

2πi

∫ ∞
−∞

Rf(−y)dy

−y − z

= − 1

2πi

∫ ∞
−∞

Rf(y)dy

y − z

where we write R for the reflection transform: Rf(y) = f(−y). Consequently, if we were to verify the
first Sokhotski-Plemelj formula for all f ∈ C∞c (R), we could conclude that

lim
ε→0+

F (x− iε) = − lim
ε→0+

1

2πi

∫ ∞
−∞

Rf(y)dy

y − (−x+ iε)

= −1

2
Rf(−x)− 1

2πi
p.v.

∫ ∞
−∞

Rf(y)dy

y + x

= −1

2
f(x) +

1

2πi
p.v.

∫ ∞
−∞

f(−y)dy

−y − x

= −1

2
f(x) +

1

2πi
p.v.

∫ ∞
−∞

f(y)dy

y − x

which is the second Sokhotski-Plemelj formula.
We now turn to the first. By translating f , we may assume x = 0. For y ∈ R, we note that

1

y − iε
=

y

y2 + ε2
+ i

ε

y2 + ε2

and hence
F (iε) =

1

2πi

∫ ∞
−∞

f(y)
y

y2 + ε2
dy +

1

2π

∫ ∞
−∞

f(y)
ε

y2 + ε2
dy

We will demonstrate that each summand has a limit as ε → 0+, corresponding to one of the two sum-
mands of the Sokhotski-Plemelj formula.

First, note that the family of functions

y 7→ ε

y2 + ε2

form an approximate identity, up to a constant. Indeed,

ε

y2 + ε2
=

1

ε

1

1 + (y/ε)2
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which is the standard L1 rescaling of the model function y 7→ 1
1+y2

, which has L1 mass π. It follows
directly that

lim
ε→0+

1

2π

∫ ∞
−∞

f(y)
ε

y2 + ε2
dy =

1

2
f(0)

We now handle the other term. Since y 7→ y
y2+ε2

is odd, we may modify f by subtracting off an even
bump function that takes value f(0) on a neighborhood of 0 to reduce to the case that f(0) = 0. Since f
is smooth, there is α > 0 such that |f(x)| ≤ α|x| when |x| ≤ 1. Then we observe that∣∣∣∣∫

|y|≤ε1/2
f(y)

y

y2 + ε2
dy

∣∣∣∣ ≤ α

∫
|y|≤ε1/2

y2

y2 + ε2
dy

≤ 2αε1/2

so that
lim
ε→0+

∫
|y|≤ε1/2

f(y)
y

y2 + ε2
dy = 0

On the complementary regime |y| > ε1/2, we note that∣∣∣∣1y − y

y2 + ε2

∣∣∣∣ =
ε2

|y|(y2 + ε2)
≤ ε1/2

so that ∣∣∣∣∫
|y|>ε1/2

f(y)

y
dy −

∫
|y|>ε1/2

f(y)
y

y2 + ε2
dy

∣∣∣∣ ≤ ∫
R
|f(y)|ε1/2dy → 0

as ε→ 0+, recalling that f has finite L1 mass. Thus we have

1

2πi
p.v.

∫ ∞
−∞

f(y)dy

y
=

1

2πi
lim
ε→0+

∫
|y|>ε

f(y)dy

y

=
1

2πi
lim
ε→0+

[∫
|y|>ε

f(y)
ε2

y(y2 + ε2)
dy +

∫
|y|>ε

f(y)
y

y2 + ε2
dy

]
= lim

ε→0+

1

2πi

∫
|y|>ε

f(y)Re

(
1

y − iε

)
dy

in particular validating that last limit exists. Since we have also found that

lim
ε→0+

1

2πi

∫ ∞
−∞

f(y)iIm

(
1

y − iε

)
dy =

1

2
f(0)

we may combine the previous two displays to obtain

lim
ε→0+

F (iε) =
1

2
f(0) +

1

2πi
p.v.

∫ ∞
−∞

f(y)dy

y − x

as was to be shown. By the remarks and reductions earlier in this solution, we are done.

Fall 2023 Problem 11. Let f : C→ C be an entire function which is not a polynomial. Show that the
expression

1

logR

∫ 2π

0

max(log |f(Reiθ)|, 0)dθ

diverges to infinity asR→ +∞.
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Proof. Under the assumption, we may find |α| ≤ 1 such that fα := f − α has infinitely many zeroes,
and 0 is not one of them. ForR > 1 such that fα is nonvanishing on |z| = R, letBR(z) be the (rescaled)
Blaschke factor

n∏
j=1

(z/R)− (zj/R)

1− (zj/R)(z/R)

where z1, . . . , zn are the zeroes of fα on {|z| < R}. Then there exists a zero-free holomorphic function
gR defined on a neighborhood of {|z| ≤ R} for which

fα(z) = gR(z)BR(z)

Observe that |BR(Reiθ)| = 1 for all θ. Consequently,

log |fα(Reiθ)| = log |gR(Reiθ)|

Notice that z 7→ log |gR(z)| is harmonic. Thus∫ 2π

0

log |gR(Reiθ)|dθ = 2π log |gR(0)| = 2π log |fα(0)| − 2π
n∑
j=1

log
|zj|
R

Notice that each |zj| ≤ R, so after incorporating the minus sign, each of the last summands is nonnegative.
Removing some of the zeroes, we have a lower bound∫ 2π

0

log |gR(Reiθ)|dθ ≥ 2π log |fα(0)|+ 2π
∑

zj :|zj |≤R1/2

log
R

|zj|

Each of the last summands is at least 1
2

logR, so we obtain the lower bound∫ 2π

0

log |gR(Reiθ)|dθ ≥ 2π log |fα(0)|+ π logR ·#{z ∈ C : fα(z) = 0, |z| ≤ R1/2}

Dividing out by logR,

1

logR

∫ 2π

0

log |gR(Reiθ)|dθ =
2π

logR
log |fα(0)|+ π ·#{z ∈ C : fα(z) = 0, |z| ≤ R1/2}

The quantity being enumerated is unbounded as R→ +∞. Consequently,

lim
R→+∞

∫ 2π

0

log |fα(Reiθ)|dθ = +∞

Finally, observe that, for each z,

max(log |f(z)− α|, 0) ≤ max(log |f(z)|, 0) + max(log |α|, 0) + log 2 = max(log |f(z)|, 0) + log 2

so that ∫ 2π

0

max(log |f(Reiθ)|, 0) ≥ −2π log 2 +

∫ 2π

0

log |fα(Reiθ)|dθ

from which the desired conclusion follows.
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Fall 2023 Problem 12. Show that the improper Fourier integral

p.v.
∫ ∞
−∞

sin(x)

x
eiξxdx = lim

ε→0+,R→∞

∫
ε≤|x|≤R

sin(x)

x
eiξxdx

is equal to π when ξ is a real number with |ξ| < 1, and vanishes when ξ is a real number with |ξ| > 1.

Proof. Suppose first that |ξ| < 1. For 0 < ε < 1 < R <∞, write Γε,R,+ to be the contour which makes
a clockwise half-circle of radius ε from −ε to ε along γ(1)

ε,R,+, makes a line segment from ε to R along
γ

(2)
ε,R,+, makes a counterclockwise half-circle of radius R from R to −R along γ(3)

ε,R,+, and makes a line
segment from−R to−ε along γ(4)

ε,R,+. We take γ(2)
ε,R,− = γ

(2)
ε,R,+ and γ(4)

ε,R,− = γ
(4)
ε,R,+. Set γ(1)

ε,R,− and γ(3)
ε,R,−

to be the reflections of γ(1)
ε,R,+ and γ(3)

ε,R,+ under z 7→ z̄, respectively. Set Γε,R,− to be the corresponding
concatenated contour.

Note that ∫
Γε,R,+

ei(ξ+1)z

z
dz = 0 =

∫
Γε,R,−

e−i(ξ+1)z

z
dz

We now evaluate each of the components. By the fractional residue theorem,

lim
ε→0+

∫
γ
(1)
ε,R,+

ei(ξ+1)z

z
dz = −πi

and
lim
ε→0+

∫
γ
(1)
ε,R,−

ei(ξ−1)z

z
dz = πi

On the upper component, ∣∣∣∣∣ei(ξ+1)Reiθ

Reiθ

∣∣∣∣∣ = R−1e−R(ξ+1) sin θ

Since |ξ| < 1, there is some δ > 0 such that ξ + 1 > δ. Consequently,∫
γε,R,+

∣∣∣∣ei(ξ+1)z

z

∣∣∣∣ dz ≤ ∫ π

0

e−Rδ sin θdθ

By the dominated convergence theorem,

lim
R→+∞

∫ π

0

e−Rδ sin θdθ = 0

so that
lim

R→+∞

∫
γε,R,+

ei(ξ+1)z

z
dz = 0

By the same argument,

lim
R→+∞

∫
γε,R,−

ei(ξ−1)z

z
dz = 0
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Putting it all together,

0 =

∫
Γε,R,+

ei(ξ+1)z

z
dz +

∫
Γε,R,−

ei(ξ−1)z

z
dz

= 2i

∫
ε≤|x|≤R

sin(x)

x
eiξxdx

+

∫
γ
(1)
ε,R,+

ei(ξ+1)z

z
dz +

∫
γ
(1)
ε,R,−

ei(ξ−1)z

z
dz

+

∫
γ
(3)
ε,R,+

ei(ξ+1)z

z
dz +

∫
γ
(3)
ε,R,−

ei(ξ−1)z

z
dz

from which we extract the limit
p.v.
∫ ∞
−∞

sin(x)

x
eiξxdx = π

We now consider the setting |ξ| > 1. Since the kernel x 7→ sin(x)
x

is even, we may assume ξ > 1. Then
as before

lim
ε→0+

∫
γ
(1)
ε,R,+

ei(ξ+1)z

z
dz = −πi

and
lim

R→+∞

∫
γ
(3)
ε,R,+

ei(ξ+1)z

z
dz = 0

We substitute a different set of estimates, identical to those above up to rewriting:

lim
ε→0+

∫
γ
(1)
ε,R,+

ei(ξ−1)z

z
dz = −πi

lim
R→+∞

∫
γ
(3)
ε,R,+

ei(ξ−1)z

z
dz = 0

Putting the above together,

0 =

∫
Γε,R,+

ei(ξ+1)z

z
dz +

∫
Γε,R,+

ei(ξ−1)z

z
dz

= 2i

∫
ε≤|x|≤R

sin(x)

x
eiξxdx

+

∫
γ
(1)
ε,R,+

ei(ξ+1)z

z
dz +

∫
γ
(1)
ε,R,+

ei(ξ−1)z

z
dz

+

∫
γ
(3)
ε,R,+

ei(ξ+1)z

z
dz +

∫
γ
(3)
ε,R,+

ei(ξ−1)z

z
dz

which now supplies the alternate principal value

p.v.
∫ ∞
−∞

sin(x)

x
eiξxdx = 0

as was to be established.
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11 Spring 2024
Spring 2024 Problem 1. For each n ∈ N, let an : R → [0,∞) be a Borel-measurable function. Show
that {

(x, y) ∈ R× [0,∞) :
∞∑
n=1

an(x)yn <∞

}
is Borel-measurable.

Proof. LetA be the set in question. Then we may write

A =
∞⋃
k=1

Ak, Ak =

{
(x, y) ∈ R× [0,∞) :

∞∑
n=1

an(x)yn ≤ k

}
,

and

Ak =
∞⋂
j=1

Ak,j, Ak,j =

{
(x, y) ∈ R× [0,∞) :

j∑
n=1

an(x)yn ≤ k

}
.

For each j, the function

fj(x, y) =

j∑
n=1

an(x)yn

is Borel-measurable. Thus,
f−1
j ([0, k]) = Ak,j ∈ B,

soA is Borel, as was to be shown.

Spring 2024 Problem 2. Let K ⊆ R be a compact set of positive Lebesgue measure, that is, |K| > 0.
For each n ∈ N, we define setsKn and Borel measures µn as follows:

Kn := {x ∈ R : dist(x,K) ≤ 1

n
} and µn(A) =

|A ∩Kn|
|Kn|

.

Suppose µn → µ in the weak-∗ topology. Show that |supp(µ)| = |K|.

Proof. We first demonstrate that supp(µ) ⊆ K . If x 6∈ K , fix N ∈ N such that dist(x,K) > 2
N

. Let fn
be a sequence of functions satisfying

fn(R) ⊆ [0, 1], f ≡ 1 onB(x,N−1), supp(fn) ⊆ B(x,
3

2N
).

Then fn → 1B(x,N−1) as n→∞. By the dominated convergence theorem,

〈fn, µ〉 → µ(B(x,N−1)).

For k > N ,
0 ≤ 〈fn, µk〉 ≤ µk(B(x, 2/N)) = 0.

It follows that
0 = lim

k→∞
〈fn, µk〉 = 〈fn, µ〉,
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so µ(B(x,N−1)) = 0. Thus x 6∈ supp(µ), so supp(µ) ⊆ K .
Next, we show that supp(µ) contains every Lebesgue point of K . It follows |supp(µ)| = |K|. To

this end, let x ∈ K be Lebesgue for K . Let k ∈ N; we wish to show that µ(B(x, 1/k)) > 0. Let f be
nonnegative with support inB(x, 1/k) such that f ≡ 1 onB(x, 1/2k); it suffices to show 〈µ, f〉 > 0.

Since x is Lebesgue, we may find ε > 0 such that |K ∩ B(x, ε)| ≥ 0.99|B(x, ε)| and ε < 1
2k

. In
particular, for each n, we have

|Kn ∩B(x, ε)|
|Kn|

≥ 0.99|B(x, ε)|
|Kn|

Since f ≥ 1B(x,ε), we have

〈µn, f〉 ≥
0.99|B(x, ε)|
|Kn|

By continuity from above of Lebesgue measure and the assumption of weak-∗ convergence,

〈µ, f〉 ≥ 0.99|B(x, ε)|
|K|

> 0

and we are done.

Spring 2024 Problem 3. Fix f ∈ L3(R2) with respect to Lebesgue measure. Show that

fn(x, y) :=

∫ 1

0

∫ 2π

0

f

(
x+

r cos(θ)

n
, y +

r sin(θ)

n

)
[1− 2r]dθdr

converges to zero as n→∞ in the following two ways:

(a) almost everywhere.

(b) in L3(R2).

Proof. Let Tn be the nth integral operator specified above for f ∈ L3(R2). Then Tn = An −Bn, where

Anf(x, y) =

∫ 1

0

∫ 2π

0

f

(
x+

r cos(θ)

n
, y +

r sin(θ)

n

)
dθdr

Bnf(x, y) =

∫ 1

0

∫ 2π

0

f

(
x+

r cos(θ)

n
, y +

r sin(θ)

n

)
2rdθdr

Let (x, y) be any Lebesgue point for f . Then

Bnf(x, y)→ 2πf(x, y)

as n→∞, sinceBn is just the usual average up to a constant factor.

142



To studyAn, we note that for each nonnegative g ∈ L3(R2)

Ang(x, y) =
∞∑
k=0

∫ 2−k

2−k−1

r−1

∫ 2π

0

g

(
x+

r cos(θ)

n
, y +

r sin(θ)

n

)
rdθdr

≤ 2
∞∑
k=0

n2k
∫ 2−k

2−k−1

∫ 2π

0

g

(
x+

r cos(θ)

n
, y +

r sin(θ)

n

)
(r/n)dθdr

≤ 2
∞∑
k=0

n2k
∫
‖z−(x,y)‖≤ 1

n
2−k

g(z)dz

≤ 10

n

∞∑
k=0

2−kA 1
n

2−kg(x, y)

where
Arg(x, y) =

1

|B((x, y), r)|

∫
B((x,y),r)

g(z)dz

Thus, if (x, y) is a Lebesgue point for f , and for arbitrary ε > 0 we choose δ > 0 such that

1

|B((x, y), r)|

∫
‖z−(x,y)‖≤r

|f(z)− f(x, y)|dz < ε ∀r < δ

then for each n such that 1
n
< δ we conclude

An[|g − g(x, y)|](z) ≤ 10

n

∞∑
k=0

2−kε ≤ 10

n
ε.

Thus, if (x, y) is a Lebesgue point for f with f(x, y) = 0, we haveAnf(x, y)→ 0. On the other hand,

An[1](x) =

∫ 1

0

∫ 2π

0

dθdr = 2π,

so that for general Lebesgue point for f

Anf(x, y)→ 2πf(x, y).

Thus Tnf(x, y) = Anf(x, y) − Bnf(x, y) → 0 for each Lebesgue point. Since almost every point is
Lebesgue, we conclude that the convergence happens almost everywhere.

It remains to consider norm convergence. It is easy to see that Tng → 0 uniformly, for each g ∈
C∞c (R2). Thus, if ε > 0 is arbitrary and g ∈ C∞c (R2) is such that ‖f − g‖L3(R2) < ε,

‖ lim sup
n
|Tnf |‖L3(R2) ≤ ‖ lim sup

n
|Tng|‖L3(R2) + ‖ lim sup

n
|Tn[f − g]|‖L3(R2)

= ‖ lim sup
n
|Tn[f − g]|‖L3(R2).

We bound:
|Tn[f − g]| ≤ An[|f − g|] +Bn[|f − g|]
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by the triangle inequality. Note thatBn[|f−g|] ≤M [|f−g|], whereM is the Hardy-Littlewood maximal
function. Repeating the analysis from part (a),

An[|f − g|] ≤ 10

n

∞∑
k=0

2−kA 1
n

2−k [|f − g|]

so thatAn[|f − g|] ≤ 20
n
M [|f − g|]. Since M is L3 → L3 bounded,

‖ lim sup
n
|Tn[f − g]|‖L3(R2) ≤ 30‖M‖L3→L3‖f − g‖ = O(ε)

It follows that
‖ lim sup

n
|Tnf |‖L3(R2) = O(ε)

for all ε > 0, so
‖ lim sup

n
|Tnf |‖L3(R2) = 0.

In particular, Tnf → 0 in L3(R2).

Spring 2024 Problem 4. Fix f ∈ L1(R) that is non-negative and satisfies
∫
f(x)dx = 1. We then

define the n-fold convolution

fn(x) :=

∫
· · ·
∫
f(x− y1 − y2 − · · · − yn)f(y1) · · · f(yn)dy1dy2 · · · dyn

of f with itself. Show that the sequence fn(x) does not converge in L1(R).

Proof. Suppose for the sake of contradiction that fn → g inL1(R). Note that each fn ≥ 0 and
∫
fn = 1,

so the same holds for g. Then we have

0 = g − g ← fn ∗ fn − fn → g ∗ g − g,

by continuity of ∗ on L1(R). Thus, g is a nontrivial nonnegative L1 function with the property that
g ∗ g = g.

On the other hand, the Fourier transform ĝ of g satisfies

ĝ2 = ĝ, ĝ(0) = 1, ĝ ∈ C0(R),

where the last set is the family of continuous functions that limit to zero at∞. The first equality is an
equality ofL∞ functions, but since ĝ is continuous we conclude that the equality holds pointwise. Finally,
this equality implies that ĝ only takes the values 0 and 1. But this contradicts the statements ĝ(0) =
1, ĝ(ξ)→ 0, and we are done.

Spring 2024 Problem 5. Fix 1 ≤ p < q <∞.Throughout this problem,Lp(R) andLq(R) are defined
using Lebesgue measure and |A| denotes the Lebesgue measure of the set A.

(a) Suppose f ∈ Lp(R) satisfies
∫
A
|f(x)|qdx <∞ for every Borel subsetAwith |A| = 1. Show that

f ∈ Lq(R).

(b) Show that there exists f ∈ Lp(R) so that
∫ a+1

a
|f(x)|qdx <∞ for every a ∈ R but f 6∈ Lq(R).
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Proof. (a): Let U = {x ∈ R : |f(x)| ≥ 1} and L = {x ∈ R : |f(x)| < 1}. Since f ∈ Lp(R), we have
|U | <∞, so we may find measurable sets U1, . . . , Un with U =

⋃n
k=1 Uk and |Uk| ≤ 1. Then we have∫

U

|f(x)|qdx ≤
n∑
k=1

∫
Uk

|f(x)|qdx <∞

and ∫
L

|f(x)|qdx ≤
∫
L

|f(x)|pdx <∞

so f ∈ Lq(R).
(b): Ugly example, sketch. Let β = 2q

p
, and let f be the function

f(x) =
∞∑
n=1

an1(2n,2n+1)(x) · |x− 2n|−
nβ−1

nβq
+ 1
nq .

Then ∫
|f(x)|pdx =

∞∑
n=1

|an|p
∫ 1

0

x−
nβ−1

nβ
p
q

+ p

nβ dx =
∞∑
n=1

|an|p
nβq

nβ(q − p) + p+ pq

and ∫ 2n+1

2n

|f(x)|qdx = |an|q
∫ 1

0

x−
nβ−1

nβ
+ q

nβ = |an|q
nβ

1 + q

so that ∫
|f(x)|qdx =

1

1 + q

∞∑
n=1

nβ|an|q.

Choosing an = n−2/p will do.

Spring 2024 Problem 6. Let H be a Hilbert space and U : H → H a unitary operator, that is, U is
bounded, linear, and invertible with inverse equal to its adjoint U∗.

(a) Prove that ker(U − I)⊥ = ran(U − I), where ran(U − I) denotes the range ofU − I and I is the
identity operator onH.

(b) Let P denote the (orthogonal) projection ofH onto ker(U − I). Prove that, for any vector v ∈ H,

1

n

n−1∑
k=0

Ukv → Pv in theH-norm, as n→∞.

Proof. (a): Observe that, for A ∈ B(H),

x ∈ ker(A) ⇐⇒ 〈Ax, y〉 = 0∀y
⇐⇒ 〈x,A ∗ y〉 = 0∀y
⇐⇒ x ∈ ran(A∗)⊥

Since (L⊥)⊥ = L, we conclude that
ker(A)⊥ = ran(A∗).
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We specialize to A = U − I ; we have A∗ = U∗ − I = U−1 − I = −U−1(U − I). Since −U−1 is an
isomorphism, ran(−U−1(U − I)) = ran(U − I), and we are done.

(b): By (a), we may write v = v1 + v2 with v1 ∈ ker(U − I) and v2 ∈ ran(U − I) and 〈v1, v2〉 = 0.
Then, for each n,

1

n

n−1∑
k=0

Ukv1 =
1

n

n−1∑
k=0

v1 = v1 = Pv1.

Let ε > 0 be arbitrary and fix w = (U − I)x such that ‖v2 − w‖ < ε. Then we have

1

n

n−1∑
k=0

Ukw =
1

n

n−1∑
k=0

Uk(U − I)x =
1

n

n∑
k=1

Ukx− 1

n

n−1∑
k=0

Ukx =
Unx− x

n
.

Since U is unitary, ‖Unx‖ = ‖x‖, so ∥∥∥∥∥ 1

n

n−1∑
k=0

Ukw

∥∥∥∥∥ ≤ (2/n)‖x‖.

Finally, wince ‖v2 − w‖ < ε, we have∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(v2 − w)

∥∥∥∥∥ ≤ 1

n

n−1∑
k=0

‖v2 − w‖ < ε,

and we conclude that

lim sup
n→∞

∥∥∥∥∥ 1

n

n−1∑
k=0

Ukv2

∥∥∥∥∥ ≤ ε.

Since ε was arbitrary, we conclude that

1

n

n−1∑
k=0

Ukv2 → 0 = Pv2,

where the convergence is in norm, and the final equality uses (a). Summing, we conclude that

1

n

n−1∑
k=0

Ukv =
1

n

n−1∑
k=0

Ukv1 +
1

n

n−1∑
k=0

Ukv2 = Pv1 + Pv2 = Pv,

as was to be shown.

Spring 2024 Problem 7. Rigorously evaluate∫ ∞
−∞

log |x+ i|
x2 + 4

dx.

Proof. Let log be the branch of the logarithm defined on C \ R≤0 satisfying Im (log z) ∈ (−π, π) for all
z in its domain. LetR > 2 be arbitrary, and let ΓR be the contour composed of the following pieces:

Γ1
R(t) = t (−R ≤ t ≤ R)
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Γ2
R(t) = Reit (0 ≤ t ≤ π)

Then we may integrate log(z+i)
z2+4

on Γ, to obtain by the residue theorem∫
Γ

log(z + i)

z2 + 4
dz = 2πi

log(3i)

4i
=
π

2
(log(3) + iθ),

where θ ∈ (−π, π) is such that tan θ = 3. Note as well that∣∣∣∣∫
Γ2

log(z + i)

z2 + 4
dz

∣∣∣∣ ≤ πR(log(R2 + 1) + π)

R2 − 4
.

logR

R
→ 0

asR→∞, so that
lim
R→∞

∫
Γ

log(z + i)

z2 + 4
dz =

∫ ∞
−∞

log(x+ i)

x2 + 4
dx.

Note that the latter integrand is absolutely integrable overR, so the limit is indeed valid. Taking real parts,
we conclude ∫ ∞

−∞

log |x+ i|
x2 + 4

dx =
π log 3

2
.

Spring 2024 Problem 8. For each n ∈ N, suppose fn : D→ (−1, 1) is harmonic. (Here D denotes the
unit disk in the complex plane.)

(a) Show that there is a subsequence of the functions fn that converges uniformly on compact subsets
of D.

(b) Suppose f(z) is such a subsequential limit and that f(0) = 1. Show that f(z) = 1 for all z ∈ D.

Proof. (a): For each n, choose hn : D → C analytic with Re (hn) = fn and hn(0) ∈ R. Then each hn
takes values in the strip {z : Re (z) ∈ (−1, 1)}, so by Montel’s theorem {hn}n is normal. Thus we may
find h : D→ C holomorphic and a subsequence k 7→ nk such that hnk → h locally uniformly. Since

|h(z)− hnk(z)| ≥ |Re (h(z))− Re (hnk(z))|,

we conclude that fnk → Re (h) locally uniformly, as was to be shown.
(b): By the work in (a), we see that f is harmonic. Since each fn takes values in (−1, 1), f takes values

in [−1, 1]. By the maximal principle, f is constant, i.e. f(z) = 1 for all z ∈ D.

Spring 2024 Problem 9. Find all entire functionsf with the property that if one writesf(z) = u(x, y)+
iv(x, y), where z = x+ iy and u, v are the real and imaginary parts of f , then for all x, y ∈ R we have

u(x, y) + v(x, y) ≤ x+ y.

Proof. Consider one such f . Let g(z) = (1− i)(f(z)− z). Then we have

Re (g(x+ iy)) = u(x, y) + v(x, y)− x− y ≤ 0

for all x, y ∈ R. Thus the entire function g omits the right half-plane {z : Re (z) > 0} as values, hence is
constant by the little Picard theorem. It follows that f must be of the form f(z) = cz for some constant
c. Writing c = a+ ib,

u(x, y) = ax− by, v(x, y) = ay + bx

Testing the assumed inequality along y = 0, we must have a + b = 1; along x = 0, a − b = 1. Thus we
must have c = 1, i.e. f(z) = z. Since this clearly satisfies the inequality, we are done.
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Spring 2024 Problem 10. Let h : (−∞, 0]→ R be continuous and define

Γ = {x+ ih(x) : −∞ < x ≤ 0}.

Suppose f : C → C is continuous and that f is holomorphic in C \ Γ. Show that if f(z) = 0 for all
z ∈ Γ, then f(z) = 0 for all z ∈ C.

Proof. We argue via Morera’s theorem. It suffices to consider axis-parallel rectangles. It is easy to see that
we may assume that the rectangle is contained in the half-plane {x + iy : x ≤ 0}. Let {cj = aj + ibj :
1 ≤ j ≤ 4} be the four vertices, listed in CCW order starting in the top left corner (thus: a1 = a2, b2 =
b3, a3 = a4, b4 = b1). We assume for simplicity that b2 < f(a1) < b1 and b3 < f(a3) < b4; the other
cases may be handled similarly. Choose ε > 0 arbitrary. Let δ > 0 be such that the set

N = {x+ iy : a1 ≤ x ≤ a3, |y − h(x)| ≤ δ}

satisfies the estimate

sup{|f(z)− f(w)| : z, w ∈ N,Re (z) = Re (w)} < ε;

this is possible by compactness. Then, ifR denotes the (boundary) rectangle, we have∫
R

f(z)dz =

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz +

∫
Γ3

f(z)dz,

where:

• Γ1 is the contour which traverses a1 + ib1 to a1 + ih(a1) + iδ, then follows t + ih(t) + iδ over
a1 ≤ t ≤ a3, then goes from a3 + ih(a3) + iδ to a4 + ib4, then a4 + ib4 to a1 + ib1;

• Γ2 is the contour which travels from a1 +ih(a1)+iδ to a1 +ih(a1)−iδ, then follows t+ih(t)−iδ
from t = a1 to t = a3, then goes from a3+ih(a3)−iδ to a3+ih(a3)+iδ, then follows t+ih(t)+iδ
from t = a3 to t = a1;

• Γ3 is the contour which traverses a1 + ib1− iδ to a2 + ib2, then to a3 + ib3, then to a3 + ih(a3)− iδ,
then follows t+ ih(t)− iδ from t = a3 to t = a1.

Both Γ1,Γ3 lie in C \ Γ which is simply-connected, so the integral contributions vanish. We expand the
remaining contribution: ∫

Γ2

f(z)dz =

∫ δ

−δ
f(a1 + ih(a1)− it)dt

+

∫ δ

−δ
f(a3 + ih(a3) + it)dt

+

∫ a3

a1

f(t+ ih(t)− iδ)dt

+

∫ a1

a3

f(t+ ih(t) + iδ)dt

= I + II + III + IV
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Rearranging,
III + IV =

∫ a3

a1

f(t+ ih(t)− iδ)− f(t+ ih(t) + iδ)dt

and by the definition of δ,
|III + IV | ≤ |a3 − a1|ε.

For the other two, note that
|I|, |II| ≤ 2δε,

by again the definition of δ. Thus ∣∣∣∣∫
Γ2

f(z)dz

∣∣∣∣ ≤ ε (|a3 − a1|+ 2δ) .

Thus we have ∣∣∣∣∫
R

f(z)dz

∣∣∣∣ ≤ ε (|a3 − a1|+ 2δ)

for arbitrary choice of ε. It follows that
∫
R
f(z)dz = 0. Since R was arbitrary, we conclude that f is

entire. Since f has a more-than-discrete set of zeroes, it follows that f ≡ 0, as was to be shown.

Spring 2024 Problem 11. Let f : C→ C be the unique holomorphic function with

f(0) = 0, f ′(z) = ez
2

.

Show that this function admits a convergent expansion

f(z) = z exp(cz2)
∏
n

[(
1− z2

z2
n

)
exp

(
z2

z2
n

)]
Proof. By the Weierstrass factorization theorem, there is a convergent expansion

f(z) = zmeg(z)
∏
n

Epn
( z
an

)
wherem ≥ 0 is an integer, g(z) is entire, {an}n are the zeroes other than 0 listed with multiplicity, {pn}n
is a sequence of nonnegative integers, andEp is the elementary factor

E0(z) = (1− z), Ep(z) = (1− z) exp
(z

1
+
z2

2
+ . . .+

zp

p

)
(p 6= 0).

Since f(0) = 0 and f ′(0) = 1 6= 0, we havem = 1. Since f ′ is even, f is odd (easy to see by considering
the convergent power series); thus the zeroes {an}n come in± pairs.

We consider the order of f . For a given r and |z| ≤ r,

|f(z)| ≤
∫ r

0

et
2

dt ≤ rer
2

so that
log ‖f‖L∞(B(0,r)) ≤ log r + r2
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and
log log ‖f‖L∞(B(0,r))

log r
≤ log 2

log r
+ 2,

i.e. f has order at most 2. Thus the genus of f is at most 2, and we may take pn = 2 for everyn (Hadamard).
Thus we may write

f(z) = zeg(z)
∏
n

(
1− z2

z2
n

)
exp

(
z2

z2
n

)
(where the opposite-sign an are bundled into the zn, which cancel in the linear term in the final exponen-
tial). It remains to consider g. Since f has order 2, g is a polynomial of degree≤ 2. Since f is odd, g has
zero linear term. Since f ′(0) = 1, and

zeg(z)
∏
n

(
1− z2

z2
n

)
exp

(
z2

z2
n

)∣∣∣∣∣
z=0

= eg(0),

we conclude that g(0) ∈ 2πiZ. Since shifting by such elements does not affect the exponential terms, we
may assume g(0) = 0, so g(z) = cz2 for a suitable constant c.

Spring 2024 Problem 12. Consider the following polynomial of z, w ∈ C:

P (w, z) := w3(w − 2)3 + z.

(a) Find an explicit δ > 0 so that w 7→ P (w, z) has precisely three zeroes (counted by multiplicity) in
the unit disk whenever |z| < δ.

(b) Let us write w1(z), w2(z), w3(z) for these three zeroes. Show that

z 7→ w1(z) + w2(z) + w3(z)

defines a holomorphic function on |z| < δ.
Warning: each individual wi(z) will not be holomorphic!

Proof. (a): We choose δ = 1. Fix any z with |z| < δ. Then we have, for each |w| = 1,

|w3(w − 2)3| ≥ 1 = δ > |z|,

so by Rouché’s theorem,w 7→ P (w, z) andw 7→ w3(w−2)3 have the same number of zeroes in |w| < 1.
The result follows.

(b): Observe that

1

2πi

∫
|w|=1

w
∂wP (w, z)

P (w, z)
dw = w1(z) + w2(z) + w3(z)

by the argument principle. The left-hand side is holomorphic in |z| < 1 by an application of Morera and
Fubini-Tonelli, and we are done.
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