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Abstract

We prove a restricted projection theorem for Borel subsets of Qn
p in the regime p > n.

This generalizes results of Gan-Guo-Wang in the real setting.

1 Introduction

Let 1 ≤ m < n, and V = (v1, . . . , vk) be a tuple of vectors in Qn
p . Write PV : Qn

p → Qm
p for

the function

PV (x) =

 v⊥1
...
v⊥m


x1...
xn


We will be interested in the problem of determining the relation between the sizes of a Borel
set A ⊆ Qn

p and its projection PV [A], for various choices of V and A. In real Euclidean space
Rn, much work has been done: Marstrand’s projection theorem [11] states that

dim(PV [A]) = min(dim(A),m) for a.e. V such that |v1 ∧ · · · ∧ vk| ∼ 1.

Recent developments in Fourier analysis have permitted analogous results to be proved when
the tuple of vectors V is set to range over a much more sparse set, e.g. a curve. Again in the
real case, [4] demonstrated that, for γ any smooth nondegenerate curve in Rn and A ⊆ Rn

a Borel set of dimension dim(A), it holds that for almost every t and each 1 ≤ m < n, the
orthogonal projection of A onto the span of γ(1)(t), . . . , γ(m)(t) has dimension min(dim(A),m).
Theorems of this form are termed restricted projection theorems.

We now state our main result.

Theorem 1.1. Let A be a Borel subset of Qn
p . For each t ∈ Zp, let V = (γ(1)(t), . . . , γ(m)(t)),

where γ(t) = ( t
1!
, . . . , t

n

n!
) is the moment curve. Then, for almost every t ∈ Zp, it holds that

dimH(PV [A]) = min (m, dimH(A)) .

Here and throughout dimH denotes the Hausdorff dimension of a metric space.
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The restricted projection theorem has applications in homogeneous dynamics, see [8], [9]
and [10]. Using the (m,n) = (1, 3) case, Lindenstrauss–Mohammadi and Lindenstrauss–
Mohammadi–Wang proved effective density and equidistribution for certain 1-parameterized
unipotent flow in quotient of SL2(C) and SL2(R) × SL2(R) with finite volume. Using the
(m,n) = (2, 5) case, Lindenstrauss–Mohammadi–Wang–Yang proved effective equidistribution
for certain unipotent flow in SL3(R)/SL3(Z).

The equidistribution results on certain unipotent flow in compact quotient of SL2(Qp) ×
SL2(Qp) has some important applications in number theory. It plays a crucial role in the
proofs of uniform distribution of Heegner points by Vatsal, and Mazur conjecture on Heegner
points by C. Cornut; and their generalizations in their joint work on CM-points and quaternion
algebras[13, 3, 2]. Motivated by these applications, we seek to prove an effective density and
equidistribution result on certain unipotent flow in compact quotient of SL2(Qp) × SL2(Qp),
which lead us to prove a restricted projection in the p-adic setting.

The purpose of this paper is to generalize the results of [4] to the p-adic setting. One of the
motivations is an application to homogeneous dynamics; see Theorem 1.3.

We set out the following notation and convention:

• γ(t) = (t, t
2

2!
, ..., t

n

n!
) is a curve Zp → Qn

p ;

• for each t ∈ Zp and 1 ≤ m < n, we set Π
(m)
t be the following projection from Qn

p to Qm
p :

Π
(m)
t (x1, ..., xn) = (x1 + tx2 + ...+

tn−1

(n− 1)!
xn, ..., xm + txm+1 + ...+

tn−m

(n−m)!
xn),

i.e.

Π
(m)
t (x1, . . . , xn) =

 γ(1)(t)⊤

...
γ(m)(t)⊤

 .
x1...
xn

 ;

• µ is the Haar measure on Qn
p with normalized measure µ(Znp ) = 1;

• | · |b covering number or packing number (which agree in Qp);

• # cardinality of a finite set;

• ν will always be the uniform probability measure on a finite set F , unless otherwise
specified;

• 1A will always be the characteristic function on the set A.

The following projection theorem is the one needed in the proof of effective equidistribution
of unipotent flow on quotient of SL2(Qp)× SL2(Qp). The statement of the following theorem is
a generalized verision of the same as Theorem 5.1 in [8] in p-adic setting. By an application of
Frostman’s lemma, it implies Theorem 1.1.

Theorem 1.2. For t ∈ Zp, Let α ∈ (0,m), b0 < b1 ∈ (0, 1) be three parameters. Suppose
F ⊆ Znp is a finite subset satisfying the following α-dimensional condition at scales ≥ b0:

#(F ∩B(x, b))

#F
≤ C(b/b1)

α ∀x ∈ Znp ∀b ≥ b0. (1.1)
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Let ν be the uniform probability measure on F and νt =
(
Π

(m)
t

)
∗ν be the pushforward measure.

Then, for all ε ∈ (0, α
100

), there exists Cϵ > 0 such that ∀b ≥ b0, there exists Jb s.t.
µ(Zp\Jb) ≤ Cεb

ε s.t. ∀t ∈ Jb, there exists Fb,t ⊆ F with ν(F\Fb,t) ≤ Cεb
ε s.t., ∀w ∈ Fb,t,

νt
(
B(Π

(m)
t (w), b)

)
≤ Cε

( b
b1

)α−O(
√
ε)

.

The term O(
√
ε) can be taken to be 4 · 1010n

√
ε. The constant Cn,p,ε(c) can be chosen as

Cε = 4max(1, C) exp
(
104(log p)ε−5n lognn20n2

)
.

We now present the following application of Theorem 1.2 to the setting of homogeneous
dynamics on quotient of SL2(Qp)×SL2(Qp). We first set out some notation. Let r = sl2(Qp) be
the trace-zero 2× 2 matrices over Qp, and equip r with the maximum-entry norm, with respect
to | · |p. For each r ∈ Zp, we write ξr : r → Qp for the map

ξr(w) = w12 − 2rw11 − w21r
2,

where wij denotes the corresponding matrix entry of w.

Theorem 1.3. Let 0 < α < 1, 0 < b0 = p−l0 < b1 = p−l1 < 1 be three parameters. Let
F ⊆ Br(0, b1) (the closed ball in r centered at 0 of radius b1) be such that

#(F ∩Br(w, b))

#F
≤ D′(b/b1)

α,

for all w ∈ r and all b ≥ b0, and some D′ ≥ 1. Let 0 < ε < 0.01 and let J be a metric ball in
Zp.

Then there exists J ′ ⊆ J such that µ(J ′) ≥ (1 − 1
p
)µ(J) satisfying the following. For each

r ∈ J ′, there exists a subset Fr ⊆ F with

#Fr ≥
(
1− 1

p

)
#F

such that for all w ∈ Fr and b ≥ b0 we have

#{w′ ∈ F : |ξr(w′)− ξr(w)|p ≤ b}
#F

≤ Cε(b/b1)
α−ε, (1.2)

where Cε depends on ε,#J , and D
′.

Remark 1.4. The maps ξr may alternately be written as ξr(w) =
(
Adur(w)

)
12
, where ur =(

1 r
0 1

)
and Ad is the adjoint action of SL2(Qp) on its Lie algebra sl2(Qp).

Proof of Theorem 1.3 from Theorem 1.2. Let ε1 = (10−30ε)2. Identifying r = sl2(Qp) with Q3
p

(with the latter equipped with the usual ℓ∞ norm), we may appeal to the (m,n) = (1, 3) case
of Theorem 1.2 with this ε1. Choose l2 such that

∞∑
l=l2

Cε1p
−ε1l <

1

p
µ(J).

3



If l2 > l0, let
C ′
ε1
= (pl2)α−ε,

which depends only on ε and µ(J). We then have

1 ≤ C ′
ε1
(b0)(p

−l2)α−O(
√
ε)

≤ C ′
ε1
(b0)

α−ε.

Thus we may take J ′ = J and Fr = F , and 1.2 holds trivially.
Now we assume l2 ≤ l0. Let J

′ =
⋂l0
l=l2

Jp−l∩J , where Jp−l is the set obtained from Theorem
1.2. We compute:

µ(J ′) ≥ µ(J)−
∞∑
l=l2

µ(Zp \ Jp−l)

≥ µ(J)−
∞∑
l=l2

Cε1p
−ε1l

≥
(
1− 1

p

)
µ(J).

For all r ∈ J ′, let Fr =
⋂l0
l=l2

Fp−l,r, where the sets Fp−l,r are as obtained from Theorem
1.2. From the choice of l2 and the union bound, we conclude that #(F \ Fr) ≤ 1

p
#F , so

#Fr ≥ (1− 1
p
)#F .

Now, for all w ∈ Fr and l2 ≤ l ≤ l0, by Theorem 1.2, we have

#{w′ ∈ F : |ξr(w′)− ξr(w)|p ≤ p−l} ≤ Cε1(b/b1)
(α−ε)(l1−l)#F.

so that 1.2 holds.
Finally, we consider scales p−l > p−l2 , i.e. l < l2. In this scale, we let C ′

ε ≥ pl2(α−O(
√
ε)). We

have
1 ≤ C ′

ε1
p−l2(α−ε) ≤ C ′

ε1
(b/b1)

(α−ε)(l1−l),

so that 1.2 holds trivially.

Proof of Theorem 1.1 from Theorem 1.2. Identical to the “Proof of Theorem 1.2 assuming The-
orem 2.1,” from [4]. Note that the Frostman lemma holds for Borel sets in compact metric
spaces, and that dimH(Zmp ) = m. Note also that the relevant covering lemma is valid in
separable metric spaces, and that µ is doubling.

We mention one final result of this paper. In the interest of obtaining explicit bounds
for the projection theorems, motivated by the problem of producing effective estimates in the
homogeneous dynamics application, we have in particular needed a fully explicit bound on p-
adic decoupling for the moment curve; this is proved in Theorem 6.1 below. To our knowledge,
this gives the first fully explicit bound for the main conjecture of Vinogoradov’s mean value
theorem in the range n ≥ 3, which we state here.
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Theorem 1.5 (Explicit Vinogradov bound). For n ≥ 2, s ≥ 2, and N ≥ 2, we write

Js,n(N) = #

{
a,b ∈ [N ]n :

s∑
j=1

(adj − bdj ) = 0 ∀1 ≤ d ≤ n

}
,

which is the number of solutions to the Vinogradov system of Diophantine equations. For each
such s, n, and each N ≥ exp(exp(3n(4n log n+ 1))), we have

Js,n(N) ≤ exp
(
105se3n(logN)1−

1
4n logn+1

)
(N s +N2s−n(n+1)

2 ).

Proof of Theorem 1.5, assuming Theorem 6.1. We will first show the inequality

Js,n(N) ≤ exp
(
6 · 104sε−4n lognn12n2

)
N2sε(N s +N2s−n(n+1)

2 ) (1.3)

for each ε ∈ (0, 1). Subsequently, we will optimize this estimate over ε.
Let p ∈ [n, 2n] be a prime. Assume temporarily that N = pℓ for some ℓ ∈ N. For each

1 ≤ a ≤ N integral, we write Ia = a+pℓZp; these form a partition of Zp. Let {UIa,a}a∈[N ] be the
associated family of anisotropic boxes adapted to the n-dimensional moment curve, as defined
in Section 6.1 below. By Theorem 6.1,

Decℓ2Ln(n+1)({UIa,a}a∈[N ]) ≤ exp
(
104(log p)ε−4n lognn10n2

)
pεℓ,

for each ε ∈ 1
N . By Lemma 5.1, we have

Decℓ2L2s({UIa,a}a∈[N ]) ≤ exp
(
104(log p)ε−4n lognn10n2

)
pεℓ(1 + p

ℓ
2
(1−n(n+1)

2s
))

For each 1 ≤ a ≤ N integral, write ga : Qk
p → C for the function

ga(x) = χ(x · γ(a))1p−ℓnZn
p
(x).

Then the Fourier support of ga is γ(a) + pℓnZnp ⊆ UIa,a. Thus, by decoupling,∥∥∥∥∥
N∑
a=1

ga

∥∥∥∥∥
2s

L2s(Qn
p )

≤ 22s exp
(
2 · 104s(log p)ε−4n lognn10n2

)
p2sℓε(1 + pℓ(s−

n(n+1)
2

))p(n+s)ℓ.

By a standard manipulation, the left-hand side is pℓnJs,n(N). Thus, in this case, we obtain

Js,n(N) ≤ 22s exp
(
2 · 104s(log p)ε−4n lognn10n2

)
N2sε(N s +N2s−n(n+1)

2 )

If instead pℓ < N < pℓ
′
, then the preceding implies

Js,n(N) ≤ 22sp2s(1+ε) exp
(
2 · 104s(log p)ε−4n lognn10n2

)
N2sε(N s +N2s−n(n+1)

2 ).

Finally, appealing to n ≤ p ≤ 2n, and various elementary estimates, we conclude that

Js,n(N) ≤ exp
(
6 · 104sε−4n lognn11n2

)
N2sε(N s +N2s−n(n+1)

2 ).
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Finally, interpolating between the cases 1
ℓ+1

< ε < 1
ℓ
, we obtain 1.3.

Finally, we select ε = e3n(logN)−
1

4n logn+1 in 1.3, using the lower bound on N . It transpires
that

log

(
Js,n(N)

N s +N2s−n(n+1)
2

)
≤ 6 · 104s(logN)

4n logn
4n logn+1 + 2e3ns(logN)

4n logn
4n logn+1 .

By trivial estimates, we conclude.

Finally, we outline the remaining sections. In Section 2, we reduce the proof of Theorem 1.2
to a problem of covering sets with tubes, which we refer to as a Kakeya estimate. In Section 3,
we demonstrate that the Kakeya estimate may be proved with a suitable decoupling theorem.
In Section 4, we prove the decoupling theorem, assuming that the usual Bourgain-Demeter-
Guth decoupling theorem for the moment curve may be extended to the p-adic setting. Finally,
in the appendices, we discuss the proof of moment curve decoupling in the p-adic setting, by
modifying an argument of [5].

1.1 Acknowledgements
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2 Discretization

In this section, we reduce the projection theorem 1.2 to a Kakeya estimate, whose proof will
be established by Fourier analysis in following sections.

Let δ = p−l and let D(m) = {x + plZmp : x ∈ {0, . . . , pl − 1}m} be the set of δ-balls in Zmp .
Let T(m)

t = Znp ∩ {(Π(m)
t )−1(D) : D ∈ D(m)}. Elements in Tt are tilted δm × 1n−m boxes. We

will use T
(m)
t to denote elements in Tt. We will drop the superscript if it is clear that we are

dealing with the (m,n) case.

Theorem 2.1 (Kakeya estimate). Let δ, δ0 ∈ p−N with δ > δ0. Let Λδ be a maximal δ-separted
set of Zp. Given ε > 0 and α ∈ (0,m), let ν be a finite non-zero Borel measure supported in Znp
with cδ0α (ν) = supx∈Qn

p ,r>δ0
ν(B(x,r))

rα
< ∞. Take Wθ ⊂ Tθ arbitrary and denote W := ∪θ∈Λδ

Wθ.
Suppose that ∑

T∈W

1T (x) ≥ cδε−1, ∀x ∈ supp(ν).

Then
#W ⩾ Cn,p,ε(c) · ν(Qn

p )c
δ0
α (ν)

−1δ−1−αδO(
√
ϵ)

Here it is important that the constant Cn,p,ε(c) does not depend on δ. The term O(
√
ε) can be

taken to be 1010n
√
ε. The constant Cn,p,ε(c) can be chosen as

Cn,p,ε(c) = min(1, cε
−1

) exp
(
−104(log p)ε−5n lognn20n2

)
.
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Proof of Theorem 1.2 assuming Theorem 2.1.
The proof is a finitary version of the one in section 2 of [4]. Let ε0 = 1010n

√
2ε. Fix

s = α− 2ε0 < α. Note that s < α− 2ε− ε0. For each b ≥ b0 and each b-separated set Λb ⊆ Zp,
we define the set

F bad
b,t =

{
w ∈ F : ν({w′ ∈ F : |Π(m)

t (w)− Π
(m)
t (w′)| ≤ b}) > cb0α (ν)b

s
}

for all t ∈ Λb.
We will first demonstrate that there exists C(α, s) such that∑

t∈Λb

ν(F bad
b,t ) ≤ C(α, s)b2ε−1.

Suppose not, we have that ∑
t∈Λb

ν(F bad
b,t ) > Cb2ε−1.

Note that for all t,
∣∣Π(m)

t (F bad
b,t )

∣∣
b
≤ 1

c
b0
α (ν)

b−s. Hence we could cover it by a collection Dt of

balls D where #Dt ≤ 1

c
b0
α (ν)

b−s. Let Wt = {p−1
t (D)

⋂
Znp : D ∈ Dt}, W =

⋃
tWt. Consider the

following set
A = {(t, w) ∈ Λb × F : w ∈ F bad

b,t }.
Let λ denote the counting measure on Λb. We have

(λ⊗ ν)(A) =
∑
t∈Λb

ν(F bad
b,t ) > Cb2ε−1.

Therefore ˆ
#{t ∈ Λb : w ∈ F bad

b,t }dν(w) > Cb2ε−1,

so that, dividing the integral into the domains where the integrand is larger/smaller than C
2
b2ε−1,

b−1ν
({
w ∈ F :

∑
T∈W

1T (x) >
C

2
b2εb−1

})
+
C

2
b2ε−1 > Cb2ε−1,

i.e.

ν
({
w ∈ F :

∑
T∈W

1T (x) >
C

2
b2ε−1

})
>
C

2
b2ε.

Let F bad
b =

{
w ∈ F :

∑
T∈W 1T (x) >

C
2
b2ε−1

}
, so that ν(F bad

b ) > C
2
b2ε. Note that for all

x ∈ F bad
b ,

∑
T∈W 1T (x) >

C
2
b2ε−1.

We apply Theorem 2.1 to ν|Fbad
b

, scale b and 2ε. There exists C2ε,α

#W ≥ C2ε,α ·
C

2
b2εcb0α (ν)

−1b−1−αbε0 .

By pigeonholing, this implies that there exists t ∈ Λb such that

#Wt ≥ C2ε,α ·
C

2
b2εcb0α (ν)

−1b−αbϵ0 .
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This is a contradiction to the assumption that #Wt <
1

c
b0
α (ν)

b−s if C > 2
C2ε,α

. Therefore,∑
t∈Λb

ν(F bad
b,t ) ≤

4

C2ε,α

b2ε · b−1.

Now let Eb be the ‘exceptional’ set of parameters t ∈ Zp where F bad
b,t is large, namely,

Eb = {t ∈ Zp : ν(F bad
b,t ) >

4

C2ε,α

bε}.

Pick a maximal b-separated set of Eb and extend it to be a maximal b-separated set Λb in Zp,
we have

b−1 · µ(Eb) ·
4

C2ε,α

b
ε
2 ≤ #(Λb ∩ Eb) ·

4

C2ε,α

b
ε
2

≤
∑

t∈Λb
⋂
Eb

ν(F bad
b,t )

≤ 4

C2ε,α

bε · b−1.

Therefore, µ(Eb) < bε. Let Cε = max{cb0α (ν), 4
C2ε,α

} and Jb = Zp\Eb, we complete the

proof.

3 Kakeya estimate via decoupling cones over moment

curves

In this section, we formulate the decoupling estimate Proposition 3.1, and indicate how it may
be used to prove Theorem 2.1. We begin by setting out some notation that will be helpful in
studying the wave packet expansions of functions with restricted Fourier support.

For each θ ∈ Λδ and α, β ∈ p−Z, write

Aθ,α,β = [α−1γ(1)(θ), . . . , α−1γ(m)(θ), β−1γ(m+1)(θ), . . . , β−1γ(n)(θ)]. (3.1)

When the third subscript is supressed, we will understand it to be 1. Write also

τθ = Aθ,δ−1 [Znp ].

Notice in particular that τθ has dimensions δ−1 × · · · × δ−1 × 1× · · · × 1, with m copies of δ−1

and (n − m) copies of 1. If fθ has Fourier support within τθ, then fθ may be expanded into
wave packets of the form aTχ(x · γ(θ))1T (x) for aT ∈ C and T a translate of A−⊤

θ,δ−1Znp . Note in
particular that each T has p-adic volume δ−(n−m).

It will be convenient to observe that

A−1
θ,1 = A−θ,1 (3.2)

Indeed, when i ≥ j,

(Aθ,1A−θ,1)i,j =
n∑
k=1

(Aθ,1)i,k(A−θ,1)k,j = θi−j
i∑

k=j

(−1)k−j

(i− k)!(k − j)!

8



The sum may be rewritten as

k∑
k=j

(−1)k−j

(i− k)!(k − j)!
=

1

(2r)!

i−j∑
h=0

(−1)h
(
i− j

h

)
=

1

(i− j)!
(1− 1)i−j,

and the claim follows.

Proposition 3.1 (Decoupling estimate). For each ε ∈ (0, 1) and n ∈ N, we may find Dn,p,ε ≥ 1
such that the following holds. Suppose δ ∈ p−N and Λδ is a δ-separated subset of Zp. For each
θ ∈ Λδ, let fθ have Fourier support in the set δ−1τθ ∩ (Znp \ pZnp ). Write qn = n(n+ 1). Then∥∥∥∥∥∑

θ∈Λδ

fθ

∥∥∥∥∥
Lqn (Qn

p )

≤ Dn,p,εδ
−1+n−m+1

qn
−ε

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

.

for each ε > 0. We may choose Dn,p,ε to be the quantity

Dn,p,ε = exp
(
104(log p)ε−5n lognn10n2

)
.

Before proving Prop. 3.1, we indicate how it implies Theorem 2.1.

Proof of Theorem 2.1 using Proposition 3.1.
We claim the particular inequality

#W ≥ C̃n,p,εk(c0)ν(Q
n
p )c

δ0
α (ν)

−1δ−α−1+1010n
√
εk ,

for the particular sequence {εk}∞k=1, defined by

ε1 =
1

2
, εk+1 =

1

4

(√
ε2k + 4εk − εk

)
, k ∈ N.

Then 0 < εk+1 < εk for all k, and ε̃k+1 = εk, where

ε̃ =
ε

1−
√
ε
.

We have also written c0 = min(1, c) and

C̃n,p,ε(c0) = (10−2ε)qn(c0/4p)
ε−1

D−qn
n,p,ε.

From Prop. 3.1, and observing that ε̃−1 + 1 ≤ ε−1, the original claim holds for each εk. By
trivial inequalities, the full result holds.

Following [4], we proceed by induction on ε > 0. By a trivial estimate when ε = ε1 =
1
2
, we

have the base case. It suffices to show that, if Theorem 2.1 holds for ε̃ = ε
1−

√
ε
, then it holds

for ε.
Proceeding to the induction, we assume the result for ε̃. The tiles in Tθ of Qn

p have dimen-
sions δ × · · · × δ × 1 × · · · × 1. We further have, for each θ, a subfamily Wθ ⊆ Tθ such that∑

T∈W 1T (x) ≥ c0δ
ε−1 for all x in the support of a special measure ν. We wish to demonstrate

a suitable lower bound on #W.

9



To this end, first observe the calculation

Π
(m)
θ A−⊤

θ,δ−1 =


δ−1 0 · · · 0 0 · · · 0
0 δ−1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · δ−1 0 · · · 0︸ ︷︷ ︸
n


 k;

consequently, for each x ∈ Zmp ,

Znp ∩ (Π
(m)
θ )−1[x+ δ−1Zmp ] = A−⊤

θ,δ−1 [δ(x, 0) + Zmp × Zn−mp ].

Thus, we will write members of Tθ as translates cT +A−⊤
θ,δ−1 [Znp ] for various choices of cT ∈ Qn

p .

For each T = cT +A
−⊤
θ,δ−1Znp ∈ Tθ, consider the function 1T . If we recall that τθ = Aθ,δ−1 [Znp ],

then we may verify that
1̂T (ξ) = χ(−cT · ξ)δm1τθ(ξ).

Observe that τθ has dimensions δ−1 × · · · × δ−1 × 1 × · · · × 1, with long sides parallel to
γ(1)(θ), . . . , γ(m)(θ); observe also that τθ is symmetric about the origin.

Let κ be a positive integer such that δ−
√
ε ≤ pκ ≤ pδ−

√
ε, and write ψδ = 1B(0,δ−1p−κ). Then,

for some subset F ⊆ Qn
p with ν(F ) ≥ 1

2
ν(Qn

p ), we either have

c0
2
δ−1+ε ≤

∣∣∣∣∣∑
T∈W

1T ∗ ψ∨
δ (x)

∣∣∣∣∣ ∀x ∈ F, (3.3)

or
c0
2
δ−1+ε ≤

∣∣∣∣∣∑
T∈W

1T ∗ (1δZn
p
− ψδ)

∨(x)

∣∣∣∣∣ ∀x ∈ F. (3.4)

Observe from the outset that

ψ∨
δ = δ−np−nκ1B(0,δpκ).

We consider case 3.3 first. For each fixed T , we may compute

1T ∗ ψ∨
δ = p−mκ1T̃ ,

where T̃ = cT + A−⊤
θ,p−κδ−1 [Znp ], recalling that T = cT + A−⊤

θ,δ−1(Znp ).
Observe that T̃ is the (δpκ × · · · × δpκ × 1 × · · · × 1)-plate with the same center as T and

the same short directions. As such, for each θ ∈ Λδ we fix the tiling Tθ of Qn
p by translates of

A−⊤
θ,p−κδ−1 [Znp ].
We investigate the relationship between T and T . Suppose T ∈ Tθ′ and T̃ ∈ Tθ are such

that T ⊆ T̃ . Let q ∈ Qn
p be the unique element such that {qj}p = qj for all 1 ≤ j ≤ n and such

that T̃ = A−⊤
θ,p−κδ−1 [q + Znp ]. Then −q + A⊤

θ,p−κδ−1 [T ] =: B is a subset of Znp . Moreover, writing

T = A−⊤
θ′,δ−1 [b + Znp ] for the unique b ∈ Qn

p satisfying the preceding equality and {bj}p = bj for
all 1 ≤ j ≤ n, we see that

B = −q + A⊤
θ,p−κδ−1A−⊤

θ′,δ−1b+ A⊤
θ,p−κδ−1A−⊤

θ′,δ−1 [Znp ].

10



We will bound, for each θ ∈ Zp, the number of θ′ ∈ Zp such that A⊤
θ,p−κδ−1A

−⊤
θ′,δ−1 [Znp ] ⊆ Znp .

We begin by noticing that
A⊤
θ,1A

−⊤
θ′,1 = A⊤

θ−θ′,1,

so that for each j ≤ k (
A⊤
θ,1A

⊤
−θ′,1

)
jk

=
(θ − θ′)k−j

(k − j)!
.

If θ, θ′ are such that we have the inequality

|θ − θ′|p > pκδ,

then it follows that
(A⊤

θ,1A
⊤
−θ′,1)(em) ̸∈ p−κδ−1Zmp × Zn−mp ,

and hence

diag(pκδ, . . . , pκδ, 1, . . . , 1)A⊤
θ,1A

−⊤
θ′,1 diag(δ

−1, . . . , δ−1, 1, . . . , 1)[Znp ] ̸⊆ Znp ,

whereas the left-hand side is just A⊤
θ,p−κδ−1A

−⊤
θ′,δ−1 [Znp ]. It follows that, for each T̃ ,

#
{
T ∈ W : T ⊆ T̃

}
≤ pκ(m+1). (3.5)

On the other hand, if |θ − θ′|p ≤ pκδ, we note that

A⊤
θ,p−κδ−1A−⊤

θ′,p−κδ−1 [Znp ] ⊆ Znp ,

so A−⊤
θ,p−κδ−1 and A−⊤

θ′,p−κδ−1 define the same thick wave packets unless |θ − θ′|p > pκδ.
Now, writing T =

⋃
θ∈Λδ

Tθ, it holds that∑
T∈W

1T ∗ ψ∨
δ ≤ p−mκ

∑
T̃∈T

(#{T ∈ W : T ⊆ T̃})1T̃ .

If we set
Tθ,light =

{
T̃ ∈ Tθ : #{T ∈ W : T ⊆ T̃} ≤ c0

4
δεp(m+1)κ

}
,

and Tθ,heavy = Tθ \ Tθ,light, then

p−mκ

∥∥∥∥∥∥
∑
θ∈Λδ

∑
T̃∈Tθ,light

(
#{T ∈ W : T ⊆ T̃}

)
1T̃

∥∥∥∥∥∥
L∞(Qn

p )

≤ c0
4
δ−1+ε,

which implies, comparing with 3.3,

c0
4
δ−1+ε ≤ p−mκ

∑
θ∈Λδ

∑
T̃∈Tθ,heavy

(#{T ∈ Wθ : T ⊆ T̃})1T̃ (x), x ∈ F.

From the upper bound 3.5, we have on F

δ−1+ε+
√
ε ≤ pδ−1+εp−κ ≤ p

4

c0

∑
θ∈Λδ

∑
T̃∈Tθ,heavy

1T̃ (x), x ∈ F. (3.6)

11



Observe that
δ−1+ε+

√
ε = (δ1−

√
ε)

−1+ ε
1−

√
ε ,

so that the dilated arrangement {T̃ ∈ Tθ,heavy : θ ∈ Λδ} satisfies our Kakeya hypothesis with ε
replaced by ε̃ = ε

1−
√
ε
, δ replaced by δ1−

√
ε, and constant c0

4p
. By the induction hypothesis, we

obtain the estimate

#
⋃
θ

Tθ,heavy ≥ C̃n,p,ε(c0)ν(Qn
p )c

δ0
α (ν)

−1δ(1−
√
ε)(−1−α)δ

1010(1−
√
ε)(
√

ε
1−

√
ε
)
.

Recall that, if T̃1 ∈ Tθ1,heavy and T̃2 ∈ Tθ2,heavy and T ∈ W are such that T ⊆ T̃1 ∩ T̃2, then
|θ1 − θ2|p ≤ pkδ. Thus we may bound

#W ≥ pκmδε
c0
4p

#
⋃
θ∈Λδ

Tθ,heavy.

Combining the previous two displays,

#W ≥ C̃n,p,ε(c0)ν(Qn
p )c

δ0
α (ν)

−1δ(1−
√
ε)(−1−α)δε−m

√
εδ10

10n
√
ε−ε

√
ε

= C̃n,p,ε(c0)ν(Qn
p )c

δ0
α (ν)

−1δ−1−αδ(α−m)
√
εδε+1010n

√
ε−ε

√
ε

≥ C̃n,p,ε(c0)ν(Qn
p )c

δ0
α (ν)

−1δ−1−αδ(α−m)
√
εδ10

10n√ε

.

Since α < m, we obtain

#W ≥ C̃n,p,ε(c0)ν(Qn
p )c

δ0
α (ν)

−1δ−1−α+1010n
√
ε.

Recalling the form of C̃n,p,ε(c0), we are done.
Next, we assume 3.4 holds. For each θ write gθ =

∑
T∈Wθ

(1T ∗ (1δZn
p
− ψδ)

∨)(x). Then

ĝθ(ξ) = δm
∑
T∈Wθ

χ(−cT · ξ)1τθ(ξ)(1δZn
p
− ψδ)(ξ).

Write fθ(x) = gθ(δ
−1x). Then the preceding display shows that f̂θ is supported in δ−1τθ \ pkZp.

If we further decompose

fθ =
k−1∑
j=0

fθ ∗ 1∨
pjZn

p\pj+1Zn
p
,

and notice that each x 7→ (fθ ∗ 1∨
pjZn

p\pj+1Zn
p
)(p−jx) satisfies the hypotheses of Prop. 3.1, then

we conclude∥∥∥∥∥∑
θ∈Λδ

fθ ∗ 1∨
pjZn

p\pj+1Zn
p

∥∥∥∥∥
Lqn (Qn

p )

≤ Dn,p,ε/2δ
−1+n−m+1

qn
−ε/2

(∑
θ∈Λδ

∥fθ ∗ 1∨
pjZn

p\pj+1Zn
p
∥qnLqn (Qn

p )

)1/qn

.

By the triangle inequality and Young’s convolution inequality, we see that∥∥∥∥∥∑
θ∈Λδ

fθ

∥∥∥∥∥
Lqn (Qn

p )

≤ 4

ε
Dn,p,ε/2δ

−1+n−m+1
qn

−ε

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

,
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using k = − logp δ ≤ 2
ε
δ−ε/2.

Rescaling both sides of the previous display, we reach the estimate∥∥∥∥∥∑
θ∈Λδ

gθ

∥∥∥∥∥
Lqn (Qn

p )

≤ 4

ε
Dn,p,ε/2δ

−1+n−m+1
qn

−ε

(∑
θ∈Λδ

∥gθ∥qnLqn (Qn
p )

)1/qn

. (3.7)

For each θ ∈ Λδ,

∥gθ∥Lqn (Qn
p ) =

∥∥∥∥∥(1δZn
p
− ψδ)

∨ ∗
∑
T∈Wθ

1T

∥∥∥∥∥
Lqn (Qn

p )

≤ ∥(1δZn
p
− ψδ)

∨∥L1(Qn
p )

∥∥∥∥∥∑
T∈Wθ

1T

∥∥∥∥∥
Lqn (Qn

p )

.

By the definition of the family Wθ,∥∥∥∥∥∑
T∈Wθ

1T

∥∥∥∥∥
Lqn (Qn

p )

= (#Wθ)
1
qn δ

m
qn .

Since ψδ(ξ) = 1B(0,p−κ)(δ
−1ξ) and 1δZn

p
(ξ) = 1Zn

p
(δ−1ξ), an application of change-of-variable

reveals
∥(1δZn

p
− ψδ)

∨∥L1(Qn
p )

≤ 2,

and thus (∑
θ∈Λδ

∥gθ∥qnLqn (Qn
p )

)1/qn

≤ 2δ
m
qn (#W)

1
qn . (3.8)

Since c0
2
δ−1+ε ≤ |

∑
T∈W 1T ∗ (1δZn

p
− ψδ)

∨(x)| for all x ∈ F , we have that

c0
2
δ−1+ε ≤

∣∣∣∣∣∑
θ∈Λδ

gθ(x)

∣∣∣∣∣ , ∀x ∈ F,

so that

(c0/2)
qnδ−qn+qnεν(F ) ≤

ˆ ∣∣∣∣∣∑
θ∈Λδ

gθ

∣∣∣∣∣
qn

dν.

Note that |
∑

θ∈Λδ
gθ| is constant on balls of radius δ; thus, using 0 < cδ0α (ν) <∞ and δ > δ0,

ˆ ∣∣∣∣∣∑
θ∈Λδ

gθ

∣∣∣∣∣
qn

dν ≤ cδ0α (ν)δ
α−n

ˆ ∣∣∣∣∣∑
θ∈Λδ

fθ

∣∣∣∣∣
qn

dµ,

so that, using also ν(F ) ≳ ν(Qn
p ),

2−qn−1cqn0 c
δ0
α (ν)

−1ν(Qn
p )δ

−qn+qnε ≤ δα−n
ˆ ∣∣∣∣∣∑

θ∈Λδ

gθ

∣∣∣∣∣
qn

. (3.9)

Collecting estimates 3.7, 3.8, and 3.9, we conclude

#W ≥ 2−4qn−1εqnD−qn
n,p,ε/2c

qn
0 ν(Qn

p )c
δ0
α (ν)

−1δ−α−1+2qnε.

As 2qnε ≤ 1010n
√
ε for every 0 < ε ≤ 1, we are done.
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4 Decoupling bound for restricted projections

In this section we prove Prop. 3.1. We will do so by adapting the decoupling procedure of [4] to
the p-adic setting. We will take for granted p-adic decoupling for moment curves in dimensions
n < p; for a proof of the latter, see Corollary 6.22 in Appendix B. We emphasize that this
decoupling theorem (together with elementary rescaling arguments) will be the only Fourier-
analytic inputs for this section. Instead, we will be primarily concerned with a decomposition
of the Fourier support of

∑
θ∈Λδ

fθ into subsets over which the decoupling theorem may be used.
The decoupling procedure described in this section is virtually identical to the real setting.

As a consequence, we will present a very terse accounting of the analysis; the interested reader
may compare with [4] for motivation. At the end, we state the output of the algorithm and
observe that the estimate obtained suffices to prove Proposition 3.1.

We may assume that δ is restricted to sufficiently regular powers of p, to facilitate taking
various roots; similarly, we assume that ε is a sufficiently divisible reciprocal of an integer. To
this end, write κ = (n!)2n and assume that ε = 1

ℓκ
for some ℓ ∈ N≥2. We assume also that

δ ∈ p−κ
2N. After we have established this special case, we will be able to conclude the general

statement via trivial estimates.
We begin by defining a decomposition of frequency space which will facilitate the proof of

Proposition 3.1. These are adapted to the support of the Fourier transform of f , the function
to be estimated. See Figure 1 for an illustration of the geometry, when regarded over R.

For each subset J ⊆ Zp and 1 ≤ m1 ≤ m, define

ΩJ =
{ n∑

j=1

λjγ
(j)(θ) : θ ∈ J ∩ Λδ, λj ∈ Zp ∀j, max

1≤j≤n
|λj|p = 1, |λj|p ≤ δ ∀j ∈ (m,n]

}
⊆ Qn

p

and

ΩJ,m1 =
{ n∑

j=1

λjγ
(j)(θ) ∈ ΩJ : |λm1|p = 1, |λj|p < 1 ∀j ∈ (m1,m]

}
,

so that {ΩJ,m1}1≤m1≤m partition ΩJ for each J .

For each s1 ∈ p−ε
−1N with δ

1
n−m1 ≤ s1 < 1, write

ΩJ,m1,s1 =
{ n∑

j=1

λjγ
(j)(θ) ∈ ΩJ,m1 : (s1 = δ

1
n−m1 or ∃ι ∈ [1,m−m1] s.t. s

ι
1 ≤ |λm1+ι|p),

∀ι ∈ [1,m−m1] p
ιε−1

sι1 > |λm1+ι|p
}

so that
ΩJ,m1 =

⋃
δ

1
n−m1 ≤s1<p−1

ΩJ,m1,s1 .

We remark that ΩJ,m1 is essentially a segment of the rim of a thick cone over an (n − m1)-
dimensional moment curve, and each ΩJ,m1,s1 is a thin slice of that cone to facilitate the standard
cone-decoupling trick of comparing with a cylinder. See Figure 1 for an illustration. We
further decompose ΩJ,m1,s1 by: for each tuple R = (R1, . . . , Rm1−1) ∈ P(Zp, sε1)m1−1 and each
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B ∈ P(Zp \ pZp, sε1),

ΩB,R
J,m1,s1

=
{ n∑

j=1

λjγ
(j)(θ) : λj ∈ Rj ∀j ∈ [1,m1), λm1 ∈ B

}
.

We will eventually decouple along these regions; to this end, for each k ∈ N, write

Dk =
k(k + 1) + 2

2
,

so that the ℓqnLqn decoupling constant for the k-dimensional moment curve at scale δ has size

≲ε δ
−(1−Dk

qn
)−ε for each k ≤ n.

With this established, we now proceed to describing the proof of Prop. 3.1.

Proof of Prop. 3.1. We first observe that the sets above describe the Fourier support of f .
Indeed, f̂θ is supported in the set

A−⊤
θ,1,δ(Z

n
p ) \ pZnp

where we again are adopting the notation

Aθ,α,β = [α−1γ(1)(θ), . . . , α−1γ(m)(θ), β−1γ(m+1)(θ), . . . , β−1γ(n)(θ)], (θ ∈ Zp, α, β ∈ Qp).

Consequently, f̂θ is supported in Ω{θ}, so the preceding decomposition applies.

By Hölder,1 we have that one of the following holds: either there exists m1 < m, δ
1

n−m1 ≤
s1 ∈ p−ε

−1N, J ∈ P(Zp, sε1), B ∈ P(Zp \ pZp, sε1), R ∈ P(Zp, sε1)m1−1 such that∥∥∥∥∥∑
θ∈Λδ

fθ

∥∥∥∥∥
Lqn (Qn

p )

≤ m(logp δ
−1)s

−(m1+1)ε
1

∥∥∥∥∥ ∑
θ∈J∩Λδ

PΩB,R
J,m1,s1

fθ

∥∥∥∥∥
Lqn (Qn

p )

(4.1)

or else we set m1 = m, s1 = δ
1

n−m1 , and there is J ∈ P(Zp, sε1) such that∥∥∥∥∥∑
θ∈Λδ

fθ

∥∥∥∥∥
Lqn (Qn

p )

≤ m(logp δ
−1)s

−(m1+1)ε
1

∥∥∥∥∥ ∑
θ∈J∩Λδ

PΩJ,m
fθ

∥∥∥∥∥
Lqn (Qn

p )

. (4.2)

We will focus on the case that (4.1) holds, and abbreviate F =
∑

θ∈J∩Λδ
PΩB,R

J,m1,s1

fθ. We will

demonstrate the following:

Lemma 4.1. Suppose that s1 = p−ℓε
−1

for some ℓ ≥ 2. For any

0 ≤ k ≤ k∗ := (n−m1)⌊ε−1 − 2− ε−1

ℓ
⌋

and any L ∈ P(J, s
(1+ k

n−m1
)ε

1 ), we have that

∥∥∥∥∥ ∑
θ∈L∩Λδ

Fθ

∥∥∥∥∥
Lqn (Qn

p )

≤ Cn−m1,(n−m1)εs
− ε2

n−m1
1 s

− ε
n−m1

(1−
Dn−m1

qn
)

1

 ∑
I∈P
(
L,s

(1+ k+1
n−m1

)ε

1

)
∥∥∥∥∥ ∑
θ∈I∩Λδ

Fθ

∥∥∥∥∥
qn

Lqn (Qn
p )


1/qn

,

where Cn−m1,(n−m1)ε is as in Remark 6.23.
1Indeed, consider the weighting of each particular configuration by sm1+1

1 .
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Proof of Lemma 4.1. By applying parabolic rescaling, it suffices to assume that L = B(0, s
(1+ k

n−m1
)ε

1 )
and B = B(1, sε1). Then, for any θ, λ1, . . . , λn as in the definition of ΩB,R

L,m1,s1
, we have the rela-

tions
n∑
j=1

λjγ
(j)
ι (θ) =

ι∑
j=1

λj
θι−j

(ι− j)!
(1 ≤ ι ≤ m1),∣∣∣∣∣

n∑
j=1

λjγ
(j)
ι (θ)− (λm1θ)

ι−m1

(ι−m1)!

∣∣∣∣∣
p

≤ s
(1+ k

n−m1
)ε(ι−m1)+ε

1 (m1 < ι ≤ n).

The second of these follows from the inequality |θι−j|p ≤ s
(1+ k

n−m1
)ε(ι−j)

1 for j ≤ ι, the inequality
|λm1 − (λm1)

ι−m1|p ≤ sε1, the inequality |λj|p ≤ pε
−1(j−m1)sj−m1

1 for m1 < j ≤ ι, the ultrametric
triangle inequality, and the fact that (1 + k∗

n−m1
)ε ≤ 1− ε− 1

ℓ
.

Consequently, it holds that

Ωi,r
L,m1,s1

⊆
{ m1∑

ι=1

ριeι +
n∑

ι=m1+1

(
θι−m1

(ι−m1)!
+ ρι

)
eι : ρι ∈ B(brι , s

ε
1) (ι < m1), ρm1 ∈ B(1, sε1),

|ρι|p ≤ s
(1+ k

n−m1
)ε(ι−m1)+ε

1 (ι > m1), θ ∈ L ∩ Λδ

}
.

Applying time rescaling θ 7→ s
(1+ k

n−m1
)ε

1 θ (n.b. that this is regarded as a product of two elements
of Qp), and decoupling over the (n−m1)-dimensional moment curve, we conclude

∥∥∥∥∥∑
θ∈L

Fθ

∥∥∥∥∥
Lqn (Qn

p )

≤ Cn−m1,(n−m1)εs
− ε2

n−m1
1 s

− ε
n−m1

(1−
Dn−m1

qn
)

1

 ∑
I∈P(L,s

(1+ k+1
n−m1

)ε

1 )

∥∥∑
θ∈I

Fθ
∥∥qn
Lqn (Qn

p )


1/qn

.

Since decoupling constants are sub-multiplicative, we may repeatedly apply Lemma 4.1 to
conclude

∥F∥Lqn (Qn
p ) ≤ C

n−m1
ε

n−m1,(n−m1)ε
s
−ε−(1−

Dn−m1
qn

)

1

 ∑
I∈P(Zp,s

(1+ k∗+1
n−m1

)ε

1 )

∥FI∥qnLqn (Qn
p )


1/qn

.

By the triangle inequality and Cauchy-Schwarz, we arrive at the estimate

∥F∥Lqn (Qn
p ) ≤ C

n−m1
ε

n−m1,(n−m1)ε
pε

−1

s
−2ε−(1−

Dn−m1
qn

)

1

 ∑
I∈P(Zp,s1)

∥FI∥qnLqn (Qn
p )

1/qn

,

valid whenever we had s1 ∈ p−ε
−1N≥2 . If instead s1 = p−ε

−1
, then trivial estimates supply

∥F∥Lqn (Qn
p ) ≤ pε

−1

 ∑
I∈P(Zp,s1)

∥FI∥qnLqn (Qn
p )

1/qn

.
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Figure 1: Left: the union of the truncated plates δ−1τθ ∩ (Znp \ pZnp ) is contained in a thick
neighborhood ΩI of a cone over a lower-dimensional nondegenerate curve. Right: the decom-
position ΩJ,m1 =

⋃
ΩJ,m1,s1 in the case (m1,m, n) = (1, 2, 3) over R.

The remainder of the algorithm involves rescaling each FI and repeating the above procedure,
by finding a new parameter s2 to treat the Fourier support of FI as the cylinder over a moment
curve. We summarize the inductive step in Lemma 4.3 below. Prior, we adopt the following
notation, largely identical to that of [4]. For any m1 ∈ [1,m] and n1 ∈ [m,n], and any
s1 ∈ p−ε

−1N, we set

Lm1,s1(ξ) = (ξ1, . . . , ξm1 , s
−1
1 ξm1+1, . . . , s

m1−n
1 ξn),

Rm1,s1(ξ) = (s1−1
1 ξ1, s

1−2
1 ξ2, . . . , s

1−m1
1 ξm1 , s

1−m1
1 ξm1+1 . . . , s

1−m1
1 ξn),

and

Ds1
m1,n1

(ξ)j =


sj−1
1 ξj 1 ≤ j ≤ m1,

p−(j−m1)ε−1
sm1−1
1 ξj m1 < j ≤ m,

sm1−1
1 ξj m < j ≤ n1,

ξj n1 < j ≤ n.

If sJ = (s1, . . . , sJ),mj = (m1, . . . ,mJ), and nJ = (n1, . . . , nJ) are entrywise as abovve, then
we write

LmJ ,sJ = LmJ ,sJ ◦ · · · ◦ Lm1,s1 ,

RmJ ,sJ = RmJ ,sJ ◦ · · · ◦ Rm1,s1 ,

DsJ
mJ ,nJ

= DsJ
mJ ,nJ

◦ · · · ◦ Ds1
m1,n1

.

We will use the abbreviations

s◦J =
J∏
j=1

sj, s−◦
J = (s◦J)

−1.

When a given tuple sJ is already understood and 0 ≤ j < J , we’ll write sj for the corresponding
initial segment of sJ . We’ll also write

γm1,s1 = Rm1,s1 ◦ γ,
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and
γmJ ,sJ = RmJ ,sJ ◦ γ;

observe then that
γmJ ,sJ (θ) = s◦JL−1

mJ ,sJ
γ
(
s−◦
J θ
)
. (4.3)

The tuples will need to satisfy the following compatibility relation: we write sJ+1 ∈ AdapsJ
mJ+1,nJ+1

for quantities sJ+1 ∈ p−ε
−1N, and call them adapted, if(

δ
J∏
j=1

s
−(nJ−1−mj)
j

) 1
nJ+1−mJ+1

≤ sJ+1 < 1. (4.4)

We also set out the following regions in frequency space: given tuples sJ ,mJ ,nJ , and θ ∈ Zp
with |θ|p ≤ s◦J , we write

Ωres
θ,m1,s1

=
{ [

γ(1)m1,s1

(
s1θ
)
, . . . , γ(n)m1,s1

(
s1θ
)]

· Ds1
m1,n

(λ) :

∀ι ∈ [1, n] |λι|p ≤ 1, |λm1|p = 1,

∃ι ∈ [1,m−m1] s.t. p
−ιε−1

< |λm1+ι|p,
∀ι ∈ [1,m−m1] |λm1+ι|p ≤ 1,

∀ι ∈ [1, n−m] |λm+ι|p ≤ δs−ι1

}
.

Here, we emphasize the convention that each γ(j) is a column vector, [γ(1), . . . , γ(n)] denotes the
matrix whose jth column is γ(j), λ is the column vector (λ1, . . . , λn), and the · denotes matrix
multiplication. We similarly write

Ωres
θ,mJ ,sJ ,nJ

=
{ [

γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ) :

∀ι ∈ [1, n] |λι|p ≤ 1, |λmJ
|p = 1,

∃ι ∈ [1,m−mJ ] s.t. p
−ιε−1

< |λmJ+ι|p,
∀ι ∈ [1,m−mJ ] |λmJ+ι|p ≤ 1,

∀ι ∈ [1, nJ −m] |λm+ι|p ≤ δ
J∏
j=1

s
−(m+ι−mj)
j

}
,

and, for each choice of sJ+1,mJ+1, nJ+1, we write

Ω
res,mJ+1,sJ+1,nJ+1

θ,mJ ,sJ ,nJ
=
{ [

γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ) ∈ Ωres
θ,mJ ,sJ ,nJ

:

|λmJ+1
|p = 1,(

sJ+1 =

(
δ

J∏
j=1

s
−(nJ−1−mj)
j

) 1
nJ+1−mJ+1

or ∃ι ∈ [1,m−mJ+1] s.t. 1 ≤ |λmJ+1+ι|p
)
,

∀ι ∈ [1,m−mJ+1] |λmJ+1+ι|p < sιJ+1p
ιε−1

}
.

We immediately motivate the definition of these regions by the following lemma.
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Lemma 4.2. Suppose h has Fourier support in Ωθ,m1,s1 , and |θ|p ≤ s1. Then h ◦ Lm1,s1 has
Fourier support in Ωres

θ,m1,s1
. More generally, if h◦LmJ ,sJ has Fourier support in Ω

res,mJ+1,sJ+1,nJ+1

θ,mJ ,sJ ,nJ
,

then h ◦ LmJ+1,sJ+1
has Fourier support in Ωres

θ,mJ+1,sJ+1,nJ+1
.

Proof. By induction on J . Consider the base case J = 1. Relabelling λm1+ι 7→ sι1λm1+ι, we see
that h ◦ Lm1,s1 is Fourier supported in the set{

L−1
m1,s1

·
[
γ(1)(θ), . . . , γ(n)(θ)

]
· Lm1,s1(λ) : |λj| ≤ 1∀j < m1, |λm1|p = 1,

(s1 = δ
1

n−m1 or ∃ι ∈ [1,m−m1] s.t. 1 ≤ |λm1+ι|p),
∀ι ∈ [1,m−m1] |λm1+ι|p < pιε

−1

,

∀ι ∈ [1, n−m] |λm+ι| ≤ s−ι1 δ
}

For a particular (column) vector λ, we may manipulate the corresponding sum via 4.3 as

L−1
m1,s1

·
[
γ(1)(θ), . . . , γ(n)(θ)

]
· Lm1,s1(λ) =

[
s1−1
1 γ(1)m1,s1

(s1θ), . . . , s
n−1
1 γ(n)m1,s1

(s1θ)
]
· Lm1,s1(λ),

which we may write as [
γ(1)m1,s1

(s1θ), . . . , γ
(n)
m1,s1

(s1θ)
]
· R−1

m1,s1
(λ).

Finally, for each ι ∈ [1,m −m1], we relabel again λm1+ι 7→ pιε
−1
λm1+ι; from the definition of

Ds1
m1,n

, the desired result follows.
In the general case, relabelling λmJ+1+ι 7→ sιJ+1λmJ+1ι, we see that h ◦ LmJ+1,sJ+1

is Fourier
supported in the set{

L−1
mJ+1,sJ+1

·
[
γ(1)mJ ,sJ

(s◦Jθ), . . . , γ
(n)
mJ ,sJ

(s◦Jθ)
]
· LmJ+1,sJ+1

(DsJ
mJ ,nJ

(λ)) :

|λj| ≤ 1∀j < mJ+1, |λmJ+1
|p = 1,(

sJ+1 =

(
δ

J∏
j=1

s
−(nJ−1−mj)
j

) 1
nJ+1−mJ+1

or ∃ι ∈ [1,m−mJ+1] s.t. 1 ≤ |λmJ+1+ι|p
)
,

∀ι ∈ [1,m−mJ+1] |λmJ+1+ι|p < pιε
−1

,

∀ι ∈ [1, nJ+1 −m] |λm+ι|p ≤ δ
J+1∏
j=1

s
−(m+ι−mj)
j

}
.

Again, we may manipulate the corresponding sum via 4.3 as

L−1
mJ+1,sJ+1

·
[
γ(1)mJ ,sJ

(s◦Jθ), . . . , γ
(n)
mJ ,sJ

(s◦Jθ)
]
· LmJ+1,sJ+1

(DsJ
mJ ,nJ

(λ))

=
[
s1−1
J+1γ

(1)
mJ+1,sJ+1

(s◦J+1θ), . . . , s
n−1
J+1γ

(n)
mJ+1,sJ+1

(s◦J+1θ)
]
· LmJ+1,sJ+1

(DsJ
mJ ,nJ

(λ)),

which we may write as[
γ(1)m1,s1

(s1θ), . . . , γ
(n)
m1,s1

(s1θ)
]
· R−1

mJ+1,sJ+1
(DsJ

mJ ,nJ
(λ)).

Finally, for each ι ∈ [1,m−mJ+1], we relabel again λmJ+1+ι 7→ pιε
−1
λmJ+1+ι; from the definition

of DsJ+1
mJ+1,nJ+1 , the desired result follows.
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Lemma 4.3 (Inductive localization step). Assume we have an integer J ≥ 1, a rooted tree
T composed of sequences (Θ0, . . . ,Θj), (j ≤ J), of metric balls Θi in Zp, such that the set of
children of Θi, (i < J), is a set of the form P(Θi, sΘi

) with sΘi
∈ p−ε

−1N ∪ {1}, together with
labels nΘi

,mΘi
of each Θi, for which the following axioms are satisfied.

• nΘ0 = n,mΘ0 = m.

• If (Θ0, . . . ,ΘJ) ∈ T , then the associated tuples {sj = sΘj−1
}Jj=1, {nj = nΘj

}Jj=0, {mj =
mΘj

}Jj=0 are such that:

∀j ∈ [0, J) : either



nj+1 = nj − 1 and mj+1 ≥ mj

and s
nj−mj

j+1 = δ
∏j

η=1 s
−(nj−1−mη)
η ,

or nj+1 = nj and mj+1 > mj,

and s
nj−mj

j+1 ≥ δ
∏j

η=1 s
−(nj−1−mη)
η ,

or nj+1 = nj = m+ 1 and mj+1 = mj = m

and
∏j

η=1 s
nj−mη
η = δ and sj+1 = 1.

(4.5)

• In the setting above, we also have

supp F̂ΘJ
⊆ ΩΘJ ,mJ ,sJ ,nJ

. (4.6)

For sJ ,mJ ,nJ , we will write TsJ ,mJ ,nJ
for the set of tuples (Θ0, . . . ,ΘJ) ∈ T with that associated

tuple, as in the second bullet point above. We assume also that we have the upper bound

∥F∥Lqn (Qn
p ) ≤ pJ

2nε−1
∑

sJ ,mJ ,nJ

J∏
j=1

[
C

nj−mj
ε

nj−mj ,(nj−mj)ε
s
−(mj+3)ε−(1−

Dnj−mj
qn

)

j

]

×

 ∑
(Θ0,...,ΘJ )∈TsJ ,mJ ,nJ

∥∥∥∥∥ ∑
θ∈ΘJ∩Λδ

Fθ

∥∥∥∥∥
qn

Lqn (Qn
p )

1/qn

.

(4.7)

Let (Θ0, . . . ,ΘJ) ∈ T be such that

nJ > m+ 1 or
J∏
j=1

s
nJ−mj

j > δ. (4.8)

Then we may find mJ+1 ∈ [mJ ,m], nJ+1 ∈ (m,nJ ], and sJ+1 ∈ p−ε
−1N, such that

∥FΘJ
∥Lqn (Qn

p ) ≤ pJnε
−1

(logp δ
−1)C

nJ+1−mJ+1
ε

nJ+1−mJ+1,(nJ+1−mJ+1)ε
s
−(mJ+1+3)ε−

(
1−

DnJ+1−mJ+1
qn

)
J+1

×

 ∑
Θ′∈P(Θ,s◦J+1)

∥∥∥∥∥ ∑
θ∈Θ∩Λδ

Fθ

∥∥∥∥∥
qn

Lqn (Qn
p )

1/qn

.
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Proof. We assume Θ = B(0, s◦J). For each θ ∈ Θ ∩ Λδ, we write

ĝθ = F̂θ ◦ LmJ ,sJ .

Thus, ĝθ is supported in the set ΩΘ,mJ ,sJ ,nJ
. Suppose the second option of 4.8 holds. Fix

nJ+1 = nJ . Define, for each m ≥ mJ+1 > mJ and θ ∈ Θ,

Ω
res,mJ+1

θ,mJ ,sJ ,nJ
=
{ [

γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ) :

∀j ∈ [1, n] |λj| ≤ 1,

|λmJ+1
|p = 1,

∀ι ∈ (mJ+1, nJ+1] |λι|p < 1
}
.

For each sJ+1 ∈ AdapsJ
mJ+1,nJ+1

, we write

Ω
res,mJ+1,sJ+1

θ,mJ ,sJ ,nJ
=
{ [

γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ) ∈ Ω
res,mJ+1

θ,mJ ,sJ ,nJ
:

∃ι ∈ [1,m−mJ+1] s.t. s
ι
J+1 ≤ |λmJ+1+ι|p,

∀ι ∈ [1,m−mJ+1] |λmJ+1+ι|p < sιJ+1p
ιε−1

}
.

Finally, for each mJ+1, sJ+1 and each R = (R1, . . . , RmJ+1−1) ∈ P(Zp, sεJ+1)
mJ+1−1 and each

B ∈ P(Zp \ pZp, p−ε
−1(JmJ+1−

∑J
j=1mj)sεJ+1), we collapse notation and write

Ω̃B,R
θ,mJ+1,sJ+1,nJ+1

=
{ [

γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ) ∈ Ω
res,mJ+1,sJ+1

θ,mJ ,sJ ,nJ
:

λj ∈ Rj (j < mJ+1), λmJ+1
∈ B

}
.

If we omit the B,R, then we assume that the λj range over all of Zp (for j < mJ+1), and the
λmJ+1

range over Zp \ pZp. For each I ∈ P(Θ, sεJ+1), we write

Ω̃B,R
I,mJ+1,sJ+1,nJ+1

=
⋃
θ∈I

Ω̃B,R
θ,mJ+1,sJ+1,nJ+1

.

By Hölder as before, one of the following holds: either there exists mJ < mJ+1 < m, sJ+1 ∈
AdapsJ

mJ+1,nJ+1
, I ∈ P(Θ, s◦Js

ε
J+1), B ∈ P(Zp\pZp, p−ε

−1(JmJ+1−
∑J

j=1mj)sεJ+1), andR ∈ P(Zp, sεJ+1)
mJ+1−1

such that∥∥∥∥∥∑
θ∈Λδ

gθ

∥∥∥∥∥
Lqn (Qn

p )

≤ mpε
−1(JmJ+1−

∑J
j=1mj)(logp δ

−1)s
−(mJ+1+1)ε
J+1

∥∥∥∥∥ ∑
θ∈I∩Λδ

PΩ̃B,R
I,mJ+1,sJ+1,nJ+1

gθ

∥∥∥∥∥
Lqn (Qn

p )

,

(4.9)

or else we set mJ+1 = m, sJ+1 =
(
δ
∏J

j=1 s
−(nJ−1−mj)
j

) 1
nJ+1−mJ+1 , and there is I ∈ P(Θ, s◦Js

ε
J+1)

such that∥∥∥∥∥∑
θ∈Λδ

gθ

∥∥∥∥∥
Lqn (Qn

p )

≤ m(logp δ
−1)s

−(mJ+1+1)ε
J+1

∥∥∥∥∥ ∑
θ∈I∩Λδ

PΩ̃I,mJ+1,sJ+1,nJ+1
gθ

∥∥∥∥∥
Lqn (Qn

p )

. (4.10)
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We will focus on the case that (4.9) holds, though the same argument will apply in each scenario.
We abbreviate G =

∑
θ∈I∩Λδ

PΩ̃B,R
I,mJ+1,sJ+1,nJ+1

gθ. For simplicity, we take I = B(0, s◦Js
ε
J+1) and

B = B(1, p−ε
−1(JmJ+1−

∑J
j=1mj)sεJ+1). Then we have∣∣∣([γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ)
)
ι
−

(λmJ+1
s◦Jθ)

ι−mJ+1

(ι−mJ+1)!
p−ε

−1(JmJ+1−
∑J

ℓ=1mℓ)
∣∣∣
p

≤ pε
−1(JmJ+1−

∑J
ℓ=1mℓ)s

ε(ι−mJ+1)+ε
J+1 , (mJ+1 < ι ≤ nJ+1).

The curve

s◦Jθ 7→
(
p−ε

−1(JmJ+1−
∑J

ℓ=1mℓ)
(λmJ+1

s◦Jθ)

1!
, . . . , p−ε

−1(JmJ+1−
∑J

ℓ=1mℓ)
(λmJ+1

s◦Jθ)
nJ+1−mJ+1

(nJ+1 −mJ+1)!

)
is rescaled moment curve over B(0, 1) of degree nJ+1 −mJ+1; thus, the decoupling inequality
provides ∥∥∥∥∥ ∑

θ∈I∩Λδ

gθ

∥∥∥∥∥
Lqn (Qn

p )

≤CnJ+1−mJ+1,(nJ+1−mJ+1)εs
− ε

nJ+1−mJ+1
(1−

DnJ+1−mJ+1
qn

+ε)

J+1

×


∑

Θ′∈P
(
Θ,s◦Js

(1+ 1
nJ+1−mJ+1

)ε

J+1

)
∥∥∥∥∥ ∑
θ∈Θ′∩Λδ

gθ

∥∥∥∥∥
qn

Lqn (Qn
p )


1/qn

.

Iterating as in Lemma 4.1 over 1 ≤ k ≤ nJ+1−mJ+1

ε
, together with a terminal triangle inequality

and Cauchy-Schwarz, we obtain∥∥∥∥∥ ∑
θ∈Θ∩Λδ

gθ

∥∥∥∥∥
Lqn (Qn

p )

≤ pε
−1Jn(logp δ

−1)C
nJ+1−mJ+1

ε

nJ+1−mJ+1,(nJ+1−mJ+1)ε
s
−(mJ+1+3)ε−(1−

DnJ+1−mJ+1
qn

)

J+1

×

 ∑
Θ′∈P(Θ,s◦J+1)

∥∥∥∥∥ ∑
θ∈Θ′∩Λδ

gθ

∥∥∥∥∥
qn

Lqn (Qn
p )

1/qn

.

Undoing the change-of-variable, we achieve the desired result.
If instead the first option of 4.8 holds, we set nJ+1 = nJ − 1 and, for each choice mJ ≤

mJ+1 ≤ m and sJ+1 ∈ p−ε
−1N with(

δ

J∏
j=1

s
−(nJ−mj)
j

) 1
nJ+1−mJ+1

≤ sJ+1 < 1,

we set

Ωθ,mJ+1,sJ+1
=
{ [

γ(1)mJ ,sJ

(
s◦Jθ
)
, . . . , γ(n)mJ ,sJ

(
s◦Jθ
)]

· DsJ
mJ ,nJ

(λ) ∈ Ωθ,mJ+1
:

∃ι ∈ [1,m−mJ+1] s.t. s
ι
J+1 ≤ |λmJ+1+ι|p,

∀ι ∈ [1,m−mJ+1] |λmJ+1+ι|p < sιJ+1p
ιε−1

}
.
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By an identical argument to the previous case (pigeonholing the ranges of λ, comparing with
a cylinder, decoupling and iteration), we obtain that there are some mJ+1 and sJ+1 as above
such that∥∥∥∥∥ ∑

θ∈Θ∩Λδ

gθ

∥∥∥∥∥
Lqn (Qn

p )

≤ pJnε
−1

(logp δ
−1)C

nJ+1−mJ+1
ε

nJ+1−mJ+1,(nJ+1−mJ+1)ε
s
−(mJ+1+3)ε−

(
1−

DnJ+1−mJ+1
qn

)
J+1

×

 ∑
Θ′∈P(Θ,s◦J+1)

∥∥∥∥∥ ∑
θ∈Θ′∩Λδ

gθ

∥∥∥∥∥
qn

Lqn (Qn
p )

1/qn

,

and once again by changing variables we are done.

Observe that, for each iteration of Lemma 4.3, we obtain a new decoupling of F into
frequency-localized pieces indexed by parameters sJ ,mJ ,nJ with the condition that, when J
increases by 1, either mJ increases by at least 1 or nJ decreases by at least 1, or already sJ has
localized all the way to δ. Since n1 = n and 0 ≤ m1 ≤ m, we see that after J ≤ 2n steps the
output of Lemma 4.3 is an estimate of the form

∥F∥Lqn (Qn
p ) ≤ pJ

2nε−1
∑

sJ,mJ,nJ

J∏
J=1

[
C

nJ−mJ
ε

nJ−mJ ,(nJ−mJ )ε
s
−ε−(1−

DnJ−mJ
qn

)

J

]

×

 ∑
(Θ0,...,ΘJ)∈TsJ,mJ,nJ

∥∥∥∥∥∥
∑

θ∈ΘJ∩Λδ

Fθ

∥∥∥∥∥∥
qn

Lqn (Qn
p )


1/qn

.

Note also that there are ≤ (logp(δ
−1)mn)2n choices of tuples sJ,mJ,nJ in the initial sum.

Pigeonholing, we obtain that for some choice sJ,mJ,nJ, we have the upper bound

∥f∥Lqn (Qn
p ) ≤ pJ

2nε−1

(log(δ−1)n)4n
J∏

J=1

[
C

nJ−mJ
ε

nJ−mJ ,(nJ−mJ )ε
s
−ε−(1−

DnJ−mJ
qn

)

J

]

×

 ∑
Θ∈P(Zp,s◦J)

∥∥∥∥∥ ∑
θ∈Θ∩Λδ

fθ

∥∥∥∥∥
qn

Lqn (Qn
p )

1/qn

.

By the triangle inequality and Hölder, we reach our terminal decoupling

∥f∥Lqn (Qn
p ) ≤ pJ

2nε−1

(log(δ−1)n)4n
J∏

J=1

[
C

nJ−mJ
ε

nJ−mJ ,(nJ−mJ )ε
s
−ε−(1−

DnJ−mJ
qn

)

J

]

× (δ−1s◦J)
1− 1

qn

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

.

It remains to analyze the losses we have incurred. Rearranging factors, we have[
J∏

J=1

s
−ε−(1−

DnJ−mJ
qn

)

J

]
(s◦J)

1− 1
qn = (s◦J)

−ε

[
J∏

J=1

s
1+...+(nJ−mJ )
J

]1/qn
.
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Note that n1 = n and nJ = m + 1. Let j1, . . . , jn−m be the indices such that njk+1 = njk − 1.
At each such index, we have the identity

s
njk

−mjk
jk+1

jk∏
η=1

s
(njk

−1−mη)
η = δ.

Multiplying these identities together, we obtain

J∏
J=1

s
1+...+(nJ−mJ )
J ≤ δn−m.

Thus, we have demonstrated

∥f∥Lqn (Qn
p ) ≤ pJ

2nε−1

(log(δ−1)n)4n

[
J∏

J=1

C
nJ−mJ

ε

nJ−mJ ,(nJ−mJ )ε

]
(s◦J)

−εδ−1+n−m+1
qn

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

,

and by the trivial bound s◦J ≥ δ and Theorem 6.1, together with Remark 6.23, we have the
upper bound

∥f∥Lqn (Qn
p ) ≤ exp

(
104ε−4n logn−1n4n2+4n(log p)

)
δ−1+n−m+1

qn
−ε

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

.

It remains only to remove the special assumptions on δ and ε. Fix ε = 1
ℓκ

for some ℓ ∈ N,
and suppose that δ ∈ p−N is such that

p−κ
2(K+1) < δ < p−κ

2K , K ∈ N.

Then, by what we have proven for δ′ = p−κ
2K , if Λδ′ ⊆ Λδ is any δ

′-separated subset,∥∥∥∥∥∥
∑
θ∈Λδ′

fθ

∥∥∥∥∥∥
Lqn (Qn

p )

≤ exp
(
104ε−4n logn−1n4n2+4n(log p)

)
(δ′)−1+n−m+1

qn
−ε

∑
θ∈Λδ′

∥fθ∥qnLqn (Qn
p )

1/qn

.

Controlling f by a sum over δ′/δ-many subsets Λδ′ , we conclude that

∥f∥Lqn (Qn
p ) ≤ exp

(
104ε−4n logn−1n6n2+4n(log p)

)
δ−1+n−m+1

qn
−ε

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

.

In the case p−κ
2
< δ ≤ p−1, a trivial inequality suffices to get the same result.

Next, we remove the special assumption on ε. If ℓ ∈ N is such that

(n!)−2n

ℓ+ 1
< ε <

(n!)−2n

ℓ
,

then for any δ ∈ p−N, using (ℓ+ 1)(n!)2n ≤ 2ε−1, we have shown that

∥f∥Lqn (Qn
p ) ≤ exp

(
104ε−4n logn−1n6n2+6n(log p)

)
δ−1+n−m+1

qn
−ε

(∑
θ∈Λδ

∥fθ∥qnLqn (Qn
p )

)1/qn

,

and we are done (noting that a trivial inequality suffices for the same result when ε > (n!)−2n).
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5 Appendix A: Decoupling lemmas over Qp

In this section, we record various elementary lemmas regarding Fourier decoupling over Qp.
Each of these is a cousin of a standard result over R, and some of ours will be even stronger.
Several of these lemmas have already been demonstrated in [7].

Throughout this section, Ω will denote a subset of Qd
p and Θ will denote a family of subsets

of Ω, such that Ω =
⋃
θ∈Θ θ. We will also emphasize that all functions fθ are locally constant and

of compact support, and indicate the corresponding class via S(Qd
p). We emphasize that “locally

constant” means that there is some scale λ ∈ pZ such that ∥x− y∥ ≤ λ implies fθ(x) = fθ(y).
The class S(Qd

p) is the appropriate replacement for Schwartz functions in the p-adic setting;
they are precisely the “Schwartz-Bruhat functions” over Qd

p.
For exponents 2 ≤ q ≤ r ≤ ∞, q <∞, define DecℓqLr(Θ) to be the infimal C > 0 such that,

for any family {fθ : θ ∈ Θ} such that f̂θ is supported in θ, for each θ,∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
Lr(Qd

p)

≤ C

(∑
θ∈Θ

∥fθ∥qLr(Qd
p)

)1/q

.

Observe that we have not insisted that the sets θ ∈ Θ are pairwise disjoint; in applications,
this will often be true, but for many technical results it is convenient to allow O(1) overlap
between the caps.

The following is demonstrated in [7], Prop. 4.4, in the case q = 2 and for specific choices of
θ. The proof of this version is identical.

Lemma 5.1 (Interpolation of decoupling constants). If 1
r
= α

r0
+ 1−α

r1
, α ∈ [0, 1], and 1 ≤ q ≤

min(r0, r1), then for any partition Ω =
⋃
θ∈Θ θ with every θ a separate affine image of Zdp, we

have
DecℓqLr(Θ) ≤ DecℓqLr0 (Θ)αDecℓqLr1 (Θ)1−α.

As a consequence, we obtain the following. Observe that we do not need to assume that
the θ are all congruent, in contrast to the Euclidean case.

Lemma 5.2 (Flat decoupling). For any Ω ⊆ Qd
p and any partition Θ of Ω composed of affine

images θ ∈ Θ of Zdp and any q, r ≥ 2,

DecℓqLp(Θ) ≤ (#Θ)1−
1
r
− 1

q .

Proof. Fix any family {fθ : θ ∈ Θ}. Then, by Plancherel, these elements are pairwise orthogonal
in L2(Qd

p); thus ∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
L2(Qd

p)

≤

(∑
θ∈Θ

∥fθ∥2L2(Qd
p)

)1/2

, (5.1)

so Decℓ2L2(Θ) ≤ 1. By the triangle inequality and Cauchy-Schwarz,∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
L∞(Qd

p)

≤ (#Θ)1/2

(∑
θ∈Θ

∥fθ∥2L∞(Qd
p)

)1/2

. (5.2)
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By Lemma 5.1, the statements 5.1 and 5.2 give

Decℓ2Lr(Θ) ≤ Decℓ2L∞(Θ)
r−2
r ≤ (#Θ)

1
2
− 1

r .

By Hölder, (∑
θ∈Θ

∥fθ∥2Lr(Qd
p)

)1/2

≤ (#Θ)
1
2
− 1

q

(∑
θ∈Θ

∥fθ∥qLr(Qd
p)

)1/q

.

Thus ∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
Lr(Qd

p)

≤ (#Θ)
1
2
− 1

r

(∑
θ∈Θ

∥fθ∥2Lr(Qd
p)

)1/2

≤ (#Θ)1−
1
r
− 1

q

(∑
θ∈Θ

∥fθ∥qLr(Qd
p)

)1/q

,

and so DecℓqLr(Θ) ≤ (#Θ)1−
1
r
− 1

q , as claimed.

Lemma 5.3 (Affine invariance of decoupling constants). Suppose A is an invertible affine map
Qd
p → Qd

p. Then DecℓqLr(AΘ) = DecℓqLr(Θ), where AΘ = {Aθ : θ ∈ Θ}.

Proof. We first take A to be linear for simplicity. Suppose {fθ : θ ∈ Θ} are such that f̂θ is
supported in θ. Define gθ = (f̂θ ◦ A−1)∨. Then ĝθ is supported in Aθ, so∥∥∥∥∥∑

θ∈Θ

gθ

∥∥∥∥∥
Lr(Qd

p)

≤ DecℓqLr(AΘ)

(∑
θ∈Θ

∥gθ∥qLr(Qd
p)

)1/q

. (5.3)

Observe that the following change-of-variables holds:

gθ(x) =

ˆ
Qd

p

f̂θ(A(ξ))χ(x · ξ)dξ =
1

µ(A[Zdp])

ˆ
Qd

p

f̂θ(ω)χ(A
−⊤(x) · ω)dω =

1

µ(A[Zdp])
f(A−⊤(x)),

so that
∥gθ∥Lr(Qd

p)
= µ(A[Zdp])−1+ 1

r ∥fθ∥Lr(Qd
p)
.

In particular, 5.3 rearranges to∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
Lr(Qd

p)

≤ DecℓqLr(AΘ)

(∑
θ∈Θ

∥fθ∥qLr(Qd
p)

)1/q

.

Since the {fθ : θ ∈ Θ} were arbitrary, we conclude that

DecℓqLr(Θ) ≤ DecℓqLr(AΘ).

Since this holds for all invertible linear A, we conclude that DecℓqLr(Θ) = DecℓqLr(AΘ) for all
invertible linear A.

Finally, we note that decoupling constants are trivially invariant under translation, as
Fourier translation is equivalent to spatial modulation, which does not affect absolute values.
Thus the claim holds.
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Lemma 5.4 (Local decoupling). Suppose every θ ∈ Θ is of the form Aθ[Zdp] + vθ for linear
isomorphisms Aθ : Qd

p → Qd
p. Set

η := max
θ∈Θ

∥A−1
θ ∥,

where ∥ · ∥ is the usual ℓ∞ → ℓ∞ operator norm. Write DeclocℓqLr(Θ) for the infimal C > 0 such
that, for any family {fθ : θ ∈ Θ} such that f̂θ is supported in θ, and for any x ∈ Qd

p, we have∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
Lr(B(x,η))

≤ C

(∑
θ∈Θ

∥fθ∥qLr(B(x,η))

)1/q

.

Then we have
DecℓqLr(Θ) = DeclocℓqLr(Θ).

Proof. Let {fθ}θ∈Θ be any family as stated. Let x ∈ Qd
p be arbitrary. Write

g(y) = 1B(x,η)(y), ĝ(ξ) = χ(−x · ξ)1B(0,η−1)(ξ).

Then we have ∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
Lr(B(x,η))

=

∥∥∥∥∥∑
θ∈Θ

gfθ

∥∥∥∥∥
Lr(Qd

p)

,

and
ĝfθ(ξ) = [χ(−x· )1B(0,η−1)] ∗ f̂θ(ξ),

which is still supported in θ. Thus∥∥∥∥∥∑
θ∈Θ

gfθ

∥∥∥∥∥
Lr(Qd

p)

≤ DecℓqLr(Θ)

(∑
θ∈Θ

∥gfθ∥qLr(Qd
p)

)1/q

.

Thus we have DeclocℓqLr(Θ) ≤ DecℓqLr(Θ).
We consider the reverse inequality. We redefine g = 1B(0,η). Let X be the set of standard

representatives of Qd
p/B(0, η); i.e. we represent x + B(0, η) by y when η−1y has zero integer

part. Then we have:

ˆ
Qd

p

∣∣∣∣∣∑
θ∈Θ

fθ

∣∣∣∣∣
r

=
∑
x∈X

ˆ
B(x,η)

∣∣∣∣∣g(y − x)
∑
θ∈Θ

fθ(y)

∣∣∣∣∣
r

dµ(y)

≤ DeclocℓqLr(Θ)r
∑
x∈X

(∑
θ∈Θ

[ˆ
B(x,η)

|fθ(y)|r dµ(y)
]q/r)r/q

.

By Minkowski, we have

∑
x∈X

(∑
θ∈Θ

[ˆ
B(x,η)

|fθ(y)|r dµ(y)
]q/r)r/q

≤

∑
θ∈Θ

(∑
x∈X

ˆ
B(x,η)

|fθ(y)|rdµ(y)

)q/r
r

.

Taking rth roots, we obtain the inequality DecℓqLr(Θ) ≤ DeclocℓqLr(Θ).
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Lemma 5.5 (Decoupling tensorizes). Let Ω1 ⊆ Qd
p,Ω2 ⊆ Qe

p be any sets and let Θ1,Θ2 be any
partitions of Ω1,Ω2, respectively. Write Θ for the partition of Ω1×Ω2 by sets of the form θ× τ
(θ ∈ Θ1, τ ∈ Θ2). Suppose q ≤ r. Then

DecℓqLr(Θ) = DecℓqLr(Θ1)DecℓqLr(Θ2)

Proof. First consider any family {f 1
θ : θ ∈ Θ1} and {f 2

τ : τ ∈ Θ2} with f̂ 1
θ supported in θ and

f̂ 2
τ supported in τ . Define g(θ,τ) : Qd+e

p → C by

g(θ,τ)(x, y) = f 1
θ (x)f

2
τ (y)

Then ĝ(θ,τ)(ξ, ω) = f̂ 1
θ (ξ)f̂

2
τ (ω) is supported in θ × τ . In particular,∥∥∥∥∥ ∑

θ×τ∈Θ

g(θ,τ)

∥∥∥∥∥
Lr(Qd+e

p )

≤ DecℓqLr(Θ)

( ∑
θ×τ∈Θ

∥g(θ,τ)∥qLr(Qd+e
p )

)1/q

Processing both sides of this, observe that∥∥∥∥∥ ∑
θ×τ∈Θ

g(θ,τ)

∥∥∥∥∥
Lr(Qd+e

p )

=

∥∥∥∥∥∑
θ∈Θ1

f 1
θ

∥∥∥∥∥
Lr(Qd

p)

∥∥∥∥∥∑
τ∈Θ2

f 2
τ

∥∥∥∥∥
Lr(Qe

p)

and ( ∑
θ×τ∈Θ

∥g(θ,τ)∥qLr(Qd+e
p )

)1/q

=

(∑
θ∈Θ1

∥f 1
θ ∥

q
Lr(Qd

p)

)1/q(∑
τ∈Θ2

∥f 2
τ ∥

q
Lr(Qe

p)

)1/q

Picking {f 1
θ }θ∈Θ1 and {f 2

τ }τ∈Θ2 , not all zero, such that∥∥∥∥∥∑
θ∈Θ1

f 1
θ

∥∥∥∥∥
Lr(Qd

p)

≥ (1− ε)DecℓqLr(Θ1)

(∑
θ∈Θ1

∥f 1
θ ∥

q
Lr(Qd

p)

)1/q

,

∥∥∥∥∥∑
τ∈Θ2

f 2
τ

∥∥∥∥∥
Lr(Qd

p)

≥ (1− ε)DecℓqLr(Θ2)

(∑
τ∈Θ2

∥f 1
τ ∥

q
Lr(Qd

p)

)1/q

we see that
(1− ε)2DecℓqLr(Θ1)DecℓqLr(Θ2) ≤ DecℓqLr(Θ).

Taking ε→ 0 we obtain the inequality

DecℓqLr(Θ1)DecℓqLr(Θ2) ≤ DecℓqLr(Θ)

It remains to establish the reverse inequality.
Let {g(θ,τ)}(θ,τ)∈Θ be a family with ĝ(θ,τ) supported in θ × τ . Then, for each fixed y ∈ Qe

p,
observe that x 7→ g(θ,τ)(x, y) has Fourier support contained in the set θ. Thus

ˆ
Qe

p

ˆ
Qd

p

∣∣∣∣∣∑
θ∈Θ1

∑
τ∈Θ2

g(θ,τ)(x, y)

∣∣∣∣∣
r

dxdy ≤ DecℓqLr(Θ1)
r

ˆ
Qe

p

∑
θ∈Θ1

(ˆ
Qd

p

∣∣∣∣∣∑
τ∈Θ2

g(θ,τ)(x, y)

∣∣∣∣∣
r

dx

)q/r
r/q dy
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By Minkowski, using q ≤ r,
ˆ
Qe

p

[ ∑
θ∈Θ1

( ˆ
Qd

p

∣∣∣ ∑
τ∈Θ2

g(θ,τ)(x, y)
∣∣∣rdx)q/r]r/qdy

≤
[ ∑
θ∈Θ1

( ˆ
Qe

p

ˆ
Qd

p

∣∣∣ ∑
τ∈Θ2

g(θ,τ)(x, y)
∣∣∣rdxdy)q/r]r/q,

and we may apply Fubini and decouple further to obtain for each θ

ˆ
Qe

p

ˆ
Qd

p

∣∣∣∣∣∑
τ∈Θ2

g(θ,τ)(x, y)

∣∣∣∣∣
r

dxdy ≤ DecℓqLr(Θ2)
r

ˆ
Qd

p

[ ∑
τ∈Θ2

( ˆ
Qe

p

|g(θ,τ)(x, y)|rdy
)q/r]r/q

dx.

Collecting all the preceding,∥∥∥ ∑
θ∈Θ1

∑
τ∈Θ2

g(θ,τ)

∥∥∥
Lr(Qd+e

p )
≤ DecℓqLr(Θ1)DecℓqLr(Θ2)

×
{∑
θ∈Θ1

[ ˆ
Qd

p

( ∑
τ∈Θ2

( ˆ
Qe

p

|g(θ,τ)(x, y)|rdy
)q/r)r/q

dx
]q/r}1/q

Applying Minkowski again,{∑
θ∈Θ1

[ ˆ
Qd

p

( ∑
τ∈Θ2

( ˆ
Qe

p

|g(θ,τ)(x, y)|rdy
)q/r)r/q

dx
]q/r}1/q

≤
[ ∑
θ∈Θ1

∑
τ∈Θ2

( ˆ
Qd

p

ˆ
Qe

p

|g(θ,τ)(x, y)|rdydx
)q/r]1/q

,

from which we obtain the estimate∥∥∥ ∑
θ×τ∈Θ

g(θ,τ)

∥∥∥
Lr(Qd+e

p )
≤ DecℓqLr(Θ1)DecℓqLr(Θ2)

( ∑
θ×τ∈Θ

∥g(θ,τ)∥qLr(Qd+e
p )

)1/q
.

Since this holds for all arrangements {g(θ,τ)}θ,τ as in the definition of the decoupling constant
for Θ, we conclude that

DecℓqLr(Θ) ≤ DecℓqLr(Θ1)DecℓqLr(Θ2),

so we have equality, as claimed.

A special case of the previous lemma is the following:

Lemma 5.6 (Cylindrical decoupling). Let Ω ⊆ Qd
p be any set and Θ be a partition of Ω. Write

Θ̃ for the partition of Ω×Qe
p by Θ̃ = {θ ×Qe

p : θ ∈ Θ}. Suppose q ≤ r. Then

DecℓqLr(Θ̃) = DecℓqLr(Θ).

The following is at least as ubiquitous in decoupling methods as affine invariance.
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Lemma 5.7 (Multiplicativity of decoupling constants). Let 2 ≤ q, r ≤ ∞ and q < ∞. Let Θ
be a finite set-family in Qd

p. Suppose that, for each θ ∈ Θ, there is a further set-family Θθ with
the property that

⋃
ψ∈Θθ

ψ = θ. Then it holds that

DecℓqLr

( ⊔
θ∈Θ

Θθ

)
≤ DecℓqLr(Θ)×max

θ∈Θ
DecℓqLr(Θθ).

Proof. Immediate from the structure of decoupling inequalities.

The following lemma is sometimes helpful.

Lemma 5.8 (ℓ2Lr recoupling). Let 2 ≤ r ≤ ∞, and assume that θ ∈ Θ are pairwise disjoint
affine images of Znp . Then, for any family {fθ : θ ∈ Θ} such that f̂θ is supported in θ, we have(∑

θ∈Θ

∥fθ∥2Lr(Qd
p)

)1/2

≤ (#Θ)
1
2
− 1

r

∥∥∥∥∥∑
θ∈Θ

fθ

∥∥∥∥∥
Lr(Qd

p)

.

Proof. The special cases r = 2, r = ∞ are trivial. For the rest, we interpolate.

We also recall the main result of [7]:

Theorem 5.9. Fix any δ ∈ p−N. Consider the region Ω defined by

Ω = {(x, y) ∈ Q2
p : |x|p ≤ 1, |y − x2|p ≤ δ2}.

We let T = P(Zp, δ) to be the partition of Zp into closed balls of radius δ. For each τ ∈ T ,
define

θτ = {(x, y) ∈ Q2
p : x ∈ τ, |y − x2|p ≤ δ2}.

Clearly {θτ}τ∈T form a decomposition Θ of Ω. Then we have

Decℓ2Lr(Θ) ≲ε,p,r δ
−ε(1 + δ−( 1

2
− 3

r
)).

6 Appendix B: Decoupling for the p-adic moment curve

We sketch a proof of ℓ2Ln(n+1) decoupling for the moment curve t 7→ γ(t) in Qn
p by modifying

an existing argument for the same result in Rn. This fact is of interest in its own right; however,
the proof is nearly identical to the proof over R for most approaches, so we have suppressed it
to this appendix. One slight novelty is the tracking of constants throughout, for the purpose
of achieving an explicit effective bound for our main application.

The result to be shown is the following:

Theorem 6.1 (ℓ2Ln(n+1) decoupling for the moment curve in Qn
p ). Let n ∈ N. For every ε > 0

there is a constant Cn,ε ≥ 1 such that for all δ ∈ p−N, one has the estimate

Decℓ2Ln(n+1)({UI}I∈P(Zp,δ)) ≤ Cn,εδ
−ε,

where P(Zp, δ) is a partition of Zp into balls of radius δ, and UI is the standard anisotropic
neighborhood of the moment curve over I; see the start of the next section. Moreover, the
constant Cn,ε may be taken to be

Cn,ε = exp
(
104(log p)ε−4n lognn10n2

)
.
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Remark 6.2. Optimizing over ε, one can show that the decoupling constant is bounded by
something of the form exp(Cn(log δ

−1)1−cn), for suitable explicit Cn ≥ 1, cn ∈ (0, 1). See
Theorem 1.5 for details, in the application to solution counting.

Most of the tools used in the standard approaches to decoupling are identical between Rn

and Qn
p , with some caveats: for one, over Qp many heuristic uncertainty statements from the

Euclidean setting become literally true, which allows one to dispense of various technical weights
and convolutions; for another, some of the induction-on-dimension steps require some special
geometric observations (via projections), which require modification in the p-adic setting.

To be more precise about the latter: it is a classical fact that bilinear forms generally, and
the dot product in particular, possess isotropy on Qn

p for n sufficiently large. We recall two
results in particular:

Theorem 6.3 (Chapter 4, Lemma 2.7 of [1]). Let n ≥ 5 and p arbitrary. Then every quadratic
form over Qn

p has isotropy.

Theorem 6.4. Let p be odd and n ≥ 3. Then the dot product (x1, . . . , xn) · (y1, . . . , yn) =
x1y1 + . . .+ xnyn has isotropy.

We briefly recall a proof of Theorem 6.4. We first instead study q(x, y, z) = x2 + y2 + z2

over Fp. The set of values {x2 : x ∈ Fp} and {−y2 − 1 : y ∈ Fp} each have cardinality p+1
2
,

while #Fp = p, so the two sets must intersect at a value where x2 + y2 + 12 = 0, which
establishes isotropy over Fp. Consequently, the representatives of x, y in {0, . . . , p − 1} in Z
solve q(x, y, 1) ≡ 0 mod p. On the other hand, formally differentiating q with respect to x and
y,

∂xq(x, y, 1) = 2x, ∂yq(x, y, 1) = 2y.

Since x2+y2+1 ≡ 0 mod p, we may assume without loss of generality that x ̸≡ 0 mod p. Since
p is odd,

∂xq(x, y, 1) ̸≡ 0 mod p.

By Hensel’s lemma (see Chapter 3, Lemma 4.1 of [1]), there is a root of t 7→ q(t, y, 1) in Zp,
which establishes Theorem 6.4.

As a consequence, some of the proofs of induction on dimension-type estimates fail. As
it turns out, the differences are entirely superficial; when the arguments are converted into
linear-algebraic manipulations, the proofs hold as usual.

As many of the arguments in the proof of decoupling require little modification, we will
simply review the short proof of moment-curve decoupling in [5] and supply the needed mod-
ifications. In particular, our argument will not be completely self-contained, and will instead
point to the latter paper for the proofs of certain technical steps for which no modification is
needed.

We insist at the outset that we will only consider the case p > n, to avoid certain technical is-
sues. It happens that the same result holds for general p (indeed, for arbitrary non-Archimedean
local fields of characteristic 0), though the argument requires attending to certain additional
technicalities that we are able to avoid.

We will write throughout | · |p for the p-adic norm on Qp, and | · | for the usual Euclidean
norm on R and C. We will also equip Qn

p with the usual choice of norm, ∥x∥ = max1≤i≤n |xi|p.
This notation will overlap with the Lebesgue norm ∥ · ∥Lq(Qn

p ). In each case, it will be clear from
context which is intended.

31



6.1 Bilinear-to-linear reduction

For δ ∈ p−N and a ball U , write P(U , δ) for the partition of U into (closed) balls of radius δ;
more generally, if δ ∈ (0, 1) is not necessarily a power of p, then we understand P(U , δ) to be
a partition into balls of radius ρ, where ρ is the greatest number in p−N below δ. For a convex
Cn curve ζ with bounded derivatives, as defined in Appendix C, we define the systems of boxes
U ζ
I,t, for I ⊆ Zp a metric ball of radius ρ and t ∈ I, as

U ζ
I,t :=

{
x ∈ Qn

p : ∃{λk}nk=1 ∈
n∏
k=1

Bρk(0) s.t. x = ζ(t) +
n∑
k=1

λkζ
(k)(t)

}
.

Throughout this section, when the ζ superscript on UI,t is suppressed, it will be assumed that
UI,t = Uγ

I,t where γ(t) = ( t
1!
, . . . , t

n

n!
) is the moment curve. We will write as well

U ζ
I =

⋃
t∈I

U ζ
I,t.

This choice of caps is useful for technical reasons that appear in the proof below; in practice,
they can generally be compared with other natural caps at slightly coarser scales.

Our goal will be to bound the linear decoupling constant Decℓ2Lqn ({UI}I∈P(Zp,δ)). We record
for later reference an abbreviation:

Definition 6.5. For δ ∈ p−N, define Dn(δ) = Decℓ2Lqn ({UI}I∈P(Zp,δ)).

We will need a bilinear analogue as well:

Definition 6.6 (Symmetric bilinear decoupling constant). Fix δ ∈ p−N. We define the sym-
metric bilinear decoupling constant Bn(δ) to be the infimal (real) constant C such that the
following holds. Suppose I, J ∈ P(Zp, p−1) are distinct. For each Ii ∈ P(I, δ), let fi ∈ S(Qn

p )

be such that f̂i is supported in UIi ; similarly, for each Ji ∈ P(J, δ), let gi ∈ S(Qn
p ) be such that

ĝi is supported in UJi . Then

ˆ
Qn

p

|fI |qn/2|gJ |qn/2 ≤ Cqn

(∑
i

∥fi∥2Lqn (Qn
p )

)qn/4(∑
i

∥gi∥2Lqn (Qn
p )

)qn/4

.

By Hölder we have the trivial Bn(δ) ≤ Dn(δ). Before proceeding, we record the following
standard converse, adapted to the p-adic setting:

Proposition 6.7 (Bilinear-to-linear reduction). If δ = p−N , then

Dn(δ) ≤ p1/2
(
1 +

N∑
j=1

Bn(pj−1δ)2
)1/2

. (6.1)

Proof. We formulate a Whitney cube decomposition for Znp ; due to the ultrametric on Zp, this
will be simpler than the Euclidean analogue. For each j ≥ 1, define Wj as

Wj :=
{
Bp−j(x)×Bp−j(y) : x, y ∈ Zp, |x− y|p = p−j+1

}
.
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Observe that, if |x − x′| ≤ p−j, then Bp−j(x) = Bp−j(x′), so Wj contains exactly pj(pj − 1)
elements. Additionally note that

⋃
j≥1Wj defines a partition of Z2

p \ ∆, where ∆ ⊆ Zp × Zp
denotes the diagonal.

To verify the estimate 6.1, let {fI}I∈P(Zp,δ) be a tuple with f̂I supported in UI . Then we
may write ∥∥∥ ∑

I∈P(Zp,δ)

fI

∥∥∥
Lqn (Qn

p )
=
∥∥∥ ∑
I,I′∈P(Zp,δ)

fIfI′
∥∥∥1/2
Lqn/2(Qn

p )

≤
[ ∑
I∈P(Zp,δ)

∥∥fI∥∥2Lqn (Qn
p )
+

N∑
j=1

∑
J=J0×J1∈Wj

∥∥fJ0fJ1∥∥Lqn/2(Qn
p )

]1/2
.

For each 1 ≤ j ≤ N and J = J0 × J1 ∈ Wj, by decoupling and affine rescaling we have

∥∥∥fJ0fJ1∥∥∥
Lqn/2(Qn

p )
≤ Bn(pj−1δ)2

 ∑
K∈P(J0,δ)

∥fK∥2Lqn (Qn
p )

1/2 ∑
K∈P(J1,δ)

∥fK∥2Lqn (Qn
p )

1/2

,

so that (appealing to the AM-GM inequality)∥∥∥∥∥∥
∑

I∈P(Zp,δ)

fI

∥∥∥∥∥∥
Lqn (Qn

p )

≤
(
1 + (p− 1)

N∑
j=1

Bn(pj−1δ)2
)1/2 ∑

I∈P(Zp,δ)

∥∥fI∥∥2Lqn (Qn
p )

1/2

,

which implies

Dn(δ) ≤ p1/2
(
1 +

N∑
j=1

Bn(pj−1δ)2
)1/2

,

as was to be shown.

We also will need a system of asymmetric bilinear decoupling constants.

Definition 6.8 (Asymmetric bilinear decoupling constant). Fix δ = p−β ∈ p−N. For s, t ∈ [0, 1]
with sβ, tβ ∈ Z, define the asymmetric bilinear decoupling constant Bn,k,s,t(δ) to be the infimal
(real) constant C such that the following holds. Suppose I, J are distinct balls of radius at
most δs, δt, respectively, contained in distinct members of P(Zp, p−1). For each Ii ∈ P(I, δ), let

fi ∈ S(Qn
p ) be such that f̂i is supported in UIi ; similarly, for each Ji ∈ P(J, δ), let gi ∈ S(Qn

p )
be such that ĝi is supported in UJi . Then

ˆ
Qn

p

|fI |qk |gJ |qn−qk ≤ Cqn

(∑
i

∥fi∥2Lqn (Qn
p )

) qk
2
(∑

i

∥gi∥2Lqn (Qn
p )

) qn−qk
2

.

We control the symmetric bilinear decoupling constant by the asymmetric bilinear decou-
pling constants:

Lemma 6.9. Let 0 ≤ k < n, δ = p−β ∈ p−N, and s, t ∈ [0, 1] such that sβ, tβ ∈ Z. Then

Bn(δ) ≤ δ−sqk/qnδ−t(qn−qk)/qnBn,k,s,t(δ).
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Proof. Identical to the proof of Lemma 3.4 of [5]; we validate the particular constant. Let
I, I ′ ∈ P(Zp, p−1) be distinct. Fix {fK}K∈P(I,δ)∪P(I′,δ) be a tuple as in the statement of Definition
6.6. Suppose k ̸= 0. By several applications of Hölder,

ˆ
Qn

p

|fI |qn/2|fI′ |qn/2 ≤

(ˆ
Qn

p

|fI |qk |fI′|qn−qk
)1/2(ˆ

Qn
p

|fI |qn−qk |fI′ |qk
)1/2

, (6.2)

and considering the first factor:
ˆ
Qn

p

|fI |qk |fI′ |qn−qk ≤ [#P(I, δs)]qk−1[#P(I ′, δt)]qn−qk−1
∑

J∈P(I,δs)
J ′∈P(I′,δt)

ˆ
Qn

p

|fJ |qk |fJ ′|qn−qk ,

and recalling Definition 6.8 we have

ˆ
Qn

p

|fJ |qk |fJ ′ |qn−qk ≤ Bn,k,s,t(δ)qn
 ∑
K∈P(J,δ)

∥fK∥2qn

qk/2
 ∑
K∈P(J ′,δ)

∥fK∥2qn

(qn−qk)/2

.

Applying the trivial bounds #P(I, δs),#P(I ′, δt) and on the operator norms of the inclusions
ℓ2 ↪→ ℓqk , ℓqn−qk , we conclude that

ˆ
Qn

p

|fI |qk |fI′|qn−qk ≤ p2−qnδ−s(qk−1)−t(qn−qk−1)Bn,k,s,t(δ)qn

×

 ∑
K∈P(I,δ)

∥fK∥2qn

qk/2
 ∑
K∈P(I′,δ)

∥fK∥2qn

(qn−qk)/2

Considering the other factor in 6.2, we break fI into δ−t-many pieces and fI′ into δ
−s-many

pieces and apply Hölder, and we obtain an identical estimate. Since s, t ≥ 0 and qn ≥ 2, the
result follows.

Finally, we observe that when k = 0, the same calculation (disregarding the terms involving
a k) may be done to obtain an estimate of the form

ˆ
Qn

p

|fI |qn/2|fI′ |qn/2 ≤ p2−qnδs+tδ−tqnBn,k,s,t(δ)qn
 ∑
K∈P(I,δ)

∥fK∥2qn

qn/4 ∑
K∈P(I′,δ)

∥fK∥2qn

qn/4

and we are done.

We also record that the asymmetric bilinear decoupling constants can be controlled by the
linear decoupling constants:

Lemma 6.10. If 1 ≤ k ≤ n− 1, δ = p−β ∈ p−N, and s, t ∈ [0, 1] are such that βt, βtn−k+1
k

∈ Z,
then

Bn,k,n−k+1
k

t,t(δ) ≤ Dn(δ
1−n−k+1

k
t)qk/qnDn(δ

1−t)(qn−qk)/qn

Proof. Immediate from Hölder; see also the calculation in the “Proof of Theorem 1.2” in [5].
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For k ≤ n and ω ∈ Zp, write V k(ω) = spanQn
p
{γ(1)(ω), . . . , γ(k)(ω)}. The following is

superficially identical to an estimate in [5], but we emphasize that we are considering the p-adic
norm on both sides.

Lemma 6.11 (p-adic Vandermonde determinant). Under the assumption p > n, we have

| det[γ(1)(t), . . . , γ(k)(t), γ(1)(s), . . . , γ(n−k)(s)]|p = |s− t|k(n−k)p (6.3)

Proof. We have, for 1 ≤ i ≤ n− k,

γ(i)(s) =
n∑
j=i

1

(j − i)!
γ(j)(t)(t− s)j−i

Plugging in to the left-hand side of 6.3,

det[γ(1)(t), . . . , γ(k)(t), γ(1)(s), . . . , γ(n−k)(s)]

=
∑

j1,...,jn−k:n≥ja≥a

det[γ(1)(t), . . . , γ(k)(t), γ(j1)(t), . . . , γ(jn−k)(t)]
n−k∏
a=1

(t− s)ja−a

(ja − a)!

Observe that the determinant summand vanishes when (j1, . . . , jn−k) is not a permutation of
(k + 1, . . . , n). On the other hand, when (j1, . . . , jn−k) is a permutation of (k + 1, . . . , n), we
see that

n−k∏
a=1

(t− s)ja−a = (t− s)k(n−k)

so that

det[γ(1)(t), . . . , γ(k)(t), γ′(s), . . . , γ(n−k)(s)]

= (t− s)k(n−k)
∑

(j1,...,jn−k)∼(k+1,...,n)
ja≥a

sgn(j1, . . . , jn−k)
n−k∏
a=1

1

(ja − a)!
.

Here ∼ denotes permutation, and sgn denotes the sign of the implied permutation.
Finally, observe that

det[γ(1)(0), . . . , γ(k)(0), γ(1)(1), . . . , γ(n−k)(1)] =
∑

(j1,...,jn−k)∼(k+1,...,n)
ja≥a

sgn(j1, . . . , jn−k)
n−k∏
a=1

1

(ja − a)!

whereas the left-hand side may be computed (c.f. [6], display (14)) as[
n∏
j=1

1

j!

][
k∏
j=1

j!

][
n−k∏
j=1

j!

]
(1− 0)k(n−k)

so that, since p > n,

| det[γ(1)(t), . . . , γ(k)(t), γ(1)(s), . . . , γ(n−k)(s)]|p = |s− t|k(n−k)p

and we may conclude 6.3.
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Before reaching the main estimate of the theorem, we demonstrate an equivalence between
the model decoupling constant Dn(δ) = Dγ

n(δ) and that of general convex curves. We first need
a technical lemma:

Lemma 6.12 (Stability of linear decoupling constants). Let n ≥ 2. Suppose ζ : Zp → Qn
p is

Cn. Suppose δ, δ′ ∈ p−N are such that δ < δ′. Then we have the estimate

Dζ
n(δ) ≤ (δ′/δ)1/2Dζ

n(δ
′).

Proof. For any choice of functions {fI}I∈P(Zp,δ) with f̂I supported in U ζ
I , then we have∥∥∥∥∥∥

∑
I∈P(Zp,δ)

fI

∥∥∥∥∥∥
Lqn

≤ Dζ
n(δ

′)

 ∑
J∈P(Zp,δ′)

∥∥∥∥∥∥
∑

I∈P(J,δ)

fI

∥∥∥∥∥∥
2

Lqn

1/2

,

and the desired estimate follows from the triangle inequality and Cauchy-Schwarz.

Proposition 6.13 (Decoupling for convex curves). Let k ≥ 2. Suppose ζ : Zp → Qk
p is a

Ck+1 curve that is convex and has bounded derivatives, in the sense that it satisfies 7.2 and
7.3. For each δ ∈ p−N, write Dζ

k(δ) for the ℓ
2Lqk decoupling constant associated to the partition

{U ζ
I }I∈P(Zp,δ). Suppose Dk(ρ) ≤ Ck,ερ

−ε for all ε = 1
ℓ
, ℓ ∈ N, and ρ ∈ p−N. Then, for each

δ ∈ p−N and each ε = 4
ℓ
with ℓ ∈ N, we have the estimate

Dζ
k(δ) ≤ Eζk,εδ

−ε,

where the constant Eζk,ε may be taken as

Eζk,ε = C
2k⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉ ×max(1, c−1Ck−1∥ζ∥Ck+1

◦
).

Proof. This is essentially identical to the proof of Lemma 3.6 of [5]; we highlight the needed
modifications to produce the p-adic analogue. Fix ε = 4

ℓ
for some ℓ ∈ N, and write Z = k2k⌈log 2ℓ⌉.

Write α = max(1, c−1Ck−1∥ζ∥Ck+1
◦

), where c, C are the constants from 7.2 and 7.3. Write r ∈ N
for the smallest integer such that α ≤ prZ . Choose any δ ∈ p−ℓZN such that δ−ε/2 > prZ . Fix
κ = δεprZ , so that κ < α−1 and κ < δε/2. Furthermore, writing

m∗ =

⌈
log(4ε−1)

log(1 + k−1)

⌉
≤ 2k⌈log(4ε−1)⌉,

we see that, for each 1 ≤ m ≤ m∗, we have

κ(
k+1
k

)m ∈ p−N,

and we have the inequalities

κ(
k+1
k

)m∗−1 ≤ δ
k

k+1 < κ.

With these parameters chosen, suppose I ∈ P(Zp, κ), and {fI′}
I′∈P(I,κ

k+1
k )

are such that fI′

has Fourier support in U ζ
I′ . If cI ∈ I, then for any other ξ ∈ I we may write

ζi(ξ) = ζi(cI) +
k∑
j=1

ζ
(j)
i (cI)

k!
(ξ − cI)

j + (cI − ξ)k+1Λik+1(cI , ξ)
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where Λik+1 is continuous and vanishes along the diagonal. Write AI = AζcI . By Lemma 7.2,
A−1
I has ≤ c−1Ck−1 operator norm. Then the curve

η(ξ) = A−1
I (ζ(ξ + cI)− ζ(cI))

satisfies

ηi(ξ) =
ξi

i!
+ ξk+1Λik+1(cI , ξ),

and
∥η∥Ck+1

◦
≤ c−1Ck−1∥ζ∥Ck+1

◦
.

By Lemma 7.1(c), it further holds that

η
(j)
i (ξ) =

ξi−j

(i− j)!
δi≥j + ξ

j+1∑
ι=1

Φj+1ηi(0, . . . , 0, ξ, . . . , ξ),

where Φj+1 is defined in Appendix C, and there are ι-many 0’s. By the affine invariance of
decoupling constants,

Dk({U ζ
I′}I′∈P(I,κ

k+1
k )

) = Dk({Uη
I′−cI}I′∈P(I,κ

k+1
k )

)

We claim that the boxes Uη
I′−cI and Uγ

I′−cI are comparable. Indeed, if x ∈ Uη
I′−cI , then there are

{λj}nj=1 ∈
∏k

j=1B(0, κj
k+1
k ) and ξI′−cI ∈ I ′ − cI ⊆ Bκ(0) such that

x = η(ξI′−cI ) +
k∑
j=1

η(j)(ξI′−cI )λj,

so that

xi = γi(ξI′−cI ) +
k∑
j=1

γ
(j)
i (ξI′−cI )λj + E,

where |E|p ≤ c−1Ck−1∥ζ∥Ck+1
◦
κ2+

1
k , i.e. Uη

I′−cI is contained in a c−1Ck−1∥ζ∥Ck+1
◦
κ2+

1
k -neighborhood

of Uγ
I′−cI . Since the family {Uγ

I′−cI}I′∈P(I,κ
k+1
k )

are κ
k+1
k -separated, we obtain

Decℓ2Lqk

(
{Uη

I′−cI}I′∈P(I,κ
k+1
k )

)
≤ Decℓ2Lqk

(
{Uγ

I′−cI}I′∈P(I,κ
k+1
k )

)
,

because c−1Ck−1∥ζ∥Ck+1
◦

< κ−1, so that (using the affine invariance to compare ζ to η, and the
affine rescaling of ζ),

Decℓ2Lqk

(
{U ζ

I′}I′∈P(I,κ
k+1
k )

)
≤ Decℓ2Lqk

(
{Uγ

I′}I′∈P(I,κ
k+1
k )

)
.

On the other hand, affine rescaling implies

Decℓ2Lqk

(
{Uγ

I′}I′∈P(I,κ
k+1
k )

)
≤ Dk(κ

1/k),
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so that
Decℓ2Lqk

(
{U ζ

I′}I′∈P(I,κ
k+1
k )

)
≤ Dk(κ

1/k).

We have established this whenever κ > δ
k

k+1 and I ∈ P(Zp, κ). If we iterate this m-many

times, where κ(
k+1
k

)m > δ
k

k+1 , we obtain

Decℓ2Lqk

(
{U ζ

I′}I′∈P(I,κm
k+1
k )

)
≤

m∏
j=1

Dk(κ
( k+1

k
)j−1/k).

Observe that #P(Zp, κ) ≤ κ−1, so by flat decoupling we have

Decℓ2Lqk

(
{U ζ

I }I∈P(Zp,κ)

)
≤ κ

1
qk

− 1
2 .

If κ(
k+1
k

)m+1 ≤ δ
k

k+1 as well, then for each I ′ ∈ P(Zp, κ(
k+1
k

)m) we have

Decℓ2Lqk

(
{U ζ

J}J∈P(I,δ)

)
≤ (δκ−( k+1

k
)m)

1
2
− 1

qk ≤ (κ−( k+1
k

)2)
1
2
− 1

qk .

Finally, from the hypothesis that Dk(ρ) ≤ Ck,ερ
−ε for all ε > 0 and all ρ ∈ p−N, we obtain

Dζ
k(δ) ≤ Cm

k,ε/4κ
(−( k+1

k
)2−1)( 1

2
− 1

qk
)− ε

4
[( k+1

k
)m−1]

.

Observe that m < m∗. Recalling that κ > α−1p−Zδε, we conclude

Dζ
k(δ) ≤ C

2k⌈log(4ε−1)⌉
k,ε/4 p2k

2k⌈log(4ε−1)⌉ ×max(1, c−1Ck−1∥ζ∥Ck+1
◦

)× δ−ε.

It remains to remove the special assumptions on the value of δ. Take ε = 4
ℓ
for some ℓ ∈ N.

Suppose first that δ ∈ p−N is such that δ > p−ε
−1Zα−1, where α is as above. Then we may

trivially bound
Dζ
k(δ) ≤ δ−1δ−ε,

and
δ−1 ≤ pε

−1k2k⌈log(4ε
−1)⌉

max(1, c−1Ck−1∥ζ∥Ck+1
◦ )).

We are done in this case, thanks to Ck,ε ≥ 1. Suppose instead that δ ∈ p−N satisfies the
inequalities

p−ℓk
2k⌈log 2ℓ⌉(K+1) < δ < p−ℓk

2k⌈log 2ℓ⌉K , K ∈ N.

Comparing Dζ
k(δ) to Dζ

k(δ
′), where δ′ = p−ℓk

2k⌈log 2ℓ⌉K , we obtain the estimate

Dζ
k(δ) ≤ C

2k⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉ ×max(1, c−1Ck−1∥ζ∥Ck+1

◦
)× δ−ε.
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6.2 Lower dimensional estimates

We next establish the induction-on-dimension estimates in the p-adic setting. This is the
component of the argument that requires the most careful rewriting; the core steps for inducting
on dimension are essentially the same, but are usually phrased essentially in the language of
Euclidean geometry. We choose instead to phrase things via matrix algebra, and the difficulties
disappear.

A critical input of these estimates in the Euclidean setting is the Fourier slicing theorem,
which requires some slight rewording in our setting; the dot product · : Qn

p × Qn
p → Qp is

isotropic for every n ≥ 3 and odd p (see the start of this section of the appendix). A near
relative is available, which we produce now.

Lemma 6.14 (p-adic Fourier slicing). Suppose that f : Qn
p has Fourier support inside of

Ω ⊆ Qn
p . Let H ⊆ Qn

p be a k-dimensional linear subspace, B : Qk
p → Qn

p a linear isomorphism
onto H, and z ∈ Qn

p arbitrary. Write f z for the function H → C, f z(x) = f(x + z). Then
f z ◦B has Fourier support in the set B⊤Ω.

Proof. By extension of bases, we may write B = B′ ◦ ι where ι : Qk
p ↪→ Qn

p is the inclusion
into the first k coordinates and B′ : Qn

p → Qn
p is a linear isomorphism. By the usual change-of-

variable,

f̂ ◦B′ = | detB′|−1
p · f̂ ◦ (B′)−⊤.

It follows that we may assume that H is the subspace {xk+1 = . . . = xn = 0}, for which
H⊥ = {x1 = . . . = xk = 0}. Then, for y ∈ H and z ∈ H⊥,

f z(y) =

ˆ
χ((y + z) · ξ)f̂(ξ)dξ

=

ˆ
H

χ(y · ξ′)
ˆ
H⊥

χ(z · ξ′′)f̂(ξ′, ξ′′)dξ′′dξ′.

It follows that f̂ z is supported in the set {ξ′ ∈ H : ∃ξ′′ s.t. ξ′ + ξ′′ ∈ Ω}. The result follows.

We apply this to decouple functions using lower-dimensional estimates.

Lemma 6.15. Let k < n and assume that Dk(δ) ≤ Ck,εδ
−ε for all ε = 1

ℓ
, ℓ ∈ N, and δ ∈ p−N.

Let δ = δ−β ∈ p−N and {fI}I∈P(Zp,δ) have Fourier support in {UI}I∈P(Zp,δ). If 0 ≤ s, t ≤ 1 satisfy
0 ≤ s ≤ (n−k+1)t/k and sβ, tβ, tβ(n−k+1)/k ∈ Z, then for any J1 ∈ P(Zp, δs), J2 ∈ P(Zp, δt)
in distinct cosets of pZp, and for any ε = 4

ℓ
with ℓ ∈ N≥4, we have

ˆ
|fJ1 |qk |fJ2|qn−qk ≤ C

2kqk⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉+2

× δ−qk[
(n−k+1)t

k
−s]ε

 ∑
J∈P(J1,δ(n−k+1)t/k)

(ˆ
Qn

p

|fJ |qk |fJ2|qn−qk
)2/qk

qk/2 . (6.4)

Proof. Pick any ω ∈ J2 and write V = span(γ(1)(ω), . . . , γ(n−k)(ω)). Let H = V ⊥ be the orthog-
onal space to V in Qn

p ; observe that dimH = k, since the dot product is still nondegenerate.
Set t′ = (n− k + 1)t/k.
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Define

B = A⊤
−ω

[
0
Ik

]
;

it follows that B defines a linear isomorphism Qk
p → H. Write µH = B∗µQk

p
.

We use Lemma 6.14 to estimate integrals of f along H + z. Let B be a linear isomorphism

Qk
p → H. Observe that f zJ1 ◦B has Fourier support in UB⊤γ

J1
. By Fubini,

ˆ
Qn

p

|fJ1 |qk |fJ2|qn−qkdµ =

ˆ
z∈Qn

p

 
x∈BH(z,δ−t′k)

|fJ1|qk(x)|fJ2|qn−qk(x)dµH(x)dµQn
p
(z)

Note BH(z, δ
−t′k) = BH(z, δ

−(n−k+1)t). Write A for the matrix with j’th column γ(j)(ω), 1 ≤
j ≤ n. By uncertainty, fJ2 is constant on translates of the set

U∗
J2

= A−⊤
ω · diag

(
δt, . . . , δnt

)
[Znp ]

If y ∈ BH(0, δ
−t′k), then

diag
(
δ−t, . . . , δ−nt

)
(A⊤

ω y) =



0
...
0

δ−(n−k+1)tγ(n−k+1)(ω) · y
...

δ−ntγ(n)(ω) · y


∈ Znp ,

since
∣∣δ−rtγ(r)(ω) · y∣∣

p
≤ δrt−(n−k+1)t ≤ 1 for each r ≥ n − k + 1. Consequently, we have

BH(0, δ
−t′k) ⊆ U∗

J2
, and so by uncertainty we have that |fJ2|qn−qk is constant on BH(z, δ

−t′ℓ).
Thus ˆ

z∈Qn
p

 
x∈BH(z,δ−t′k)

|fJ1|qk(x)|fJ2 |qn−qk(x)

=

ˆ
z∈Qn

p

|fJ2|qn−qk(z)
 
x∈BH(z,δ−t′k)

|fJ1|qk(x)

Then ˆ
x∈BH(z,δ−t′ℓ)

|fJ1(x)|qkdµH(x) =
ˆ
x∈BH(0,δ−t′ℓ)

|f zJ1(x)|
qkdµH

=

ˆ
y∈B−1[BH(0,δ−t′ℓ)]

|f zJ1(B(y))|qkp dµQk
p
(y),

where we have used that B∗µQk
p
= µH . By Lemma 6.14, for each J ∈ P(J1, δ

t′), the function

fJ ◦B is supported in the set UB⊤γ
J . By Lemma 6.3, the curve B⊤γ : Zp → Qk

p satisfies

max
1≤j≤k

max
1≤r≤k

sup
θ∈J1

|B⊤γ
(r)
j (θ)|p ≤ 1
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and
inf
θ∈J1

| det[B⊤γ(1)(θ), . . . , B⊤γ(k)(θ)]|p ≥ 1.

By Lemma 5.4, Prop. 6.13, and the inductive assumption,
ˆ
x∈BH(z,δ−t′k)

|fJ1|qk(x) ≤ C
2kqk⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉+2

× (#P(J1, δ
t′))qkε

 ∑
J∈P(J1,δt

′ )

∥fJ∥2Lqk (BH(z′,δ−b′k))

qk/2

.

Consequently,
ˆ
Qn

p

|fJ1 |qk |fJ2|qn−qk ≤C
2kqk⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉+2

δtk(n−k+1)−qkε(t′−s)

×
ˆ
z∈Qn

p

|fJ2|
2
qn−qk

qk (z)
∑

J∈P(J1,δt
′ )

∥fJ∥2Lqk (BH(z,δ−t′k))

qk/2

,

which by Minkowski is bounded by

C
2kqk⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉+2

δtk(n−k+1)−qkε(t′−s)

×

 ∑
J∈P(J1,δt

′ )

(ˆ
z∈Qn

p

|fJ2|qn−qk(z)∥fJ∥
qk
Lqk (BH(z,δ−t′k))

)2/qk
qk/2

.

Finally,
ˆ
z∈Qn

p

|fJ2|qn−qk(z)∥fJ∥
qk
Lqk (BH(z,δ−t′k))

=

ˆ
z∈Qn

p

|fJ2(z)|qn−qk
ˆ
x∈BH(z,δ−t′k)

|fJ(x)|qk

= δ−t(n−k+1)k

ˆ
z∈Qn

p

|fJ2(z)|qn−qk |fJ(z)|qk ,

by virtue of local constancy; hence we have shown
ˆ

|fJ1 |qk |fJ2|qn−qk ≤ C
2kqk⌈log(4ε−1)⌉
k,ε/4 p(1+ε

−1)k2k⌈log(8ε
−1)⌉+2

× δ−qkε(t
′−s)

 ∑
J∈P(J1,δ(n−k+1)t/k)

(ˆ
Qn

p

|fJ |qk |fJ2|qn−qk
)2/qk

qk/2 ,
as was to be verified.

Corollary 6.16. If k < n and Dk(δ) ≤ Ck,εδ
−ε for all ε = 1

ℓ
, ℓ ∈ N, then for any δ, s, t satisfying

the hypotheses of Lemma 6.15,

Bn,k,s,t(δ) ≤ C
2kqkq

−1
n ⌈log(4ε−1)⌉

k,ε/4 p(1+ε
−1)q−1

n k2k⌈log(8ε
−1)⌉+2

δ−
qk
qn
[ (n−k+1)t

k
−s]εBn,k,n−k+1

k
t,t(δ).
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We record another application of Hölder; here we are able to go without an application of
the uncertainty principle.

Lemma 6.17. If 1 ≤ k ≤ n− 1, and if δ ∈ (0, 1) and s, t ∈ (0, 1) are as above, then

Bn,k,s,t(δ) ≤ Bn,n−k,t,s(δ)
1

n−k+1Bn,k−1,s,t(δ)
n−k

n−k+1 .

Proof. Let {fi}i, {gi}i be families as in Def. 6.8. Then, writing θk = 1/(n− k+ 1), we see that

ˆ
Qn

p

|
∑
i

fi|qk |
∑
i

gj|qn−qk =

ˆ
Qn

p

|
∑
i

fi|θk(qn−qn−k)|
∑
i

fi|(1−θk)qk−1 |
∑
i

gi|θkqn−k |
∑
i

gi|(1−θk)(qn−qk−1)

≤

(ˆ
Qn

p

|
∑
i

fi|qn−qn−k |
∑
i

gi|qn−k

)θk
(ˆ

Qn
p

|
∑
i

fi|qk−1|
∑
i

gi|qn−qk−1

)1−θk

from which the result is clear.

The following consequence is identical to Lemma 4.2 of [5]:

Lemma 6.18. Suppose Dk(δ) ≤ Ck,εδ
−ε for all 1 ≤ k ≤ n − 1 and all δ, ε > 0. Suppose

1 ≤ k ≤ n−1 and let ε = 4
ℓ
for some ℓ ∈ N≥4. Then, for every t ∈ [0, 1] such that t ≤ k(n−k)

(k+1)(n−k+1)

and either k = 1 or t ≤ k−1
n−k+2

, we have, for each δ ∈ p−N for which δt, δ
n−k+1

k
t ∈ p−N,

Bn,k,n−k+1
k

t,t(δ) ≤ p8ε
−4n logn

C
2⌈log(4ε−1)⌉
n−k,ε/4 C

2k⌈log(4ε−1)⌉
k−1,ε/4 δ−

n−k
n

k−1+(k+1)(n−k+1)
(k+1)(n−k+1)

tε

× Bn,n−k, k+1
k

n−k+1
n−k

t,n−k+1
k

t(δ)
1

n−k+1Bn,k−1,n−k+2
k−1

t,t(δ)
n−k

n−k+1 .

We also record the following:

Lemma 6.19. For any δ ∈ p−N and any s, t such that Bn,0,s,t(δ) is defined,

Bn,0,s,t(δ) = Dn(δ
1−t).

Proof. For any particular tuples {fi}i, {gi}i, the inequality in Def. 6.8 is just the linear decou-
pling inequality for the tuple {gi}i. The result follows by parabolic rescaling.

6.3 Induction on scales

In this section we run an induction on scales argument in order to prove Theorem 6.1. We mirror
the arguments in Section 4 of [5]; however, in order to verify the appropriate quantitative
estimate, we produce a modified version. The former runs an analysis on the tropicalized
quantities η, {Ak}k, defined as the optimal exponents on various decoupling constants; the
resulting analysis is clean, but does not admit estimates on the corresponding constants. We
run a suitable finitary version of this argument, which gives somewhat loose (but explicit)
estimates on the constant.

For the reader’s convenience, we state in our current notation the statement we will prove.
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Theorem 6.20 (Moment curve decoupling). For each ε > 0 and n ∈ N, there is a constant
Cn,ε such that

Dn(δ) ≤ Cn,εδ
−ε,

for all δ ∈ p−N. Moreover, the constant Cn,ε may be taken to be

Cn,ε = exp
(
104(log p)ε−4n lognn10n2

)
.

Proof of Theorem 6.20. By induction, we will establish
We will instead prove the stronger inequality

Dn(δ) ≤ exp(104(log p)(ε/48n)−4n logn(48n)n
2

n4+5n)δ−ε,

for each ε = 1
ℓ
for some ℓ ∈ N. We have spelled out a constant in a useful inductive form; after

proving this for all n, we will go back and prove the original statement.
We argue by induction on n. The case n = 1 is trivial, so we assume that n ≥ 2 and the

estimate holds for all Dk, k = 1, . . . , n − 1. First take ε = (48n)−n
2ℓ, for some ℓ ∈ N; we will

later remove this assumption. For each H ∈ N, we write

T H =

{
a

b
∈ (0, 1) ∩Q : a ∈ Z, b =

H∏
j=1

kj for some (k1, . . . , kH) ∈ [n]H

}

for the rational numbers t of “depth” ≤ H. We writeN = ⌊5(n−1)2

n logn
⌋, which will control the

number of steps in our analysis. We will assume that δ ∈ p−(n!)NN and δ < n−3000n4ε−1
. We

write

ηδ =
logDn(δ)

log(δ−1)
,

and, when 0 ≤ k ≤ n− 1 and t ∈ T N ,

Aδk(t) =
log(Bn,k,n−k+1

k
t,t(δ))

log(δ−1)
.

By Lemma 6.19, we have Aδ0(t) = (1− t)ηδ
1−t

. We adopt the abbreviation

qε(δ) =
8(log p)(ε/48n)−4n logn

log(δ−1)

(
1 + 2500n⌈log((48n)2ε−1)⌉(ε/48n)4 logn(48n)n2

n4+n
)
,

a quantity controlling the logarithm of the prefactors in Lemma 6.18 for each 1 ≤ k ≤ n − 1,
divided by log(δ−1), using the inductive hypothesis. It will be important that, for every n ≥ 2
and our choice of ε, the second factor is ≤ 2.

By Lemma 6.18, selecting ε
12n

for the statement’s ε, and the inductive hypothesis, for each

1 ≤ k ≤ n− 1, and for each t ∈ T N−1 with t ≤ k(n−k)
(k+1)(n−k+1)

, and either k = 1 or t ≤ k−1
n−k+2

,

Aδk(t) ≤
1

n− k + 1
Aδn−k

(
n− k + 1

k
t

)
+

n− k

n− k + 1
Aδk−1(t) +

tε

6n
+ qε(δ).
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We write, for 0 ≤ k ≤ n− 1,

aδk(t) =
ηδ − Aδk(t)

t
, t ∈ T N ,

so that

aδk(t) ≥
1

k
aδn−k

(
n− k + 1

k
t

)
+

n− k

n− k + 1
aδk−1(t)−

ε

6n
− qε(δ)

t
, t ∈ T N−1.

We note as well the trivial bounds

0 ≤ aδk(t) ≤
1

2t log δ−1
,

arising from the triangle inequality, Cauchy-Schwartz, and the fact that decoupling constants
are at least 1. Note that aδ0(t) = ηδ

1−t
. We write aδ(t) for the (n− 1)× 1 row vector composed

of the aδk(t). Define M to be the (n− 1)× (n− 1) matrix

Mi,j =


n−j
n−j+1

i = j + 1 ̸= n− j
1
i

i = n− j ̸= j + 1

1 i = n− j = j + 1

0 otherwise

.

Trivially, for each choice 0 < ρ < c < 1
2n

and each 0 ≤ ι ≤ N − 1,

min
t∈T ι+1∩( 1

n
ρ,nc)

aδk(t) ≤ min
t∈T ι∩(ρ,c)

aδk(t).

Let c0 = 10−2n−2. Observe that c0 satisfies the inequality

n
60(n−1)2ε−1 1

c0 log δ−1 c0 <
1

2n
.

It follows that, for some 0 ≤ ι ≤ N , the numbers ρ = n−ιc0, c = nιc0 satisfy

min
t∈T ι+1( 1

n
ρ,nc)

aδk(t) > − ε

12n
+ min

t∈T ι∩(ρ,c)
aδk(t), ∀1 ≤ k ≤ n− 1,

and

c <
1

2n
.

Define, for each 0 ≤ k ≤ n− 1,

mδ
k = min

t∈T ι∩(ρ,c)
aδk(t), m̃δ

k = min
t∈T ι+1∩( 1

n
ρ,nc)

aδk(t).

We see that the vectors (mδ
k)
n−1
k=1 satisfy

m̃δ ≥ mδ − ε

12n
1
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and
mδ ≥ m̃δ.M −

{ ε

6n
+ ρ−1qε(δ)

}
1.

Combining, and taking a matrix multiplication on the right with the column vector 1⊤, we
obtain

n−1∑
k=1

m̃δ
k ≥

n−1∑
k=1

m̃δ
k +

n− 1

n
ηδ

1−t − ε

4
− nρ−1qε(δ), for some t ∈ T N ∩ (

ρ

n
, cn),

which may be written as

ηδ
α ≤ ε

2
+ 2nρ−1qε(δ), for some α ∈ T N ∩ (

1

2
, 1).

It follows from a short calculation that

Dn(δ) ≤ exp(6400(log p)(ε/48n)−4n lognn4+5n)δ−ε.

It remains to remove the special size and arithmetic assumptions on δ and ε. We have shown
the estimate for all δ ∈ p−(n!)NN with δ < n−3000n4ε−1

. Suppose instead that K ∈ N is such that

p−(n!)N (K+1) < δ < p−(n!)NK .

Then, by stability of Dn, Lemma 6.12 with δ′ = p−(n!)NK , we obtain the bound

Dn(δ) ≤ p(n!)
N

exp(6400(log p)(ε/48n)−4n lognn4+5n)δ−ε.

But since ε ≤ (48n)−n
2
, it is quick to see via Stirling that

p(n!)
N

exp(6400(log p)(ε/48n)−4n lognn4+5n) ≤ exp(7000(log p)(ε/48n)−4n lognn4+5n).

We have proven the bound for all δ ∈ p−N with δ < min(p−(n!)N , n−3000n4ε−1
). By a trivial

estimate, the same holds for all δ ∈ p−N.
Thus we are done in the case ε = (48n)−n

2ℓ for some ℓ ∈ N. Suppose instead ε = 1
ℓ
for some

ℓ ∈ N. We have two cases. In the first case, there is ℓ′ ∈ N so that

(48n)−n
2(ℓ′+1) ≤ ε ≤ (48n)−n

2ℓ′

Then we conclude, for each δ ∈ p−N,

Dn(δ) ≤ exp(7000(log p)(ε/48n)−4n logn(48n)n
2

n4+5n)δ−ε,

which fits in the estimate we wished to conclude. In the second case, we have ε > (48n)−n
2
,

and again a trivial estimate suffices.

Remark 6.21. One may compare the above analysis with the problem of bounding a constant
quantity η, given that it relates to a system as{

q(t) ∈ [0, C
T−t ], 0 ≤ t ≤ T,

q̇ ≤ −η +O( ε
T−t).
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We conclude by recording the following standard corollary.

Corollary 6.22. Suppose ζ : Zp → Qn
p is a Cn+1-curve that is convex and has bounded

derivatives, as defined in section 7. Then

Decℓ2Lqn ({U ζ
I }I∈P(Zp,δ)) ≲γ,ε δ

−ε ∀ε > 0, δ ∈ p−N.

Proof. Follows from Thm. 6.1 and Prop. 6.13.

Remark 6.23. If we consider the alternate set-family {U ′
I}I∈P(Zp,δ), defined by

U ′
I,θ =

{
x ∈ Qn

p : |xj − γj(θ)|p ≤ δj ∀1 ≤ j ≤ n
}
, (θ ∈ I),

and
U ′
I =

⋃
θ∈I

U ′
I,θ,

then, for any δ ∈ p−nN, J ∈ P(Zp, δ) and I ∈ P(Zp, δ1/n) with J ⊆ I, it holds that

U ′
J ⊆ UI .

Consequently, we have the decoupling estimate

Decℓ2Ln(n+1)

{ ⋃
J∈P(I,δ)

U ′
J

}
I∈P(Zp,δ1/n)

 ≤ Cn,nεδ
ε,

for each ε and δ.

7 Appendix C: Curves in Qn
p

We take as a reference [12].
The curves ζ : Zp → Qn

p under consideration will be assumed to be Ck, for various k ∈
N ∪ {∞}; as such, we recall some of the basics of ultrametric calculus. Consider an arbitrary
function f : Zp → Qp. If k ∈ N and a1, . . . , ak+1 ∈ Zp are distinct, we write Φk for the Newton
quotient

Φkf(a1, . . . , ak+1) =
k+1∑
j=1

f(aj)∏
i ̸=j(aj − ai)

.

We will also write Φ0f = f . A function f is said to be Ck if, for every 0 ≤ j ≤ k, the function
Φjf extends to a continuous function Φj : Zk+1

p → Qp. f is said to be C∞ if f ∈ Ck for every
k. This definition is extended to curves ζ : Zp → Qn

p in the obvious way.
The following summarizes the basic facts about the mappings Φk that we will need.

Proposition 7.1. Let f : Zp → Qp be a Cn function. Then each of the following holds.

(a) If f is Cn, then for each 1 ≤ k ≤ n and a ∈ Zp, we have

f (k)(a) = Φkf(a, . . . , a),

where f (k)(a) is the usual kth derivative of f at a.
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(b) f admits Taylor expansions

f(x) = f(y) +
n∑
j=1

f (j)(y)

j!
(x− y)j + (x− y)nΛn+1(x, y) ∀x, y ∈ Zp, (7.1)

where the remainder term Λn+1(x, y) is of the form

Λn+1(x, y) = Φnf(x, y, y, . . . , y)− f (n)(y).

(c) For any elements x1, . . . , xk+1, y1, . . . , yk+1 ∈ Zp, we have

Φkf(x1, . . . , xk+1)− Φkf(y1, . . . , yk+1) =
k+1∑
j=1

(xj − yj)Φk+1(x1, . . . , xj, yj, . . . , yk+1).

Proof. Taken from [12]; (a) is Theorem 29.5, (b) is Theorem 29.4, and (c) is Lemma 29.2(iii).
Note that our definition of Φ is equivalent to that of [12], by the latter’s Exercise 29.A.

We define the Ck norm of a Ck function f by

∥f∥Ck = max
0≤j≤k

sup
x∈Zj+1

p

|Φkf(x)|p.

We similarly define the Ck seminorm of a Ck function f by

∥f∥Ck
◦
= max

1≤j≤k
sup

x∈Zj+1
p

|Φkf(x)|p.

If ζ : Zp → Qn
p is a Ck curve, then we write

∥ζ∥Ck = max
1≤i≤k

∥ζi∥Ck , ∥ζ∥Ck
◦
= max

1≤i≤k
∥ζi∥Ck

◦

In particular, |ζ(j)i (x)|p ≤ ∥ζ∥Ck for each 1 ≤ i ≤ n and 0 ≤ j ≤ k. We note in passing that,
for any linear transformation B of Qn

p , we have the bound

∥Bζ∥Ck ≤ ∥B∥ · ∥ζ∥Ck .

We also note that our definition of ∥ · ∥Ck is strictly stronger than the simpler quantity

∥f∥⋆Ck = max
0≤k≤n

sup
x∈Zp

|f (k)(x)|p.

Indeed, if f = 1B(0,p−N ) is the indicator of the ball of radius p−N , then f ∈ C∞ and

sup
x∈Zp

|f(x)|p = 1, max
j∈N

sup
x∈Zp

|f (k)(x)|p = 0.

On the other hand, ∣∣∣∣f(pN−1)− f(0)

pN−1 − 0

∣∣∣∣
p

= pN−1,
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so ∥f∥C1 ≥ pN−1. It follows that ∥f∥Ck ≥ pN−1∥f∥⋆
Ck , for each k ≥ 1; thus, ∥ · ∥Ck defines a

strictly finer topology on C∞ than ∥ · ∥⋆
Ck .

We will want our curves ζ to be convex and of bounded derivatives; the former condition
amounts to

inf
t∈Zp

∣∣ det[ζ(1)(t), . . . , ζ(n)(t)]∣∣
p
≥ c, (7.2)

and the latter condition is that

max
1≤i,j≤n

sup
t∈Zp

∣∣ζ(j)i (t)
∣∣
p
≤ C. (7.3)

for various choices c ≳ 1, C ≲ 1; we name these bounds so as to track quantitative dependence
in the sequel.

As an immediate consequence, we have:

Lemma 7.2. Suppose ζ : Zp → Qn
p is Cn. Suppose further that ζ satisfies 7.2 and 7.3. Then,

for each t ∈ Zp, one has
∥[ζ(1)(t), . . . , ζ(n)(t)]−1∥ ≤ c−1Cn−1.

and
∥[ζ(1)(t), . . . , ζ(n)(t)]∥ ≤ Cn

Here ∥ · ∥ is operator norm with respect to the max-norm on Qn
p .

Proof. We only verify the first estimate; the second will follow by identical arrangements. The
matrix norm is given by

max
1≤j≤n

max
u1,...,un∈Zp

∣∣∣∣∣
n∑
k=1

(
[ζ(1)(t), . . . , ζ(n)(t)]−1

)
j,k
uk

∣∣∣∣∣
p

= max
1≤j≤n

max
u1,...,un∈Zp

max
1≤k≤n

∣∣∣([ζ(1)(t), . . . , ζ(n)(t)]−1
)
j,k
uk

∣∣∣
p

= max
1≤j,k≤n

∣∣∣([ζ(1)(t), . . . , ζ(n)(t)]−1
)
j,k

∣∣∣
p

By the cofactor form of matrix inverses, for each 1 ≤ j, k ≤ n,∣∣∣([ζ(1)(t), . . . , ζ(n)(t)]−1
)
j,k

∣∣∣
p
= | det[ζ(1)(t), . . . , ζ(n)(t)]|−1

p |Ck,j|p

where Ck,j is the (k, j)-cofactor. To estimate the latter, we simply use the (ultrametric) triangle
inequality via

|Ck,j|p ≤ max
1≤i,j≤n

|ζ(j)i (t)|n−1
p

Remark 7.3. When ζ = γ is the moment curve t 7→ (t, . . . , t
n

n!
) in Qn

p , the constants in 7.2 and
7.3 are c = C = 1.
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Next, we consider the local comparison between curves ζ that are convex and with bounded
derivatives to the model curve γ(t) = (t, . . . , t

n

n!
). Recall the notation

Aζθ,λ = [ζ(1)(θ), . . . , ζ(n)(θ)] · diag(λ, . . . , λn)

If ζ is suppressed, then we understand At to refer to the matrix Aγt . For fixed θ ∈ Zp and
λ ∈ pZp, define ζθ,λ to be the rescaled curve

ζθ,λ(t) = [Aζθ,λ]
−1(ζ(θ + λt)− ζ(θ))

The rescaling is motivated by the fact that the degree n Taylor approximation of the function
t 7→ ζ(θ + λt) near t = 0 is

ζ(θ + λt) ≈ ζ(θ) + Aζθ,λ · γ(t), ( |t|p ≪ 1)

Of course, if ζ is a polynomial of degree ≤ n, the Taylor approximation is an identity. In
particular, for such a ζ, ζθ,λ = γ is our moment curve; a trivial observation is the special case
γ = γθ,λ for each θ, λ.

Note in particular the identity

Φk(ζλ,θ)i(a1, . . . , ak+1) = λkΦkζi(c+ λa1, . . . , c+ λak+1), k ≥ 1,

which implies the scaling relations

∥ζλ,θ∥Ck(λZp) ≤ ∥ζ∥Ck , k ≥ 1, λ ∈ pZp,

∥ζλ,θ∥Ck
◦(λZp) ≤ |λ|−1

p ∥ζ∥Ck
◦
, k ≥ 1, λ ∈ pZp.

References

[1] J.W.S Cassels. Rational Quadratic Forms. Academic Press Inc. (London) Ltd., 1978.

[2] C. Cornut and V. Vatsal. “CM points and quaternion algebras”. In: Doc. Math. 10 (2005),
pp. 263–309. issn: 1431-0635,1431-0643.

[3] Christophe Cornut. “Mazur’s conjecture on higher Heegner points”. In: Invent. Math.
148.3 (2002), pp. 495–523. issn: 0020-9910,1432-1297. doi: 10.1007/s002220100199.
url: https://doi.org/10.1007/s002220100199.

[4] Shengwen Gan, Shaoming Guo, and Hong Wang. “A restricted projection problem for
fractal sets in Rn”. In: arXiv preprint arXiv:2211.09508 (2022).

[5] Shaoming Guo et al. “A short proof of ℓ2 decoupling for the moment curve”. In: American
Journal of Mathematics 143.6 (2021), pp. 1983–1998.

[6] Dan Kalman. “The generalized Vandermonde matrix”. In: Mathematics Magazine 57.1
(1984), pp. 15–21.

[7] Zane Kun Li. “An introduction to decoupling and harmonic analysis over Qp”. In: arXiv
preprint arXiv:2209.01644 (2022).

49

https://doi.org/10.1007/s002220100199
https://doi.org/10.1007/s002220100199


[8] Elon Lindenstrauss and A. Mohammadi. “Polynomial effective density in quotients of H3

and H2 ×H2”. In: Inventiones mathematicae 231 (2021), pp. 1141–1237.

[9] Elon Lindenstrauss, Amir Mohammadi, and Zhiren Wang. Effective equidistribution for
some one parameter unipotent flows. 2022. arXiv: 2211.11099 [math.NT].

[10] Elon Lindenstrauss et al. An effective version of the Oppenheim conjecture with a poly-
nomial error rate. 2023. arXiv: 2305.18271 [math.DS].

[11] J. M. Marstrand. “Some fundamental geometrical properties of plane sets of fractional
dimensions”. In: Proc. London Math. Soc. (3) 4 (1954), pp. 257–302. issn: 0024-6115,1460-
244X. doi: 10.1112/plms/s3-4.1.257. url: https://doi.org/10.1112/plms/s3-
4.1.257.

[12] W. H. Schikhof. Ultrametric Calculus: An Introduction to p-Adic Analysis. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1985. doi: 10.1017/
CBO9780511623844.

[13] V. Vatsal. “Uniform distribution of Heegner points”. In: Invent. Math. 148.1 (2002), pp. 1–
46. issn: 0020-9910,1432-1297. doi: 10.1007/s002220100183. url: https://doi.org/
10.1007/s002220100183.

50

https://arxiv.org/abs/2211.11099
https://arxiv.org/abs/2305.18271
https://doi.org/10.1112/plms/s3-4.1.257
https://doi.org/10.1112/plms/s3-4.1.257
https://doi.org/10.1112/plms/s3-4.1.257
https://doi.org/10.1017/CBO9780511623844
https://doi.org/10.1017/CBO9780511623844
https://doi.org/10.1007/s002220100183
https://doi.org/10.1007/s002220100183
https://doi.org/10.1007/s002220100183

	Introduction
	Acknowledgements

	Discretization
	Kakeya estimate via decoupling cones over moment curves
	Decoupling bound for restricted projections
	Appendix A: Decoupling lemmas over Qp
	Appendix B: Decoupling for the p-adic moment curve
	Bilinear-to-linear reduction
	Lower dimensional estimates
	Induction on scales

	Appendix C: Curves in Qpn

