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Restricted projections and Fourier decoupling in Q)

Ben Johnsrude, Zuo Lin

Abstract

We prove a restricted projection theorem for Borel subsets of Q) in the regime p > n.
This generalizes results of Gan-Guo-Wang in the real setting.

1 Introduction

Let 1 <m <n,and V = (vy,...,v;) be a tuple of vectors in Q. Write Py : Q) — Qp for
the function

— vy — | |m
Py(z) = :
— vt | |2,

We will be interested in the problem of determining the relation between the sizes of a Borel
set A C Qp and its projection Py [A], for various choices of V' and A. In real Euclidean space
R™, much work has been done: Marstrand’s projection theorem [11] states that

dim(Py[4]) = min(dim(A),m) for a.e. V such that [vy A -+ Avg| ~ 1.

Recent developments in Fourier analysis have permitted analogous results to be proved when
the tuple of vectors V is set to range over a much more sparse set, e.g. a curve. Again in the
real case, [4] demonstrated that, for v any smooth nondegenerate curve in R* and A C R”
a Borel set of dimension dim(A), it holds that for almost every ¢ and each 1 < m < n, the
orthogonal projection of A onto the span of Y™ (¢),..., 7™ (t) has dimension min(dim(4),m).
Theorems of this form are termed restricted projection theorems.

We now state our main result.

Theorem 1.1. Let A be a Borel subset of Q. For each t € Z,, let V = (v(¢),...,7™(1)),
where v(t) = (4,...,%) is the moment curve. Then, for almost every ¢ € Z,, it holds that

dimg (Py[A]) = min (m, dimg(A)) .

Here and throughout dimy denotes the Hausdorff dimension of a metric space.



The restricted projection theorem has applications in homogeneous dynamics, see [8], [9)]
and [10]. Using the (m,n) = (1,3) case, Lindenstrauss-Mohammadi and Lindenstrauss—
Mohammadi-Wang proved effective density and equidistribution for certain 1-parameterized
unipotent flow in quotient of SLy(C) and SLy(R) x SLp(R) with finite volume. Using the
(m,n) = (2,5) case, Lindenstrauss-Mohammadi-Wang—Yang proved effective equidistribution
for certain unipotent flow in SL3(R)/SL3(Z).

The equidistribution results on certain unipotent flow in compact quotient of SL,(Q,) X
SL>(Q,) has some important applications in number theory. It plays a crucial role in the
proofs of uniform distribution of Heegner points by Vatsal, and Mazur conjecture on Heegner
points by C. Cornut; and their generalizations in their joint work on CM-points and quaternion
algebras[13], |3, |2]. Motivated by these applications, we seek to prove an effective density and
equidistribution result on certain unipotent flow in compact quotient of SL,(Q,) x SL2(Q,),
which lead us to prove a restricted projection in the p-adic setting.

The purpose of this paper is to generalize the results of [4] to the p-adic setting. One of the
motivations is an application to homogeneous dynamics; see Theorem [1.3|

We set out the following notation and convention:

o (1) = (t, g, . &) is a curve Z, — Qs

o foreacht € Z, and 1 <m < n, we set Hgm) be the following projection from QJ to Q'

n—1 n—m
(m) _ t t
L (21, oy ) = (21 + taxg + ... + —(n — 1)!xn, oy Ty F g1 + o —(n — m)!xn),
le.
YO)T 1
H(m) (1’1, 7$n) = s

ym() Tn
e 1 is the Haar measure on Q) with normalized measure u(Z) = 1;
e |- |, covering number or packing number (which agree in Q,);
e # cardinality of a finite set;

v will always be the uniform probability measure on a finite set F', unless otherwise
specified;

1 4 will always be the characteristic function on the set A.

The following projection theorem is the one needed in the proof of effective equidistribution
of unipotent flow on quotient of SL,(Q,) x SL2(Qp). The statement of the following theorem is
a generalized verision of the same as Theorem 5.1 in [§] in p-adic setting. By an application of
Frostman’s lemma, it implies Theorem [I.1]

Theorem 1.2. For t € Z,, Let a € (0,m), by < by € (0,1) be three parameters. Suppose
F C Z; is a finite subset satisfying the following a-dimensional condition at scales > by:
#(£ N B(z, b))
#F

< C(b/b)* Vx €Zl Vb> b (1.1)



Let v be the uniform probability measure on F' and v, = (Hgm))*u be the pushforward measure.
Then, for all ¢ € (0, 155), there exists C. > 0 such that Vb > by, there exists .J, s.t.
w(Zp\Jp) < CLU s.t. YVt € Jp, there exists F,; C F with v(F\F,;) < C.V° s.t., Yw € Fyy,

. b\ a—O0(/2)
v (B (w), b)) < <E> .

The term O(y/€) can be taken to be 4 - 10'"\/e. The constant Cy,,-(c) can be chosen as
C. = 4max(1,C)exp (104(10gp)€—5n10gnn20n2> .

We now present the following application of Theorem to the setting of homogeneous
dynamics on quotient of SL,(Qp) x SL2(Q,). We first set out some notation. Let v = sl(Q,) be
the trace-zero 2 x 2 matrices over Q,, and equip t with the maximum-entry norm, with respect
to | - |,. For each r € Z,, we write &, : v — Q, for the map

2
&r(w) = wiz — 2rwyy — war’,
where w;; denotes the corresponding matrix entry of w.

Theorem 1.3. Let 0 < a < 1,0 < by = p < b = p™* < 1 be three parameters. Let
F C B,(0,b1) (the closed ball in v centered at 0 of radius b;) be such that
#(F N By(w, b))
#F

for all w € v and all b > by, and some D’ > 1. Let 0 < ¢ < 0.01 and let J be a metric ball in
Z

< D/(b/bl)a7

o
Then there exists J' C J such that u(J") > (1 — Z%)MU ) satisfying the following. For each
r € J', there exists a subset F,, C F with

4F, > (1—1) 4F
p

such that for all w € F, and b > by we have

#Hw' € F - & (w') — & (w)], < b}
#HF
where C, depends on e, #.J, and D’.

< Ce(b/b1)™, (1.2)

Remark 1.4. The maps & may alternately be written as & (w) = (Ad,, (w)),,, where u, =

127

((1) 7£> and Ad is the adjoint action of SL,(Q,) on its Lie algebra sl;(Q,).

Proof of Theorem [1.3 from Theorem [1.3 Let £ = (107%%¢)?. Identifying v = sl,(Q,) with Q3
(with the latter equipped with the usual *° norm), we may appeal to the (m,n) = (1, 3) case
of Theorem [I.2] with this ;. Choose 5 such that

. 1
Z Cop~ ot < —pu(J).
p

=l



Ifly > l(), let
loya—e
Cé‘l = (pZ) Y
which depends only on ¢ and p(J). We then have

1< CL (bo) (p~2)* Vo)
< CL (o)™ ",

Thus we may take J' = J and F, = F, and [1.2 holds trivially.

Now we assume Iy < [y. Let J' = b7 ..NJ , where J,—: is the set obtained from Theorem

=l “p
1.2l We compute:

u(J') = u(7) = S, \ I, )

l=la

> /’L(J) - Z Cslpisll

l=l2

> (1 - %) ().

For all » € J', let F, = ﬂiozlg F,-i,, where the sets F,-., are as obtained from Theorem
. From the choice of I, and the union bound, we conclude that #(F \ F,.) < %#F , SO

Now, for all w € F, and Iy <1 <y, by Theorem [I.2], we have

#{w' € F &) = &w)l, < p™'} < Cey (b/b) @I I4E,

so that [L.2 holds.
Finally, we consider scales p~! > p~2 i.e. [ < l,. In this scale, we let C! > pl2(@=0(E)  We
have
1< CLp™o < O (b/by) @790,

so that [1.2] holds trivially.
]

Proof of Theorem[1.1] from Theorem[1.4. Identical to the “Proof of Theorem 1.2 assuming The-
orem 2.1,” from [4]. Note that the Frostman lemma holds for Borel sets in compact metric
spaces, and that dimy(Z)') = m. Note also that the relevant covering lemma is valid in

separable metric spaces, and that p is doubling.
m

We mention one final result of this paper. In the interest of obtaining explicit bounds
for the projection theorems, motivated by the problem of producing effective estimates in the
homogeneous dynamics application, we have in particular needed a fully explicit bound on p-
adic decoupling for the moment curve; this is proved in Theorem below. To our knowledge,
this gives the first fully explicit bound for the main conjecture of Vinogoradov’s mean value
theorem in the range n > 3, which we state here.



Theorem 1.5 (Explicit Vinogradov bound). For n > 2,s > 2, and N > 2, we write

Jon(N) = # {a,b EN":D (af by =0V1<d< n}

j=1

which is the number of solutions to the Vinogradov system of Diophantine equations. For each
such s,n, and each N > exp(exp(3n(4nlogn + 1))), we have

n(n+1)

Jon(N) < exp (105563"(10g N)l—W;M) (N® + N5

Proof of Theorem assuming Theorem [6.1. We will first show the inequality

) (1.3)

n(n+1)

Js,n<N) < exp (6 104S€ 4nlogn 12n? ) N235<Ns + N2s
for each ¢ € (0,1). Subsequently, we will optimize this estimate over &.
Let p € [n,2n] be a prime. Assume temporarily that N = p’ for some ¢ € N. For each
1 < a < N integral, we write I, = a—i—peZp; these form a partition of Z,. Let {U}, o }ac[n) be the

associated family of anisotropic boxes adapted to the n-dimensional moment curve, as defined
in Section 6.1 below. By Theorem

Deczpntnin ({Ur, ataern) < exp (104(10gp)6’4”1°g”n10"2) Y,
for each € € %. By Lemma we have
Decpzr2s ({Ur, o taciny) < exp (104(logp)€’4"1°g"n10”2> (1 + p2<17m))
For each 1 < a < N integral, write g, : Q’; — C for the function

9a(z) = x(2 - v(a))1p-tnzn (2).

Then the Fourier support of g, is y(a) + pénZg C Uy, o Thus, by decoupling,

N
> %

a=1

2s
< 225 exp <2 . 1048(10gp)€—4n lognn10n2> pQSéa(l + pf(s—%))p(n-ﬁ-s)ﬁ'
L2S(Qg)

By a standard manipulation, the left-hand side is p™.J,,,(N). Thus, in this case, we obtain

)

n(n+1)
2

Js,n(N) S 225 exp (2 . 1045(10gp) 4nlogn 10n2 ) NQSE(NS + N23—

If instead p® < N < p”, then the preceding implies

n(n+1)

).

Finally, appealing to n < p < 2n, and various elementary estimates, we conclude that

).

Js,n(N) < 223p2s(1+€) exp <2 . 1048(10gp) 4nlogn 10n? ) N2SE(NS + N2s—

n(n+1)
2

Js,n(N) < exp (6 1048874nlogn 11n? >N255(Ns N257
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Finally, interpolating between the cases 1Z+_1 <€ < , we obtain

Finally, we select € = e*"(log N) ™ # e in , using the lower bound on N. It transpires
that

JS n N nlogn
g (2200 ) < 6 101s(log N) PR 20l ) S,
Ns + N2~
By trivial estimates, we conclude. O

Finally, we outline the remaining sections. In Section [2| we reduce the proof of Theorem
to a problem of covering sets with tubes, which we refer to as a Kakeya estimate. In Section [3]
we demonstrate that the Kakeya estimate may be proved with a suitable decoupling theorem.
In Section [, we prove the decoupling theorem, assuming that the usual Bourgain-Demeter-
Guth decoupling theorem for the moment curve may be extended to the p-adic setting. Finally,
in the appendices, we discuss the proof of moment curve decoupling in the p-adic setting, by
modifying an argument of [5].
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2 Discretization

In this section, we reduce the projection theorem to a Kakeya estimate, whose proof will
be established by Fourier analysis in following sections.

Let § = p~' and let D™ = {o + p'Z" : z € {0,...,p" — 1}™} be the set of 6-balls in Z2".
Let T\™ = Zy N {@™)~Y(D) : D € D™}, Elements in T, are tilted 6™ x 1"~ boxes. We

will use Tt(m) to denote elements in T;. We will drop the superscript if it is clear that we are

dealing with the (m,n) case.

Theorem 2.1 (Kakeya estimate). Let 6, € p~ with 6 > &,. Let As be a maximal J-separted
set of Z,. Given ¢ > 0 and o € (0,m), let v be a finite non-zero Borel measure supported in Z
with ¢ (v) = SUDycqp >4, @ < 00. Take Wy C Ty arbitrary and denote W := Ugep, Wy.
Suppose that

Z 1p(x) > 6!, V¥x € supp(v).

TeWw
Then
#W > C () - v(Q)e (v) 1o 260WE)

Here it is important that the constant C,, ,.(c) does not depend on . The term O(/€) can be
taken to be 10'",/e. The constant C,,.(c) can be chosen as

Chpe(c) = min(1, ¢ ) exp (—104(10gp)5_5"1°g”n20”2> :



Proof of Theorem assuming Theorem [2.1]

The proof is a finitary version of the one in section 2 of [4]. Let gy = 10'"y/2e. Fix
s = a —2¢p < a. Note that s < a—2e —gy. For each b > by and each b-separated set A, C Z,,
we define the set

At = {we Frv({w € P I™(w) - I ()] < b}) > v ()b }

for all t € Ay.
We will first demonstrate that there exists C'(«, s) such that

> w(FRY) < Cla, )b
teA,
Suppose not, we have that

> uw(FR) > ovt

teN,

Note that for all ¢, }Hgm)(FlS?dﬂ y < bo( b=%. Hence we could cover it by a collection D, of

balls D where #D, < -1—b"*%. Let W, = pt 7D eD}t, W=|J,W,. Consider the
o) P !

following set
A={(t,w) € Ay x F:w e Fp}.

Let A denote the counting measure on A,. We have
A @v)(A) =Y v(F3Y) > Ccp*
A

Therefore

/ 4{t € Ay w e BV du(w) > O,

so that, dividing the integral into the domains where the integrand is larger /smaller than %b%*l,
2e7—1 ¢ 2e—1 2e—1
v v({we Py ir(e) bb }) 5 > o
TeW
le. C’
v({weF: Y 1z b26 ) > S
TeW

Let Fpd = {w € F : Y lr(z) > £}, so that v(FP™) > £b*. Note that for all
x e Fprd S () > Sp% L
We apply Theorem to v| Fpad scale b and 2e. There exists Co. o

#W > Cy. o, - %b%cg)(u)lblabﬁo.

By pigeonholing, this implies that there exists ¢t € A, such that

#W, > C. , - %b%cg)(y)—lb—%w.



This is a contradiction to the assumption that #W, < ,,O b sif C

a 4 13 —
ZV(Fls),td) S KbQ b 1.

teNy

Now let Ej be the ‘exceptional’ set of parameters ¢ € Z, where F is large, namely,

={t € Zy: v(F}") > b}

CQe,oz
Pick a maximal b-separated set of Ej, and extend it to be a maximal b-separated set A, in Z,,
we have

4 4

b (EBy) - b2 < #(M N Ey) - ——b?
2e,a 2e,a
< D IR
teAbﬂEb
< b bl
N 02504
Therefore, u(Ep) < b°. Let C. = maX{CZ?(V),m} and J, = Z,\E}, we complete the

proof. O

3 Kakeya estimate via decoupling cones over moment
curves

In this section, we formulate the decoupling estimate Proposition and indicate how it may
be used to prove Theorem [2.1 We begin by setting out some notation that will be helpful in
studying the wave packet expansions of functions with restricted Fourier support.

For each § € As and o, B € p~ 2, write

Apas = [y 1(0), ..., a” Y (0), 574 HD(0),. ., B4 (0)). (3.1)
When the third subscript is supressed, we will understand it to be 1. Write also

Ty — A975—1 [Zg]

Notice in particular that 7y has dimensions 6= x --- x 7! x 1 x --- x 1, with m copies of 6~}
and (n — m) copies of 1. If fp has Fourier support within 74, then f may be expanded into
wave packets of the form apx(z - v(0))1r(z) for ar € C and T a translate of Ae s—1Zy. Note in

particular that each T has p-adic volume 6~
It will be convenient to observe that

Agi=Ag, (3.2)
Indeed, when ¢ > j,

- . ‘ -1 k—j
(Ag1A_gn)ij = Z(A(%l)z‘,k(A—eg)k,j — P Z (=1)

k=1 k=j




The sum may be rewritten as

M?v
|i
.
\_/
~—~
)
S|~
N—
-
|
<
—
[a—y
N—
>
VR
o~
> |
<
~__
—~
-~
[ -
<
SN—
—~
—_
|
-y
S~—
<
d

(1 — !
k=j h=0

and the claim follows.

Proposition 3.1 (Decoupling estimate). For each ¢ € (0,1) and n € N, we may find D,,,. > 1
such that the following holds. Suppose § € p™ and A; is a d-separated subset of Z,. For each
0 € As, let fy have Fourier support in the set 0~'7 N (Z \ pZ7). Write g, = n(n + 1). Then

> fo

0cAs

1/qn
_ n—m41 __
< Dn,p,e(S BT (Z ||f0||an (@) ) .

0eAs

Lan (Qp)

for each € > 0. We may choose D, ,. to be the quantity

Dy pe = exp (104(10g p)g—5nlognn10n2> .
Before proving Prop. [3.1] we indicate how it implies Theorem

Proof of Theorem using Proposition [3.1]
We claim the particular inequality

W 2 Gy (co) (@) (v) 16700V

for the particular sequence {ej}72 ,, defined by

1 1 /
8125, 5k+1:Z< €i+4€k—€k), k e N.

Then 0 < g1 < &, for all k, and &,,; = &, where

3

-G

£ =

We have also written ¢y = min(1, ¢) and

Crpelco) = (107%€)% (co/4p)* ‘D,

n,p,e"

From Prop. , and observing that ' + 1 < 7!, the original claim holds for each ¢,. By
trivial inequalities, the full result holds.

Following [4], we proceed by induction on € > 0. By a trivial estimate When E=¢€ = ;, we
have the base case. It suffices to show that, if Theorem [2 . 1) holds for € = = \[, then it holds
for €.

Proceeding to the induction, we assume the result for €. The tiles in Ty of Q) have dimen-
sions 0 X -+- x 9 x 1 x---x 1. We further have, for each 6, a subfamily W, C Ty such that
> rew Lr(x) > co6°~" for all x in the support of a special measure v. We wish to demonstrate
a suitable lower bound on #W.



To this end, first observe the calculation

510 - 0 0 0

0 6t - 0 0 0
mrA = . s

0 0 50 0

consequently, for each x € Z7,

Zr O (T o+ 67120 = Ay

0.5 1[0(z,0) +Z) < Z™™].

Thus, we will write members of Ty as translates ¢ + Ag_;,l [ZZ] for various choices of ¢y € QZ.

For each T' = cp —i—A;,;_lZg € Ty, consider the function 1p. If we recall that 7p = Ay 51 [Zg],
then we may verify that R
]lT(g) = X(_CT : g)ém]l're (f)
Observe that 75 has dimensions 67! x --- x 7! x 1 x --- x 1, with long sides parallel to
A1), ..., 7™ (f); observe also that 7y is symmetric about the origin.
Let x be a positive integer such that 6=V= < p* < pd~VEe, and write 15 = 15(0,5-1p—+). Then,
for some subset F' C Q7 with v(F) > 11(Q}), we either have

<> Apxyf(a)| VzeF, (3.3)
TeW
or
&
20 <D Ak (Ligy — )Y ()| Yz EF (3.4)

Tew

Observe from the outset that

Y5 = 0"p " L p(o,6pr)-

We consider case first. For each fixed T', we may compute
]lT * ’lvb(\i/ = p_m,%]lfa

where T = ¢p + Ae org-11 Ly, recalling that T' = cp + Ae s-1(Zy).

Observe that T is the (Op" x ++- x dp® x 1 x -+ x 1)-plate with the same center as T and
the same short directions. As such, for each 0 € A(; we fix the tiling 7y of Q) by translates of

T n
Aep r§—1 [Zp] "

We investigate the relationship between T and 7. Suppose T' € Ty and T' € Ty are such
that T C T Let ¢ € Q) be the unique element such that {g;}, =g for all 1 < j <n and such

that T = Ae_p wg11q + Zy]. Then —q + Aep ws-1[I'] = B is a subset of Z7. Moreover, writing
T = AQ/T(; 1[b+ Z7] for the unique b € Q) satisfying the preceding equality and {b;}, = b; for
all 1 < j <n, we see that

B:—q+A —K§— 1A6”5 1b+A —K§— 1A0,5 1[ Z]

10



We will bound, for each § € Z,, the number of §' € Z, such that A;p,n 5,1A0_,T6,1
We begin by noticing that
A;lAG_’I = AGT—O’,M

so that for each j < k

T AT _ (00
(A971A_9/71)jk = (k —j)!
If 6,6 are such that we have the inequality
6 —6'|, > p"o,

then it follows that
(AJ,IAIQ’J)(em) ¢ p_ﬁ(s_lZ;% X Zz_ma

and hence
diag(p™0,...,p"0,1,... 1) Ay Ay | diag(6™", ..., 67", 1,..., )[Z}] € Z7,

whereas the left-hand side is just A;p_ﬁ 5_114;/;_1 [Zg]. It follows that, for each T,

#{TeW:TCT)<prlmth,
On the other hand, if |§ — ¢'|, < p*d, we note that
A s Ay g 2 C T,

SO A(;;—W* and A;/I,—n(;—l define the same thick wave packets unless |6 — 0’|, > p"9.
Now, writing 7 = (Jge,, 7o, it holds that

S dpwyf <p Y F{TeW:TCTHIg
TEW TeT

If we set B N .
Totight = {T ETo . #{TcW:TCT} < Z%Ep(mﬂ)ﬁ},

and 7B,heavy = 75 \ %,lighta then

p Y Y T ew:TCT1; < Joe
0€A§ fe%,light oo (@n)
which implies, comparing with [3.3]
Co —1+4e —mK . T ~
S <p ZN > #{TeW,:TCThHiz(x), z€F.
QEAE T€7—9,heavy
From the upper bound [3.5], we have on F'
4
STIHERVE < pyTirepTR < p— 17 €F.
<pdTTpT < po YooY ), =

0 -
QEA‘S Te%,heavy

11

Zr] C 7.

(3.5)

(3.6)



Observe that
5—1+e+ﬁ _ (51—ﬁ)—1+1%\/g

so that the dilated arrangemen‘c {f € %heavy : 0 € As} satisfies our Kakeya hypothesis with ¢
replaced by € = = \f, § replaced by 6'~Ve, and constant CO By the induction hypothesis, we
obtain the estimate

# Toneaws = Cope(co) (@)l (v) 150V 15l VAR,
0

Recall that, if fl € To, heavy and fQ € Toy heavy and T' € W are such that T° C fl N TQ, then
01 — 65, < p*d. Thus we may bound

#W > gL # U Toumeavy-

Oes

Combining the previous two displays,
HW > Clypeco) (@)l (v) 15UV gommyE 5101 oo 2
= 6n7p,€ (CO)V(QH)C&) (V)7167170&6(0&77}1)\/5654,101011@5
> 5n,p,5(00)l/<(@n)ctso (V)*l(sflfaé(afm)\/gélomn\/g

<

Since a < m, we obtain
#W Z én,p,c’(CO)V(@Z)CiO(]/)71571*0(4*1010”\/5.

Recalling the form of C,, . (co), we are done.
Next, we assume [3.4 holds. For each 0 write gg = > ey, (L7 * (Lszp — 95)") (). Then

&) =0" > x(—er - )L, (&) (Lszy — 5) (&)

TeWy

Write fy(x) = go(0~'2). Then the preceding display shows that f, is supported in 07y \ p*Z,.

If we further decompose
k-1

_ v
= E o * ]lpjzg\pjﬂzga
=0

and notice that each x — (fy x 17 )(p~7x) satisfies the hypotheses of Prop. then

we conclude

PIZE\P Ly

v
E o * ]lpjzg\pjﬂzg

1/Qn
_1+n—77n+1_6/2 Vv qn
< l)n,p,e/Q(S an z : ||f9 * ]lij;l\pj+1ZE||L‘?”(Q$) ’
0cAs

0eAs

Lan(Qp)

By the triangle inequality and Young’s convolution inequality, we see that

l/qn
4 n— 'm+1
Z Jo < ED npe/20 o (Z 1 follZ Lan @n) ’

0cAs 0cAs

Lan (Qp)
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using k = —log, § < 26—°/%.
Rescaling both sides of the previous display, we reach the estimate

1/qgn
4 _ n— m+1
Z 9o < gane/Q(S 1 (Z 1901I7 an(Qn > . (3.7)

0€s 0€s

L (Qp)
For each 6 € As,

lgollzam(@y) = ||(Lozy — ¥5)¥ % Y 1r < l(Lozg — vs) ey || > 1r
TeWy Lan (Qn) TeWy Lan (Q1)
By the definition of the family Wy,
> I = (#Wy)an gin.
TeWy

Lan (Qp)
Since 15(§) = lpp-r)(07€) and Lszn(§) = Lzn(67'€), an application of change-of-variable
reveals
|(Lszm — )"l @) < 2,
and thus

1/qn
<Z ||99||%Zn((@;l)> < 25%(#“\])@_ (3.8)

0cAs
Since 90714 < |3 ey Ir * (Lszp — 95)Y (2)] for all 2 € F, we have that

de

0eAs

—re < , Vo erF,

so that

an
Z go| dv.

0eAs

(co/2)tnd~ ey (F) < /

Note that |y, go| is constant on balls of radius ¢; thus, using 0 < c(v) < co and § > &y,

/deqndus&o e [ ol

0es 0cAs
so that, using also v(F) 2 v(Qp),

du,

tn
20 el ) @ e <5 13 3:9)
0cAs
Collecting estimates [3.7], 3.8 and 3.9 we conclude
#W Z 2—4qn—1€ann qan/Q (Qn) ( )—15—a—1+2qn5'
As 2¢g,e < 109/ for every 0 < ¢ < 1, we are done.
[
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4 Decoupling bound for restricted projections

In this section we prove Prop. . We will do so by adapting the decoupling procedure of [4] to
the p-adic setting. We will take for granted p-adic decoupling for moment curves in dimensions
n < p; for a proof of the latter, see Corollary in Appendix B. We emphasize that this
decoupling theorem (together with elementary rescaling arguments) will be the only Fourier-
analytic inputs for this section. Instead, we will be primarily concerned with a decomposition
of the Fourier support of ), A, Jo Into subsets over which the decoupling theorem may be used.

The decoupling procedure described in this section is virtually identical to the real setting.
As a consequence, we will present a very terse accounting of the analysis; the interested reader
may compare with [4] for motivation. At the end, we state the output of the algorithm and
observe that the estimate obtained suffices to prove Proposition [3.1]

We may assume that ¢ is restricted to sufficiently regular powers of p, to facilitate taking
various roots; similarly, we assume that ¢ is a sufficiently divisible reciprocal of an integer. To
this end, write £ = (n!)®" and assume that e = ;- for some ¢ € N>,. We assume also that
)€ p*’“‘zN. After we have established this special case, we will be able to conclude the general
statement via trivial estimates.

We begin by defining a decomposition of frequency space which will facilitate the proof of
Proposition [3.1] These are adapted to the support of the Fourier transform of f, the function
to be estimated. See Figure [1] for an illustration of the geometry, when regarded over R.

For each subset J C Z, and 1 < m; < m, define

P

0y = {Zm@(e) 0. € TN As, Xy €Z, Vi, max Nl =1, Nl <6V € (m,n]} cqQr
Jj=1 o

and

Dy = { S XAD0) € Py = 1INyl < 195 € (my,m] |,
j=1

so that {2, }1<m,<m partition ; for each J.

For each s; € p‘EilN with 5"*17"1 < 51 < 1, write
n . 1

Qi s = {Z/\j'y(])(e) € Ny, (s1=0""m1 or I € [1,m —my] s.t. s§ <[ Anytilp)s
j=1

Vie[lm—m]pe s > |)\m1+L|p}

so that
Qymy = U Qa1

6n71m1 S51<P71
We remark that €2,,,, is essentially a segment of the rim of a thick cone over an (n — my)-
dimensional moment curve, and each €2;,,, s, is a thin slice of that cone to facilitate the standard
cone-decoupling trick of comparing with a cylinder. See Figure [1| for an illustration. We
further decompose Q,,, 5, by: for each tuple R = (Ry,..., R —1) € P(Zp,s5)™ ! and each

14



B € P(Zp\pzpvss)a
Jm1,81_{z)\7]) )\jeijje[Lml)a)\mleB}-

We will eventually decouple along these regions; to this end, for each k£ € N, write
k(k+1)+2
- 5
so that the ¢9 L9 decoupling constant for the k-dimensional moment curve at scale ¢ has size
<. 50— for each k <n.

With this established, we now proceed to describing the proof of Prop. |3.1]

Dy =

Proof of Prop. [3.1. We first observe that the sets above describe the Fourier support of f.
Indeed, fj is supported in the set

A1 5(Z3) \ v
where we again are adopting the notation
Apap =7 D0),...,a7 ™ (0), 57 V0),.. 5T O)], (0 € Ly, B EQ)
Consequently, fg is supported in {44}, so the preceding decomposition applies.

By H('jlder we have that one of the following holds: either there exists m; < m, o = <
51 € p T € P(Zy i), B € P(Z,\ ply, 7). R € P(Z,, 1™ such that

Z f@ m(logp(s (m1+1):—: Z 'P Jm g f0 (4.1)
0cs Lan (Qg) 0eJNAs o Lan (@E)
or else we set m; =m, s; = (5"*1"“, and there is J € P(Z,, s7) such that
> fo m(log,6™")s; "N Py, fo (4.2)
0eAs Lan (QZ) geJNAs Lan (QS)

We will focus on the case that (4.1)) holds, and abbreviate F' = 3 o, \ Posa  fo. We will

Jmy,sq
demonstrate the following: :
Lemma 4.1. Suppose that s; = ]D*@E_1 for some ¢ > 2. For any

571

0<k<k, = (n—ml)L£_1—2—7j
(1+ﬁ)a
and any L € P(J, s, '), we have that
1/qn
— 2 __ & (1_D"*m1) 1

Z Fy < Cn—ml,(n_ml)esl s " Z Z Fy

9cLNA L On ka1 [leerna O

€LNAs Lan (Q7) ]E'P(L,Sil )> cInAs Lan(Qn)
where Cy,_p, (n—m,)e 1S as in Remark [6.23] n

m1+1

ndeed, consider the weighting of each particular configuration by s}

15



1+—*
Proof of Lemma[{.1. By applying parabolic rescaling, it suffices to assume that L = B(0, si nm )E)

and B = B(1,s5). Then, for any 6, \{,...,\, as in the definition of fozl s;» We have the rela-
tions

n ' 2 eij
i=1 77

j=1

)\ml 9>L mi

<s m1 <t <n).
(L—m)! | — ! (m1 <n)

J’yb

p

gl k) . . .
The second of these follows from the inequality |9L I, < sg )< for j <, the inequality

Ay — (Amy )™, < 55, the inequality |A; |p < pf Umm) T for my < j < ¢, the ultrametric
triangle inequality, and the fact that (1+ fo-)e <1 —¢— ;.
Consequently, it holds that

eb mi
Lml,SI_{Zmeﬁ > ( +pb) e, i p, € Blby,s5) (1 <mn), pmy € B(1,57),

L —m
t=m1+1 1
)e(te—m1)+e

k
(1+ n—msj

oy < 54 (L>m1),c9€LﬂA5}.

o : Aty -
Applying time rescaling 6 +— s, ! )69 (n.b. that this is regarded as a product of two elements

of Q,), and decoupling over the (n — m;)-dimensional moment curve, we conclude

1/qn

_ &2 __ € (1_®n—m1 )

S Cnfmh(nfmﬂssl T 81 o " Z H Z F@Han Q"

Lan (Qn (1+ kti Ye ocl
@) IeP(L,s, )

S

el

]

Since decoupling constants are sub-multiplicative, we may repeatedly apply Lemma to
conclude

1/qn
n—m e (1= 2noma
1Pllnep < Gl st " 2. Il

(2t )e

I€P(Zp,s, 1)
By the triangle inequality and Cauchy-Schwarz, we arrive at the estimate
° 1/qn
nomy 1 —2e—(1-—_=1)

Z ||FI||an @p) )

IGP(ZP,Sl)

||F||L‘Jn(@;?) < Cnfsml,(nfmﬂsp S1

valid whenever we had s; € p‘5_1N22. If instead s; = p“‘:_l, then trivial estimates supply

1/gn

-1
”FHL%(Q;L) <p Z HFI”%ZTL(Q;L)
IEP(ZP,Sl)
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Figure 1: Left: the union of the truncated plates 'y N (Z \ pZ7) is contained in a thick
neighborhood € of a cone over a lower-dimensional nondegenerate curve. Right: the decom-
position Q. = JQym,.s in the case (my,m,n) = (1,2,3) over R.

The remainder of the algorithm involves rescaling each F; and repeating the above procedure,
by finding a new parameter sy to treat the Fourier support of F; as the cylinder over a moment
curve. We summarize the inductive step in Lemma below. Prior, we adopt the following
notation, largely identical to that of [4]. For any m; € [1,m] and n; € [m,n], and any

s1€p N we set
-1
‘le,sl (5) = (fla R 7§m1; S1 £m1+1; .- m1 n€n>
1-1 1-2 1- 1- 1—
RM1,S1(£) = (31 51, S €2a sy Sy mlfm:u S1 m1£m1+1 s 8 m1€n>,
and
*@ 1<j<my,
(G=ma) syt ! mp <ij<m
Diél n1 (5)] = pm 1 gj ' j _ ’
’ ' m < j < nq,
fj nm <j<n.
If sy =(s1,...,85),mj = (my,...,my), and n; = (ny,...,ny) are entrywise as abovve, then
we write
‘CmLSJ = ﬁmJﬁJ ©---0 £m1,817
RmJ,SJ = RmLSJ ©---0 le,SU
Dfﬁ]] njy = D;:LIJ,TLJ 0 D;%hnl

We will use the abbreviations
J
H (s9)~*

When a given tuple s; is already understood and 0 < j < J, we’ll write s; for the corresponding
initial segment of s;. We'll also write

Ymi,s1 = le,s1 °,

17



and
TYmys; = RmJst °;
observe then that
Y,y s, (0) = SJ[,mJ s, (s;°¢9) : (4.3)
The tuples will need to satlsfy the following compatibility relation: we write s;,1 € Adapm‘]+1 Ny

for quantities s;41 € p=° N, and call them adapted, if

J . nyy1—myi1
H (ny=1=m;) < sy < 1. (4.4)

We also set out the following regions in frequency space: given tuples s;,m;,ny, and 6 € Z,
with [0, < s9, we write

Qg:inl,sl = { |:PY7(r2 S1 (819)’ T 77m1 S1 (S 9)] ’Dfﬁh (A) .
V€ L] My S LDy =1,

Joel,m—my] st p <Ayt

Ve e [1,m —ma] | Amtp < 1,

Vee [1,n—m] [Amslp < 987" }
Here, we emphasize the convention that each v is a column vector, [y(!), ... ~(] denotes the
matrix whose j* column is ), X is the column vector (Ay,...,\,), and the - denotes matrix

multiplication. We similarly erte

s = {70, (8560), 200, (559) | - D3ty (V)
vee [Ln] Ay <15 A, lp =1,
Foel,m—my]st. p < | Ay +elps
Vee [I,m —my] [ Am,+p <1,

Vo€ [Lny — ]|)‘m+L|P<5H (m+1—m;) }

and, for each choice of sy 1, msi1,n711, we write

res,mj41,SJ+1"NJ+1 __ o Sy res .
Q9,H1J7SJ7HJ - { [’me SJ( ) e ’,me sJ (SJQ)] DmJ ny (}‘) € Q9,mJ,SJ7nJ :

|>\”nJ+1 |P ]‘
1

J m) nJ41—M 41
<8J+1 = 5Hs] T

J=1

or Jv€[l,m—myyq] st 1< |)\mJ+1+L|p>,
Vi e [1>m - mJ-i-l] ’)\mJ+1+L|p < Sfl-&-lphf1 }

We immediately motivate the definition of these regions by the following lemma.
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Lemma 4.2. Suppose h has Fourier support in ., s,, and ||, < s;. Then ho L,,, 5, has
Fourier support in Qg . More generally, if ho L, s, has Fourier support in Q7" #1247+

e»vastnJ ’
then ho L has Fourier support in 2%

myy1,8741 Omyi1,8741,0541"

Proof. By induction on J. Consider the base case J = 1. Relabelling A, +, — ${ A\, 4., We see
that h o L,,, 5, is Fourier supported in the set

{ Lt VO A O] LA 2 ] <175 < iy Py = 1
(s1= 671 or I € [L,m —ma] .t 1< [Ayaaly),
Vo€ [Lm —ma] Ay alp < P
Vi € [1,n — m] | Aps| < 5776 }

For a particular (column) vector A\, we may manipulate the corresponding sum via as

ﬁmll,sl ' [7(1) (6)7 e 7’}/(71) (9)] : £m1751 (A> = |:8]. 71?11,81 (810) n 177(:1 51 <810>:| £m1,31 (A)7

which we may write as

[7m1,51 (S 9) - 771(7’71) s1 (819)} lel,sl (A)

Finally, for each ¢ € [1,m — my], we relabel again A, ., — p”_l)\mlﬂ; from the definition of
D, ., the desired result follows.
In the general case, relabelling A, 4 = 85,1 A, 0, We see that ho Ly, s, is Fourier

supported in the set

{ £m1J+1,SJ+1 [Vr(rll?J,SJ (539)7 cee aer(rrnLl)],SJ (538)} ’ EmJ+1a3J+1 (,Dfr{Jan (A)) :
|)\j| <1Vj <myi, |>\mJ+1 |P =1

J
(SJ+1 _ (6H8j(nJ1Mj)>
j=1
-1

RS [17m - mJ-i—l] |)\m1+1+b|p < pL€ ’
J41
Ve e [L,ngpr —m] Aty <0 H sj_(mﬂ_mj) }

J=1

1
Nyl M4

or Jve€[l,m—myp]st 1< |/\mj+1+L|p>,

Again, we may manipulate the corresponding sum via as

£7711J+1,5J+1' [Vfrlll,sJ (839)7 s 771(1'?37SJ (SOJQ)} ’ LmJ+175J+1 (folJJ,nJ (A))

= |:51J:»1171(r11?1+1,5J+1 (SOJ+10>7 R/ 891%75334_1,5]4_1 <SJ+16)] ’ EmJ+1,SJ+1 (IDls’ﬁ]J njy (A))7

which we may write as

|:me1 S1 (S 6) o 7777’7,1 S1 (519)] Rm%]_,_l,stj_,_l (’Di{‘],nJ (A>>

Finally, for each ¢ € [1,m —m 1], we relabel again A, ,, 4, — pe !

of Dt n,.., the desired result follows.

Amyir+0; from the definition

O
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Lemma 4.3 (Inductive localization step). Assume we have an integer J > 1, a rooted tree
T composed of sequences (O, ...,0;), (j < J), of metric balls ©; in Z,, such that the set of
children of ©;, (i < J), is a set of the form P(0y, se,) with se, € p~= N U {1}, together with
labels ng,, me, of each ©;, for which the following axioms are satisfied.

® Ng, = N, Mo, = M.

o If (©,...,0,) € T, then the associated tuples {s; = so,_,}7/_,, {n; = ne,} _¢,{m; =
me, }7—o are such that:

njr1 =n; — 1 and m;y > m;

VL] —(nj—1-my)
andsJJrl —5]_[171 . ,

or n;y =n; and mjp > m;,

Vje0,J): either and "™ > 51_{37:1 S;(nj_l_mﬂ)’ (4.5)
or njp=n;=m++1 andij =m;=m
\ and ]_L7 L8y’ =10 and sj4; = 1.
e In the setting above, we also have
supp ﬁ@J C Qo ,mys,m,- (4.6)
Fors;,my,n;, we will write Ty, m,n, for the set of tuples (O, ..., 0;) € T with that associated

tuple, as in the second bullet point above. We assume also that we have the upper bound

J2ne1 —(mj+3)e—(1——4 =
HFHLQ"(QITUL) Sp Z H [ ny— m],(n] m])ESJ
symy,ny j=1
n 1/qn (47)
x 2 > f
(00,0 7)€Ts ;,m;n; 110€07NAs Lan (Qp)
Let (Oq,...,0;) € T be such that
J
ny>m+1 or Hs?rm" > 4. (4.8)
j=1

Then we may find mj1 € [my,m], nyy1 € (m,ny|, and sy € p~= N such that

l_gnJ+1*mJ+1 )

1T L —(myp1+3)e— ( o

J 1 €
”FGJHan (Qg) e (logp5 >C’7’LJ+1—mJ+1,(nJ+1—mJ+1)ESJ+1
>

g 1/qn
> B
GIGP(9,50J+1) 0€ONA;s an(@g)
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Proof. We assume © = B(0,s9). For each § € © N Ay, we write

- mmJ,sJ‘
Thus, gy is supported in the set Qom,s,n,- Suppose the second option of holds. Fix
nyy1 = ny. Define, for each m > m;,; > mj; and 0 € ©,

Oy = { |18, (550), 7], (550) | - D3,y (V)
Vi€ [1,n] [\] <1,
A 1

mJ+1| )

Vi € (mysr,nys] Ay < 1 }

For each s;41 € Adapy] |, ., We write

res,mj41,SJ4+1 __ 1 o n o S res,mj41 .
QevavsJ7nJ - { |:’YI(T1?]7SJ (SJQ)7 T 775[1‘)]»5] (SJg)i| ,Dn’{J’nJ <A) E Qe7mJ7SJ7nJ :
Je e [Lm - mJ-‘rl] s.t. Sf]—i—l < |/\mj+1+L|P’

VL 6 [].7 m — mj+1] |Amj+1+b|p < Sf]+1pL€_l }.

Finally, for each myi1,s;41 and each R = (Ry,..., R, ,—1) € P(Zy,55,,)™+*! and each
B e P(Z, \pr,p_a_l(JmJ“_E}I:lmf)s§+1), we collapse notation and write

A BR o 1 o n o res,m )8 .
Q9,In1+17SJ+1,nJ+1 - { |:P)/1€H)J,5J (SJ(9>’ Tt ’71(’11375J (SJG)} DIS“{LUJ ()\) € Qeme:]STITnJJ+1 ’
A € R (j < mys1), Am,y,, € B }

If we omit the B, %R, then we assume that the \; range over all of Z, (for j < m,41), and the

- .
Amy,, range over Z, \ pZ,. For each I € P(0©,s7,,), we write
U -
Imyyy,sypingper 0 m]+1757+1 njyyp”

oel

By Holder as before, one of the following holds: either there exists m; < mj.1 < m, sjy1 €

— J
AdapmJ+1 njyyp? I € 7)(67 5353+1); B € P(Zp\pzlhpig I(JmJHiZj:lmj)S&El—l-l)v and R € P(va ‘95J+1)m‘7+1_1
such that

de

0cAs

< mpf Imrn =X 1) (log, 6~1)s J+ﬂl”+1Jrl

Z Pes, ge

U mJ+1 SJ4+1:J41
9cINA; TR

Y

Lon (Qp)
(4.9)
1

J o —(ng—1-my)\ nis1i-my1 :
or else we set m 1 =m, sy = (5 [Ti-1s; s mg)) 7T and there is 1 € P(O,8955, )

such that

de

0eAs

Lan (Qp)

m 1
(logpé )SJ_(HJH+ )e

Pg 0
Z QI,mJ+1,5J+1,nJ+1g

0cInAs

(4.10)

Lan (Qg) Lan (QZ)
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We will focus on the case that (4.9) holds, though the same argument will apply in each scenario.
We abbreviate G' = > ;o Papa go. For simplicity, we take I = B(0,s%s%, ) and

Imjig,sy41m741

B= B(l,p’fl(]m‘”l’zijﬂmj)sfjﬂ). Then we have

(AmJ+1 SOJQ)LimH_l

1 o n o s —e1(Jm -7 m
)([vﬁll,w(sﬂ)w--,vﬁlﬁ,SJ(sJQ)] -Dna’J,nJ(A))L— T (41 =Yimgme)

< pfil(JmJ+1*ZZJ:1 me)si(iImJ+1)+€

p
;o (myp <e<ngp).

The curve

SS@ s <p—s*1(JmJ+1—ZkI:1 mg) <)\m:7+1so=19) L ,p—E*I(JmJH—EZZ:l my) ()\m‘”lsi}g)nprlim]“ )
1! (nJ+1 —mJ+1)!
is rescaled moment curve over B(0,1) of degree n;y1 — myi1; thus, the decoupling inequality
provides
E’ﬂ —m
Tngy1omytl a- J+1In FE )

S CnJ+1 —myy1,(nyp1—myi1 )5SJ+1
Lan (Qg)

290

0cInAs

1/qn

qn
X 2.

(Utit——)e

de

0cO/NA;

Lan (Qp)

[terating as in Lemma over 1 <k <
and Cauchy-Schwarz, we obtain

de

0cONA;

ML together with a terminal triangle inequality

nyp1—myyq _(mJ+1+3)€_(1_®nJ+1*’mJ+l )

§pa71‘7”(logp s hHo § s an

nyp1—myy1,(nypi—myp1)e”J+1
Lan (Q7)

gn 1/gn

Ay

©'eP(0,55, ;)

de

0cO’'NAs

Lan(Qp)

Undoing the change-of-variable, we achieve the desired result.
If instead the first option of holds, we set ny.1 = ny — 1 and, for each choice m; <
myyr <mand sy, € pfs_lN with

1
J L\ AT
5H8;(m—m]) < sy <1,
j=1

we set

Q@,MJ+1,SJ+1 = { [fyﬁ?j,sJ (s30)7 ttt 77&?3,&] (530)] ' DIST{J,HJ(A) E QQ,mJ+1 :

SIS [Lm - mJ—H] s.t. Sf]+1 < |/\mJ+1+L‘P7

Ve e [L,m —myp] | Amyvdp < SLJHpLE_I }
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By an identical argument to the previous case (pigeonholing the ranges of A\, comparing with
a cylinder, decoupling and iteration), we obtain that there are some mj,; and sy as above
such that

D
n, —m nNJj+1-"MJ+41
9o = gp nyp1—myy1,(nypi—myp1)e”J+1
0€ONA; Lan (@g)
an 1/qn
X E E 9o )
6’6P(@,S§+1) 0c©’'NAs an(Qg)
and once again by changing variables we are done. O

Observe that, for each iteration of Lemma [£.3] we obtain a new decoupling of F into
frequency-localized pieces indexed by parameters s;, m;,n; with the condition that, when J
increases by 1, either m; increases by at least 1 or n; decreases by at least 1, or already s; has
localized all the way to . Since n; = n and 0 < m; < m, we see that after J < 2n steps the
output of Lemma is an estimate of the form

D

5 nj—mj _5_(1_%)
P D Y | [ v

sy,my,ny J=1

an 1/qn

x 2 > F
(9077@3)ETSG,m3,n3 96@301\5 an(@g)

Note also that there are < (log,(d~')mn)*" choices of tuples s;,my,ny in the initial sum.

Pigeonholing, we obtain that for some choice sj, mj, nj, we have the upper bound

gnjfmlj )

J
2 nj—mjg mJ —E—(l— =
1l < P (log(6 H[ N

dn 1/qn

P>

O€P(Zp,s3)

> o

0€ONAs

Lan (Qp)
By the triangle inequality and Hoélder, we reach our terminal decoupling

D

1’] n —m
- nimy e (1= Doy
£l zan(gg) < P° 7 (log(d~ H { ng—my,(ng—my)eSJ ’ }

1/qn
X (0 1°1<Z\|f9mn@n> .

0cAs

It remains to analyze the losses we have incurred. Rearranging factors, we have

3 c (1 9’7L]777LJ) 1 3 1/qn
—e— _T oy1—-L o\ — 1+..+(nyj—m
b e L



Note that ny = n and ny = m + 1. Let ji,..., jo—m be the indices such that nj, 1 = n;, — 1.
At each such index, we have the identity

Jk
g Mg, Oﬁk_l_”W)__
Sjpi1 | | Sn = .
n=1

Multiplying these identities together, we obtain

J
H nJ mJ < 5n7m

Thus, we have demonstrated

-

1/qn
El{;ﬁi 14 nommtl m+1 n
CnJ—mJ,(nJ—mJ)€] ( J) Y an <Z Hf@”%%(@g)) )

0cAs

|l gy < 7 (log(6~)m) ™" [
J=1

and by the trivial bound s5 = 6 and Theorem , together with Remark we have the
upper bound

1/Qn
—4nlogn— n2 n _ n—m+1 __ "
11l zon gy < exp (1045 4nlogn—1, 4n?+4 (logp)> P <Z Hf&”%qn(@g)) .

0eAs

It remains only to remove the special assumptions on ¢ and . Fix ¢ = i for some ¢ € N,
and suppose that § € p~ is such that

p_”Q(K“) <0< p_“QK, K eN.

Then, by what we have proven for & = p~*" K if Ay C A; is any §-separated subset,
1/gn
S g < exp (0% I 4 (0g p) ) ()TN ol gy
OcAs an(@g) OcAs

Controlling f by a sum over ¢’/d-many subsets Ag, we conclude that

1/qn
n— m+1
1 llzon ) < exp (10% o244 log p) ) 61+ (Z 1 £oll%n g ) .

0eAs

In the case p™ < & < p~!, a trivial inequality suffices to get the same result.
Next, we remove the special assumption on e. If ¢ € N is such that
()~ (n)~?

(+1 ST

then for any § € p~", using (£ + 1)(n!)*» < 27!, we have shown that

1/Qn
_ n m+1
£ llm ) < exp (10% 4 g ) ) 671 (Z | foll @”) ,

0y

and we are done (noting that a trivial inequality suffices for the same result when & > (n!)=2").
0
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5 Appendix A: Decoupling lemmas over Q,

In this section, we record various elementary lemmas regarding Fourier decoupling over Q,.
Each of these is a cousin of a standard result over R, and some of ours will be even stronger.
Several of these lemmas have already been demonstrated in [7].

Throughout this section, €2 will denote a subset of QZ and O will denote a family of subsets
of 2, such that Q = (J,.o 0. We will also emphasize that all functions fs are locally constant and
of compact support, and indicate the corresponding class via S (Qg). We emphasize that “locally
constant” means that there is some scale A € p” such that ||z — y|| < X implies fp(x) = fo(y).
The class S (Qg) is the appropriate replacement for Schwartz functions in the p-adic setting;
they are precisely the “Schwartz-Bruhat functions” over Qg.

For exponents 2 < ¢ < r < 00, ¢ < 00, define Decyar-(0O) to be the infimal C' > 0 such that,
for any family {fy : 0 € ©} such that fg is supported in 6, for each 6,

1/q
S <o (St
Lr(Qg)

0cO 0co

Observe that we have not insisted that the sets § € © are pairwise disjoint; in applications,
this will often be true, but for many technical results it is convenient to allow O(1) overlap
between the caps.

The following is demonstrated in [7], Prop. 4.4, in the case ¢ = 2 and for specific choices of
0. The proof of this version is identical.

Lemma 5.1 (Interpolation of decoupling constants). If 1 = =+ 1;1’1, a€0,1],and 1 < ¢ <
min(rg, ), then for any partition 2 = (J,cq § with every 6 a separate affine image of Zg, we

have
Dngqu (@) é DngqLT‘o (@)a DngqLﬁ (@)1—(1'

As a consequence, we obtain the following. Observe that we do not need to assume that
the 6 are all congruent, in contrast to the Euclidean case.

Lemma 5.2 (Flat decoupling). For any Q C Qg and any partition © of 2 composed of affine
images 6 € © of Zg and any q,r > 2,

Q=

Decgars (©) < (#0) 77 1.

Proof. Fix any family {fy : 6 € ©}. Then, by Plancherel, these elements are pairwise orthogonal
in L*(Q%); thus

> fo

0cO

1/2
< (Z eruiz(@g)> , (5.1)
L2(Q4)

0cO

so Decypzr2(0) < 1. By the triangle inequality and Cauchy-Schwarz,

1/2
Zfa < (#0)"? (Z Hf0||%oo(@g)> : (5.2)

0cO 0cO

L>(Qf)
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By Lemma [5.1] the statements [5.1] and [5.2] give

Decpar-(0©) < Decppr(0©)F < (#@)% T
By Holder,
1/2 1/q
(ZNM@MJ aMWQ<ZNMb@> .
9ce 9ce
Thus

> fo

0€O

1/2 1/q
)2 (Z ”f9||L"(Qd) < (#0)' 7 <Z HfQHqLT(Qg)) ’

0cO© 0eO

Lr (Qd)

and so Decgor(0) < (#0)' 7~ q as claimed.
[

Lemma 5.3 (Affine invariance of decoupling constants). Suppose A is an invertible affine map
Q¢ — Q¢. Then Decparr(AO) = Decprr(0), where AO = {A: 6 € O}.

Proof. We first take A to be linear for simplicity. Suppose {fy : § € ©} are such that fo is
supported in 6. Define gy = (fg 0 A71)Y. Then gy is supported in Af, so

1/q
Zga < Decyarr(AO) (Z llgell?. @) > : (5.3)

0cO 0cO

LT (Qf)
Observe that the following change-of-variables holds:
. 1
— A . d — — -7 : d = A_T
o) = [ AN = i | AT () e = s AT @)
so that )
196l 2-@g) = 1(AIZ)) ™+ || foll L)

In particular, rearranges to

> fo

0cO

1/q
< Decparr(AO) (Z I f9\|%T(Qg)) :

0cO

Lr(Qg)
Since the {fy : 6 € ©} were arbitrary, we conclude that
Dngqu (@) S DeC[qu (A@)

Since this holds for all invertible linear A, we conclude that Decgarr(©) = Decparr(AO) for all
invertible linear A.
Finally, we note that decoupling constants are trivially invariant under translation, as

Fourier translation is equivalent to spatial modulation, which does not affect absolute values.
Thus the claim holds. O
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Lemma 5.4 (Local decoupling). Suppose every § € © is of the form Ay [ZZ] + vy for linear
isomorphisms Ay : Qz — QZ. Set
n = max [ A7,

where || - || is the usual £* — (> operator norm. Write Decy - (©) for the infimal C' > 0 such
that, for any family {fy : 6 € ©} such that f is supported in 6, and for any = € Qf, we have

1/q
Zfe <C (Z ||f6||7;r(B(x,n))> '
L7 (B(x,n))

0cO 0cO

Then we have
Decgar-(©) = DecS . (0).

Proof. Let {fy}oco be any family as stated. Let € QZ be arbitrary. Write
9W) = Lpan(y),  9(&) = x(—=z - ELpo,—1)(S)-

Then we have

> fo

0cO

nge

0cO

)

L7(Qg)

L7 (B(z,m))

and

A~

9/6(6) = [X(=2- ) Lpo1)] * fol€),
which is still supported in #. Thus

nge

0cO

1/q
< Decarr(©) (Z Hgf(?”qr((@g)) :

0cO

L7(Qf)

Thus we have Decj . (©) < Decyar(0).

We consider the reverse inequality. We redefine g = 1p(0,). Let X be the set of standard
representatives of Qg/B(O, n); i.e. we represent z + B(0,7n) by y when n~'y has zero integer
part. Then we have:

= - d
/@ g %fe 2}){ /B N )%Zefe@) ()
a/r\ "4
< Decls;, (6) Z;{(Z [ / 1) du(yﬂ ) |

By Minkowski, we have

2 (Z [/B(a:,n) fe(y)rdu(y)rﬁ)T/Q < |2 (;( /B(x,n) fg(y)Tdu(w)q/r

zeX \0cO 0cO

r

Taking rth roots, we obtain the inequality Decgr-(0) < DecjS.(0).
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Lemma 5.5 (Decoupling tensorizes). Let €; C QZ, Q, C Qg be any sets and let ©1, 0, be any
partitions of €21, €2y, respectively. Write © for the partition of €2; x €25 by sets of the form 6 x 7
(0 € ©1,7 € ©3). Suppose g < r. Then

Dngqu (@) = Dngqu (@1) Dngqu(@2>

Proof. First consider any family {f} : 6 € ©,} and {f?: 7 € ©,} with f} supported in # and
fZ supported in 7. Define g ) : Qi — C by

9.0 (@, y) = f3(x)f2(y)

Then g0 (&,w) = f4(€) f3(w) is supported in @ x 7. In particular,

1/q
> g0 < Decgarr(0) ( > ||g<e,r)||‘ir(@g+e)>

OxTEO OxT€O

Lr(Qgte)

Processing both sides of this, observe that

Z ge,r)

S f >

OxTEO LT»(@Z%) 0€O, Lr(Qd) TEO? L7(QS)
and
1/q 1/q 1/q
q _ 1)1q 2119
( Z Hg(0,7)|’U(@g+e)> - (Z Hf0 Lr((@g)) (Z ||f‘r|| T(Q;))
OxXTEO (IS TEOS

Picking {4 }oco, and {f?},ce,, not all zero, such that

1/q
Z fgl > (1 - 8) DeCZqu(@l) (Z ||f01||qr(Qg)> )

[ISCH Lr(Qd) (S(SH

1/q
Z f? > (1 —¢)Decparr(©2) (Z Hﬁ”qr(Qg)>

TEO2 L7(Qd) TEO,

we see that
(1 —¢)?Decarr(01) Decgarr(02) < Decarr(0).

Taking ¢ — 0 we obtain the inequality
DGCequ (@1) Dngqu (@2) S Dngqu (@)

It remains to establish the reverse inequality.
Let {g(. }©.ree be a family with g ) supported in § x 7. Then, for each fixed y € Q,
observe that = — gy ) (x,y) has Fourier support contained in the set . Thus

1y /,

P P

r/q

r q/r
SN g (ay) d$> dy

0cO1 TEO2

Z g(Q,T)(x7y>

TEO

dxdy < Dngqu(@ﬁr/ Z (

Qf; 0€O,
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By Minkowski, using ¢ < r,

[Is(]

0cO1 17 TEO

) ’ dx) q/r] r/qdy

/ [ 13 00
g g TEO9

and we may apply Fubini and decouple further to obtain for each 6

/e/ 2997 7,y) dxdy<DeCqur (©2)" / [Z ( |geT x,y)|" dy) /r}r/qu_

QF TEO, Qg TEO,

)q/r] r/q

Collecting all the preceding,

H Z Z ge,7)

€O, TEO,

< Dngqu (@1) Dngqu (@2)

Z / > | /|g<97 z,y) rdy)q/r> dx}q/r}l/q

€O, TEO

L (Q5")

Applying Minkowski again,

{ 2 [/ : / 90 (x,9)|" dy)q/r) /qu]qﬁ}l/q

60O, P TEO

<[ ([ [ ot vrava) "

€O, TEO,
from which we obtain the estimate

H Z 9,7)

OxTEO

< Dngqu(@ )Dngqu @2 ( Z HggT qu(Qd+6)>

L'r d+e
(@) OxTEO

Since this holds for all arrangements {g(,r)}s,- as in the definition of the decoupling constant
for ©, we conclude that

Dngqu (@) S Dngqu (@1) DGC@qu(@Q),

so we have equality, as claimed.

A special case of the previous lemma is the following:

Lemma 5.6 (Cylindrical decoupling). Let 2 C Qg be any set and © be a partition of 2. Write
O for the partition of {2 x Qs by 0 = {6 x Q; : 0 € ©}. Suppose ¢ <r. Then

Decgarr(0) = Decgar-(0).
The following is at least as ubiquitous in decoupling methods as affine invariance.
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Lemma 5.7 (Multiplicativity of decoupling constants). Let 2 < ¢, < 0o and ¢ < co. Let ©
be a finite set-family in Qg. Suppose that, for each 6 € ©, there is a further set-family ©y with
the property that U%@e 1) = 6. Then it holds that

Dngqu( |_| @9) < Decyparr(©) X max Decgarr-(Og).
)

Proof. Immediate from the structure of decoupling inequalities. O]
The following lemma is sometimes helpful.

Lemma 5.8 (£2U recoupling). Let 2 < r < oo, and assume thaE 0 € © are pairwise disjoint
affine images of Zy. Then, for any family {fp : & € ©} such that f, is supported in 6, we have

1/2
(ZMM@QQ < (#0)7 S £y

0cO 0cO

L™(Qg)
Proof. The special cases r = 2,r = oo are trivial. For the rest, we interpolate. O
We also recall the main result of [7]:
Theorem 5.9. Fix any § € p~. Consider the region 2 defined by
Q= {(a,y) €Q2: Jal, < L Jy — 22|, < &%),

We let T = P(Z,, ) to be the partition of Z, into closed balls of radius §. For each 7 € T,
define

0. ={(z,y) € Q:zer|y—a?, <6}
Clearly {6,},c7 form a decomposition © of 2. Then we have

Decpp(0) Sepr 65(1 46~ G70).

6 Appendix B: Decoupling for the p-adic moment curve

We sketch a proof of £2L""*1) decoupling for the moment curve ¢ +— (t) in Q, by modifying
an existing argument for the same result in R™. This fact is of interest in its own right; however,
the proof is nearly identical to the proof over R for most approaches, so we have suppressed it
to this appendix. One slight novelty is the tracking of constants throughout, for the purpose
of achieving an explicit effective bound for our main application.

The result to be shown is the following:

Theorem 6.1 (/2L""*Y) decoupling for the moment curve in Qp). Let n € N. For every € > 0
there is a constant C, . > 1 such that for all § € p~™, one has the estimate

Decy2pnmnt) ({U[}[gp(zp,a)) < Cped s,

where P(Z,,0) is a partition of Z, into balls of radius J, and U; is the standard anisotropic
neighborhood of the moment curve over I; see the start of the next section. Moreover, the
constant C,, . may be taken to be

Ch.e = exp <1O4(logp)5*4" log"n10”2> .
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Remark 6.2. Optimizing over e, one can show that the decoupling constant is bounded by
something of the form exp(C, (logd=1)'=), for suitable explicit C, > 1,¢, € (0,1). See
Theorem for details, in the application to solution counting.

Most of the tools used in the standard approaches to decoupling are identical between R"
and Qp, with some caveats: for one, over QQ, many heuristic uncertainty statements from the
Euclidean setting become literally true, which allows one to dispense of various technical weights
and convolutions; for another, some of the induction-on-dimension steps require some special
geometric observations (via projections), which require modification in the p-adic setting.

To be more precise about the latter: it is a classical fact that bilinear forms generally, and
the dot product in particular, possess isotropy on Q) for n sufficiently large. We recall two
results in particular:

Theorem 6.3 (Chapter 4, Lemma 2.7 of [1]). Let n > 5 and p arbitrary. Then every quadratic
form over Q) has isotropy.

Theorem 6.4. Let p be odd and n > 3. Then the dot product (x1,...,2,) - (y1,...,Yn) =
r1y1 + ... + xpy, has isotropy.

We briefly recall a proof of Theorem [6.4 We first instead study q(z,y, 2) = 2 + y* + 2*
over F,. The set of values {z? : x € F,} and {—y?> — 1 : y € F,} each have cardinality 2%,
while #F, = p, so the two sets must intersect at a value where 2 + y* + 1> = 0, which
establishes isotropy over F,. Consequently, the representatives of x,y in {0,...,p — 1} in Z
solve ¢(x,y,1) = 0 mod p. On the other hand, formally differentiating ¢ with respect to z and

Y,
0xq(z,y,1) =2z, 0Oyq(x,y,1) = 2y.

Since 22 +y?+1 = 0 mod p, we may assume without loss of generality that x # 0 mod p. Since
p is odd,
9:q(r,y,1) #0 mod p.

By Hensel’s lemma (see Chapter 3, Lemma 4.1 of [1]), there is a root of t — ¢(t,y,1) in Z,,
which establishes Theorem [6.4]

As a consequence, some of the proofs of induction on dimension-type estimates fail. As
it turns out, the differences are entirely superficial; when the arguments are converted into
linear-algebraic manipulations, the proofs hold as usual.

As many of the arguments in the proof of decoupling require little modification, we will
simply review the short proof of moment-curve decoupling in [5] and supply the needed mod-
ifications. In particular, our argument will not be completely self-contained, and will instead
point to the latter paper for the proofs of certain technical steps for which no modification is
needed.

We insist at the outset that we will only consider the case p > n, to avoid certain technical is-
sues. It happens that the same result holds for general p (indeed, for arbitrary non-Archimedean
local fields of characteristic 0), though the argument requires attending to certain additional
technicalities that we are able to avoid.

We will write throughout | - |, for the p-adic norm on Q,, and | - | for the usual Euclidean
norm on R and C. We will also equip Q) with the usual choice of norm, [|z|| = max;<i<, |74,
This notation will overlap with the Lebesgue norm || - ||Lq(@;z). In each case, it will be clear from
context which is intended.
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6.1 Bilinear-to-linear reduction

For § € p~™ and a ball U, write P(U, ) for the partition of U into (closed) balls of radius &;
more generally, if 6 € (0,1) is not necessarily a power of p, then we understand P (U, ) to be
a partition into balls of radius p, where p is the greatest number in p~ below 6. For a convex
C" curve ¢ with bounded derivatives, as defined in Appendix C, we define the systems of boxes
L{Icvt, for I C Z, a metric ball of radius p and t € I, as

Uﬁ::{xé(ﬁﬁﬂ{@ﬂgleIlBMUDsL:r:(ﬁf+§:kg“Kﬂ}
k=1 k=1

Throughout this section, when the ¢ superscript on U;; is suppressed, it will be assumed that

Ure = U], where y(t) = (..., %) is the moment curve. We will write as well
us = Jus,.
tel

This choice of caps is useful for technical reasons that appear in the proof below; in practice,
they can generally be compared with other natural caps at slightly coarser scales.

Our goal will be to bound the linear decoupling constant Decz pan ({Ur }1ep(z,,5))- We record
for later reference an abbreviation:

Definition 6.5. For § € p~", define D, (6) = Decpzran ({Us} 1ep(z,.6))-
We will need a bilinear analogue as well:

Definition 6.6 (Symmetric bilinear decoupling constant). Fix § € p™Y. We define the sym-
metric bilinear decoupling constant B,(J) to be the infimal (real) constant C' such that the
following holds. Suppose I,.J € P(Zy,p~") are distinct. For each I; € P(I,9), let f; € S(Q})

be such that f; is supported in Ur,; similarly, for each J; € P(J,6), let g; € S(Q}) be such that
g; is supported in U;,. Then

Qn/4 Qn/4
/n | f1]/% g | /* < O (Z Hfi”%%(@?)) (Z ||9i||%%<@2>> :
7

P %

By Holder we have the trivial B,(d) < D, (d). Before proceeding, we record the following
standard converse, adapted to the p-adic setting:

Proposition 6.7 (Bilinear-to-linear reduction). If 6 = p~, then
N , 1/2
Du(6) < p2(14 Y Buw o) (6.1)
j=1

Proof. We formulate a Whitney cube decomposition for Z7; due to the ultrametric on Z,, this
will be simpler than the Euclidean analogue. For each j > 1, define W; as

Wi = {Bp—j(x) X By-i(y) : 2,y € Ly, |z —y|, = p—j+1}_
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Observe that, if |v — 2’| < p77, then B,-;(z) = B,-i(z’), so W; contains exactly p’(p’ — 1)
elements. Additionally note that [ J ;>1 W defines a partition of Zz \ A, where A C Z, X Z,
denotes the diagonal.

To verify the estimate let {fr}iep@,.s) be a tuple with fI supported in U;. Then we
may write

1/2
I fifr
]E'PZP ) Lan(Qp) I I’G’PZZP 8) Lan/2(Qp)
_ 1/2
= |: Z HfIHan @) +Z Z ||fJofJ1||an/2(Qg)} :
IEP(ZP j=1 J= J0><J1€W

For each 1 < j < N and J = Jy x J; € W;, by decoupling and affine rescaling we have

1/2 1/2
(T2 Y ACEat ) D D T s Skl |
P KeP(Jo,5) KeP(J1,6)
so that (appealing to the AM-GM inequality)
1/2
- 102 /2 2
> = (o0 Ee ) X Il |
I€eP(Zp,5) Lon Q1) j=1 I€eP(Zyp,5)
which implies
N 4 1/2
Da(6) <p2(14+ 3 Balw 102)
j=1

as was to be shown.

We also will need a system of asymmetric bilinear decoupling constants.

Definition 6.8 (Asymmetric bilinear decoupling constant). Fix § = p=# € p~™. For s,t € [0, 1]
with s3,t0 € Z, define the asymmetric bilinear decoupling constant B,, . s+(J) to be the infimal
(real) constant C' such that the following holds. Suppose I, J are distinct balls of radius at
most 0%, &', respectively, contained in distinct members of P(Z,, p~'). For each I; € P(I,9), let
fi € S(Qp) be such that f; is supported in U, ; similarly, for each Ji € P(J,0), let g; € S(Qp)
be such that g; is supported in ;. Then

9k
2
/@n | f1]™ g | < O (Z Hfi“%fm((@g)> (Z ||gi|’%%(@g))
P 7 7

We control the symmetric bilinear decoupling constant by the asymmetric bilinear decou-
pling constants:

an —dk

Lemma 6.9. Let 0 <k <n, § =p? € p™ and s,t € [0, 1] such that s3,t3 € Z. Then
B,(0) < 5_5(]k/qn(s_t(Qn—qlc)/Q’an,k,S,t(5)‘
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Proof. Identical to the proof of Lemma 3.4 of [5]; we validate the particular constant. Let
I,I' € P(Zy,p~") be distinct. Fix { fx } kep,6upr,s) be a tuple as in the statement of Definition
[6.6] Suppose k # 0. By several applications of Holder,

1/2

1/2
an/2| £, |2n/2 Q| f,, |94k n—qk| £ |qk ]
/@!m ol s(/@gw I ) (/ng I ) S 62)

and considering the first factor:

n
P

k| £, |90~k T.6%)19—1 I St —ak—1 k| £, |99k
/@g!ffr el < [#P(L,6°) ] P (T, 6 3 )/@gm\ o,

JEP(L6°
J'eP(I %)
and recalling Definition [6.8 we have
/2 (gn—ax)/2
/ LFr1 ] f| 7% < Brgest @)™ | > I fxll, > lIfxli,
Q@ KeP(J,8) KeP(J',5)

Applying the trivial bounds #P(I,5°), #P(I’, ") and on the operator norms of the inclusions
(? — (9 (=9 we conclude that

/@ 1l i

n
P

=t < Rt gDt Dg (5

qr/2 (gn—aqr)/2

<| D IfxlE, > IxlE,

KeP(I,5) KeP(I',5)

Considering the other factor in we break f; into 4 '-many pieces and f; into ¢ *-many
pieces and apply Holder, and we obtain an identical estimate. Since s,t > 0 and ¢, > 2, the
result follows.

Finally, we observe that when & = 0, the same calculation (disregarding the terms involving
a k) may be done to obtain an estimate of the form

an/4 an/4

/@ |f[|Q’n/2|fIl|Qn/2 < pQ_Qn(SS'f‘t(S—thB’nqk’&t((s)‘}n Z | fx ; Z ||fK||3n

» KeP(1,0) KeP(I',6)

and we are done. ]

We also record that the asymmetric bilinear decoupling constants can be controlled by the
linear decoupling constants:

Lemma 6.10. f 1 <k <n—1,6 =p % € p", and 5, € [0,1] are such that ft, ft"—* € Z,
then

B otit(6) < Dy (817 ) 0D, (1) o) e

Proof. Immediate from Holder; see also the calculation in the “Proof of Theorem 1.2” in [5]. O
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For k < n and w € Z,, write VF(w) = Span@g{y(l)(w),...,v(k)(w)}. The following is
superficially identical to an estimate in [5], but we emphasize that we are considering the p-adic
norm on both sides.

Lemma 6.11 (p-adic Vandermonde determinant). Under the assumption p > n, we have
[det[yV(t), ...,y (@), 7 (s), . ")l = |s =t (6.3)

Proof. We have, for 1 <i<n —k,

() (g} — E (4) j—i
YV(s) = —Y () (T — s
Plugging in to the left-hand side of [6.3]

detly (1), ...,y (), 7V (s), ... ./ (s)]

. : t — g)Ja—0
= Z det[’y(l)(t), o 77(16) (t), 7(]1)(75), o ’r}/(.]nfk)(t)] ( ' 5) ‘
Itk m>ja>a oot Ua—a)
Observe that the determinant summand vanishes when (ji, ..., j,—x) is not a permutation of

(k+1,...,n). On the other hand, when (ji,...,jn,—k) is a permutation of (k+ 1,...,n), we

see that
n—k

H(t — §)Jam = (t — g)k(n=h)

a=1

so that
det[y(t), ..., 7™ (&), (s), ..., 7" (s)]

n—k
n— . ) 1
= (t_5>k( k) Z Sgn<]17..-,]n—k)Hm.
(G155 jn—ly);(k+1 ,,,,, n) a=1 V@ :
JaZa

Here ~ denotes permutation, and sgn denotes the sign of the implied permutation.
Finally, observe that

n—k

. . 1
det[,}/(l) (0)7 e 77(16)(0)7 7(1)(1% e 77(n7k)(1)] = Z Sgn(jh ce 7jnfk) H m
(jl 7777 jnfk)N(k'i_l """ TL) a=1 ja '
Jaza
whereas the left-hand side may be computed (c.f. [6], display (14)) as
n 1 k n—k
— ; ; _ 0)k(n—k)
j=1 j=1 j=1
so that, since p > n,
[det[yV (), ..., 7O (), 7 (5), . AT ()] = |s — e
and we may conclude [6.3] O
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Before reaching the main estimate of the theorem, we demonstrate an equivalence between
the model decoupling constant D,,(§) = D) (9) and that of general convex curves. We first need
a technical lemma:

Lemma 6.12 (Stability of linear decoupling constants). Let n > 2. Suppose ¢ : Z, — QJ is
C". Suppose 8,0 € p~N are such that § < §'. Then we have the estimate

D5, (0) < (8'/0) Dy (&").

Proof. For any choice of functions {fr}iepz,.s with fr supported in Z/lIC, then we have

2 1/2
D 1 B> CON D S N ,
I€P(Zp8) || 1an TEP(Zpd') || TEP(S) || 1an
and the desired estimate follows from the triangle inequality and Cauchy-Schwarz. [

Proposition 6.13 (Decoupling for convex curves). Let k > 2. Suppose ¢ : Z, — Q¥ is a
Ck+1 curve that is convex and has bounded derivatives, in the sense that it satisfies and
. For each § € p~™N, write D,ﬁ(é) for the ¢2 L% decoupling constant associated to the partition
{Uf}]eﬁ(zp,g). Suppose Di(p) < Crep~ ¢ for all ¢ = %,6 € N, and p € p~N. Then, for each
d € p™N and each € = % with ¢ € N, we have the estimate

D;(8) < & .07,
where the constant 8,? . may be taken as

2k[log(4e~! 14e—1)p2k log(8e 1) k1
Ehe = Crot™ Tl x max(L, e OG-

Proof. This is essentially identical to the proof of Lemma 3.6 of [5]; we highlight the needed
modifications to produce the p-adic analogue. Fix e = 4 for some ¢ € N, and write Z = k2<llos21,
Write o = max(1, ¢ C* ||| ck+1), where ¢, C are the constants from|[7.2/and|7.3] Write 7 € N

for the smallest integer such that o < p™?. Choose any § € p~*“N such that §7°/2 > p™?. Fix
k= 06p"%, so that k < a~! and k < §°/2. Furthermore, writing

log(4e™1)
= | —=—"_| < 2k[log(4e1)],
[log(l N [ Log( )]
we see that, for each 1 < m < m,, we have
R e p,
and we have the inequalities
(M)rn*fl _k
K\ Tk S OFH < K.
With these parameters chosen, suppose I € P(Z,, k), and {fII}I’E’P(I Bt are such that fp
has Fourier support in L{IC,. If ¢; € I, then for any other £ € I we may write

!
G(&) = Giler) + > = TR erf + (er = &M A (e, €)

<
Il
-
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Where A}, is continuous and vanishes along the diagonal. Write A; = AC . By Lemma .
A7 has < ¢'C*! operator norm. Then the curve

n(€) = A7 (C(E+ er) — Cler))

satisfies

6

mi(€) = = + &AL (er, €),

and
Cchk+1 < C_lck_l ||<||C’§+1

By Lemma|[7.1](c), it further holds that

Jj+1

jé'LZ] +§Zaj+lnz(07 s 7()’57 s ag)a
’ =1

where ®;,; is defined in Appendix C, and there are -many 0’s. By the affine invariance of
decoupling constants,
Di({U;}

a ) = DUy, } kg1 )

I’EP(I,‘-; ) I'ePIx * )

We claim that the boxes U}, _, and U},_ are comparable. Indeed, if 2 € U},__ , then there are

cr —c

N € H?:l B0, /ﬁj%) and &y, € I' — ¢; € B,(0) such that

k
T = 77(51’*61) + Zn(j)(fl’fq))\ﬁ
j=1

so that

= (&1 e; +Zv (Er—e)Xs + E,

where |E|, < c‘lC’k_1||C||C§+m2+E, iLe. U}

of Uj,_, . Since the family {U},_, }I’G’P( Jif aTe K " -separated, we obtain

_., is contained in a ¢~ C* || grr k2% -neighborhood

Decyzfa ({U ' }1/679( i)) < Decyzpa <{u/ }I’eP( i)>,

because c_le‘1||CHC§+1 < k71, so that (using the affine invariance to compare ¢ to 7, and the
affine rescaling of (),

Decyzrar ({L{I,} )) < Decppa, <{UI'}I'GP i)).

I'ep(1

On the other hand, affine rescaling implies

Decyzran <{UF}I’€’P il)) < Dk(lil/k)’
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so that
DeCﬁqu <{UF}I’€P i)> < Dk(/il/k)

We have established this whenever £ > 671 and I € P(Z,, k). If we iterate this m-many
times, where £("%)" > 5k+1 we obtain

Decgzpar <{UI’}1/6P kf ) f[ Gem,

Observe that #P(Z,, k) < k!, so by flat decoupling we have

1
2

Decg2 pa <{u§}lep(zp,n)> < o
If x(ED7 < 57 as well, then for each I' € P(Z,, n(%)m) we have
Decg pa ({u§}Jep(,,5)) < (kI < (e CE Y
Finally, from the hypothesis that Dy (p) < Cj.p < for all € > 0 and all p € p™, we obtain
D(5) < Oty ~F DS
Observe that m < m,. Recalling that x > a~!p~44°, we conclude

og(4e~1
D (6) < C2IZDIZg T2l max(l,c_le_IHCHngH) X §7F.

It remains to remove the special assumptions on the value of §. Take ¢ = % for some ¢ € N.
Suppose first that § € p~" is such that § > p*flzofl, where « is as above. Then we may
trivially bound

Di(8) < 67167,

and
e~ 112k [log(4e™ 1 )

St<p ax(1, c’lC'k*lHQHC/gﬂ)).

We are done in this case, thanks to Cj. > 1. Suppose instead that 6 € p™ satisfies the
inequalities
p_ek.Zk]'logQ[\ (K+1) < 5 < p_Eka]'log2[\K, K c N

Comparing D,g(é) to Dg(é’), where & = p~**"**IK 6 obtain the estimate

- o 571
Df(5) < il pes DR s mane(1, e P ) ¢ 072
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6.2 Lower dimensional estimates

We next establish the induction-on-dimension estimates in the p-adic setting. This is the
component of the argument that requires the most careful rewriting; the core steps for inducting
on dimension are essentially the same, but are usually phrased essentially in the language of
Euclidean geometry. We choose instead to phrase things via matrix algebra, and the difficulties
disappear.

A critical input of these estimates in the Euclidean setting is the Fourier slicing theorem,
which requires some slight rewording in our setting; the dot product - : Q) x Q) — Q, is
isotropic for every n > 3 and odd p (see the start of this section of the appendix). A near
relative is available, which we produce now.

Lemma 6.14 (p-adic Fourier slicing). Suppose that f : Q) has Fourier support inside of
QC Q. Let HC Q) be a k-dimensional linear subspace, B : @’; — Q) a linear isomorphism
onto H, and z € Q) arbitrary. Write f* for the function H — C, f*(z) = f(z + 2). Then
f? o B has Fourier support in the set BT(.

Proof. By extension of bases, we may write B = B’ o+ where ¢ : Q’; — Qp is the inclusion
into the first k& coordinates and B’ : Qp — Q} is a linear isomorphism. By the usual change-of-
variable,

foB =|det B'l;' - fo(B) .

It follows that we may assume that H is the subspace {xy1 = ... = x, = 0}, for which

={z;=... =, =0}. Then, for y € H and z € H*,

) = [+ ) O
— [ X&) [tz enfig enagag.
H HL
It follows that f is supported in the set {¢ e H:3¢" st. &+E& €Q}. The result follows.
m
We apply this to decouple functions using lower-dimensional estimates.

Lemma 6.15. Let £ < n and assume that Dy(J) < Cy 67° for all € = %,E €N,and 6 € p™N
Let § = 077 € p™ and { fr}1ep(z,.5) have Fourier support in {Ur}rep(z, 5)- If0 < s,t < 1 satisfy
0<s<(n—k+1)t/kand sp,tp,tf(n—k+1)/k € Z, then for any J; € P(Zp,és), Jo € P(Z,, ")
in distinct cosets of pZ,, and for any ¢ = % with ¢ € N>y, we have

2kqr (1 -1 —1y 2k log(8s ™ 1)]+2
/Ilelq’“!fJQ\q" * < Cp qkfog SRR s

( ) 2/qx
n—k+1)t
« 5—%[?—5]6 § : (/ ’fJ|CIk’fJ2|(Ian>

JeP(Jysn—k+nt/ky \7 U

w2 (6.4)

Proof. Pick any w € J, and write V = span(y™M (w), ..., 7™ % (w)). Let H = V* be the orthog-
onal space to V' in Qp; observe that dim H = k, since the dot product is still nondegenerate.

Set t/ = (n — k + 1)t/k.

39



Define
_ AT 0 .
B=A", {Ik} ;

it follows that B defines a linear isomorphism Q’; — H. Write pyg = Bifigy.
We use Lemma to estimate integrals of f along H + z. Let B be a linear isomorphism

Q’; — H. Observe that f7 o B has Fourier support in Z/{f:y. By Fubini,
[ itapigaievda= [ f @) ol (@) )y (2)
Qz 2€Qp J2€By (z,0-1'k)

Note By(z,07"%) = By(z,6~ ™+ Write A for the matrix with j’th column %) (w), 1 <
J < n. By uncertainty, f;, is constant on translates of the set

U}2 — A;T . diag ((5t, .. ,(Sm) [Zg]

If y € By (0,67%%), then

0

. —t —nt T _
diag ((5 yeey 0 )(Aw y) = 57(nfk+1)t,y(n7k+1)(w) -y

ezt

L " (w) iy
since 67"y (w) -y‘p < gkt < 1 for each r > n — k 4+ 1. Consequently, we have

By (0,67"%) C U3, and so by uncertainty we have that |fy,[% % is constant on Bp/(z,6-%%).
Thus

/ f ol (@) % (2)
z€Qp IEBH(Z,(S—tlk)
- / [l (2) ][ ()
2€Qy 2€B(2,074'F)

Then

/ o (@)% dp () = / 15 ()% dus
z€Bg (2,67 '¢) x€Bp (0,6-t'¢)

-/ 15, (B[ duoy ),
yeB 1By (0,67)]

where we have used that B.jugy = pp. By Lemma 6.14] for each J € P(J;, 6", the function

f7o B is supported in the set Z/lfTW. By Lemma (6.3, the curve B '~y : Z, — QF satisfies

BT (.T) 0 <1
max max sup B (0)], <
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and
inf [det(BT00)...... BTA® ()], > 1.
eJ;

By Lemma Prop. [6.13] and the inductive assumption,

2kqy, [log(4e™1)] (1+e—1)k2kMog(8e™)T+2
/ ’fJ1|q< )<Ck€/4 p( :
z€By (2,67 t'F

ax/2
PN [ ST 1 s ey
JEP(J1,6t")
Consequently,
/ U ™ < e T (ke RHNOSCETIER k(e 1) —gpe ()
p ar/2

—an
w (z) Z ”fJHqu(BH 0—t'k)) )

2
X / |fJ2
z€Qp JEP(J1,6)

which by Minkowski is bounded by

(2kaxNlog(de™ )] (14+e~1)k2kMNog(8e ™ H)1+2 §th(n—k-+1)—gre(t'—s)
k.e/4 p

2/qk
| X ([ s )
z€Qp

JEP(J1,6t)

qx/2

Finally,

£l S ol iy = | w2 i@
/Z:EQZ‘ 2 Lk BH 2,0~ tk)) ZEQ; 2 CCEBH(Z,(S*HIC)
=gk [ @)
2€Qp

by virtue of local constancy; hence we have shown

2kar 1 -1 1e—1)g2k log(se 1)1 +2
/|fJ1|qk|fJ2|qn qk < Ckaq/ljl[og ﬂp( )

w §— e =s) Z (/

JEP(J1,6(n—k+1)t/k) P

ar/2

2/qn
’fﬂ%’fh‘qn%) ,

as was to be verified. O]

Corollary 6.16. If k < n and Dy (0) < Cy .07 for alle = 7, € N, then for any 0, s, ¢ satisfying
the hypotheses of Lemma [6.15]
Bnk;st(é) < O%%qn [og(4e1)] (1+6*1) 1k2k(10g(8571)1+25_271€1[7(”*’?1“

k.e/4 -_4algnjgﬂ:§ilt¢(5)'
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We record another application of Holder; here we are able to go without an application of
the uncertainty principle.

Lemma 6.17. If 1 <k <n—1,and if 6 € (0,1) and s,t € (0,1) are as above, then
1 n—k
Bﬂ,k,s,t(é) < Bn,nfk,t,s((s)mBmk,l’S’t((S)m.

Proof. Let {fi}:,{g;}: be families as in Def. [6.8] Then, writing 6, = 1/(n — k + 1), we see that

| ]| g.‘Qan:/ | filak(Qn*Qn—k” fil(lfek)Qkfll gi\ekq"*k] gi|(1’9’“)(q”*qk*1)
fIS IS [ S a5
O 1—0)
S(/ IZfA%-%—king—k) (/ |Zfz-|%—l|zgi|%—%—l>
@ i @ -

from which the result is clear. [
The following consequence is identical to Lemma 4.2 of [5]:

Lemma 6.18. Suppose Dy(6) < Cp 07 ° for all 1 < k < n—1 and all 4,6 > 0. Suppose

1<k<n—landlete = % for some ¢ € N»,. Then, for every ¢t € [0, 1] suchkthat t < mﬁg?ﬂ—__klzm
n—k+1

and either k =1 or t < nfgiz, we have, for each § € p~™ for which 6,6+ t € p™N,

ge—inlosn ~2[log(4e=1)] ~2k[log(de~1)] s— Bk E=LEGLD—k) 1,
Bn,k,”‘T’““t,t(é)Sp Cnfk,s/ll Ck71,5/4 o m GENEEED

_ 1 n—k
ket mottty nokny(0) " RFI B,y ok, () 7R

x B

n,n—=k,
We also record the following:

Lemma 6.19. For any ¢ € p™ and any s, ¢ such that By, ,(d) is defined,
Bros:(8) = Du(6'71).

Proof. For any particular tuples { f;}:, {g:}:, the inequality in Def. is just the linear decou-
pling inequality for the tuple {g;};. The result follows by parabolic rescaling. O

6.3 Induction on scales

In this section we run an induction on scales argument in order to prove Theorem [6.1] We mirror
the arguments in Section 4 of [5]; however, in order to verify the appropriate quantitative
estimate, we produce a modified version. The former runs an analysis on the tropicalized
quantities 7, { Ay}, defined as the optimal exponents on various decoupling constants; the
resulting analysis is clean, but does not admit estimates on the corresponding constants. We
run a suitable finitary version of this argument, which gives somewhat loose (but explicit)
estimates on the constant.

For the reader’s convenience, we state in our current notation the statement we will prove.
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Theorem 6.20 (Moment curve decoupling). For each ¢ > 0 and n € N, there is a constant
Ch.e such that
Dn(5> S Cn,55_87

for all § € p~™N. Moreover, the constant C, . may be taken to be

Che = €xp <104(logp)5_4"1°g”n10”2> :

Proof of Theorem [6.20. By induction, we will establish
We will instead prove the stronger inequality

D, (8) < exp(10*(log p) (2 /48n) "1™ (48n)" n+5m) 5,

for each € = % for some ¢ € N. We have spelled out a constant in a useful inductive form; after
proving this for all n, we will go back and prove the original statement.

We argue by induction on n. The case n = 1 is trivial, so we assume that n > 2 and the
estimate holds for all Dy, £k =1,...,n — 1. First take ¢ = (4871)_”%, for some ¢ € N; we will
later remove this assumption. For each H € N, we write

H
TH:{%E(O,l)ﬂQ:aez,bZij for some (kl"“’kH)e[n]H}

J=1

for the rational numbers ¢ of “depth” < H. We writeN = |2

number of steps in our analysis. We will assume that § € p~™"N and § < p—3000n"e
write

j, which will control the
L We

nlogn

5 _ log D,,(9)
log(6-1)
and, when 0 <k <n—1landte TV,

log(B,, j, n=r+14,(9))
log(6~1)

By Lemma [6.19, we have A3(t) = (1 —t)n° . We adopt the abbreviation

Ap(t) =

8(log p)(e/48n)~4nlosn
(%) = log(6-1)

(1 + 2500n log((48n)?=")] (e/48n) =" (480)" ")

a quantity controlling the logarithm of the prefactors in Lemma foreach 1 <k <n-1,
divided by log(6~1), using the inductive hypothesis. It will be important that, for every n > 2
and our choice of €, the second factor is < 2.

By Lemma , selecting 1=~ for the statement’s ¢, and the inductive hypothesis, for each

1<k<n—1, andforeachteTNflwithtgm% andeltherk;—lort<n k+2,

1 n—k+1 n—~k te
A (t) < n_—mAifk < 3 t) Rl 114271@) t 50 + - (9).
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We write, for 0 < k <n —1,

so that

We note as well the trivial bounds

< —7
— 2tlogd!

arising from the triangle inequality, Cauchy-Schwartz, and the fact that decoupling constants
are at least 1. Note that al(t) = 1° . We write a’(t) for the (n — 1) x 1 row vector composed
of the af(t). Define M to be the (n — 1) x (n — 1) matrix

S oi=Jtl#n—g
it=n—j#j5+1

M; ; = . T
1=n—7=75+1

O = oS3

otherwise
Trivially, for each choice 0 < p < ¢ < % and each 0 <t < N —1,

. 5 . 5
min a.(t) < min a.(t).
teTHN(L p,ne) K = teTN(p,c) k()

Let ¢y = 1072n~2. Observe that ¢, satisfies the inequality

_1)2-—1 1 1
nGO(n 1)%e cglog s T o < —.
2n

It follows that, for some 0 < ¢ < N, the numbers p = n™* ¢y, c = n*cq satisfy

. FY : J
min a(t) > ———+ min aj(t), VI<k<n-—1,
teTH (L pne) k( ) 12n  teTn(p,c) k( ) - =
and
- 1
c< —.
2n

Define, for each 0 < k <n —1,

md = min al(t), m)= min  ad(t).
teTtN(pic) teT+1N(4£p,ne)

We see that the vectors (mf)}Z; satisfy



and -
=)} 1.

o TP e0)

Combining, and taking a matrix multiplication on the right with the column vector 17, we
obtain

m’ zm5.M—{

[y
—_

3

n—
~ 6 ~§
my, > my, +
1

—1 g
B S _nplqu(8), forsome t € TV N (2, en),
n 4 "

i

1

i

which may be written as

. 1
1< S+ 2p7(0), for some a € TV N (5, 1)

It follows from a short calculation that

D, (0) < exp(6400(log p)(c/48n) 4nleenpitsn)s—e,

It remains to remove the special size and arithmetic assumptions on § and . We have shown
the estimate for all 6 € p*(”!)NN with § < p—3000n"e"", Suppose instead that K € N is such that

PN D) 5 VK
Then, by stability of D,,, Lemma with &' = p~ (™" K we obtain the bound
D, (0) < p™" exp(6400(log p) (e /48n) ~4r1ogmpt+5m) 5=
But since ¢ < (48n)", it is quick to see via Stirling that
™Y exp(6400(log p) (/48n) 18 " 457) < exp(7000(log p) (e /48n) 4718 4+5m)

We have proven the bound for all § € p™ with § < min(p*("!)N,n*3000"45_1). By a trivial
estimate, the same holds for all § € p~V.

Thus we are done in the case e = (48n)~"" for some ¢ € N. Suppose instead ¢ = 7 for some
¢ € N. We have two cases. In the first case, there is ¢/ € N so that

(48n) ™" D) < & < (48n) ™"
Then we conclude, for each § € p~™,

D, (8) < exp(7000(log p)(c/48n) 47187 (48n)™ n*+5m) 5~

which fits in the estimate we wished to conclude. In the second case, we have ¢ > (48n)_”2,

and again a trivial estimate suffices.

[]

Remark 6.21. One may compare the above analysis with the problem of bounding a constant
quantity 7, given that it relates to a system as



We conclude by recording the following standard corollary.

Corollary 6.22. Suppose ¢ : Z, — Q) is a C"lcurve that is convex and has bounded
derivatives, as defined in section [7} Then

DeCQQan({Z/[IC}]E’p(Zp,g)) She 0 ° Vex>0,0 € p N
Proof. Follows from Thm. and Prop. [6.13 [
Remark 6.23. If we consider the alternate set-family {U}}rep(z,.5), defined by
Urg={r € Q) la; —(0), <FVI<j<n}, (0el),

Uy = Ju;,,

oel

then, for any § € p™™, J € P(Z,,6) and I € P(Z,,5"/") with J C I, it holds that

and

u, Cu.

Consequently, we have the decoupling estimate

Dngan(n-H) { U u’ }IGP(Z 1/ < Cn,ns(sea
JEP(I,6)

for each € and §.

7 Appendix C: Curves in Q)

We take as a reference [12].

The curves ¢ : Z, — Qp under consideration will be assumed to be C*, for various k €
N U {oo}; as such, we recall some of the basics of ultrametric calculus. Consider an arbitrary
function f: Z, - Q,. If k € Nand ay,...,a,41 € Z, are distinct, we write ®;, for the Newton

quotient
k+1

O flar, ..., ap1) Z i

We will also write ®of = f. A function f is said to be CF if, for every 0 < j < k, the function
®; f extends to a continuous function 5]- ; Z’;“ — Q,. f is said to be C* if f € C* for every
k. This definition is extended to curves ¢ : Z, — Q) in the obvious way.

The following summarizes the basic facts about the mappings ®;, that we will need.

i#j a] Z)

Proposition 7.1. Let f : Z, — Q, be a C" function. Then each of the following holds.

(a) If fis C", then for each 1 < k <n and a € Z,, we have

fP(a) =@ f(a,...,a),

where f*)(a) is the usual k™ derivative of f at a.
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(b) f admits Taylor expansions

) ,
: j!(y) (@ —y) + (= —y)"Ana(2,y) Va,y € Zy, (7.1)

fla) = F@)+ Y

where the remainder term A, (z,y) is of the form

An—&-l(xay) = anf(‘rvqu% s 7y) - f(n)<y>

(c) For any elements x1, ..., %541, Y1, - - -, Yk+1 € Ly, We have
k+1
Dy f (@1, s 1) = P f (Y1, Y1) = Z(% = Yi)Prr1(T1s oo T Y, Yk)-
j=1

Proof. Taken from [12]; (a) is Theorem 29.5, (b) is Theorem 29.4, and (c) is Lemma 29.2(iii).
Note that our definition of ® is equivalent to that of [12], by the latter’s Exercise 29.A. O

We define the C* norm of a C* function f by

Ifler = max sup [9f(@)]

/.
We similarly define the C* seminorm of a C* function f by

Ifllex = max sup |®pf(z)lp.

SISP pezgtt
If¢:Z,—Qyisa C* curve, then we write

IGllor = masx icller,  Ilos = mass NGlles

In particular, |Ci(j) ()], < |I¢||cr for each 1 < i < nand 0 < j < k. We note in passing that,
for any linear transformation B of Q, we have the bound

I1BCller < IBII-lI¢llex-

We also note that our definition of || - ||gr is strictly stronger than the simpler quantity

I fIler = max sup |f* ()],

0<k<n ez,
Indeed, if f = 1 ,-~) is the indicator of the ball of radius p~ N, then f € C* and

sup |f(2)], =1, maxsup [f¥(z)], = 0.

T€Lp JEN gez,

On the other hand,




so || fllcr = pN~'. Tt follows that || f||ce > p™ || fll&s, for each k > 1; thus, || - ||cr defines a
strictly finer topology on C* than || - [|&.

We will want our curves ¢ to be convex and of bounded derivatives; the former condition
amounts to

inf | det[¢M(®),...,¢M®)]] >« (7.2)

tezZ,
and the latter condition is that

max sup \gfj’(t)\ <C. (7.3)

1<ij<n ez, P

for various choices ¢ 2 1,C < 1; we name these bounds so as to track quantitative dependence
in the sequel.
As an immediate consequence, we have:

Lemma 7.2. Suppose ¢ : Z, — Qp is C". Suppose further that ¢ satisfies and . Then,
for each t € Z,, one has

¢ @), ....¢™ @] < etem

and
¢ @),....c" @ < cr

Here || - || is operator norm with respect to the max-norm on Q.

Proof. We only verify the first estimate; the second will follow by identical arrangements. The
matrix norm is given by

max max
1<j<n uy,...,un€Zyp

> ([P ]

k=1

p

(SRIG NIt R W

= Imax max max

1<j<n uy,...,un€Zp 1<k<n P
_ (1) (n) ()] -1
Juax (€0, ¢ |

By the cofactor form of matrix inverses, for each 1 < 5,k < n,

(€O, O] )| =14etlcV@). . OO Oy

where Cy ; is the (k, j)-cofactor. To estimate the latter, we simply use the (ultrametric) triangle
inequality via

. (4) n—1
|Cr.ilp < 12}?);” G (t)|p

]

Remark 7.3. When ¢ = ~ is the moment curve t — (, ..., %) in Qy, the constants in and
[[3lare c=C =1.
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Next, we consider the local comparison between curves ( that are convex and with bounded
derivatives to the model curve y(t) = (¢,...,%). Recall the notation

A5 =[CD(0),...,¢"M(0)] - diag(A, ..., A")

If ¢ is suppressed, then we understand A; to refer to the matrix A/. For fixed 0§ € Z, and
A\ € pZ,, define (g 5 to be the rescaled curve

Coalt) = [A5,7H(C(8 + A1) — ¢(6))

The rescaling is motivated by the fact that the degree n Taylor approximation of the function
t— ((0+ At) near t =0 is

C(0+ ) = C(0) + A5, - (1), (|t < 1)

Of course, if ( is a polynomial of degree < n, the Taylor approximation is an identity. In
particular, for such a ¢, (y» = 7 is our moment curve; a trivial observation is the special case
v = 7, for each 6, \.

Note in particular the identity

(I)k(g)\jg)xal, RN ,ak+1) = )\kq)kCZ(C -+ )\&1, ...,C + )\a/k-+1)7 k Z 1,
which implies the scaling relations
[elleroz,) < ISlles, k> 1,X € pZy,

1Cx0]

ciozyy < A Cer, k> 1, € pZy,.
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