UCLA Analysis qualifying exam solutions

Ben Johnsrude

These are solutions to old analysis qualifying exams for UCLA, accessible on the math UCLA website.
Varying levels of detail are presented, and not every problem after the first solved problem is solved. Please
send any corrections to johnsrude (at) math.ucla.edu; if you did not obtain this document directly from
the source, please first check that I have not already made that correction.

Note that Adam Lott has compiled solutions back to 2009, accessible here, The solutions presented
here are my own; the solutions presented there are the compiled work of many individuals and should
probably be treated as rather more reliable.

I lastly make several remarks contrasting features of the solutions presented here and those of the so-
lutions that would be expected, or desirable, in the qualifying exam itself. Firstly, these have been prepared
outside of a testing environment, slowly over a long period of time, in part as preparation for teaching
(though I almost always avoid using outside sources, except to recall this-or-that technical condition for
a theorem). Secondly, they are much longer than a typical submission on the exam: I attempt to clearly
spell out as many details as are needed for someone to understand the solution, assuming that they have no
idea how to solve it themselves. As such, these look much more like homework submissions than exam sub-
missions; in the latter, one is writing a sketch directed at a seasoned examiner, who knows the question
and knows how people are likely to solve the question.

Next, I do not take too much care to restrict the methods used in the solutions to those which are
covered in the 245A/B/C, 246A/B classes, which are expected to be known to those students. In part, this
is logistically necessary: the exams are in part written by the faculty who teach those courses (who vary
from year-to-year), and so each year’s exam is slightly biased towards the particular topics that professor
focused on. As such, it would be too much work to make sure that all my methods are geared towards
solving problems from the perspective of someone who has just taken those classes.
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1 Spring 2019

Spring 2019 Problem 1. Let f € C?(R) be a real-valued function that is uniformly bounded on R.
Prove that there exists a point ¢ € R such that f”(c) = 0.

Proof. We will show the contrapositive: if f” is nowhere vanishing, then f is unbounded. Replacing f by
— f if necessary, we may assume that f” > 0 on all of R. We divide into cases, depending on the sign of

"

Case 1: Suppose there is some xg € R such that e := f’(xg) > 0. Then, for each y > x,
F0) = )+ [0t > Jwn) = ¢
e
so that, for each z > x,
1) = )+ [ £y > J(a0) +(— )
0

Taking 2 to be large, we conclude that f is not bounded above, as was to be shown.
Case 2: Suppose f'(xg) = 0 for some x5 € R. Then, if y > x,

f'(y) = f(xo) + /y F'@)dt > f'(z) =0

so that f/(y) > 0, and we may apply Case 1.
Case 3: If we are not in one of the previous cases, then [/ < 0 on all of R. Since f” > 0, we have that
f' is increasing, so writing f'(0) =: —¢ < 0 we have

y<0 = f(y) < F(0) = —e
Then, for z < 0,
0
£ = 10) = [ £y = 1(0) 2l

so that f is unbounded as z — —o0, as was to be shown.

Spring 2019 Problem 2. Let ;4 be a Borel probability measure on [0, 1] that has no atoms (this means
that ({t}) = O for any ¢ € [0, 1]). Let also p1, f19, . . . be Borel probability measures on [0, 1]. Assume
that p,, converges to £ in the weak™ topology. Denote F'(t) := ([0, t]) and F},(t) := ([0, t]) for each
n > landt € [0, 1]. Prove that F), converges uniformly to F.

Proof. We recall that p,, — u weak-+ly on [0, 1] if, for each f € C(]0, 1];R), we have

/fdun — /fdu, (n — o00)

Since the functions F', F}, are monotone and F’ is continuous, it will suffice to show pointwise conver-
gence; we will establish the implication to uniform convergence at the end. Note that F;,(1) = 1 = F(1)
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and for each n, so we need to consider < 1. Let 0 < ¢ < 1, and for k& € N sufficiently large so that
% < 1 — t we write

1 0<z<t
he() =q1—klz—t] t<z<t+q
0 t+3<z<1

Then {hy;} is a sequence of functions uniformly bounded by the integrable function 1jo;}, and limit
pointwise to the indicator 1}y 4. By the dominated convergence theorem,

F(t) :/1[07t]d,u: ]}L%/hkdu, Fn(t) :/1[0’t}d,un :Jiﬁ/hkdun

We also write, for each k,

(0 r<t—1

k(z —t+ 1) t—3<az<t
up(z) =41 t<z<t+1

l—k(z—t—1) t+:<ax<t+2

L0 r>t4 7

Note that each uy, is continuous, u; < 1[t7%’t+%}, and Ay, — 1jo,g < up.
Let now ¢ > 0. By the atomless condition and finiteness of y, continuity from above implies that
there exists £ € N such that

1 2 €
t——t+2]) <=
pllt— g+ 2y < S
It follows then that
limsup |F,(t) — F(t)| < hmsup/ 11109 — hu|dpin —l—limsup‘ hidpt, — /hkd,u|
n—oo n—oo n—oo

+ lim sup/ \hie — Lo, |dpe

n—o0

< lim sup/ukdun 4+ 0+ lim sup/ukdu

n—oo n—o0

—Q/ukdu<5

Since € was arbitrary, we conclude that F,,(t) — F(t) asn — oo foreacht € (0, 1].

We'll omit the ¢ = 0 case, as it is similar but technically somewhat simpler than what is already done
above. So now we accept that F,, — F pointwise on [0, 1].

We next demonstrate uniform convergence. Let ¢ > 0 be arbitrary. Let ¢ be an e-modulus of conti-
nuity for F, ie. |x —y| < ¢ implies | F(x) — F'(y)| < ¢; since F is continuous on a compact domain, this
exists. Let 0 = ¢; < ... < ty = 1bead/2-netof [0, 1], i.e. a finite subset such that any ¢ € [0, 1] has
some ¢; such that [t — ;| < 2. Letny,...,ny € Nbe such that

ki =n; = [Fy(t;) — F(t)| <e



Then, for each t € [0,1],ift; < t < ¢4, then |t — ¢;| < dand |t — t;41] < J,s0o forn >
max(ny,...,ny),

[En(t) = F@)| < |[Fu(t) = Ftje) | + [F () = FO)] < [Fult) = F(tj)] + ¢

Note that, by monotonicity,
and

so that
IFult) = Fltj)] < 2¢

Thus we have justified that, for each ¢ > 0, we may find N, large enough so that¢ € [0,1] and n > N,
implies |F},(t) — F(t)| < 3e¢. In particular, F,, — F uniformly, as was to be established.
]

Spring 2019 Problem 3. (a) Let f be a positive continuous function on R such that limy_, f(t) = 0.
Show that the set {hf : h € L*(R,m), ||h||; < K} is a closed nowhere dense set in L' (R, m), for any
K > 1(m denotes the Lebesgue measure on R).

(b) Let {f.}. be a sequence of positive continuous functions on R such that for each n we have

limyy o0 f(t) = 0. Show that there exists g € L'(IR, m) such that g/ f,, ¢ L*(R, m) Vn.

Proof. (a): Throughout we will write H for the setin question. We begin by showing that H has no interior.
Since H is the image of a linear mapping i +— hf on L'(R,m), H is a linear subspace, so it will suffice
to show that 0 is not interior. Let ¢ > 0 be arbitrary. Let R > 0 be such that |t| > R implies | f(¢)| <
1072K'e. Let then g = el{g g11j; then g € L*(R, m) and ||g||: = [lg — 0|1 < €. On the other hand,
g & H:if h € L'(R,m) issuch that g = hf,thenforany R <t < R+ 1

e=gl) = SR, s S A0 and h(t) = 5

R+1 c R+1
Hhle/ mdt>/ 10°Kdt = 10°K
R R

Soany h € L'(R,m) satisfying g = hf must have ||h]|; £ K. In particular, g ¢ H. Since we have
found an element of /7€ in every open ball about 0, we conclude that 0 is not interior to /. As remarked
previously, this implies that [/ has empty interior.

We next show that H is closed. Suppose g,, = h,, f is a sequence in H and g € L' (R, m) is such that
gn — g in L', It remains to show that g/ f has finite L' norm.

Forn € N, write 1 > £, > 0 for a number such that f > &, on [—n,n|. Let K,, € N be such that
k > K, implies ||gy — g|/z1 < 27"¢2. Then

/ }gl;" - %|dm <eg! / 9k, — gldm < 27 "¢,

n n ngK g B
—dmg/ hn—i-/ =" _Zldm < K +2 "¢,
/_nf _n'K' _n‘f f‘
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and so

and hence




so that

/!g|dm = limsup/ g‘alm <K <o
/ nooo Jon
as was to be established.

(b): For each n, K € N, write U, k for the set

Uni = {9 € L'(R,m) : ’Jf’ K}

By (a), each U, x is a dense open subset of L' (IR, m). By Baire category, there exists g € () jc—; Un k-
We verify that g satisfies the conditions required. For each n, we have

gE m Un,K

n,K=1

VI /Ig|

ie. - ¢ L'(R, m). Since this holds for each n, we are done.

so that

Spring 2019 Problem 4. Let ) be the subspace of L>°([0, 1], 1) (where i is the Lebesgue measure on
0, 1]) defined by

V={feL>®(]0,1],p) : lim n/ fdu exists}
[0,1/n]

n—0o0

(a) Prove that there exists ¢ € L>°([0, 1], p)* (i.e., a continuous functional on L>°([0, 1], xt)) such that
o(f) = limnﬂoonf[o’l/n] fdu forevery f € V.

(b) Show that, given any ¢ € L*([0, 1], u)* satisfying the condition in (a) above, there exists no
g € L'(]0,1], p) such that o(f) = [ fgduforall f € L>=([0,1], p).

Proof. (a): Note first that, for each n,
[ gaml < flxn [ dm =l
[0,1/n] [0,1/n]
so the linear map ¢ : V — R, o (f) = lim,, oo 1 f[o 1/ S dm satisfies the bound
[o(f)] < sup [ flloc = [I.flloo

By Hahn-Banach, there exists ¢ : L>°([0, 1], m) — Rlinear with norm bounded by 1 such that ¢|,, = ¢y,
as was to be shown.
(b): Suppose to the contrary that g € L'([0, 1], m) is such that, for any f € L>([0, 1], m),

/ fgdm



where ¢ is as in (a). In particular, testing against f = 1 € V,

1= (1) = [ gdm

so certainly [|g[|; > 1. On the other hand, forany & > O and any f € L>([0, 1], m) such that f|, , =0,
we have

0= () = [ Fgdm

In particular, g|( .1 = Dae. Sincee > O was arbitrary, we conclude that g has essential support contained

in {0}, i.e. ¢ = 0 as an element of L' ([0, 1], m). But this contradicts the estimate ||g||; > 1 from earlier,
and we're done.

]

Spring 2019 Problem 5. (a) Prove that LP([0, 1], i) are separable Banach spaces for 1 < p < oo but
L>([0, 1], u) is not (where y is Lebesgue measure on [0, 1]).
(b) Prove that there exists no linear bounded surjective map 7" : L?([0, 1], ) — L*([0, 1], u).

Proof. (a): Foreach1 > s > r > 0, we have

1110, = Losilloe = [1irs)lloc = 1

so the family {B(1[,,3)}o<r<1 of nonempty open sets is pairwise disjoint and uncountable, hence
L>([0,1]) is not separable.
Fixnow 1 < p < oo. Itis unclear what is expected to be assumed for the purposes of this problem; we
choose to take for granted that continuous functions are dense in L”, and the Stone-Weierstrass theorem.
We claim that polynomials with rational coefficients are dense in LP([0, 1], 11). To see this, fix f €
LP([0,1], 1) and € > 0. By the density of continuous functions, there is some g € C/([0, 1]) such that
|f — gll, < £/2. By the Stone-Weierstrass theorem, we may find some polynomial P such that

€
P—glle < -
1P~ glle < 3

Let the form of P be
P(x) = a,a™ + ...+ a1z + ag
with ag, . .., a, € R. By the density of QQ in R, we may find by, . . ., b, € Q satisfying the estimates

3

gm, (0<k<n)

|br, — ax|

If we then write Q(z) = b,a™ + ... + by + by, we compute

- 19
1Q — Pllz(o,1) < % by —axl < -

so that, by Holder,

3

lg = Qlly < llg = Pllp + 1P = Qlly < llg = Plloc + 1P = Qllos < 5



and hence

I =Rl <IIf =gl +1lg—Qll, <e

as was to be established. Since polynomials with rational coefficients form a countable set, we conclude
that L? is separable.

(b): Suppose, for the sake of contradiction, p > 1and T : L?([0, 1], u) — L*([0, 1], u) is a continu-
ous linear surjection. Abusing notation slightly, we write 7™ for the induced dual map L>°([0, 1], u) —
L ([0,1], i), where p/ is the usual dual exponent in [1, 00). Observe that T* is linear and bounded; we
claim that further there is ¢ > 0 such that ||7*g|| > c||g|| for each g € L*°([0, 1], p1).

Indeed, we may compute by duality

1T*gll 1 = ”]§|1|1121<T*g, )= ||?ﬁlgl<g,Tf) = sup{(g, h) : h € T[B(0,1)]}

(writing B(0, 1) for the open unit ball in L?). If g # 0, then there is & € L'([0, 1], ) with ||| < 3
and (g,h) > 1]|g]lsc- Since T is surjective, the open mapping theorem implies that 7'[B(0, 1)] is open,
so there is some A > 0 such that A\ € T[B(0, 1)]. Hence

. A
HT gHLP' Z <g7)‘h> = )‘<g7 h> 2 ZHgHoo

so the desired conclusion holds with ¢ = %.

Finally, we use this estimate to reach a contradiction. Let { g, } » be an uncountable family of elements
of L>([0, 1]; 1) such that any pair & # o' have ||go — ga'||co = 1. Then, by the preceding, {7* ¢, } is an
uncountable family of elements of L”' which are > c-separated, so the metric balls of radius 5 centered at
the T* g, are disjoint. However, this contradicts the fact from (a) that L ([0, 1], i) is separable. As such,
no such 7" exists.

O

Spring 2019 Problem 6. Let # be a Hilbert space and {&,}, a sequence of vectors in H such that

|&n]] = 1 for all n.
(a) Show that if {£,, },, converges weakly to a vector { € H with ||£|| = 1, then lim,, o [|§, — €| = 0.
(b) Show that if lim,, ;00 [|€n + &m|| = 2, then there exists a vector & € H such that lim,, o ||, —

£l =0.

Proof. (a): Observe that

||£n - 5“2 = <£n — &6 — £>
= [I€all” + [I€]* — 2Re(&n, €)
=2 —2Re(&,, &)
— 2 —2Re(£,£) =0

as was to be shown.

(b): Write H' = span{¢, : n € N}; thus H' C H is the closed subspace spanned by the &,. By
construction, H’ is separable, so the Banach-Alaoglu theorem implies that the unit ball of 7’ is weakly
sequentially compact. Thus there is some & € 7H that is a weak limit point for {¢,},, i.e. there is a
subsequence such that &, — & weakly. By (a), ||, — &|| — 0.



Fixnow 1 > ¢ > Oandlet N € N be sufficiently large so that n, m > N implies ||, + &l > 2 —¢,
and if ny, > N we have ||&,,, — || < €. Then, for eachn > N, and any k such that n, > N,

16 = &Il < [1&n = &nill + l1&n, =€l
<& = &nill +¢

whereas
(2 =€) < [0+ &ull* = 2+ Re(&, &n)
so that
Re(&,,&n,) > 2 — 2e + €2
Consequently,
160 = &nlI* = 2 = 2Re(&y, &) < 26 — €7
so that

160 — €|l < e+ V2e — &2

Thus, for each 0 < € < 1, we have found NV so that n > N implies the preceding inequality. It follows
directly that ||&,, — &|| — 0 as n — oo, as was to be shown.
O

Spring 2019 Problem 7. Let f : C — C be entire non-constant, and let us set

1 27 )
1(r) = 5 [ 1o, 17(re¥)de,
0

Here log, s = max(log s, 0). Show that 7'(r) — oo as r — oo.

Proof. We separately handle the cases where f is polynomial, and where f is transcendental. Suppose first
that f is a polynomial of degree n. Then, for R sufficiently large, there is ¢ > 0 such that for all |z| > R,

[f(2)] = clz["
Then, for r > R large enough that r"c > 1,
T(r) > log(r"c) = logc+ nlogr

and we conclude that 7" is divergent as 7 — 00.

Now we assume that [ is entire and nonpolynomial. Under the assumption, we may find o] < 1
such that f, := f — « has infinitely many zeroes, and 0 is not one of them. For R > 1 such that f, is
nonvanishing on |z| = R, let Br(z) be the (rescaled) Blaschke factor

7 (2/R) — (%/R)
H1 (2/R)(2/R)

J=1

where 21, ..., 2, are the zeroes of f, on {|z| < R}. Then there exists a zero-free holomorphic function
gr defined on a neighborhood of {|z| < R} for which

fa(2) = gr(2)Br(2)



Observe that | Bg(Re')| = 1 for all §. Consequently,
log | fa(Re")| = log |gr(Re")|

Notice that z — log |gr(2)]| is harmonic. Thus

2m ) n P
| 108 lan(Re)a0 = 2 10g gn(0)] = 2o 17,(0)] — 2> 1og 2
0

=1
Since |z;| < R for each j,
1 /%1 9r(RE™)|40 > 1 [log | fa (0)]| + 27 log 24{z € C: f(2) = 0,]2| < =}
0 e 0g | fa mlo z 2 f(2)=0,]z] < =
log R J, &19R ~ log R & & 2

The quantity counted in the previous display diverges as 7 — +00. Consequently,
2T )
lim log | fa(Re™)|df = +o0

R—+o0 0
Finally, observe that, for each z,
max(log |f(z) — «,0) < max(log |f(z)[,0) + max(log |a[, 0) 4 log 2 = max(log | f(2)],0) + log 2

so that
2

2
max(log | f(Re™)|,0) > —27log 2 +/ log | f(Re™|)do
0 0

from which the desired conclusion follows.

Spring 2019 Problem 8. Show that

2N 22
smz—zcosz:gn <1—)\—2), z € C,
n=1 n

where (\,,),>1 is a sequence in C, \,, # 0 for all i, such that

o0

1
[An?
1

< Q.

n=

Proof. Let f be the function on the left-hand side. First, taking expansions at 0,
- 22 5 22 5 _ 2 5
51nz—zcosz:z—§+0(z )—Z+§+O(z ) = 3%—0(2 )
hence f vanishes to order 3 at 0. Next, from the easy estimates

|sinz| < el |zcosz| < |z]el! = elflHloslzl = glzltoll))

10



we see that f has order at most 1. It follows that the zeroes {7, },, C C\ {0} of f away from 0 satisfy
1
Z [ [ <0

On the other hand, it is immediate to see that f is even. Thus the zeroes 7),, come in plus/minus pairs. Let
{An}n be a choice of representatives; thus, \,, # £\, for n # m, and each 7, is equal to some +\,,,.
Then the preceding bound implies
1
2P

as was to be established.
Next, we note that f has infinitely many zeroes. Indeed, for k an integer,

f(km) = (1) kr

so by the intermediate value theorem we have a zero between k7 and (k + 1)7 for each integer .
Next, since f has order 1, it has the Hadamard factorization

o0

fe) = e [T = el

n=1

with g a polynomial of degree at most 1. Collecting together the £ pairs of the zeroes, this factorization
rearranges as

f& = Il -5)

Indeed, the infinite product converges locally uniformly, so we may rearrange freely. It remains to con-
sider the polynomial g.
Finally, observe that

3 == 22
f _z+g+;)\%—z2

The infinite series is O(z) near 0; additionally,

o zsin z 3
f  sinz—zcosz =z
near 0, s0 ¢’ = O(z). Thus g is constant. Since we have already identified f(z) to have leading expansion
z ' 2
% + O(2%), and this agrees with the % [1,.(1 — $3) quantity to leading order, we conclude that in fact

g = 0. Thus the desired factorization holds.
[

Spring 2019 Problem 9. LetD = {z € C: [2| < 1} and let A(DD) be the space of functions holomor-
phic in D and continuous in . Let

U={fe AD);|f(z)]=1 forallz € OD}.

11



Show that f € U if and only if f is a finite Blaschke product,
N i—a
_ Y

j=1 J

forsomea; €D, 1 <j <N <ooand |\ =1

Proof. We only attend to the forward direction, as the reverse direction is trivial. Let f € U. Suppose
first that f has no zeroes in ID. If f is constant, then we are done; otherwise, by the maximum principle,
|£(0)] < 1. Write ¢ = f(0) and

6:DoD, o) =—

1—¢cz

Then certainly ¢ is holomorphic in ID and continuous on . Additionally, note that for |z| = 1

|z —¢c|® = |2|* — 26 — zZc + |c]?
=1— 22— zc+ ez

=1 —¢cz|?

so that |¢(z)| = 1. Consequently, f o ¢ is another element of U. But (f o ¢)(c) = 0, so f(¢p(c)) = 0,
so ¢(c) is a zero of f. Since ¢ is analytic, nonconstant, and takes magnitude 1 on 0D, we conclude that
|6(c)| < 1, so f does have a zero. By contradiction, we conclude that any element of U/ without zeroes is
a constant, and we are done in this case.

We now consider the case that f has NV zeroes for some N € N. Counting multiplicity, write them as
ai,...,ay € D (observe that the boundary condition necessitates that no a; € OID). Write then

1 —a;z

9z) = f) [

Z — aj;
j=1 J

Then g is analytic in D, and (since the linear factors in the numerator vanish at 1/a; ¢ D) have no zeroes
in ID. Since each factor has magnitude 1 on 0D, we have that g € U{. By the previous case, g = ) for some

A € 9D, ie.

Z—(lj

N

f(z) = AH e
on D, as was to be shown.

Lastly, suppose f € U has infinitely many distinct zeroes {a,, },,. Then the latter set accumulates to

some element a of ID. Since f is continuous on I and takes magnitude 1 on I, a € . But then by the

uniqueness principle, f = 0, whereas f must extend continuously to nonzero quantities on the boundary,

a contradiction. Thus we are done in all cases.

O

Spring 2019 Problem 10. Fora > 0,b > 0, evaluate the integral

/°° log x i
o (x+a)2+b2

12



Proof. We will evaluate the integral as

o log x 1 P
/0 m = @ arctan(b/a) . log(a + b )
via integrating (ZE:Z?QZJ)FI)Q around a keyhole contour.

Write log 2 for the branch of the logarithm with cut along R >, defined to have imaginary part between
[0, 27]; we will freely write logx € R and logx € R + 274, as context warrants. For 1 > ¢ > (0 and

R > 1 two parameters, write 7; = W;E’R) (1 < j < 4) for the curves

n(t)=t (¢<t<R),

Yo(t) = Re (0 <t < 2m),
1t)=R—-t (0<t<R-—¢),

Yu(t) = e/ (0 <t < 2n)

Let also I' = ') for the closed curve given by traversing 71, Y2, V3, V4 in that order. Then the function

(log 2)”
f(Z) = 2 2
(z4+a)?+b
has singularities at 2 = —a +iband z = —a — b, and is otherwise holomorphic in the domain cut out by

I'. We will always assume that R is sufficiently large, and ¢ sufficiently small, so that —a + b is contained
in that domain.
Considering the factorization

(z+a)*+b = (z+a+ib)(z+a—1ib)
we see that f has a simple pole at —a + b, so

(log 2)*/(z + a + ib) -1 (log(—a+1b))?
(z +a—ib) ’_““b}_ 2ib

Res|[f(z), —a + ib] = Res {

Similarly, there is a simple pole at —a — b with residue

(log 2)?/(z + a — ib)
(z+ a+ib)

(log(—a — ib))”
2ib

Res[f(z),—a—z’b]:Res[ ,—a—z’b} .

Thus, by the residue theorem,
/f(z)dz - % ((log(—a + ib))* — (log(—a — ib))2) =: cay
r

We now analyze the components of fr = Z?_l fv" First,
- J

Ll f(2)dz = /ER %c&

/ F(2)dz = / (logz +2mi)* , /R (log)? + 4milogx — dn
s r (T+a) 40 . (z+a)* + b

Next,
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will be related to the preceding integral. Next,

it

2m 1\ 2 2 2 1
(log R+1it)* . (log R) / g R it
dz = . Re"dt = . “dt
/w J(2)dz /0 (Reit +a)2 + 62 TR )y (@ )2+ (b/R)2°

For R sufficiently large, the integrand is pointwise dominated by 4 in magnitude. Thus, by a trivial esti-

mate,
lim/f(z)dZ:O
R—o0 P

2T . 2
B (loge +i(m — 1)) T
/y4 fz)dz = /0 (eei™=0) + a)? + b2 (Fiee )di

Finally,

4me(loge)?

For ¢ sufficiently small, the integrand is pointwise bounded by — 575

in magnitude. Thus, by the
dominated convergence theorem,

lim/f(z)dz:/ 0dt =0
e—0t 4 0

where we are of course using the estimate (log )? = o(1).
Now we combine the components. Note that

z)dz + z)dz = — 4m’0gm—47rdx
[ s [ geae=- [ Amosr A

(x4 a)? 4 b2

4
J=1J~;’

o log x Cap T [T 1
— 2 dr=-——+— - d
/0 (x—i—a)?—i—be 47m'+i/0 (x+a)2—|—b2x

Analyzing the second summand using real-variable techniques,

/Oo 1 d 1/00 1 J 1/00 1 d
————dr = - ——dr = - ———dx
o (x4+a)?+0? at; x%+(b/a)? bJo a?+1

so that, sending e — 0 and R — oo in fF =>

which is just

o 1 1 /m a
/o R deac =3 (5 - arctan(g)>
o log x Cab T (T a
— ° dr=—"4+ — (== t —
/0 @ taZ+oe 47rz'+bi<2 e an(b)>
T , .
7 ((log(=a+ib))* — (log(—a — ib))*)

and letting § = arctan(b/a) and r = v/a? + b?, we have

and hence

Finally, recalling

Cab =

log(—a +ib) =logr +i(m —60), log(—a —ib) =logr + i(m + 6)

14



so that
(log(~a + ib))* ~ (log(~a — it))? = 4nf — 2iflog

and thus (using arctan(a/b) = 7 — arctan(b/a))

o log x 1 T
—————dr = —— (47 — 2i61 —0
/0 ) p = Ty Al — 2i0logr) + 7
_ Ologr
-2
1
=0 arctan(b/a) - log(a® + b%)

Spring 2019 Problem 11. Let u € C*°(R) be smooth 27-periodic. Show that there exists a bounded
holomorphic function f, in the upper half-plane Imz > 0 and a bounded holomorphic function f_ in
the lower half-plane Imz < 0, such that

u(z) = lim (fy(z +ic) — f-(x —ig)), z€R.
e—0t
Proof. needs finishing
It is clear that we may freely add constants to u without altering the truth of the question; as such, we
may assume fo% u(z)dz = 0. For each n € N, write

1 2m ]
= — —inz g
n = 5 i u(z)e x
and
1 2 )
by = — u(x)e™ dx
2w Jo

Note that these integrals all converge. We first remark on the size of the a,,, b,,. Trivially we have

1 2
|m<—/wwmswu
0

- 27

and similarly for the b,,; thus these coefficients are uniformly bounded. Moreover, since u is smooth, for
each n € N we may integrate by parts to obtain

2 ) 1 2 d2 ' 1 - '

/0 u(x)e—vnmdx o _ﬁ i U((L’)@ [e—mw} dr = _E 0 u(2) (x)e—zna:dx
so that ) H . ”
jan] < 5 /0 [u® (@) do < =

and hence {a,, },cn is summable. Similarly, {b,, },cn is summable.

15



Define the auxiliary functions g, , g_ by

0() = D0, g2 =D b
n=1 n=1

Since the coefficients are bounded, the series converge on the unit disk D = {|z| < 1} and C \ D,
respectively. Further, since the coefficients are summable, we obtain

95(2)] < 37 02 u® el < flufloo + Dm0l
n=1 n=1

forall z € D, and we may find a similar upper bound on g_; thus the g, g_ are bounded on D and C \ ID,
respectively.
We now define

f+(2) = g+(€%)  (Im(z) > 0)

and
f-(2) = g-(e”) (Im(z) <0)
Note then that
R ) . . .
Jilwtie) = [-(w—ig) = Zl /0 u(t)(emTitetie) 4 ginlt=atio) gy

_ %Z /0 " e u(t) cos(n(x — 1))t

= % /O ’ Z e " u(t) cos(n(x —t))dt

where in commuting the sum into the integral we are using the exponential decay to guarantee enough
summability to use Fubini-Tonelli. As a consequence,

‘ ' 1 2m ei(—t-‘r:c—I—ia)
f+(l’ + ZE) - f,(flf - 28) = /(; u(t)Re [w} dt

™
1 o 1

= —-R ) ——————dt
T € |:/O U( )ez(t—x—za) -1 :|

It remains to estimate the integration kernel. Without loss of generality we will take x = 0. Then the

kernel takes the form .

eitJrs -1

16



which has mean zero on t € [0, 27]. It is also (27)-periodic, so for each 1 > 7 > 0 we may write

filwiz) = f-(v — i€) = ~Re / Kn““)ﬁ“_* JIRCE==
- %Re -/t|<nu(t)#dt- ! % /n<|t|<wu<t)Re [ﬁ] “
1T 1] 1
R /ﬂqumdt: 27 Jycin uoh
- %Re /t|<nu(t)€”f;—1dt- +% \t|gnu<t>dt
2 |t\§nu<t)Re [ZZ:—J:H :

Considering the kernel 1;_,, , (t) ::Z*i, we wish to argue that for 7 = ¢ we have that the distribution

tends to 2mdy as € — 0. Since, for each || < 7, we have
eitte 41 B e _ pitte | pmitte _ B €% — 1+ 2iefsint
eitte — 1 (efcost — 1)2 +eXsin’t % — 2eccost + 1

for which
ezt+£+1 .
Im |:eit+5—1:| 2ef|sint| _
6it+€+1 - 2 __ ~ T]
Re [e”+5—1] € 1

where we have used the small-angle approximation sin ¢ ~ ¢ and the first-order expansion e** ~ 1 + 2¢.

Thus, if n < ¢,
zt+€ + 1 ezt+a + 1 | eit—i-a + 1 2
ezt—i-a _ 1 ezt-i—e -1 + m eit—I—e -1

_ ’Re {Hl ' (1+0(c))

ezt—&-e -1

On the other hand,

=c e+ 1)(1+0(e))

ette 1] et +1]  ef+1+0(e?)
eitte — 1| |eitte — 1] o £+ 0(e2)

so that e
Re {L} = Hef+1)(1+0(e))

ezt+€ —1

Using this, and the first-order Taylor expansion of u, we obtain the estimate

1

L / 0 D+ 0

folatie) = [z —ie) = 5

17



Thus

it4-¢ it4-¢ it+¢e
Re e. +1 < e‘ +1 < Re g_—l—l
ezt—l—e _ 1 - ezt—l—s _ 1 ~ ezt+e —1

1 J—
eitte — 1
O
Spring 2019 Problem 12. Let H be the vector space of entire functions f : C — C such that
[ irePdut) < oo
C
Here dp(z) = e 17 d\(2), where dA(2) is the Lebesgue measure on C.
1. Show that H is a closed subspace of L(C, d).
2. Show that for all f € H, we have
1 _
=— / flw)e*Ydu(w), z¢€C.
T Jc
Hint for 2): Show that the normalized monomials
__ 1 =0,1
€n(2>— (ﬂn!)l/QZ y n=~u1,...
form an orthonormal basis of H.
Proof. Throughout this problem, we will simply write || - || for the exponentially weighted L? norm

indicated in the problem.

(1): It will suffice to show that, if {f,,}, is a sequence of elements of H and f € L*(C,du) with
limy, o0 || fn — fll2 = 0, then f € H.

To this end, fix such {f,}, and f. We will show a locally uniform Cauchy condition on the f,,. Fix
z € C; then we have for each n,m € Nand r > |z|,

L A= ),
& =) =5 [

271 wW— Z

so that, for each R > p > 2|z|,

fn(2) = fm(2) =

n(w) — frn(w) _ 2
27er / /w| — e dwrdr

R 2
I(p,R) = / e " rdr
p

where we have written

18



Thus
|w|

o) = o) < gy [ o) = e i)

which by Cauchy-Schwartz supplies

1)~ 10 g ([ 1000 e i)

2 12
: (//PS|wI§R e [ﬁ] dA(w))

Observe that p > 2|z|, so for any |w| > p we have

lw| 1 1 5

jwl —z]  1—[z/w] =~ 1-3

and hence
) 9 1/2
~luf? {—1 d\(w) | < (8xI(p, R))"?
e w < (87I(p, R))
(//pg|w|§R lw| — |2]
Thus we have ]
2l (p, R)

forany R > p > |z|. On the other hand, we may compute

1 1
Koy = L (e o) 2 L

for all R sufficiently large. Thus

1fa(2) = ()] S €2 fu = fnllo

uniformly over |z| < 3pandn, m € N. It follows that the { f, },, are uniformly Cauchy on each compact
set, hence f,, — f locally uniformly, hence f is the locally uniform limit of analytic functions, hence is
analytic. We conclude f € H, as was to be shown.

(2): We follow the hint. Note that, for any n, m € Z>,

- 1 - n+m o i(n—m) —r?
/Cen(z)em(z)du(z) = 7T(n!)l/Q(m!)l/2/0 rt /0 ) e~ dfdr
2 0

.2
prtmtle=riy _dr

2 > o2n+1 _—r2
= 5n:m—' r e " dr
n! Jo
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where in the last step we use the well-known Gamma integral

/ t"e tdt = n!
0

provable by induction and integration-by-parts.
Thus {e, }, form an orthonormal family. We claim that it is complete. Suppose f € H is orthogonal

to all e,,. Then, writing
[o@)
3
k=0

we have
0_/f 2)en(2)dp(z ﬂnu/z/Zakzzelzd)\()

Pick now any R > 0. Since the series defining f has infinite radius of convergence, for each ¢ > 0 we
may find C. > 1 such that |ay| < C.&” for all k by the Cauchy-Hadamard formula for the radius of
convergence. Thus, taking e < R,

/ Z |ay, " ”‘e"ZFd)\(z) < C. Zsk|zln+ke’|’z‘2d}\(z)
|z|<R . — |z|<R . —,

e}

< CSS"/ Zeﬂzﬁe"zﬁd}\(z)
[2|I<R 3.—g

- 1 J
e / dA(z) <

J<r 1 — |5Z‘

so that, for each R,

/ Zakz e PN (2) = Z/ a2z e dA(2)
|z k=0 |z|<R

\<Rk 0

and the latter is equal to

> R 2 R 2
§ 5k:n / akrk+n+1efr d?" — / anr2n+1efr d?”
k=0 0 0

Taking R — oo, we conclude that

oo
2
0= g apZFze 1A d\(z )—an/ 2t e dr = a,n!

so that a,, = 0. Since this holds for each n, we conclude that f = Zn anz" is the zero function. Thus the
kernel of the complement of span({e,, },,) in H is trivial, so span({e, },) = H, as claimed.
We now attack the problem at hand. Since {e,}, are an orthonormal (topological) basis for H, we

have the reproducing formula
F= (fee
n=0
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Expanding this,

i S enen(z Zﬁnl/f " dpsw

n=0

We wish to commute the sum into the integral. We verify this by demonstrating absolute integrability,

namely,
|Z | " z n+1 —7‘
"dp(w) 7m' dtdr

> [l
/ /27r f(re® e Z ‘m‘ndtrdr

27
/ (re™)|e”" 2 oy

“le” 27 e 2l gy

1 2 ) 1/2 0o poT , 1/2
< = (/ / (re’)|?e" dtrdr) (/ / e " +2”|dt7"dr)
m o Jo

< 00

so that .
3 o st = [ 32 stwranaut) = [ o1t

as was to be established.
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2 Fall 2019

Fall 2019 Problem 1. Given o-finite measures p1, {2, V1, Vo on a measurable space (X, X'), suppose
that ;11 < vy and ps < 1. Prove that the product measures 111 ® g and 1 @ o on (X x X, X @ X)
satisfy (11 ® pe <K 11 ® 15 and the Radon-Nikodym derivatives obey

d(p ® o) _dpn, (dpe
d(v; ® 1) (z,9) = diy an )dug v)

for vy ® vy almost every (z,y) € X x X.

Proof. Let N € X ® X be v; ® vy-null. Observe that ;11 ® (9 and 11 & 1 are o-finite. Then

0= (11 @ ) () = /X ()i © m)(r.y)

Since the integrand is nonnegative and v; ® v, is o-finite, Fubini-Tonelli implies

/){XxlN(x’y)d(V1®V2)(I7y):/)(/){1N($,y)dyl(x)dyg(y)

Since the preceding vanishes, it follows that there is a v5-nullset V5 such that for every y € X \ Ny we
have v ({x € X : (z,y) € N}) =0.
We use this to show that j1; @ e < v ® 4. Similarly as above,

(11 ® 1) () = /X e © n)(o.)

Since the integrand is nonnegative and j1; ® 5 is o-finite, Fubini-Tonelli implies

/)(Xx1N<f‘”y)d(/~61®uz)(I7y)Z/X/XlN(x,y)dul(x)dm(y)

Since p19 < 1o, we have i5(Ny) = 0. Thus

//1Na:yd,u1 )dpia(y / /hvxydm z)dps(y)
X\ N2

Foreachy € X \ Ny, the interior integral is yt; ({x € X : (z,y) € N}). By the last paragraph, the latter
set is /1 -null, hence is 14; -null by absolute continuity. Thus

(11 @ p2)(N) = 0

and we reach the conclusion that (1} ® py < 11 ® 15.
Let
d,u1 d,ug

A—{A€X®X3(M1®/~L2>(A)_/XXlA( )dvl dvy

——(y)d(n @ o) (z,y)}

We first claim that A is a o-algebra. It is clear that A is closed under countable disjoint unions. In the
event that A = X x X is the full set, then

o)) = (X0paX) = ([ ) ([ awe) = ([ ropanto)) ([ Ltavatn))
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and Fubini implies that A € A. Finally, these last two facts and a straightforward demonstration imply
that A is closed under complementation, so it is a o-algebra.
Next, if A, B € X, then by Fubini

| twsle P R A0 @ ).

~ ([ @ @) ([ a0 22 wan))

= M1(A)M2(B)

sothat A x B € A. Since A is a 0-algebra, it follows that X @ X C A. Since the reverse inclusion is
true definitionally, it follows that

o) = [ L) P @ PR )

forall A € X ® X. Since Radon-Nikodym derivatives are equal (1, ® 112)-a.e., it follows that

d(/ﬂ@ﬂz)(x - dp .\ duz )
d(ry @) dvy " duy

for (11 ® 1p)-ae. (z,y) € X x X.
0

Fall 2019 Problem 2. Let y be a finite Borel measure on R with u({z}) = 0 forallz € R and let

t) = [ € dp(z). Prove that
1" )
b | etopas =

Proof. Let x : R — R be smooth and compactly supported. Then

et = [[[ e inaute)du

Since p is finite, the triple integral is over a o-finite measure space. Note too that

// | () | dpal) dp(y) dit = // X (t)|dpe(2)dp(y /|X )|dt < oo

so we are in a setting to apply Fubini. Consequently we may write

J[] e xwamtmaman = [[ ([ duterani)

The inside integral may be evaluated directly as

[ e ot = it )

where - represents the (non-unitary) Fourier transform.
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Consider now the special case where x(t) = xo(T7't),x0 2 li—1,1:|Xo| S 1. Then x(t) =
TXo(Tt). Then we see

/_T ot 5 [ le@Pxod =T [[ 5alT — p)idutarint)

It remains to establish that the latter double integral is 07, (1). We first claim that (¢ ® p)(A) = 0,
where A C R x R is the diagonal. To demonstrate this, note by Fubini that

(1@ p)( // Ia(z, y)d(p @ p)(z,y) = /(/ 1a(ﬂc,y)du(l’)) du(y) =0

where we have used that u({z}) = O forallz € R.

Next, 1t ® p is Borel and finite, hence is outer regular. Thus, for every ¢ > 0 thereisd = d(g) > 0
such that (u @ p)({(z,y) : |z —y| < d}) <e.

We use this to reach our conclusion. Givene > 0, let 6 = d(¢) as in the previous paragraph. Since
Xo € CX(R), it in particular follows that there is 7 > 0 such that |y (t)| < ¢ forallt > Tj. For
T > 5T, we then have

[l st [ ot -yt <7 [[ o i)

By the choice of 4, the first summand is O(£T"). Since T' > 6Ty, it follows that each value xo(7(z —y))
in the second integral is < e. Since (1 ® p)(R?) < oo, it follows that the second integral is <, €7

Consequently,
T
| et s, et

for all T" sufficiently large depending on € > (. Consequently,

1
7 limsup [p(1)]* < e

T—oo

for all € > 0; the desired result follows. O

Fall 2019 Problem 3. Consider a measure space (X, X') with o-finite measure prand p € (1, 00). Let
LP be the set of measurable f : X — R with [f], = sup,. tu(|f| > t)'/P finite. Let

1
Ml = s e [ 17l

EeXx
p(E)€(0,00)

Prove that there exist ¢;, ¢y € (0,00) — which may depend on p and j — such that

vielP=: alfly < flpe < calflp

Proof. We first show that ¢; = 1 suffices for the first inequality. For f € LP>°, the sets U; = {|f| > t}
all have finite measure. If 4(U;) > 0, then

tu(U) < / [Pl < | flpooss(U) 17
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which implies
tu(Un) 7 < [|fllp.oc

This holds for all ¢ > 0 such that p(U;) > 0. Observe that the latter inequality holds trivially when
1(U;) = 0, so we conclude the easy estimate

[flp < {1 fllp.oo

We now consider the reverse estimate. Let £ € X have u(E) € (0, 00). For t > 0, we have the two
trivial estimates
WENT) < w(E), p(ENU) <t PIf])

Then, by a standard distribution function manipulation,

L= [ wenvia

w(E)~P[f],
< / L(E)dt + / e
0 H

(E)=/7(flp

= u(E)"VP(f], + pT[f]pM(E)l_l/p

so that .
P
- dy < ——
p(E)-1/p /E [ fldp < p—1 o

forall £ € X with u(F) € (0,00). Thus

p
[flp < N fllpoo < pTl[f]p
forall f € L”™, as was to be shown.

]

Fall 2019 Problem 4. Let A C R be measurable with positive Lebesgue measure. Prove that the set
A—A={z—y: 2y € A} has non-empty interior. Hint: Consider the function ¢(z) = [ xa(z +
y)xa(y)dy, where x 4 is the characteristic function of A.

Proof. We begin by claiming that, for each f € L'(R), the function 7.f, t — 7.f, 7. f(z) = f(z + 1),
is continuous as a function R — L!(R). Note that this clearly holds when f € C.(R) by uniform
continuity. On the other hand, each individual 7; is an isometry of L'. As a consequence, if f € L'(R)
and e > 0, then fix g € C.(R) such that || f — ¢||1 < £/4 and let § > 0 be such that |[|7:g — g||; < £/4
forall |t| < d. Then, for any |¢| < 9,

9 € 9
l7ef = fllv < lImf = mgli +limg —glli +llg = flh < g+ 5+ <e

so the function ¢t — T7;f is continuous at 0. By the group property of 7, it follows that the function is
continuous on all of R.
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Next, since integration against L> (R)-functions is continuous on L'(R), we see that the function

t /th(y)g(y)dy

is continuous for each fixed f € L'(R), g € L>(R). In particular, the function ¢ is continuous. On the
other hand,

o(0) = / a)xaly)dy = m(A) > 0

writing m for Lebesgue measure. Thus there is an interval (—¢, £) with € > 0 over which ¢ > 0.
Finally, note that for any z € R,

/XA(:E +y)xa(y)dy = /XA_z(y)xA(y)dy =m((A—z)NA)

In particular, for all |z| < ¢ there exists z € (A — x) N A; that is to say, there exist z,y € A such that
y — ¢ = z,ie. x = y — z. Thus we have shown that A — A contains the interval (—¢, €), as was to be
established. [

Fall 2019 Problem 5. Prove the following claim: Let H be a Hilbert space with the scalar product of =
and y by (x,y) and let A, B : H — H be (everywhere-defined) linear operators with

Ve,ye H: (Bz,y) = (z,Ay)

Then A and B are both bounded (and thus continuous).

Proof. Foreachy € H, write T}, : H — C be the linear map = — (z, Ay). Then, for each fixed x € H,
Ty(x)| = |(Bz,y)| < [|Bz|| - [|y|

so that

sup |Ty(z)] <oo VreH
llyl<1

By the uniform boundedness theorem,

sup |Ty(z)| < o0
llyll =) <1

so there is a constant C' < oo so that
1T, <Cllyll, VyeH

Thus
|Ay||* = (Ay, Ay) = T,(Ay) < C||Ay|l|ly|

which implies

[Ayll < Cllyll, vyeH

and hence A is bounded. By the symmetry between A and B, we may also conclude that B is bounded, as
was to be shown. [

26



Fall 2019 Problem 6. Recall that /*(N) = {z = {z,};2, : sup,>; |zn| < oo} is a Banach space
(over R) with respect to the norm ||| = sup,,>; [Zn|.

(1) Prove that there exists a continuous linear functional ¢ on ¢>°(N) such that

¢(z) = lim xz,

n—oo

whenever this limit exists.
(2) Prove that this ¢ is not unique.

Proof. (1): Let A C £*°(N) be the set of convergent sequences. Then A is a linear subspace. Furthermore,
we claim that A is closed. Suppose k + (¥ isasequencein Aandy € ¢>°(N) is such that |2 —y||o, —
0ask — co. Givene > 0, write K € N such that ||z — y||,, < £ forallk > K. Let N € Nbe such

that m,n > N implies |:U$,If) — :L‘,&K)‘ < §. It follows that, for any m,n > N,

5 = 9ol <l = 288+ 12810 = 10 4 ol — ] < 37 <€

Thus we have demonstrated that y is a Cauchy sequence, soy € A. Thus A is closed, as was to be verified.
Write ¢g : A — R for the function ¢o(x) = lim,, x,,. Clearly ¢y is linear. Moreover,

|6o(2)| = [lim z, | <limsup [z,| < [zl
n

so ¢ is bounded by the global norm || - ||.. By Hahn-Banach, it follows that ¢ extends to a continuous
linear functional on ¢°°(N) which evaluates limits on Cauchy sequences, as was to be shown.

(2): Write A’ for the linear subspace of (*°(N) spanned by A and b = {b,},>1, with b, = (—1)™
Then, for any x € A’, there by definition exists a scalar &« and y € A such that

r=ab+y
Then observe that, since {y,, }°° ; converges, from the identity
Tpy1 — Tp = 2<_1)n+104 + (yn+1 - yﬂ)

we in particular have

5 lim (x2k-+2 — $2k+1) = (1)
k—o00
and
Y= — 5 lim (l’ngrQ — $2k+1) (2)
k—o00

Define linear maps ¢, ¢ : A” — R via
P(ab+y)=a+ lim_y,

po(ab+y) = —a+ li_>m Yn

By (1) and (2), these are well-defined. They are also clearly linear. We wish to prove a bound that allows
us to use Hahn-Banach again. To this end, write y,, = lim,, y,,. Then

|| + [Yoo| = limsup [(=1)"a + yu| < [ab + ¢l

n—oo
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so that, for ¢ = 1, 2, we have
[9i(ab +y)| <o + |yoo| < [lab+ Yoo

Thus ¢1, ¢2 both extend to bounded linear maps ¢>°(N) — R that extend the linear functional on A.
Since they disagree on the element b, we conclude that the extension in part (a) is not unique. [

Fall 2019 Problem 7. Let / C R be a compact interval, and let ;4 be a finite Borel measure whose
support lies in J. For z € C\ J define

Fu) = [ —pauty

z—1
Prove that the mapping yv +— F), is one-to-one.

Proof. By Morera’s theorem it follows immediately that each F),(2) is analytic on C \ J. Moreover, if
K C C\ Jis compact, then
1 oo
— th—n—l
z—1 ;

converging uniformly over (z,t) € K x J. Consequently,

R =Y o [ autt)

By the uniqueness of power series, if F),(z) = F,(z) forall z € C\ J then
/ t"du(t) = / t"dv(t) Vn >0
R R

/R P(t)du(t) = / P(t)dv(t) VP e R[]

R

It trivially follows that

By Stone-Weierstrass, we then have

/R F(t)du(t) = / F(t)du(t) Vf e C()

By the Riesz-Markov-Kakutani representation theorem, it follows directly that ;4 = v. Recalling our
assumption ), = F,, we see that the mapping ;1 +— F}, is one-to-one, as was to be shown. [

Fall 2019 Problem 8. A function f : C — C is entire and has the property that |f(z)| = 1 when
|z| = 1. Prove that f(z) = az™ for some integer n > 0 and some a € C with |a| = 1.

Proof. Letu(z) = 1 for z € C\ {0}, and define

f(2) 2] <1

pemt g(z)z{wofou)(z) 1> 1
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Since u fixes {|z| = 1} pointwise, it follows that g is continuous. Since each u is antiholomorphic and
f is holomorphic, it follows that ¢ is holomorphic on C \ {|z| = 1}. By a standard Morera’s theorem
argument, g is entire.

If f is constant, then it is trivial to verify that we are done. Otherwise, we may find an entire function
h: C — C such that 2(0) # 0 and f(2) = 2*h for some k > 0. Consider the power series

g(z) = Zanz”, zeC
n>0
Then, for |z| > 1,

u(f (=) = 3 a,"

n>0
so that, for 0 < |z] < 1,

u(f(2) =3 anz

n>0

Recalling the factorization of f,

1
= a,z” ", 0<|z| <1
el .
from which we obtain .
— _k—n
—— =) a2 ", 0<]zl <1
h(z) =

On the other hand, A is nonvanishing near z = 0, so the meromorphic expansion in the preceding display
has no singular terms. Thus

a,=0 VYn>k
which is to say
k
g(z) = Z 2"
n=0

On the other hand, g and f are two entire functions that agree on |z| < 1,s0 g = f everywhere. Thus

k
f(z) = Z a, 2"

n=0

On the other hand, recalling that f(z) = 2*h(z) with h holomorphic, it follows that a,, = 0 for n < k.
Thus f(z) = ayz"; the result follows directly. O

Fall 2019 Problem 9. Determine the number of zeroes of the polynomial
P(z) = 2% — 62 + 102 + 2

in the annulus {z € C : 1 < |z| < 2}. Prove your claim.
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Proof. When |z| =1,
25 — 627 +2| <9 < |10z]

so that
|P(2)] > [10z] — 2% — 62% +2| > 0
Thus, by Rouché’s theorem, P and z +— 10z have the same number of zeroes in |z| < 1, i.e. 1. On the
other hand, for |z| = 2,
|20 — P(2)| = |62 — 102 — 2| < 24 +20 + 2 = 46 < 64 = |2°]

Thus by Rouché’s theorem, P and z +— 2% have the same number of zeroes in {|z| < 2}, i.e. 6. Since all
but one of the zeroes of P are outside {|z| < 1}, it follows that P has 5 zeroes in the annulus {z € C :
1 <|z| < 2} O

Fall 2019 Problem 10. Evaluate

x
lim sin(t?)dt
T—r00 0

Justify all steps.

Proof. We abbreviate f(z) = ¢’ For R > 0, let 1 be the path from 0 to R in C, ~, the circular arc from
Rto Re'%, and 5 the line segment from Re'4 to 0. Write I' for the composed path v, — v, — 3, i.e.
the closed path traversing the previous three in a CCW way. Observe that

f(z)dz=0
I'r
because f is entire. Note too that
R
0

/f(z)dz:/ (cos(t?) + isin(t?))dt 3)

R
/ f(2)dz = —€'t / e dt (4)
Y3 0

We need to more carefully study the last integral. It may be expressed as

7T/4 i R2 21 ;
/ f(z)dz = Z'R/ e e 4
Y2 0

The magnitude of the last integrand is

and

’eiRQeQie ei@’ _ efR2 cos(260)

Note that, for 0 < 6 < 7,
4
cos(20) > 1— —0
m

and so

/4 2 4 2 /4 4 np2 2 T 2
< R/ e B 0=2040 = Re F / e dh = Re " — [eR — 1]

/72 f(z)dz
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which immediately implies

<R, (R>1) )

/72 f(2)dz

We now put the pieces together. From[4 we see that

/ f(z)dz = —e'i VT + o(1)

2

(here and on, o(1) will be as R — +00). From|[5}

| #ez= ot
Thus
0= s f(z)dz—l—/wf(z)dz—i—/73 f(z)dz

= /OR(cos(tQ) + isin(t?))dt — eizg +o(1)

from which it follows
R R
/ cos(t?)dt — VT cos(z) +1 / sin(t*)dt — VT sin(z) =o(1)
0 2 4 0 2 4

From the form of the complex norm in terms of the real and imaginary parts, it in particular follows that

R
V2
lim cos(t?)dt = ﬁcos(z) _ VT
R—o0 0 2 4 4

as was to be calculated. O]

Fall 2019 Problem 11. Find a conformal map of the domain
D={zeC:|lz—1] <V2,]z+1] <V2}

onto the open unit disk centered at the origin. It suffices to write this map as a composition of explicit
conformal maps.

Proof. Let f; be the map .
z—1
filz) =~ o
Then the two boundary curves of f;(D) are lines through 0, which are bisected by a line through 0 con-
taining the point

fi(0) =1

i.e. R. Thus f;(D) is an angular sector with corner at 0, containing R~, and is symmetric about z — Z.
It remains to identify the angle of the sector. Note that the tangent vector to {|z — 1| = +/2} at i is
orthogonal to the displacement vector from 1 to 7, and the tangent vector to {|z + 1| = v/2} at i is
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orthogonal to the displacement vector from —1 to ¢. Thus the internal angle of D at i is 7; the same holds
for —i. We conclude that

fi(D) ={z € C:Re(z) > 0,|Im(z)| < Re(z)}

Next, if fo(2) = 122, then fo(f1(D)) is the upper half-plane. Lastly, it is standard that f; carries the
upper half-plane to the unit disk. Thus a suitable conformal mapping is ¢ = f; o f5 o fi. ]

Fall 2019 Problem 12. Show that

oo tz
= ——dt
[ V143

is well defined (by the integral) and analytic in {z € C : Re(z) < %}, and admits a meromorphic
continuation to the region {z € C : Re(z) < 3}.
Proof. We address the claims in order. First, if Re(z) < %, then fort € (1, 00),

tZ
V1+t3
Since the exponent is strictly less than —1, it follows that the left-hand side of the preceding display is
integrable over (1, 00). Consequently, the integral defining F' converges absolutely.

We now validate that F' is analytic via Morera’s theorem. Let 7" be any triangle in {z € C : Re(z) <

%} Then, by compactness of 7', there is some ¢ > 0 such that, for all z € T one has Re(z) < % —e. We
would like to commute integrals: note that

// dt|dz\<// 332t dz] < oo
1+

& 1
dez:/ /tzdzdt:O
/T (=) 1 V148 Jr

and it follows that F' is analytic.
We now study the meromorphic extension. Fix R > 0 large. Integrating by parts, for any Re(z) < %,

< t—%-i—Re(z)

so by Fubini

R
tz"
1 \/1 +t3
R
=3 (3 33
201 2 25 3\—1/242
1—|—If (2 ( +t) 22(1+t) t
t=1
3 1 /R t? ”
2z—3 )i (L413)3/2
Then i
3 1 R t? 3 71 1
F = li . dt P —— T R < =
(Z) Rglgo [ 22— %[ (1 +t3)3/2 + 9 (1 n t3)3/2 i ; e(Z) 5
Write
R

() 3/R t? " () 3 7fz—l
zZ)=—= ———5 At Z) == s
e 2 ), @Wreprt PRI Ty Arepr|,

Then each g; g is holomorphicon {z € C : Re(z) < %} and converges locally uniformly there. It follows
that F extends to a meromorphic function on {z € C : Re(z) < 3}, as was to be shown. O
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3 Spring 2020

Spring 2020 Problem 1. Assume f € C'°(R) satisfies

/ e f(x)dr =0 forany t>0

R

Show that f(z) = —f(—xz) forany x € R.

Proof. Taking the even part of f, that is, w, we see that the claim holds if and only if

f even, C°(R) orthogonal to centered Gaussians = f =0

Suppose [ satisfies the left-hand side of the above implication. Note that

o —tz? - E —m2e2/t ¢
0= /R ’ f(as)da:—\ﬂ /R e TN f () de

f9r allt > 0, which implies that f is also orthogonal to centered Gaussians. Since f is even and real-valued,
f is also even and real-valued. Since f is compactly supported, the integral

fe) = [ s

is well-defined and continuous for z € C. If A is any triangle in C, then Fubini provides

Aﬂmthéam%mwmz

= / / e *™* f(x)dzdr  since the integrand is continuous and compactly-supported
rRJA

—2mizx

=0 sincee is analytic in 2 for each x € R

so by Morera we have that f extends to an entire function. Thus f on R is given by a convergent real
power series

F&) = ant"
n=0

and, since f is even, a,, = 0 for all odd n. But then, for any ¢t > 0,

A = - 2k — 1)!!
O:/ e f(©)de =D ay / ‘”525’%15:\/E ot
L= 0 | {2y
Thus the real power series

> 2%k — 1)
3 a2 DR

2 PET ok

which converges uniformly in a neighborhood of oo, and hence defines an analytic function there, is
identically 0 on a non-discrete set, and hence has zero coefficients. Thus each a,, is equal to 0, which
implies that f was zero from the start.

O
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Spring 2020 Problem 2. Assume fn : R — R is a sequence of differentiable functions satisfying

/Ifn(x)ldm <1 and /|f;(x)|d:z: < 1.
R R

Assume also that for any € > 0 there exists R(¢) > 0 such that

Sup/ | fu(z)|dz < £
|z|>R(e)

n

Show that there exists a subsequence of { f,,} that converges in L!(R).

Proof. Note that the second condition implies that the { f,, } have total variation bounded by 1. Since each
fnis absolutely integrable, | f,,| < 1 everywhere since otherwise the total variation condition would imply
that | f,,| > & > 0 everywhere, contradicting integrability. Thus the { f,,} are uniformly bounded.

Now let {¢. }. be approximations to the identity. Then, for I C R compact,

||fn - fn * Qba”Ll(I) =

(@) = fuler y))ﬁbe(y)dy‘ da

(fn( ) — fn(x —ey))o(y)dy| dx

/ / () = ful — e9)ldud(y)dy

<ell]

Thus, for each € > 0, we choose I C R compact so that all f,, satisfy

N
n JR\I

and for this choice of I, choose 0y > 0 such that
| fo = fux &5l <& Voo >6>0

For each such ¢ > 0, the sequence f,, * ¢; is uniformly bounded and equicontinuous: first, by Young,

| fr * G5l < | fullLe@)l| @5l L) <1
Secondly,

1(fa % 06) 2oty = 1fno % D5l ey < I fullzoe® | D5l 1Ry < 67210 | pi(my < 00

with the latter expression independent of n. Thus the family {f, * ¢s}, is uniformly bounded and
equicontinuous for each § > 0, and hence by Arzela-Ascoli there is a continuous function f; on I and
a subsequence 7y, such that f,,, * ¢5 — f5 uniformly on /. As such, there isa K € N such that, for all
k> K,

| fr % b5 — follpan < e

'keyword: Helly’s selection theorem

34



All together, we see that, for 7, k > K,

I fn; = Frllray S fny — fry * @6l + || fn; * ¢6 fsllov
+[Ifs — fnk * 05|10y + | o, * 5 — Furll
< 4e

and hence
||fn] - fnkHL1(1) < 5e

for sufficiently large j, k. Thus we may construct the convergent subsequence as desired.

Spring 2020 Problem 3. Prove that L°(R") N L3(IR™) is a Borel subset of L*(R™).
Proof. Note that, for f € L3(R"™),
f e L*R") <= 3JK € Nsuchthatm({|f| > K}) =0

We claim that

m({|f] > K}) =0 /TIfISK(r—q)quE@

(6)

The forward implication is clear. For the reverse implication, suppose that there is some bounded set
S C R withm(S) > 0 such that |[f| > K + ¢ on S, where ¢ > (. Then for every 6 > 0, the definition
of Lebesgue measure (with some minor tweaks) supplies a finite disjoint union of open intervals with

rational endpoints
U= (q177n1> U---u (Qnarn)

such that
SCUmU)<m(S)+9

Then we have

n

/U 1l = /S 1+ / M1 U amis) = (49320~ a)

j=1
If the right-hand side of[¢]still holds, the above provides

n

KZ _— +/Uswfr><f<+s>2u—qj>

j=1

or
/U\S|f|>6z ) =em(S) > 0

However, the left-hand side of the above can be expanded via Holder as

/U\S 11 = I Fxonsllzigny < flzsemlixosliszgn = 1 |zgnm(U\ 8)*2 < || £l s @6
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so we conclude that, for our given f € L*(R"), there is some m(S) > 0 and ¢ > 0 such that for every
0 > 0 we have

Since || f|| z3(rn) < 400, we may send § — 0 to obtain a contradiction.

Thus we have shown@ Since each () belongs to L¥%(R") = (L3(IR™))*, we see that integrating
[ against (. is a continuous functional on L*(R"). Thus the collection of f satisfying the RHS of @is
Borel; taking a countable union over K € N provides that L>°(R") N L?(R") is a Borel subset of L3(R"),

as desired.

]

Spring 2020 Problem 4. Fix f € L'(R). Show that

2

lim f(z)sin(z")dx =0

n—oo 0

Proof. For eachn,

2 1 2
/ f(z)sin(z")dx = / f(z)sin(z")dx + / f(z)sin(z")dx
0 0 1
We analyze each term separately. Note that
sin(z") - 0 pointwise for z € (0, 1)
and so
f(z)sin(z") 5 0 pointwise for x € (0,1)
Thus, by DCT, since f(z)sin(z") < |f(z)| € L*(R) for each n,
1 1
lim f(z)sin(z")dx —/ lim f(z)sin(z")dz =0

which is the desired result for the first term. Note that
1 d ..n
inx™ 1 dx N

For the second term, assuming first that f € C'°((1, 2)),
2 2 '
/ f(z)sin(z")dx = Im [/ f(x)e“ndx]
1 1
2
1

inx™ 1 dx

- m { / Tt ( gf)) da;}

— —Im {/2 g S@) 4 (1) /2 e”an)} d

nan1 mn x
— /12 COS(l'n)T{;S?ai)l dx + (n ; D) /12 cos(z") x(f)

Zkeyword: oscillatory integral
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and hence, by the triangle inequality and DCT,

/1 2 cos(x”)éwﬁdx’ +

xn—l

<

(Gnd)) /2 COS(%”)L?C{Z“

n i

/1 ) sin(a")d

50

Thus we have the desired limit in the ff term for all f € C2°(1,2). By a standard fact, for general
f € L*((1,2)) we may find a sequence { f,,}°°, in C°((1,2)) such that f,, — fin L'. For eache > 0,
let j € Nbe such that || f; — f||1 < £/2. By the above, there is some n € N such that, for all k > n,

<e/2

/1 : fi(z) sin(2*)dx

All together we have

/12 f(z) sin(z*)da /12 fi (@) sin(2)dz| + /12[fj(x) — ()] sin(z")dz

<

2

<e/2+ / |fj(x) — f(x)|dx since |sin(t)| < 1 everywhere
1

<€

for all £ > n; letting ¢ — O we obtain the desired
2
/ f(z)sin(z™)dz = 0
1

which together with the limit on for fol provides the desired result.

Spring 2020 Problem 5. Rigorously determine the infimum of

1
INCORERE
-1
over all choices of polynomials P € R|x] of degree not exceeding three.

Proof. Some details omitted. Write a general degree < 3 polynomial as Pyeq(7) = ax® + bx? + cx + d.
We claim first that, for any particular choice of (a, b, ¢, d),

1 1
E(a7 b7 ¢, d) = / |Pabcd(l') - |.fIZ'H2 Z / ’PObOd(x) - |IH2 = E(07 b7 07 d) (7)
-1 -1
Differentiating F by a, c we see that the function
(a,c) — E(a,b,c,d)

has a unique critical point at @ = ¢ = 0. At this point, the Hessian of £ in a, cis

mep =305 i)
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which has positive determinant and trace, hence is positive definite. Thus (7) holds and we may restrict
attention to even polynomials.
Now, differentiating F' against b, d,

OF = 4b/5+4d/3 — 1, 04E = 4b/3 +4d — 2

which defines a vector field in the b, d plane. The inner-product of this vector field with an outer-pointing
vector field is given by

1 1 [40* 8bd
DMEw@.;E@@yZQE<?;+—§~wm2—b—m0

which is positive for sufficiently large ||(b, d)||, which implies that £ achieves a global minimum some-
where. This happens when Dy, 4[5, 4) = 0, or when

15 3
b= 6 d= 6
and here we achieve 15 3 )
inf ¥ = F0,—.,0,—) = —
i 0.76%16) = 56
as the infimum value. O]

Spring 2020 Problem 6. Let us define a sequence of linear functionals on L>°(R) as follows:

1 oo
L.,(f)=— / e f(x)dx.
n! Jo
(a) Prove that no subsequence of this sequence converges weak-x.
(b) Explain why this does not contradict the Banach-Alaoglu Theorem.

Proof. (a): Suppose {L,, }x is a subsequence; we show that this sequence does not converge weak-x'ly.
Since each integrand %x"e‘m converges locally uniformly to 0, we may choose a sequence of compact

intervals [, C R satisfying

1 S 1
— e Pdr < —
nk. R+\Ik 10

and

. k
inf I, =% oo

Choose a subsequence { I, }; whose intervals are pairwise disjoint. Then
f= Z(_l)jxfkj
j=1

is in L*°(IR). Then, for each 7,

1

10)

L, (F) = Loy (< 17x5,) + L, (S (-1)'xs,) = (~1 + O
IZ]
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where the implicit constant is at most 2. Thus the sequence

{Ln (F)}

is not Cauchy, and so does not converge. Thus {L,,, }; does not converge weak-x'ly, as desired.
(b): Since L>°(R) is non-separable, Banach-Alaoglu only shows that the unit ball of (L>°(R))* is com-
pact, not sequentially compact. [

Spring 2020 Problem 7. F|lLet Far be the set of functions holomorphiconD = {z € C : |z] < 1} and
continuousonD = {z € C : |z| < 1} that satisfy

2
/ f(e)|dt < M < oo.
0

Show that every sequence { f,,} in F); contains a subsequence that converges uniformly on compact
subsets of I.

Proof. Note first that F); is locally uniformly bounded and locally equicontinuous: for X' C I a compact
ball, set 7 = dist(K,D) > 0. Then, for any f € F);,andany z € K,

1 (w)

21t Jop W — 2

1 |/ (w)]

— 27 Jop |w — 2|

F (=) =

dw’

ds(w)

1 M
< 5o | )lds(w) < 5
and
oy | 1 f(w)
761= |5 [ ]
M
<
— 272

which implies, for any w € K,

1f(z) = fw)] < [z —w[[f'()] <

2772 |2 = wl
where ¢ is some point in K on the segment connecting z and w.
Thus, for each & > 2 natural, the sequence { f,,} is uniformly bounded and equicontinuous on
B(0,1 — 1). By Arzela-Ascoli, we may iteratively refine {f,} (keeping the first k& terms on each step)
to be uniformly convergent on each of these balls; this provides the locally uniformly convergent subse-
quence as desired. O

3keyword: normal family
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Spring 2020 Problem 8. Foreach z € C, let

— (n)?2 -

(a) Show that F' is an entire function and satisfies | F'(z)| < el
(b) Show that there is an infinite collection of numbers a,, € C, so that

ro-fi(-2)

n=1

and the product converges uniformly on compact subsets of C.

Proof. (a): Note that

using the fact that

which implies that £ converges absolutely on C, hence is an entire function satisfying the desired estimate.
(b): Define the function

GE) = X g

n=0

Thus F(z) = G(z?). If {a, } are the zeros of I’ (n ranging over Z \ {0} and a_,, = —ay,,), then a? =: b,
are the zeros of G (here n ranges over N). From |F(2)| < el?l we see that F has order < 1, and thus

which implies

and hence

converging locally uniformly in C. [



Spring 2020 Problem 9. Let f € L'(C) N C*(C). Show that the integral

defines a C'! function on the whole complex plane that satisfies

In this problem, d\(() denotes (planar) Lebesgue measure on C and C' is meant in the real-variables
sense.

Proof. Since f is L' and (—Lz is bounded near oo, the integrand is integrable near co. Since f is C'! and

g%z is locally integrable, the integrand is locally integrable. Thus the integrand is globally integrable and

so u is well-defined for every z € C.
Note that, by Cauchy-Pompeiu,

F(2) = %/@D Cf(_C)ZdC— %//D(@eriﬁy)fc%zd)\(C)

for any domain D containing z. Since f is L', there is a sequence of radii R; such that

ds
|fls— = avg._¢j=g, [/ = 0
/ZC|=R]' 2n R, S
If this weren’t true, then the above integral would be above ¢ > 0 for all sufficiently large R > 0; however,
we would then have
00 > / SO dA(Q)
c—2>1 1€ — 2
2 00 i6
_ / / I+ ReV)| 511
0 1 R

Y
1

227r5/ dR = o0

Ro

a contradiction. Thus we have the desired sequence I?;, and so

L/ f(©) dc| <

270 Jiog=r, € — 2

27eravg|Z_<|:Rj\f| =0

27TRj

Setting D = D; = {2 : |z — (| < R;} and taking a limit, we find

fe) = im 5 [ / 2 10,)f MO =~ [ [ .+ i0) N
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where the latter integral is in the sense of principal value.
Assuming first that f is compactly supported,

0 - 1 £(©) £(©)
Fpu(@ Tiy) = lim —o— //Cg_<z+h) — MO

R 1O O
_Ef%_%h/y = h—z_g—deO

= ~5 / fle+h) - S9 d\(C) by achange of variables
T

Rah—m c C—=z Q— z
L f( C+h flQ) 1
N Rgf{go_%/ ¢— zdk(g)

o

where we justify the last exchange of integral and limit by DCT, since

’f(CJrh)—f(C) 1
h (—=z

for sufficiently large R and small A. Similarly,

c‘fy (o +iy) = 27r//<c <—z

<aa;c+@aﬁ) u(z +iy) = 27T// = Ha dk(<)=f<w+iy>

by the Cauchy-Pompeiu calculation above. If ; is a sequence of smooth cutoff functions satisfying

1
< sup (W)= XBr0)(C)
wesupp(f) K - Z|

so that

0<x; S xj+1X; = Lx; =1 on Bj(2),supp(x;) C Bjs1(2)

then, setting u; to be the function constructed in the problem using the function f;,

((%H&a)uj(xw 2W// (9, +id,) _z)xm]dm
//f (0, +za W) gy

// X;(¢ 3 +2<9 )f(C)dA(O

= x;(z +1y) f(x + Zy)

As j — o0, the right-hand side of the above has local uniform limit f(x + iy). Thus

0 0
I o .o ' . .
Jim (83: + Zay) uj(x +iy) = f(z +iy)
whereas

u; — u pointwise
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Since (8% + ia%) u; converges locally uniformly, it follows that

: : o .0 . o .0 .
[z +iy) = jlggo (@ + lﬁ_y) uj(x +iy) = (@ + @a—y) u(z +iy)

as desired. O]

Spring 2020 Problem 10. Evaluate the improper Riemann integral

/wmz—lsinx
5 dx
o rv+1 =

Justify all manipulations.

Proof. Since the integrand is even,

* 22— lsinz 1 [ 2?—1sinz
5 dr = - dz
0o T2+1 =z 2 g2 +1 x
Let C'g denote the upper half circle with radius R, that s, the circular arc in the upper half plane connecting
R to —R. Let Dg denote the curve formed by a straight line from — R to —%, travels a half-circle in the

upper half plane to %, and then travels by a straight line segment to R2. Let I' denote the curve Cr U Dp.
Then for R > 2 the residue theorem provides

2 1 ¥ 2 1 12z
/ : e—dz = 2miRes {Z 6—dz, z}
r

L2+l 2 2241 z
—92¢1
21 1
= 2e Y
By Jordan’s lemma,
/ sl ] Gl B PR
—dz Tmax, _— < =
cp 22+ 1 2 - rl2z2+1)| "R
so that ) .
—1e
lim i e—dz =0

R—oo o 22 +1 2
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By the fractional residue theorem,

2 1 iz 2 1 1z
lim / Z2 © dz=— lim z2 S

R—oo Jp. 27+ 1z R—oo |2|=% Im(2)>0 < +1z

2 1 %1
+ lim 22 e—dz

R—o00 (7R,7%)U(%,R) z< + 1 =

1. . 22 —1e%”
= —§2mRes LQ T 7612, O]

22— 1¢¥
+ lim Re 5 — | dz
R—o0 (7R,7%)U(%,R) 22+1 z

L 22— 1e¥
+7 lim Im 5 — | dz
fos Jer-budm  \F 12

= mi+ 0 (since the integrand is odd)

- 2 —1 sinxd
T Rg%o vl x22+1 x v
(7R77§)U(§7R)

. ./xQ—lsinx
=i +1 dx
R

2+1 x

Together we have

2?2 —1sinx 1 [ 2?>—1sinx
5 dr = = dx

o 241 =z 2 Jgx?+1 x

=5 [2me™ " — i)

-1
=Te -

N[N

Spring 2020 Problem 11. LetT = {2 € C: |z| = 1} and let K C T be a compact proper subset.
(a) Show that there is a sequence of polynomials P, (2) so that P,(z) — Z uniformly on K.
(b) Show that there is no sequence of polynomials P, (z) for which P, (z) — Z uniformly on T.

Proof. (a): Since C\ K contains D, C \ D, and some point of I, we see that C \ K is path connected and
hence connected. By Runge’s theorem, we may find a sequence of polynomials { P, } such that P, (z) — %
uniformly on K. Since z = % on K C 0D, this is the desired result.

(b): Suppose for the sake of contradiction that P, is a sequence of polynomials converging uniformly
on T to Z. Then, for each z € C \ D,

1 P, 1 7 1 1 1
0= lim — / —(w)dw = — Y dw = — ——dw = ——
n—oo 2701 Jop W — 2 271 Jop w — z 211 Jop w(w — 2) z
a contradiction. [
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Spring 2020 Problem 12. Iz_f]Let u be a continuous subharmonic function on C that satisfies

Show that w is constant on C.

Proof. Since subharmonic functions are preserved by conformal changes-of-coordinate, the function

is subharmonic on C \ {0} and satisfies
v(z) =o(log|z]) asz—0

For each ¢ > 0, the function v(z) — € log | 2| satisfies the maximum principle on D \ {0}. By the decay
estimate on v at 0,
v(z) —elog|z| = —c0 asz — 0

and hence, for any z € D \ {0},
v(z) —elog|z| < meax%v(z)
zE

Since £ > () was arbitrary, we conclude

<

v(z) < gréggv(z)

forall z € D\ {0}. Thus v is bounded above near 0, so u is bounded above near co. Since u was assumed
to be continuous, it is locally bounded, and hence is globally bounded above. By a standard fact, globally
bounded above subharmonic functions on C are constant (by e.g. the super-averaging principle) and hence
u is constant.

]

“keyword: Phragmén-Lindelof
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4 Fall 2020

Fall 2020 Problem 1. (a) Suppose f : [0,1] x [0,00) — [0, 1] is continuous. Prove that F' : [0,1] —
0, 1] defined by
F(z) = limsup f(z,y)

Y—00

is Borel measurable.
(b) Show that for any Borel set £ C [0, 1] there is a choice of continuous function f : [0,1] x R — [0, 1]
so that [ agrees almost everywhere with the indicator function of .

Proof. (a): Since half-open intervals of the form (a, 00) with a € R generate as a o-algebra the full Borel
o-algebra B, it suffices to show that

F((a,)) € B
for arbitrary a € R. The left-hand side may be written as

F~'((a,00)) ={x €1[0,1] : In € N¥qg € QN [0,00)Ip € QN (g,00) s.t. f(x,p) € (a+ %,oo)}

I
C8

ﬂ U {zel01]: fla.p) e (a—i—%,oo)}

€QN[0,00) peQN(g,00)

N U 7o at oo

1 ¢eQnl0,00) p€QN(g,00)

3
Il
—

|
||C8

Since f is continuous, the latter set is Borel; hence F' is Borel, as desired.
(b): (Currently in the works)
We claim that, if Ay, Ao, ... are Borel subsets of [0, 1] and f1, f2,... : [0,1] x [0,00) — [0, 1] are
continuous such that
limsup fp(z,y) = 14,(z) ae x€|0,1]

Yy—00

for each n, then there exists f : [0, 1] x [0,00) — [0, 1] continuous such that

limsup f(z,y) = 1n, U, 4. (¥) aex €[0,1]

Y—00

Note that, for eachn € N,

[0,1]\ 4, = U{x € [0,1] : supfn(a: y) < 1/2n}

reN

modulo nullsets. By continuity from below of measures, there exists some 7, such that

B, :={z €[0,1] : sup fu(z,y) < 1/2n}

y>ra
is a subset (mod null) of [0, 1] \ A, and satisfies
m([0,1]\ (4, UB,)) <27".
Note next that

sup f(z,y) =1 forae z € A,

Y>rn
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so that, modulo nullsets, we have

A, = U{xe[(),l]: sup f(z,y) >1-—1/2n}
s> T <Yy<s

By continuity from above of finite measures, there is some s,, > 7,, such that

Cn:={xel0,1: sup f(z,y)>1-1/2n}

rpn<y<sn

has
m(A, \ C,) <27"

and C,, \ A, is null.

Next, we claim that

NUa=NUa

n k>n n k>n

mod nullsets. Note that

(o) -ee()

n k>n k>n
Z,}LIEOm(UCkUUAk\Ck>
k>n k>n

IA

fon{)
(o)

n k>n

The reverse inequality is trivial, so in fact

(0u) +(0u)

n k>n n k>n

From the equality

(o) ([0 us))~(0w)

n k>n n k>n n k>n n k>n

»({nyafa{nue))

NUc=-NU

n k>n n k>n

we conclude that

so that
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modulo nullsets.
Next, we claim that

Lnjﬂ()l \Ak_UﬂBk

n k>n

modulo nullsets. Since By, \ ([0, 1] \ Ag) is null for all %, it follows that

tunabfunesnal
n k>n n k>n
is null. We consider the other difference. We compute

n (U a) = o ( Qo)

n k>n k>n

n—00
k>n

¢
= lim limm(ﬂ Br U ([0,1] \ (Ax U By))

n—00 £—00
—’I’L

4 14
< . . —-n
< i Jim m (p Bk) 3%

=n k=n
= n]g{)lom (}p Bk> + 27l
—n(una)
n k>n

so that we may conclude
n k>n n k>n

Lastly, we write

Nno = Bn \ ([0,1] \ An)

Nn,l = On \ An
Nyo=A{z € A, : limsup f,(z,y) # 1}
y—>00
Nns3={z€0,1]\ A, : limsup f,(x,y) # 0}
Y—00

VRN (aIvEY
—{QDOI\Ak}A{ym}
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and -
N = Nooy UNoo2 U | J (N0 U Nyt U Ny U N, 5)
n=1

By assumption, each of the sets in the above union is null, so NV is null.
We now construct f. Forn € Nandt¢ € [1/4,3/4], we set

flz,n+1t) = fulx,2(t — 1/4)(sp — 1) +70)
and, for 0 < ¢ < 1/4,
flz,n+t) =4tf,(x,ry,)
and, for3/4 <t < 1,
At = 3/4) f(x, )
and f(z,y) = Ofory < 1. Observe then that we have arranged for f to be a continuous function over the
desired domain, taking values in [0, 1]. We claim that f has the appropriate limsup almost everywhere.

Suppose = € (), Uys, Ax withw € N. Then z € (), U5, Ck 50 @ € Uy, Ci for all m, so there are
ny < ng < --- € Nsuchthatx € (), forall k. Thus

sup  fo(x,y) >1—1/2ny

Ty, <Y<Sny,
so that
sup  f(z,y) >1—1/2ny
nE<y<ng+1
and hence

limsup f(z,y) =1

Y—00

Assume now that z & (1 Uy, Arandx € N. Thenz € |, >, B s0 € (>, Bi for some
n € N. Thus - - -

sup fn(2,y) < 1/2k

Y>rg

and so (by the construction of f)
sup f(z,y) <1/2k

Yy>ng
from which
limsup f(z,y) =0

Y—00

Thus we have demonstrated

limsup f(z,y) = In, Uk Ak (2)

y—00
fora.e. x € [0, 1]. We now study the family

E={ACJ0,1] : ABoreland 3f : [0,1] x [0, 00) — [0, 1] continuous
s.t. 14(z) = limsup f(z,y) forae. x € [0,1]}

Yy—00

By the previous portion of the argument, £ is closed under countable unions and countable intersections.

49



We now demonstrate that £ contains intervals. For brevity, we only consider the case of closed inter-
vals. Suppose a < b € [0, 1. Then the function

0 x%(a_ﬁvb—i_ﬁ)
_ ) +yle—(a-1) v€la— 5.4
fly) = 1 z € (a,b)
—(1+y)(z—10) z € [bb+ 1]

is clearly continuous on [0, 1] x [0, c0) and satisfies
Jim f(2,y) = Xpay

as claimed.
Finally, observe that £ contains the ring of finite unions of intervals. Since £ is a monotone class, £
contains the o-algebra generated by intervals, i.e. £ contains all Borel sets, as was to be shown.

O

Fall 2020 Problem 2. Show that there is a constant ¢ € R so that

1 1

lim f(z) cos(sin(nmx))dr = c/ f(z)dx
for every f € L'([0, 1]). The limit is taken over those n € N.
Proof. We first show that

1
/ cos(sin(rrz))dz == ¢
0

for some constant ¢ € R. To do this, define the functions

Glr) = /0 " cos(sin(mra))de = - /0 " cos(sin(ra))dz

r

and
F(r)= /0 cos(sin(mz))dz = rG(r)

for 0 < r € R. Note that
r+1
F(r+1)=F(r)+ / cos(sin(mx))dx
=F(r)+ /0 cos(sin(m(z — [r])))dx

=F(r)+ /0 cos(xsin(mz))dx
= F(r)+ F(1)

from which we conlude



whenever r € N, and

F(n)=nF(1)
for n € N. Thus Fin)
G(n) = — = F(1)
and, forr € N,
) = PO _ gy~ A= 0FQ) | PO 1)

from which we easily see that
Gir) =¥ F(1) eR
which is our c. Thus, for any interval [a, b] C [0, 1] of positive length,
1

/0 Xa,p) (%) cos(sin(nrz))dr = /0 (X[0,6] — X[0,0]) cOS(sin(nmz))dx
= bG(bn) — aG(an)

=X (b—a)c = c/x[mb]
if a # 0, and
1
/ X(0) (%) cos(sin(nmz))dz = bG(bn) "= be = C/X[O’b}
0

Summing, we see that for any simple function f,
1

lim f(z) cos(sin(nmx))der = C/o f(x)dx

n—0o0 0

Now suppose f € L'([0,1]) and fi, fa, - - L, f are simple functions. Let ¢ > 0, and fix k¥ € N such
that || fr — fllzr < e/3and ||fx — fllr < £/(3¢). Lastly, pick N € N such that, foralln > N,

/01 fr(z) cos(sin(nmx))dz — c/o1 fr(x)dx| <e/3

Then we have, for such n,

/0 f(x) cos(sin(nﬂx))da::/o fr(x) cos(sin(mm:))dx—i—/o [f — fil(x) cos(sin(nmx))dx

—c /0 1 fuolz)dz + ( /0 1 Fuol) cos(sin(nrz))da — /0 1 fk(a:)das)

o [l fl eostsinuzis

+ ( /0 1 fu() cos(sin(nra))dz — /0 1 fk(w)dw>

. / s+ c / f — fil(@)de

+/O [f — f](x) cos(sin(nmz))dx
:c/lf(x)dx+]+[]+ll

51



Since || fx — fllz1 < €/(3¢), we see that |I| < /3. Since || fr — f||z: < £/3 and | cos(sin(nmz))| < 1
everywhere, we see that [I1]| < £/3. Lastly, by[8} |[II| < £/3. Thus, foralln > N,

x) cos(sin(nmx))dr — C/o flx)dx| < e

and so fol f(z) cos(sin(nrz))dz = cfo x)dx for arbitrary f € L'([0,1]), as desired. O

Fall 2020 Problem 3. [|Let dji,, be a sequence of probability measures on [0, 1] so that

[ f@du (@)

converges for every continuous function f : [0, 1] — R.

(a) Show that
/ / 92 9)dpin(2) dpn ()

converges for every continuous function g : [0, 1] — R.
(b) Show by example that under the above hypotheses, it is possible that

/ /03,03,Sl dpin () dptn (y)

Proof. (a): We first show this in the case g(z,y) = f(x)f'(y) for continuous functions f, f' on [0, 1]. In
this case,

e~ [ o= ([ i) ([ o)

is a product of convergent sequences, hence converges.

We claim that the algebra A generated by such products are dense in C'([0, 1]?) with respect to the
L> norm. To show this we use Stone-Weierstrass: since [0, 1]? is a compact metric space, it suffices
to show that A contains the constants and separates points. Clearly we have all constants. Suppose
(z,y), (z',y') € [0,1]* are distinct, say x # 2’. Then let f be continuous on [0, 1] such that f(z) =
1, f(2') = 0. Then g(x,y) = f(z) is a product of two continuous functions on [0, 1] which separates
(z,y) from (2, y'); thus A is dense in C'([0, 1]?).

Since A is in fact linearly generated by such tensor product pairs, we see from the computation

/ / ag(r,y) +bg'(z, y)dpn(x)dpn(y) = a / / 9(z, y)dpn(x)dpn(y) + b / / 9 (z,y)dpn (2)dpn(y)

that the desired convergence holds for all elements of A.

does not converge.

We conclude by approximation: suppose g € C([0, 1]?) and let g1, g, . .. € A such that g; LN g. 1f
e > 0,fixj € Nsuchthat ||g; — g||~ < ¢/3. Thenlet N € N such that

'//g]xydun )dpin (y //gjxydﬂm x)dpin (y)

Skeyword: Stone-Weierstrass

<e/3
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for all n,m > N. Then, for such n, m,

'// (2, 9)dpin () dpiay // (2, 9)dpim dum()‘
|[frmmionin i
’//gja;yd,un iy //gj:cydum 2)djim(y )‘

//gjazyd,um Yt (4 // () At () Aty )'

<e/3+¢/3+¢/3=¢

n //g(x,y)dun<x)dﬂn(y>

from which we conclude that

is Cauchy, hence convergent. Thus the result holds for every continuous real-valued g, as desired.

(b): Define p,, as

o1 n odd
l’[/n - n 1
Y oh1 201—km2  Meven

Then clearly every continuous function [0, 1] — R satisfies

[ t@du() - )
J[ @ =1
0<z<y<1
for n odd, whereas for n even

/ / L ) =172+ Z kS

=1/2+ 1/n

as n — 0o; however,

which has limit 1/2. Thus the above sequence fails to converge over n € N.

]

Fall 2020 Problem 4. Let X be a separable Banach space over R and let /' : X — R be norm-

continuous and convex. Suppose now that a sequence z,, in X converges weakly to x € X. Show that

F(z) < sup F(z,)

Proof. By a standard fact of functional analysis, there are convex linear combinations
Yo =11+ ...+t x,
such that y,, — x strongly. Since F is (strongly) continuous, F'(y,,) — F'(x). By convexity,

F(yn,) <tiF(x1)+ ...+t F(x,) < sup F(z,)

1<j<n
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For every € > (), there is some N € N such that, for eachn > N,
F(z) < F(y,) —e < sup F(x,) —e <supF(z,)—c¢
1< n

<j<n

Sending ¢ to 0, we conclude that
F(z) < sup F(z,)

as desired. [
Fall 2020 Problem 5. [f|Suppose f € L'([0, 1]) has the property that

(+) / f(@)lde < /]E]

for every Borel £/ C [0, 1]. Here | E/| denotes the Lebesgue measure of F.
(a) Show that f € LP([0,1]) forall p < 2.
(b) Give an example of an f satisfying (*) that is not in L>([0, 1]).

Proof. (a): Fix p < 2. Forn € Z, write L,, = {z € [0,1] : 2" < |f(x)| < 2"*}. Then we have
2°|Lal < [ 1f(@)ldz < |Ly|'?
Ly

so that 27| L,,|'/? < 1. Let g € (2p — 2,2); then 29%|L,,|2 < 1 as well. We may also write

11l > 27| Lal

ne’

so that the right-hand side is finite.
Finally, we compute:

/ F@)Pds <23 2L,
[0,1]

nez

2p
< 2p2 1 +20 Y " onem1=D)  gr=D| L, 174 . gL, |2
- n>1
22p n(2p—2—gq) % 1_%
<522 | (il
n>1 n=1

Observe that the first series in the latter display is a geometric series with common ratio in (0, 1), hence
converges. The second series in the latter display is finite, by the previous comparison to || f|;. Thus,
f € LP(]0,1]), as claimed.

(b): Let f(z) = ﬁi' Note that f € L' but not L?, so it remains to show that f satisfies (x). Suppose
E C [0, 1] is Borel. We will write | E| = A(E). Then

dx = d d
/E f(@)|da / o M /E T
3 B

/EI 1

< dz +

o Wz 4/|E|
1 1

= SVIE+ (VI < VIE]

keyword: dyadic decomposition; Lorentz spaces
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as claimed. ]

Fall 2020 Problem 6. Prove that the following inequality is valid for all odd C"* functions f : [—1, 1] —

K 1 1
/If(x)leass/ |f(x)2dx

1 -1
By odd, we mean that f(—z) = — f(x).

/11 f(z)dr = /11 </Om f’(t)dt)de

1 2
{/ |f()]11 - t]l/th] by Minkowski
-1

Proof. We compute

IN

1 1
< [ f’(t)zdt] { / 1 —t]dt} by Holder
-1 -1

= /_11 f'(t)%dt

as desired. ]

Fall 2020 Problem 7. Let A; = {z : |z —a;| <1;},1 < j < nbea collection of disjoint closed disks,
with radii r; > 0, all contained in the open unit disk ID of the complex plane. Let 2 = D\ (U;A;), and
let u : €2 — R be harmonic. Prove that there exist real numbers ¢y, . . ., ¢, such that

n

u(z) — ch log |z — a;

j=1
is the real part of a (single valued) analytic function on {2. Show also that the choice of ¢y, . . ., ¢, is unique.
Proof. Consider the one-form
du
v(z) = —dz
(2) 0z
on {2, where a@ =1 ( 2 —iﬁ) is a Wirtinger derivative. Since u is harmonic, v is holomorphic (in the sense
z 2\ 0z oy

that the coefficient function is holomorphic). For each 1 < j < n, set C; to be a counterclockwise loop
in (2 around A that doesn’t enclose any other A; by standard algebraic topology, {C} }1<;<, determine
a basis for Hq(2; R).

Now, for each 7, set

1
Cj = — v
T C;

0
=1 —aj|dz = mic; =
/Cjc] " og |z — a;|dz 1cj /C’~U

J

A standard calculation shows
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so that .
w(z) == u(z) — Z c;log|z — a;|
j=1

is a harmonic function on {2 satisfying

/ %w(z)dz =0
%

for all j. Since {C;} generate all of H;(€2; R), we see that, for h(z) = Lw(z),
h holomorphic on {2 and /h(z)dz =0
o

for all piecewise smooth loops 7y in 2. Thus, for fixed zy € (2, the path integral

o) = wlz) + [ h(t)de

20

is well-defined (that is, independent of path chosen) and is an analytic antiderivative for h on 2.
Thus we find
0 0

EP (2) = h(z) = &w(z)v 9(z0) = w(zo)

and so w is equal to g + a where a is a conjugate-analytic function on €2 vanishing at 2(; since w is purely

real-valued, Im(a) = —Im(g) and so a is an analytic function on €2 whose imaginary part agrees with

that of g everywhere on 2. Thus a and g agree up to a real additive constant; since a(z) = 0 we see that

w =g+ g— g(z). Thus w = 2Re(g) — g(2p), so w is indeed the real part of an analytic function on €.
Finally, if

n

u(z) — Z djlog |z — a;| = Re(q)

j=1
for constants dy, . . . , d,, and analytic function q on €2, then
0
K =0
Cj 8z

for each z, by e.g. examining the Laurent series about each a;. Taking real parts,

ou ,
—dz = djmi
C; 82
which implies that d; = c; from before, so these constants are unique. U

Fall 2020 Problem 8. Let f : D — D be holomorphic and satisfy f(3) = f(—3) = 0. Show that

e~ =

[F(0)] <

"keyword: Blaschke factors
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Proof. Note that f, defined by

~ 1—2/21+2/2
U ey Py EAC)
is analytic in ID and takes values in I, by standard Blaschke factor theory. Thus
1/2|1/2], 1
0= |——1||—=|If(0)] <~
o1 =| 2| [ 1Fo < 5
as desired. [l

Fall 2020 Problem 9. Consider the following region in the complex plane:
. 1
Q={r+iy:0<zr<ocand) <y < —}.
x

Exhibit an explicit conformal mapping f of QontoD = {z € C : |z| < 1}.
Proof. We first claim that, for f1(z) = 22,
f1(Q) ={z € C:Im(z) € (0,2)}

and that f; is a conformal map between these two domains. To show this, note first that {2 doesn’t contain
any pairs z1, 2o with 2z = —z1; since f is clearly analytic, f; is a conformal map 2 — f;(£2).
We show that its image is as claimed. First note that, for any = + iy withy < 1/x,

filz +iy) = 2% —y* +i20y, 22y <2

so f1(2) C {2z : Im(2) < 2}. Similarly, sincez > 0,y > Oforallz 4+ iy € €, f1(Q2) C {z : Im(2) > 0,
so we conclude that
fi(Q) C{z e C:Im(z) € (0,2)}
We claim that every point of this domain lies in the image of f;. If \/- denotes the branch of the inverse
of 2 — 22 for which Vi € €, we see that

w = Vrei? = \/r(cosf +isinf) = v/r(cos(A/2) + isin(/2))

satisfies
Re(w),Im(w) > 0 and Im(w)Re(w) = rcos(0/2)sin(f/2) = gsin(ﬁ) <1
whenever rsin(d) = Im(w) < 2, i.e. when w is in the putative image of f;. Thus f1(Q2) = {z € C :

Im(z) € (0,2)}, as claimed.
The remainder of the problem is routine: €2, := 7 f1({2) satisfies

zr—exp(z): Q) - H={ze€C:Im(z) >0}

conformally, and finally the Mobius transformation

Z—1
Z ;
zZ+1
carries H onto D conformally. Thus the composition
e2? — i
Z = 5 -
e2® 41
maps €2 conformally onto D), as required. U

57



Fall 2020 Problem 10. Let ' C C be a compact set of positive area but empty interior and define a

function /' : C — Cvia .
= d
/ /K ——du(w)

where dp denotes (planar) Lebesgue measure on C.

(a) Prove that F'(z) is bounded and continuous on C and analytic on C \ K.

(b) Prove that { F'(z) : z € C} = {F(2) : z € K}.

Hint: Ifa € F(C) \ F(K)and F7'(a) = {z1,...,2,} C C\ K, then the argument principle can be
applied to G(z) = % to get a contradiction.

Proof. (a): We use the fact that translation is continuous in LP(C), for every 1 < p < oo. If 7. f(-) =
f(- — €), we note that

1 1

(7F = F)(2)| £ ll(e— — =)l
1
==

—Z

Z<T—EXK - XK)HLl((C)

1 ..
< H:XB(O,R)HLs/Q(C)HT,EXK — XKHLS((C) for sufficiently large R > 0

e—0

— 0

where R > 0 is sufficiently large so that X' C B(0, R — 1), and where the limit holds because w —
is locally L3/2 and translation is continuous in L3(C). Thus

w—z

F(z—¢)— F(z)

as C 3 € — 0, for arbitrary 2z € C; that is, F'is continuous on all of C.
Next, we argue that F is bounded on C: if R > 0 is sufficiently large so that X' C B(0, R/2), then
for every z € B(0, R)

FE)| < SalK)

which implies that F'(z) — 0as z — 00; thus F extends to a continuous function on the compact space
C U {00}, so F'is bounded.
If A is a triangle in C \ K which does not bound any part of /', we compute

[ | ff gtz

/ / / dzdp(w) by Fubini, since A and K are compact
—z

since w € K and A doesn’t enclose any of K

and so by Morera’s theorem we conclude that F is analyticon C \ K.

(b): Note that, ifa € F(C)\ F(K), then F'~1(a) is finite (since otherwise there would be an accumu-
lation point inside C \ K, which would imply that F' is constant, which contradicts a € F/(C) \ F(K)).
Thus we may assume F~'(a) = {z1,...,2,} for some n > 0, listed with multiplicity; we will reach a
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contradiction from this. We assume for simplicity that 0 ¢ K; by translating, the general case will follow.
Since a ¢ F(K), and F'(K) is compact, we see that

F(z)—a
[1(z - 2)

is continuous on all of C U {oo} with G(c0) = 0, hence bounded. Furthermore, since the z; were listed
with multiplicity, oo is the unique zero of GG. Thus, setting

G(z) =

H(z)=G(1/z)

the argument principle provides
1 H'(z)
H(z)

2mi
for sufficiently small € > 0, and, changing variables,

dz =

|2|=¢

1 G'(2)

: dz=—n
271 |z|=1/e G(Z)

Thus G({|z| = 1}) is a (rectifiable) curve that has winding number —n # 0 with respect to 0. For each
0 < r < 1 let~, denote the curve {|z| = r}, traced counterclockwise. Since G doesn’t vanish anywhere
in C, the winding number of GG o ~, with respect to 0 is well-defined for all r, though we may need to
understand “winding number” as coming from the identification 7;C \ {0} = Z due to lack of regularity.
It is also continuous and integer-valued, so in particular is equal to —n for all r. Since 0 ¢ K, we have
that B(0,r) C K* for sufficiently small » > 0. Since G is analytic on K¢, we reach a contradiction from
the conclusion that GG o 7, has winding number —n < 0.

]

Fall 2020 Problem 11. Let {f,,} be a sequence of analytic functions on a (connected) domain €2 such
that | f,(z)| < 1forallnandall z € €. Suppose the sequence { f,,(z)} converges for infinitely many z
in a compact subset K of (2. Prove that { f,,(z) } converges for all z € (.

Proof. We claim that there is some analytic function f on (2 such that every subsequence of { f,,} has
a further subsequence which converges locally uniformly to f; the result follows. Since |f,(2)| < 1
uniformly, { f,,} is a normal family, so every subsequence has a locally uniformly convergent further sub-
sequence. Suppose f1, f? are two such limit functions; they are clearly analytic. Since the collection of
points z € K such that f,(2) converges is infinite, and that limit value must equal f!(z) = f?(z), we
see that f1(2) = f?(z) for infinitely many points of K. Since K is compact, {z : f1(2) = f?(z)} hasan
accumulation point inside of (2. Thus by the uniqueness principle f* = f2 on €, and so any subsequence
of the { f,,} refines to a further subsequence which converges to the same limit function f. ]

Fall 2020 Problem 12. Let 2 = {z € C: —2 < Imz < 2}. Show that there is a finite constant C' so
that

SO <C [ 1f @+ P+ 1S = P

for every holomorphic f : {2 — DD for which the right-hand side is finite.
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Proof. By Cauchy’s integral theorem, for each R > 0,

fo) = = [ 1%,

21 Jp, 2

where ' is the counterclockwise-oriented rectangle in €2 with top and bottom along the lines {Im(z) =
+1} and left/right edges along the lines {Re(z) = £ R}. Let Ly and R denote the left/right hand sides
of this rectangle; then

(),

Lr *

R—oo

2
<="—=0
ISR

and similarly for Rg. Thus

LR D) fet=0)

= i ¢
F0) = Jim 5 n L+ —t—i
By Holder’s inequality,
1 R 1/2 R 2 1/2
< 12 2 s
101 < o Jim ([ s siseeopa) ([ o)
R 1/2
([ 1t oP I - ipae)
—R
where 1o
oL ( / de) 1
V2r \Jr 1+ 22 2
Thus ) -
FOF < 5 [ UG+ DF + |f@ )Pz
as desired. ]
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5 Spring 2021
Spring 2021 Problem 1. Let x be a positive Borel probability measure on [0, 1] and let
. 1
C' = sup {M(E) : E C|0,1] with |E| = 5}
where | E/| denotes the Lebesgue measure of . Show that there exists a Borel set /' C [0, 1] such that
1
|F| = 5 and u(F)=C
Hint. When dp = fdz, one can sometimes take F' = {x € [0,1] : f(x) > A}, for a suitable A > 0.

Proof. Throughout, we make implicit use of the well-known fact that, if 0 < ¢ < |A| with A Borel, then
there is a Borel subset B C A with |B| = c¢. By the Lebesgue decomposition theorem, we may write
dp = fdx + py, where f > 0 is Borel measurable and p; L p is a positive Borel measure. Denote by X
some Borel set satisfying

For each ¢ > 0 we denote
Set ]
Ai=1inf{c > 0:|E,| < 5}
By Markov, since [ |f|dz = [ fdz < [y =1, we have that A € [0, 2]. Note that

Ey = U E/\Jr%a ExU{f(z)=A}= ﬂ E/\—%
n=1

n=1

and so

DN | —

= i <
| B T}EEJEM%‘—

and

N| —

(Bl 1{f(x) = A} = lim |, 1 >

Thus there is some Borel set A C {f(z) = A} such that |[E\ U A| = 3
Finally, we set
F=FE,UAUX

Note that |F'| = 3, since X \ [E U A] is contained in a set of Lebesgue measure 0. We claim that any
other £ C [0,1] with |E| = § satisfies u(E) < u(F).
First, |[E| = |[EU X | and u(E) < pu(EU X), so we may assume that £' O X. If E\ Z E, then either

|Ex\ E| =0o0r|E) \ E| > 0. In the former case, E/ may be replaced by £/ U E); in the latter,

1
5 = [EI= B\ B\ +[ENEN| = |E\ Ex +|BA = [Ex\ B[ < |E\ Ex| + 5 — [Ex\ E|
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(where we have used |E)| < %) and hence
|[E'\ Ex| = |[Ex\ E|
If B denotes a Borel subset of £\ E) for which |B| = |E) \ E|, then

/B f(@)ds < /E e

and it follows that

M([E\B]UEAUX)ZM(XH/

fa)do 2 () + [ Fla)de = u(E)
[E\BJUE) E

so we may assume that £/, C .
We have reduced to the setting £/ O X U E)\. Then |E'\ E,| = |E| — |E,| and

H(EN B LX) = () + [

E\E,

Fa)de < i(X)+ [ fla)dz = u(F)

where A C {f = A} is Borel such that |A| = |E| — | E)\|. Thus in every case ju(E) < u(F'), as was to be
shown. O

Spring 2021 Problem 2. Let  and v be two finite positive Borel measures on R".
(a): Suppose that there exist Borel sets A,, C X so that

lim p(A4,)=0 and lim v(X\A4,) =0

n—oo

Show that ;1 and v are mutually singular.
(b): Suppose there are non-negative Borel functions { f,, },>1 so that f,,(z) > 0 for v-a.e. x and

1
lim w(x)du(x) =0 d lim dv(x) =0
tim [ f @) =0 and i [ st
Proof. (a): Note that the conclusion is immediate if one of 11, v are the zero measure; hence after rescaling
we may as well assume that y, v are probability measures. Refining the sequence { A, },, we may also
assume

p(Ay) <27 v(X\ A, <2™

Now set . -
A= U ﬂ A,
n=1k=n
Then
p— 1 < 1 pr—
p(A) = lim p <kﬂ An> lim pi(A,) =0
and

y(X\A)zu(ﬂ U[X\An]> ZJLIEOV<U[X\AH]>

n=1k=n k=n

n—o0

< 1 — T —nt1l _
< T}erolo; v(X\A4,) = lim 2 0
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so [, v are mutually singular.
(b): Set
An:={f.>1} Borel

Then
/fn(w)du(x) Z/A ldu(z) = u(A,) >0

so 1(A,) — 0. Similarly,

1
/fn(x)du(x) > /X\An ldv(z) = v(X \ A,) >0

sov(X \ A,) — 0. By (a), 4, v are mutually singular.

Spring 2021 Problem 3. Let f € L*(R). For n > 1 we define

2
folz) = / f(z +t) cos(nt)dt
0
Prove that f,, converges to zero both almost everywhere in R and in the L*(R) topology, as n — oo.

Proof. We first note the estimate

Il = ( / Ifn(fv)|2dfc) "
_ </R /Ozﬂcos(nt)f(vat)dt de> "

o 1/2
< / | cos(nt) ( / | f(:c+t)|2d:c) dt by Minkowski
0 R

2m

= Hf”m(R)/ | cos(nt)|dt
0

< 27THf”L2(R)

Lete > 0, and fix g € C°(R) such that
£

— <
”9 f||L2(]R) .
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We estimate

Ionlis = [ (@)l
_ /R () /0 " cosnt)gle + t)dtdz
_ /0 " cos(nt) /R oz + )G () dadt
= [ L) [ gte + D

n

=L [T | [ ot 0a.)te]
=2 [T sntat) [ oo+ utetoa

n

1 /
< EQWHQ l2®) lgnll 22 )

1
< E47r2||g'||L2(R)Hg||L2(R) — 0

and so we may take some /N > 0 such that for all n > N we have

19
gnllz2@®) < 5

Thus together we have

e €
[ fallzzwy < lgnllzewy + 11(g = Flallzw < 5T3=¢
for alln > N; we conclude that f, — 0in L*(R).

We now show that the mapping f — f,, is bounded from L?*(R) to L°°(IR): this follows immediately
from the estimate

2
|fu(@)] < /0 |f(z + 1) cos(nt)|dt < |[ |2 | cos(n)[ 2o 2 S 1122wy

Forany g € C2°(R)andany x € R,

gn(z) = /0 ’ g(x +t) cos(nt)dt

1

2
= ——/ sin(nt)g' (z + t)dt
nJo

1
—_ O (EHQ/HLQ(R)) — 0
$0 gn(x) — 0 for every x € R, as n — 00. The final conclusion follows from the estimate

|fn(x)| < |gn(ZL’)| + |(f - g)n(l’)’ S |gn(I)| + Hf - g||L2(R)

and hence f,,(z) — 0 as well.
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Spring 2021 Problem 4. Define

10)= [ (30 +snisn + 5 )

forany f € C'([0, 1]; R). Let f,, € C''([0, 1]; R) be such that

I(fn inf I
(Fn) = . (f)

Show that the sequence { f,,} has a limit point in the space C'([0, 1]; R).

Proof. We first show that { f,,} is equicontinuous. For any x, y € [0, 1], and any 7,

o) = £ = |1y =) [ by )i

<z =yl x| fill o
<z =yl x | fnllz2qoay by Holder

Since I( f,,) is bounded, we see that

oy < [ (GUR)? + 1L+ sin(h (o] + 1)) do = L4 1(7)

is uniformly bounded; hence there is a constant C' independent of n, z, y such that

[fu(y) = fu(@)] < Cly — x|

from which we conclude that the family { f,, } , is equicontinuous. From this we can also conclude uniform
boundedness: for each 1 and each y € [0, 1], we have the upper bound

||fn||%4([o,1]):/0 | fo()|*d
=/0 1fa(y) + fu(2) — fuly)|'dz
1Hl X n - O - 3 4Cl
> [ max(,0)] = Cle = 31,0

In particular,
1
1 ulldacony = / max((| full (0.1 — €, 0)

As before, we have the bound
1 fall oy < 1+ 1(fa)

uniform in n, hence || f,|| o< ([o,1]) is uniformly bounded. Thus the family { f,, },, is a uniformly bounded
and equicontinuous family of continuous functions on a compact domain, hence (by Arzela-Ascoli) pos-
sess a limit point. [
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Spring 2021 Problem 5. Let x € RY be such that the series

Z LilYi
i=1
converges for all y € R" such that lim,, y,, = 0. Show that the series > -, |2,,| converges.

Proof. We show the contrapositive: supposing > - | |&,| diverges, we wish to construct some y € RY
such that lim,, y,, = 0 and > x;y; diverges. By the divergence of > |x;|, we may iteratively construct a
sequence of natural numbers n; < ny < n3 < ... satisfying

>l >1

n; §i<’n]‘+1

Define

sgn(.:vi)

; where 7 is such that n; <1 <mnj

Yi =

Then clearly y; — 0, and

| \/

San-d ¥

J=1 n;<i<njiq

<1
1230

as desired. O]

Spring 2021 Problem 6. We say that the linear operator 7" : C([0, 1]) — C([0, 1]) is positive if T'( f)(z) >
0forallz € [0, 1], whenever f € C([0,1]) satisfies f(z) > Oforallz € [0, 1]. Let

T, : C(]0,1]) — C([0,1])

be a sequence of positive linear operators such that 7,,(f) — f uniformly on [0, 1] if f is a polynomial of
degree less than or equal to 2. Show that

T.(f) — f uniformly on [0, 1]

forevery f € C([0,1])).
Hint. Let f € C([0, 1]). Show first that for every € > 0 there exists C. > 0 such that

If(z) — fly)| < e+ Clz —y|* forallz,y € [0,1]

Proof. Assume the estimate given in the hint. Fix & > 0. Let 1 denote the constant-1 function on [0, 1].
Since f is continuous on [0, 1], it is uniformly continuous, and so there is a partition 0 = x; < ... <
Ty, = 1 such that, whenever z7; <z < x4,

Fla) = f@)] < 2
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We compute

Tal () = f(@)] < [f(2) = Talf (@)](2)] + Tulf1(z) = Tof (2))(2)]
< |f(@)[[1 = T[1)(=)]
+ | Talf — f(=5)](=5)]
+ 1 (xg) = f(@)[[Ta[1) ()]
+ @[Tt () = Tal[1) ()]
=I+IT+II1+1V

Since T,,[1] — 1 uniformly, and |f| is uniformly bounded, there is some N; > 0 such that whenever
n > N; we have

I<=<
4
Similarly, there is some N3 > 0 such that

| Ta[1) ()] < 2
for all n > Nj; together with the uniform continuity assumption above,

€
I < —
4
To handle IV, note that since 7},[1] — 1 uniformly we must have that for n > 0 we must have 7}, [1]

within ——=— M= f|| of 1; it follows that there is N, > 0 for which

IV <[ flloo(ITn[1](5) — 1 + 1 = Tu[1](2)]) <

>~ m

foralln > Ny.
We turn to /]. Since each T}, is positive, it is order-preserving; from the inequalities

3

-3~ sy —y)? < fly) — flay) < % + Coys(z; — y)°

we see that
Tol—e = Ce(y — )*(x)) < Tulf — f()](x;) < Tole + Cela; — )?)(2)

and so, for n sufficiently large,

— STIf = fay)]() <

Thus there is some Ny > 0 such that, foralln > Nyandj =1,...,n,

W~ ™

from which we conclude

Thus we have in total



when 1 > max(Ny, Ny, N3, Ny), if we assume the hinted estimate.
We now prove the estimate in question. Fix ¢ > 0. Since f is continuous on [0, 1], it is uniformly
continuous, there is some d > 0 such that

z—yl<d = |f(z) - fly)| <e

Let C. > 0 be sufficiently large so that C.62 > 2|| f||oc- Let 2,y € [0, 1]. If |# — y| < &, then the desired
estimate follows from uniformity. Otherwise,

e+ 0z —y)?>e+C6>e+2|fllo > |f(x) = f(v)

as desired; the argument is now finished.

]

Spring 2021 Problem 7. Let ) = {z € C : Rez > Oand Im 2z > 0}. Show that there exists a unique
bounded harmonic function u : {2 — R such that forallz > Oand y > 0,

limu(x +it) =0 and limu(t+iy) =1
t—0 t—0
Proof. Note thatu(z) = 2Arg(z) is one solution, where Arg denotes the principal argument taking values
in (—m, 7.

It remains to handle uniqueness. For u, v solutions to the given problem, we see that w := u — visa
bounded harmonic real-valued function on 2 satisfying

limw(z 4+ i) =0 and Ilfg%w(t +iy) =0

t—0

Set7(2) := w(¢(z)), for p~1(z) = Z;z the conformal map 2 — D sending 0 to —1 and oo to 1. Then

7) is a bounded real-valued harmonic function on [D such that

lim n(z)=0
Y9 Dz—>et?
where v is the analytic arc ¢~ (s + iR) or ¢! (R + is) for suitable fixed s, depending on if € (0, 7)
or € (m,2m).
Let p4 := ¢4\ be the pushforward of the Lebesgue measure on D onto 0. For each b € 92 N iR+,

define
o(bye) :=sup{r >0:|wb+s) <e/2V0<s<r}

and similarly define (b, €) for b € Q N R.. If we choose e > 0and 0 < § < ||w]||oot, then let £’ be
sufficiently small so that

p({b:o(be) <e}l)<d

andlet C' = {z : |z| = r} for some 0 < r < 1 sufficiently close to 1 so that
A{0 € (0,7) : Reg(re?) > a(p(e?), )} U {0 € (7, 27) : Im@(re?) > a(p(e),e)}) < &

Together this implies that 7|, is L'-close to 0, for all 7 < 1 large depending on £ > 0. We conclude by
the reproducing formula for harmonic functions that 7 is in fact 0, so u = v and we have uniqueness. [
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Spring 2021 Problem 8. Show that there exists a non-zero entire function f : C — C and constants
b, c € C satisfying

fO)=0, flz+1)=e"f(2), flz+1i)=e"f(2)

Proof. Define

n_—mn?—mn42minz
g(z) =) (=) =

ne”L

It is clear that the series converges locally uniformly in z, so defines an entire function. Clearly g(z +1) =
g(z) for all z. Additionally,

g(Z + Z) — Z(_l)ne—an—wn+2wm(z+i)

nez
_ n_—mn?—3tn+2mwinz
=) (=1)%

neL

—9mi _ 2_ .
_ _627r€ 2miz E (_1)n+16 w(n+1)?—m(n+1)+27wi(n+1)z
ne’

— _€7r€727rzzg(z)

and

— § n —7rn (n+1)

neL

_ Z 1 n —7r(1 n)(—n)

neL

— _ E n e~ (n+1)

neL

= —g(0)
so that g(0) = 0. Using this, define
f(z) = ™ g z)

Then certainly f(0) = 0 and f is entire. We compute

f(Z + 1) 7TZ2—7TZ 27rzg(z 4 1) 27rzf(z>
and ' ‘ '
f(Z 4 Z) _ e7rz —7rze27rzze—7r—7rzg(z 4 Z) — e—2szc<Z)

so this f has the appropriate properties with b = 27, ¢ = —2m1.
]

Spring 2021 Problem 9. Let 2; C {2, be bounded Jordan domains in C. We also assume that 0 € €);.
Now suppose f; : D — €y and fy : D — ()5 are Riemann mappings, satisfying f;(0) = f2(0) = 0.
Show that

£1(0)] < | £5(0)]
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Proof. f, ' o fiisaholomorphic map D — I taking O to 0, hence

O AO] =10 (FO)AO] = ("o f1)](0) <1

by the Schwartz lemma, which implies the desired

/1(0)] < [£5(0)]

Spring 2021 Problem 10. Define

(.
f(z):/ dt, z€C,Rez>0
0

et —1

Show that f is an analytic functionin {z € C : Re z > 0} and that it admits a meromorphic continuation
f to the region {z € C : Re z > —1}. Compute the residue of f at z = 0.

Proof. Note that the integrand, as a function of #, is continuous on (0, 1] and is O(#*(*)=1), hence is

absolutely integrable for all Re z > 0. Thus f(z) is well-defined in the right half-plane.
Let A be an arbitrary triangle in the right half-plane. Then

L g
dz = dtd
IR A
1 tz
= / / - dzdt by Fubini
0 A€ —1

1
= / O0dt since z —> t* is analytic for each t > 0
0

0

which by Morera’s implies that f is analytic in the right half-plane. To justify the use of Fubini in (x), note

that
ot 1
// ’t—‘dﬂdz] // O(RC"Y) gt 2| = / <—) d|
AJo e A Re z

= O(length(A) x dist(A,iR) ™) < oo

so Fubini’s applies.
Now, fix 0 < a < b < 1. We have the computation

b b
t? t
/ dt:/tz_l dt
. et —1 a et —1

ot | /”tZd t ],
_zet—la . 2dt et —1
b b a® a

+ O (|z|—1bRez+1)

zeb—1 zer—1
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valid for Re z > —1, z # 0. Define

1
t* a®  a
g(a,z)—/a et—ldt+?e“—1

for0 < a < landRez > —1,z # 0. The prior estimate shows that for each fixed such z,

a g(a, z)
is (locally uniformly in z) Cauchy as @ — 0", and hence there is some ((z) € C such that

lim g(a,2) = (=)

a—0t

Since each g(a, z) is analytic in z, so is the mapping z — ((z). For Re(z) > 0, we have shown that

aZ

I _e
ai>1(1)1+ 9(a, 2) zer—1

a

= f(z)

from which we conclude that

aZ
— =— lim — =0
fz) =¢(z) = = lim ———
Thus f(z) = ((z) onRe(z) > 0, hence f extends analytically to Re(z) > —1,z # 0 by (.
It remains to examine the isolated singularity at z = 0.
For each a > 0, the integral

a

is entire in 2, and the function
a

z et —1

is meromorphic in z with a single simple pole at z = 0. Thus ¢(a, z) has a pole at z = 0 of residue
That is,

er—1°

1 a
- ds —
27_”- M:% g(av Z) z es — 1
and, taking a limit as a — 07,
1
— dz=1
o e

which is the residue of ( at z = 0.
Lastly, we demonstrate that z = 0 is actually a pole of (: applying our initial estimate,

3
—_

9(27"2) = g(1,2) 9277 2) —g(27 %)

3 .
Il
—_ O

O(|Z‘_12_j(Re(z)+1))

[e=]

.

1
1
o (‘Z| 1 — 2—(Re(z)+1)>
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and hence

1 1 1
_ -1 _ -1
((2) =9(1,2) + 0O (]z\ 1— 2—(Re(z)+1)) o z(e—1) +0 (’Z‘ 1— 2—(Re(z)+l))
In particular, z = 0 is a simple pole, so f does indeed extend meromorphically to Re(z) > —1. [

Spring 2021 Problem 11. For an entire function f(2) = f(®)(z), we define
f(n)(z) = f(f(nfl)(Z)) foralln > 1

(a): Show that if there exists an n > 1, such that (™ is a polynomial, then f is a polynomial.
(b): Prove that for any n > 1 we have f(™(2) # 2.

Proof. (a): Slightly informal. Suppose f is not a polynomial. Then oo is an essential singularity, so for
every R > 0 we have that f({z : |z] > R}) is either C or C \ {p} for some p € C. In either case,
f({z : |z| > R}) contains such a neighborhood of oo, so inductively f™ ({z : |z| > R}) is either C or
C\ {p} for every choice of R > 0.

But for any (nonconstant) polynomial P, P extends to a continuous self-map of the Riemann sphere,
and so P maps a small neighborhood of co to a small neighborhood of oo; in particular, a sufficiently
small neighborhood of infinity will be mapped to a non-dense subset of the sphere. We conclude that f(™)
is not a polynomial for any n > 1, as long as f is not a polynomial.

(b): Suppose f,n > 1are such that f(")(2) = e?. Clearly f is not a polynomial. Note also that f is not
surjective as a map C — C, since otherwise f(™ (z) would be surjective, whereas e is not. Thus there is
exactly one p € C such that f(C) = C \ {p}. Since f™ is entire (and nonconstant), f™(C) omits at
most one (finite) value, and also omits p. Since £ (C) = C \ {0}, we conclude that

f(€) =C\ {0}
Thus f(z) = 9) for some nonconstant entire function g. Then

o — V)

for all z, so there is some k& € Z such that
2+ 2mik = g(f™V(2))

Now, the left-hand side will map a small neighborhood of oo to a small neighborhood of co. The right-
hand side is of the form g(exp(h(z))), where g and h(z) are nonconstant entire; so h will send a neigh-
borhood of oo to a neighborhood of co, which under exp gets mapped to an open dense subset of C,
which under g gets mapped to an open dense subset of C. This is a contradiction. [l

Spring 2021 Problem 12. Findall entire functions f : C — C thatsatisfy the following two properties:
1. |f(2)] < elF forall z € C,
2. f(n'?) =nforalln € N,

Hint: f(z) = 2% is one of them.
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Proof. We claim that f(z) = 23 is the only solution. If f is any solution, and g(2) = f(z) — 23, then g is
entire of order p < 2by the estimate (1). If g # 0, then the zeros a,, are isolated and are | p| +1-summable,

ie.
Z lan , Tt = T

But the a,, include the numbers n'/?, and if we take p = | p| < 2 then

oo o0 1
Z |an|p+]_ z::_

a contradiction. Thus g = 0, so f(z) = 23 is the only solution. O

o0

3
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6 Fall 2021

Fall 2021 Problem 1. Let f : [0, 27] — C belong to L' and assume that

2T 82@ 84 B

whenever ¢ : R — C is smooth and (27)-periodic. Prove that
fx)=a+be" +ce™ ae.
for some complex scalars a, b, c.

Proof. Define the scalars a, b, c by

a:= f(0)
b._ 1 o fi:rd
=5 | fle)e T de
cim 5 | %f( Je“da

Set g(x) = f(x) —a — be™ — ce™*. Note that, if  is smooth and (27)-periodic, then it possesses
an L?-convergent Fourier expansion

00
_ b einx
- E n

and by Plancherel
2w ' ' 82g0 84 2 . . ;
/0 (a4 be™ + ce™™) (8_ + (91:4) de = /0 (a+ be™ + ce™™) Z b {—n* + n*}e"™ dx
neL
21 (abo{—0% + 0%} + bb_1{—(=1)* + (—=1)*} + b {-1* + 1*})

=0

Consequently, g satisfies the integral condition

27 82@ 84
d —
/0 I )(8x2+8:v4> v=0
for each ¢ as above.

Now, fixn ¢ {—1,0,1}. Then

2m ) 1 27 )
/ g(x)e™dx = —/ g(z)(—n* + n*)e"dx
0 0

—77,2 + n4

1 2T 82 [einz} 84 [emzr]
- —n2+n4/0 9(@) ( dz? * Ozt )dx:()

27
/ g(z)e*dx =0
0
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by construction. Thus g is orthogonal to every polynomial in e*®. However, by Stone-Weierstrass, poly-
nomials in e* are L°°-dense in C'[0, 27], so we conclude that

/%g(x)h(x)dm =0 Vhe C[0,2n7]

using g € L'. Thus g = 0 a.e., and hence
f(z)=a-+be” +ce™™ ae.

as claimed.

Fall 2021 Problem 2. Let fi, fo,... € L*([0, 1]) satisfy

1
/|fi|2dx:oo for every i
0

« (a): Prove that the set

1
A= {g e L'([0,1]) : M < / | figldz < oo}
0

is open in the norm topology of L! for every integer i and every M > 0.

« (b): Prove that some g € L! satisfies
1
/ |fig|ldx = 0o forevery
0

Proof. (a): Fix arbitrary ¢ and M > 0. Let g € A, 5. It suffices to demonstrate that there is some ¢ > 0
such that, for all ||h||; < &,g+ h € A;um.
Suppose for the sake of contradiction that there is a sequence h; — 0 in L' for which

1
/ |filg + hj)|dxe < M forall j
0

Then, by Fatou,
1 1
| timint (g + hy)lde < timint [ |flg -+ hy)lds <
Since h; — 0in LY hj — 0 in measure; in particular,
liminf |filg +hy)| = |fig] ae
j—o0
so that

1
/ figlde < M
0

which contradicts out assumption.
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(b): Define
Z | fr| (@
2’“||fk||1

The sum converges in L'; furthermore, by Fubini, for each ¢,

FI TR — S SR I
/'f’g'd”““ /'fl‘zzkufknl lefufkul/o fifilde = +o0

since one of the summands is infinite, and the others are all nonnegative. Note that, since each || ;|| =
+00, none of these f; are 0 in L', so the division is fine. [

Fall 2021 Problem 3. Let ¢ : [0,1] — [0, 1] be Borel measurable. Prove that there is a Borel set B C
©([0, 1]) such that m(¢~*(B)) = 1. Here m denotes Lebesgue measure on [0, 1].

Proof. By Lusin’s theorem, for each n € N there is a compact K,, C [0, 1] such that |, is continuous
and m(K,) > 1 — +. Define
B=|]JeK
n=1

Note that B C ¢(][0, 1]). Note too that each p(K,) is compact, hence closed, and so B is Borel. Lastly,
note that for each n

_ _ 1
m(e™ (B)) 2 m(¢™ (¢(Kn))) = m(Kn) > 1 -~
whereas m (o1 (B)) < 1 trivially; hence m(¢ ' (B)) = 1 as claimed. O

Fall 2021 Problem 4. Letr; > ry > --- > (. For each positive integer n, let C,, be a pairwise disjoint
collection of 2" closed disks of radius r,, in [0, 1]?, and assume that every member of C,, contains exactly

two members of C,, 1. Let K, be the union UDGC” D,and let K = ﬂzo:l K

+ (a): Prove that there is a Borel probability measure p such that u(K) = 1 and pu(D) = 27" for
every D € C,,.

+ (b): Prove that K is the support of y; that is, it is the smallest closed set whose measure equals 1.

Proof. (a): For each n, set y,, to be the measure given by restricting Lebesgue measure to /{,, and rescaling
it to have p,,(D) = 27" for each D € C,,. Since each ,, is supported inside of the compact set K, the
sequence is tight, hence is sequentially precompact; that is, there is a subsequence ji,,; which converges in
the weak-* topology on C'(R?)* to some i € C'(R?)*; clearly i is a probability measure.

More generally, for D € C,, let x be a bump function which is equal to 1 on D and whose support is
disjoint from all other D’ € C,,. Then

(tn;, x) =27" foralln; > n

so in particular
(x) = 27"

Since this holds for any x as described, letting x — 1, we produce p(D) = 27", Summing, this implies
1(K) = 1; we have all the desired properties.
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(b): We have seen that the support is contained inside K. If z € K and x € U is open, then U contains
a disk of some radius € > 0 centered at z. If r,, < ¢, then U contains some D € C,, so u(U) > 27™;
since U was a generic open neighborhood of x, we conclude that x belongs to the support of . Since x
was a generic element of K, we conclude that supp u = K. [

Fall 2021 Problem 5. Let 1 < p < oo and let ¢ and 1) be nonzero bounded linear functionals on
LP(R). Assume that || + || = ||¢|| + ||¥||- For precisely which values of p does this imply that ¢ and
1) are linearly dependent? Justify your answer.

Proof. We first demonstrate that, for p = 00, the implication is false. To do this, define

ALWM%C,fH/vmm
0

and

S:L®R) = L*(R); Sf(z):=f(z+1)

This A is given by pairing with the L' function 1y 1), hence is a continuous linear functional on L>°(R).
Note that

1
A71=1 [ s@el <111
so that || A]| < 1. Conversely,
A1:/dmx:1:nmm
0
so ||A]| = 1. By the same token, AS1 = 1 and ||AS|| < ||A]|||S]| = 1, so [|AS|| = 1 as well. Lastly,
(A+ AS)(1) = A1+ A1 =2

and

A+ AS| < [JA[l+ [Al[l[S] = 2

so the equality
[ A+ AS|| = [|A] + [[AS]]

holds. To demonstrate that A and AS are linearly independent,
A(l[O,l]) — 1, AS(l[Ojl]) — 0, A(l[l’z}) — O, AS(l[LQ]) — 1

and the claim has been demonstrated.
Now consider p = 1. We claim the result is also false for this exponent; consider the linear functionals
formed from pairing with the L*° functions

f=2-1py+1n2, g=2-1y

Then f, g are obviously linearly independent, whereas

[fllse = llglloc = 2, [If + glloc = 4 = [lflloc + llgllse

Since L norms agree with norms as functionals as !, we have the desired counterexample.
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Now, if 1 < p < o0, then all continuous linear functionals are given by pairwing with elements of
L¥ (R), % + ]% = 1, and the norm of the functional is just the L?' (R) norm of the function. Hence we are
investigating equations of the form

1+ gl = 1l + llgll )

where 1 < p’ < 00. Suppose temporarily that we have found such f, g, and that they are both nonnega-
tive. Suppose E' C R is measurable with positive measure such that

E E

for suitable A € R, and if /' C R is measurable and disjoint from F s.t.

[1=u/a

for suitable i1 € R,

Fall 2021 Problem 6. Let K be a continuous function on IR? that is periodic in both coordinates:
K(x+1,y) = K(z,y +1) = K(z,y).

Givenany F' € L'([0,1] x [0, 1]), show that

. K(z,y+ nx)F(x,y)dm(x,y) — /01 (/01 K(a:,s)ds) </01F(9:,y)dy) dx

as n — 0o, where m is two-dimensional Lebesgue measure.

Proof. We first present a Fourier-theoretic argument. First suppose that K and F' happen to take the

particular forms
K(ZL’, ,y) _ 627ri(rx+my)’ F(ZL‘, y) _ 627ri(lx+ky)

for some m, r, [, k integers. Then we have the computations

1 1
K(.T, Y+ nx)F(x, y)dm(x, y) — / / 627ri(rx+my+mnx)627ri(lx+ky)d$dy
0 0

1 1
_ (/ e27rix(r+mn+l)dx) (/ e27riy(m+k)dy)
0 0

{1 fr+mn+l=0andm+k=0

[0,1]2

0 otherwise

nopo 1 iftm=0,k=0,r4+1=0
0 otherwise
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(since, for n large, the equation r + mn + [ = 0 fails unless m = 0), whereas

1 1 1 1 1 1
/ (/ K(z, s)ds> (/ F(:E,y)dy) dx = / (/ eQWi(mJ“ms)ds) (/ eQm(l”ky)dy) dx
o \Jo 0 o \Jo 0

1
— / 5m:06k:0627rix(r+l)dx
0

_{1 ifm=0,k=07+1=0

0 otherwise

which agrees with the prior limit.

Now, since both sides of the desired limit are linear in K and F' separately, we conclude the result
whenever K and F' are trigonometric polynomials.

We now take limits. Assume that the L°° norm of K is small. Then

o K,y + nx)F(xay)dm(xay)’ < Kool #'1lx
0,1

is small for each n. In particular, if &; — 0 uniformly,

lim sup lim sup | Kj(z,y + nz)F(z,y)dm(z,y)| Srlimsup || K]l =0

Jj—ro0 n—00 [0,1)2 j—00

1 1 1
lim sup | </ Kj(z, s)ds) (/ F(a:,y)dy) dzx| =0
J—roo 0 0 0

Since general continuous periodic K can be approximated uniformly by trigonometric polynomials, we
conclude the formula

- K(z,y + nz)F(z,y)dm(z,y) — /01 (/01 K(m,s)d3> (/OlF(x,y)dy) d

for arbitrary K as in the setup, where F' is still taken to be a trigonometric polynomial.
Lastly, since we also have the estimates

and similarly

| K,y +na)F(z,y)dm(z, y)| < |[Flleol K]

[0,1]2
and
1 1 1
[ (] wwsas) ([ Fenan)an < P s
0 0 0
we conclude the general statement by approximating F’ uniformly by trigonometric polynomials. 0

Fall 2021 Problem 7. Let f and g be functions that are continuous on ID and holomorphic on ID. Sup-
pose that Re(f) and Re(g) agree on . Prove that f — ¢ is an imaginary constant on D.
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Proof. By assumption, i( f — g) is a continuous function on ID that is holomorphic on I and maps 9D to
R. By the Schwarz reflection principle, i( f — ¢) extends to an entire function h satisfying the functional
equation

h(1/%) = h(2)

for all z # 0. But since h is continuous on I, it is bounded on D \ {0}, while

R\ {0}) = [A(D\ {0})] = [(D\ {0})] = [A(¢(D \ {0}))] = [A(C \ D]

so the latter is a bounded set; consequently, 1(C) is a bounded set and we conclude that  is a bounded
entire function, hence constant. By the functional equation, h = h everywhere, so h is real-valued. Thus
f — g = —ih is a purely imaginary constant, as claimed. [

Fall 2021 Problem 8. Throughout this question, U, V, and W are proper nonempty subsets of C that
are open and simply connected, and u and v are fixed points in U and V' respectively. We say that a
sequence of functions converges normally if it converges uniformly on compact sets.

+ (a): Prove that, for any compact set ' C U, there is a compact set L. C V such that f(K) C L for
any holomorphic map f : U — V that satisfies f(u) = v.

« (b): Let f1, fo, ... be a sequence of holomorphic maps U — V that all satsify f,,(u) = v and that
converge normally to another holomorphicmap f : U — V. Letg : W — Uandh : V — W
be conformal equivalences. Prove that f,, o g converges normally to f o g and h o f,, converges
normally to i o f.

Proof. (a) is false if “simply connected” does not necessarily entail “connected,” so for the rest of the prob-
lem we assume that U, V, and W are connected.

(a): Assume first U = V = Dand u = v = 0. Then, by the Schwarz lemma, any f : U — V
satisfying f(u) = v also satisfies | f(z)| < |z| forall z € U.If K C U is compact, then it is contained in
{|z] < r} forsomer < 1. Set L = {|z| < r}. By the Schwarz lemma, f(K) C Lforany f : U — V
holomorphic with f(u) = v, as desired.

More generally,let ¢, : D — U and ¢5 : D — V be conformal maps satisfying ¢1(0) = u, ¢2(0) = v
by the Riemann mapping theorem. If K C U is compact, then ¢, ' (K) is compact in ID, so we may find
an associated compact L’ in D by the above. Set L. = ¢o(L’) compact. Then, for any f : U — V with
f(u) = v, the associated function

g=¢5' ofoo
is holomorphic, maps from I to I, and has g(0) = 0; by the above, g(¢; ' (K)) C ¢,*(L), and hence
f(K) C L as desired.
(b): First fix K’ C W compact. Then g(K’) is compact, so (f,, 0 )| = (fn|g(K)) o (g|,) converges
uniformly to ( f[, k) © (glx) = (f © g)|, as desired.

Similarly, fixing X' C U compact, (ho f,)|, = h o (fa]y) converges uniformly to h o ( f|,) =
(h o f)|x, so we have the desired result. O
Fall 2021 Problem 9. Compute the number of solutions, including multiplicity, of the equation

2o cosz+ 5izt +2 =0

inside the unit disk |z| < 1.
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Proof. Note first that, for |z| = 1,

eZZ + 67@2
2

eY+eY < e+e !
- 2 - 2

|2° cos z| = | cos 2| = <2

by a few easy calculator-free estimates. Therefore

|2°cosz +2| < 4 < 5= |5iz!

for any |z| = 1. By Rouché’s theorem, the number of zeroes of the given function in the unit disk is equal
to the number of zeroes of 5i2* in the same domain, which is 4. O]

Fall 2021 Problem 10. Find all entire functions f : C — C thatsatisfy | f'(2)| < 2| f(z)| forall z € C.

Proof. Clearly constants satisfy that inequality, so suppose f is not a constant. Then the log-derivative

!
f

has a simple pole at every zero of f, hence is unbounded; consequently, the inequality | f'(z)| < 2|f(2)|
cannot hold for z sufficiently close to any zero of f, and so we can assume f has no zeroes.
Any zero-free f may be written as e (e.g. by integrating the entire function f7/) for some entire g; the
given inequality then takes the form
|9 (2)e?] < 2|¢’]
or

9'(z)] <2

Since g is entire, ¢’ is as well, so by Liouville we conclude that ¢’ is constant and so ¢ = az + b for some
complex constants a, b with |a| < 2. Thus the possible entire functions f satisfying the given inequality
are all of the form

flz) = e a <2

and it is immediate to verify that such functions are sufficient as well. [

Fall 2021 Problem 11. For each p € (—1, 1), compute the improper Riemann integral

o P
/ f dz.
o T°+1
Proof. Foreachp € (—1, 1), there is a unique holomorphic branch of the function z — 2? on C \ iR

which maps R to R . Foreach 0 < ¢ < R < oo define the curve I' = I'. i to be composed of the
four curves 1, V2, v3, Y4 Where

+ 71 is the straight line segment connecting ¢ to R;
* Yo is the half-circle connecting 12 to — R through the upper half-plane;
+ 73 is the straight line segment connecting — R to —¢;

* 7y4 is the half-circle connecting —¢ to ¢ through the upper half-plane.

81



By the residue theorem,

2P 2P
/ dz = 2miRes | ——dz,1
r Z2 + 1 22 + 1

P

= 2m

Z—1

z=1

=Te

We now consider each of the v; separately. Clearly

2P © gP
lim / 5 dz = / Q—d:c
e—0t,R—+oc0 i z¢+1 0o T +1

Here we have used |p| < 1, so that the integrand is in L!(0, c0). Similarly, by the triangle inequality,

2P T RP
dz| < do
[02’2—1—1 z‘_/o R2—1R

Rp-l—l R—o0
:WRQ—l — 0 sincep <1
and
p ™ P
/ = dzg/ ——edo
w2t 0 1—¢
14+p
€
= =0 sincep > —1
1 — g2

Lastly, along 73, z = 7¢'™ with 7 varying from R to €; our branch of z? then evaluates to 77¢™, so

P 5 rpeiwp -
/Z2+1dz:/r2+1e dr
3 R

R p
. €T
:ezﬂlp/ 5 dl’
. x¢+1

o0 p
e—0,R—00 T
= e / dx
0

Thus in total we conclude

so that

]

Fall 2021 Problem 12. Let f(z) be a holomorphic function on the set B = {z : |z| < 2} that satisfies
|f(2)| < 1forall z € B. Assume also that



+ (a): Show that | f(0)| < 1/16.

« (b): Show that there is such a function f : B — D wit