Sackground: For any countably infinite amenable group G, Ornstein & beits '8;
demonstrated that G - Bernoulli shifts (G, K^G, K^G) are completely classified
by the quantify H(K), defined by
H(K) = -
$$\sum_{K \in K} n(EKS) \log n(EKS)$$

if K has a full-mesure countable set $K' \leq K$, $H(K) = +\infty$ other.ite.
(Here "classified" is with regards to the relation of being measurally cojugate)
• One vishes to similarly classify other G - systems, for G a countable discrete group,
by "entropy" type quantities. Of interest to as here it the class of G - Bernoulli
shifts for G a countable discrete set K.

The structure of the argument: We will first construct a "mean sofic entropy," for
$$(G, K^6, \pi^6)$$

with G sofic,
approximation $f(E, \alpha)$ partition of K^6
approximation $f(E, \alpha)$ perevates the σ -alg. of K^6 up to null, using action of G
It will be clear that any measure conjugacy $\underline{F}: (G, K^6, \pi^6) \rightarrow (G, K^6, \pi^6)$
preserves \underline{E} and sends such a "generating partition" α of K^6 to a generating partition
 \overline{F} of K^6 .
 $+$ with generating partition" α of K^6 to a generating partition
 \overline{F} of K^6 .
 $+$ with generating μ then $h(\underline{E}, \alpha) = h(\underline{E}, \beta)$,
and we conclude that the quantities $h(\underline{E}, \alpha)$ are invariants.
 $\sigma \in (K, \frac{q}{2}, \pi^6)$
Finally, if $H(K)$ coo, we will find a special partition d_{K}^{-1} giving $h(\underline{E}, \alpha_{K}) = H(\pi)$.

Sofic entropy: We construct sofic entropy by counting microstate, which are "partitions of
$$\Xi_{1,...,M_{n}}$$
 that
almost match partitions on K^{6} :
abbreviale $K^{6} = X$, $\kappa^{6} = \mu$ (G, $K_{1,M}$)
 $Fix \ \sigma: G \rightarrow Sym(m)$, h unif. prob. on $\Xi_{1,...,M_{n}}$, $\left(\begin{array}{c} \alpha = (A_{1}, A_{2},...) \\ \beta = (B_{1}, B_{2},...) \\ \beta = (B_{2}, B_{2},...)$

First, some examples:
•
$$F = \{e\}$$
, then
 $d_F(a_1 \beta) = \sum_{j=1}^{\infty} |\mu(A_j) - \zeta(\sigma(b) \beta_j)|$
= elements of $AP(\sigma, a, i\} \beta, \epsilon)$ are partitions of $\xi_{l-1} = R$
 $d_F(a_1 \beta) = \sum_{j=1}^{\infty} |\mu(A_j) - \zeta(\sigma(b) \beta_j)|$
= elements of $AP(\sigma, a, i\} \beta, \epsilon)$ are partitions to
 $f = \{f_1, f_2\}$, then
 $d_F(a_1 \beta) = \sum_{j=1}^{\infty} |\mu(f_1(A_j) \wedge f_2(A_K)) - \zeta(\sigma(f_1)(\beta_j) \wedge \sigma(f_1)(\beta_K))|$
= elements of $AP(\sigma, a; \{f_1, f_2\}, \epsilon)$ are partitions $\{I_{1-m}, m\} = \{I_1 \in G_{jK} \ such that$
 $s: \epsilon = (f_1(A_j) \wedge f_2(A_K)) \approx size(C_{jK})$
 $f = (f_1(A_j) \wedge f_2(A_K)) \approx size(C_{jK})$

Sofic entropy, ct'd: Let
$$\mathcal{E} = (\sigma_i)_{i=1}^{\infty}$$
 be a sofic approximation for G .
 $\sigma_i : G \to Sym(M_i)$

For a finite partition of X, E>O, and FEG finite, set · H(E, a: F, E) = limsup - log AP(J; a: F, E) • $H(\Sigma, \alpha : F) = \lim_{s \to 0} H(\Sigma, \alpha : F, \varepsilon)$ · h(E, d) = inf H(E, d: F) Mean E-entropy of a FEG

(If d is infinite and
$$\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n$$
 is a sequence of finite ptthis refining to d,
set $H(\xi_1 : F) = \lim_{n \to \infty} H(\xi_1 : \alpha_n : F)$ well-defined)

Partitions, their structure, and entropy functions thereof: The space
$$P$$
 of mode partitions of a
prob sp. $(X_{/F})$ (up to an equivalence of atoms) admits the following structures:
• Conditional entropy fins $H(\alpha|\beta) := H(\alpha|\sigma(\beta))$, $H(\alpha) := H(\alpha|\xi,\beta)$
• Order structure: $\beta \in \alpha$ if $\forall A \circ \alpha \exists B \circ \beta \ \mu(A \circ B) = 0$
• Joinings: $\alpha \lor \beta = \xi A \circ B \circ A \circ \alpha \exists B \circ \beta \ \mu(A \circ B) = 0$
• Joinings: $\alpha \lor \beta = \xi A \circ B \circ A \circ \alpha \exists B \circ \beta \ \mu(A \circ B) = 0$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \sqcup \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\beta \amalg \omega)$
• $H(\alpha \lor \beta) = H(\omega) \circ H(\alpha \lor \beta) = H(\omega \lor$

Further, Le consider so-called "S-splittings", where $S = G: P = \sigma$ is a single S-splitting of a if $\exists s = S, p \leq x = t$. $\sigma = \alpha \vee s \beta$. σ is an <u>S-splitting of α </u> if $\exists \alpha = \alpha_0, ..., \alpha_m = \sigma$ with $\alpha_{i+1} = simple S-splitting of <math>\alpha_i$, $\forall i \in \{2, ..., m-1\}$. If α, β have a common S-splitting, then they are said to be <u>S-equivalent</u>.

So, in order to justify the equality
$$h(\mathcal{E}, \alpha) = h(\mathcal{E}, \beta)$$
 for α , β generating,
it suffices to verify the following:
 $O(h(\mathcal{E}, \cdot) : \mathcal{P} \rightarrow \mathbb{R} \circ \mathcal{E} - \infty \mathcal{F}$ is upper semicts
 $O(h(\mathcal{E}, \beta) = h(\mathcal{E}, \alpha))$ if β is a simple S -splitting of α .

We'll check each of these in turn.

() Upper semicontinuity of
$$h(\mathcal{E}, \cdot)$$
: We first consider the case
where all partitions are finite and have the same
number of atoms.
 $H(\mathcal{E}, \alpha : F) = \lim_{t \to \infty} H(\mathcal{E}, \alpha : F) =$

Suppose
$$\alpha \in P$$
 and $P \circ P^{i} \rightarrow \alpha$ in (P, J) as $i \rightarrow \infty$. By rearranging,
this means (for $\alpha = (A_{ij}, A_{ij}, ...)$, $P^{i} = (B^{i}_{ij}, B^{i}_{j}, ...)$),
 $\lim_{i \rightarrow \infty} t^{\mu}(A_{ij} \circ B^{i}_{j}) = O$ \forall_{j}
Then, defining $J_{j}(\alpha, R^{i}) = I_{ij} l_{\mu}(A_{ij}) - \mu(B^{i}_{ij})$, we have $J_{\alpha}(\alpha, R^{i}) \rightarrow O$ by

Then, defining $\int_{F} (\alpha, \beta') = 2$, $\mu(A\beta) - \mu(B\beta)$, we have $\int_{P} (\alpha, \beta') \to 0$ by continuity under splittings. By the triangle inequality, for each σ , $\varepsilon \to 0$, $i \ge 0$,

$$AP(\sigma, \alpha : F, \varepsilon + d_{F}(\alpha, \beta^{i})) \ge AP(\sigma, \beta^{i} : F, \varepsilon)$$

Then, for each C>1, Since
$$Cd_{F}(d_{1}p^{i}) \ge \varepsilon + d_{F}(d_{1}p^{i})$$
 for small $\varepsilon > 0$,
 $H(\mathcal{E}, \alpha : F_{i} cd_{F}(\alpha_{1}F^{i})) \ge H((\mathcal{E}, \alpha : F, \varepsilon))$ for suff small ε ,
and hence $H(\mathcal{E}, \alpha : F_{i} cd_{F}(\alpha_{1}p^{i})) \ge H(\mathcal{E}, p^{i} : F)$
for each $C>1$. Thus, taking $i \rightarrow a$,
 $H(\mathcal{E}, \alpha : F) \ge limsup H(\mathcal{E}, p^{i} : F)$

à: Here FEG finite, d 3 F-splitting of B. Want: H(E,a:F) SHLE, B:F) We assume first α , β finite. It suffices to take $\alpha = \beta v f \xi$ where $f \in F, \xi \leq \beta$. We want to show that, if a has lots of approximating partition, then so does f. The method: Show that - each approximating partition of a determines an approximating partition of B \rightarrow Any $\overline{\alpha}$ determining a $\overline{\beta}$ must be close to a special $\overline{\alpha}_{\overline{\beta}}$ constructed using $\alpha = \beta uf \overline{\beta}$; thus we can't have too many a giving a single F

$$\widehat{(a)}: \text{Here } F \in G \text{ finite, } a \notin F - spttting of p.$$

$$We assume first \alpha, p \text{ finite. It suffices to take } \alpha = p v f s \text{ where } f \in F, s \leq p.$$

$$\text{Then we write } \begin{array}{c} F = (B_{y,...,}, E_{v}) \\ g = (X_{y,...,}, X_{w}) \\ \alpha = (A_{y,...,}, 4_{w}) \end{array} \qquad B_{j} = \begin{array}{c} O & A_{j} \\ i : b(i) = J \\ \alpha(i) \in S \\ y = i : b(i) = J \end{array}$$

$$\text{and, for each } (si \leq w, A_{i} = B_{b(i)} \cap f X_{s(i)} \text{ for some } b(i) \in S \\ x \in j \\ x \in S \\ y = i \\ y$$

If each (I (F) is small, then we conclude $|AP(\sigma, \alpha; F, \epsilon)| = \sum (\overline{\Phi}^{-1}(\overline{p}))| \leq (Small) \times AP(\sigma, \beta; F, \epsilon)|$ BEAP(O,B:F,C) which is what we're looking for. Since $\alpha = p \cup f \overline{s}$, let's push \overline{s} to $\overline{s} \cup \dots \cup \overline{s}$ as well: $\xi \leq \beta$, so $B_i \leq X_{t(i)}$ for a well-defined $t(i) \in \{1, \dots, m\}$. Set $\overline{g} = (\overline{X}_{1}, \overline{X}_{N})$ by $\overline{X}_{i} = (\bigcup_{i=1}^{N} \overline{g}_{i})$ a= (AI,..., Au) by A:= IS (i) no(4) X (ii) and => (F) = F

Further, any other
$$\overline{\sigma} \in \overline{\Phi}^{\prime}(\overline{\beta})$$
 satisfies
unif. \mathbb{P} on $\underbrace{\mathbb{E}}_{1}^{\prime}, \underbrace{\mathbb{P}}_{2}^{\prime}(\overline{\beta}) \in \mathbb{C}$

and hence one gets
$$\overline{\alpha}'$$
 from $\overline{\alpha}$ by "maxing" at most \overline{rem} of the elements
of $\overline{\epsilon}_{1,...,m}$ from one atom to another. Thus
 $|\overline{\Psi}'(\overline{\beta})| \leq {\binom{m}{rm \epsilon_{1}}} u^{rm \epsilon_{1}}$ ($\overline{\epsilon} \cdot \underline{\xi}_{1}$)

and, adding up + taking logs, + using Stirling's,

$$H(\mathcal{Z}, \alpha: F, \mathcal{E}) \leq 2 \varepsilon \log(2\varepsilon) + (1-2\varepsilon)\log(1-2\varepsilon) + 2\varepsilon \log \alpha + H(\mathcal{E}, \beta: F, \varepsilon)$$
and for $\varepsilon b \circ$

$$H(\mathcal{E}, \alpha: F) \leq H(\mathcal{E}, \beta: F)$$

For
$$\alpha$$
, β not necessarily finite, the full inequality follows by
 $a_n^{fin} \rightarrow \alpha$, $\beta_n^{fin} \rightarrow \beta$, $\xi_n^{fin} \rightarrow \xi$
 $\alpha_n = \beta_n \vee f \xi_n$

As usual, take
$$\beta \in P$$
 to be a finite partition.
Set $d := \beta \vee t\beta = (A_{Y-i}, A_u)$
 $\beta = (B_{Y-i}, B_v)$
 $A_i = B_{x(i)} \wedge t B_{y(i)}$

 $assure [x_{2}]:[y] \rightarrow [v]^{2}$

As before, we'll push these partition relations
to the approximating partitions:

$$\Rightarrow$$
 Set $F \in G$ finite with exter F
 \Rightarrow Fix $GS = 0$ and $\sigma: G \Rightarrow Sym(m) = (F,S) - approximation to G , i.e.
 $\Rightarrow V(F) = \begin{cases} v \in E_{2}, ..., n \in S \\ v \in E_{2}, ..., n \in S \end{cases}$
 $\Rightarrow V(F) = \begin{cases} v \in E_{2}, ..., n \in S \\ v \in E_{2}, ..., n \in S \end{cases}$
 $\Rightarrow V(F) = f(r, F) = f(r, F) = f(r, f(r)) = \sigma(f_{1}) =$$

It is very important that
$$\mathcal{P}$$
 is well-defined, but we'll skip it. Instead,
note that \mathcal{P} is injective: if $\overline{F} = (\overline{B}_{1,...,\overline{B}}) \neq \overline{F}' = (\overline{B}_{1,...,\overline{B}}')$
then some $\overline{B}_{10} \neq \overline{B}_{11}'$
 $\mathcal{O}_{\overline{A}_{1}} = \mathcal{O}_{\overline{B}_{1}} \wedge \sigma(t)\overline{B}_{r} = \mathcal{O}_{\overline{A}_{1}}'$
 $\mathcal{O}_{\overline{A}_{1}} = \mathcal{O}_{\overline{B}_{1}} \wedge \sigma(t)\overline{B}_{r} = \mathcal{O}_{\overline{A}_{1}}'$
 $ref(1,...,t)$
so $\overline{A}_{1} \neq \overline{A}_{1}'$ some i, so $\mathcal{V}(\overline{F}) \neq \mathcal{V}(\overline{F}')$.
Thus
 $\left[A_{\overline{F}}\left(\sigma_{r}F:FvFt_{r}\varepsilon\right)\right] \leq \left[A_{\overline{F}}\left(\sigma_{r}FvbF^{-1}F,\varepsilon+\tau)Fv(\varepsilon\right)\right]$
for each choice of $\varepsilon, sin, \varepsilon, \varepsilon+\varepsilon^{T}F(\varepsilon)$, $\forall \sigma:G=symptimes$
 $(\overline{F}, s) - approx.$

Since G is sofic, there is some
$$\mathcal{E} = \{ \overline{\sigma}_{i} \}_{i=1}^{\infty}$$

sofic approximation with G a (F, δ_{i}) - approx. for G
with $0 \in \delta_{i} \rightarrow 0$.
If $C>1$ arbitrary, then
 $E+5|F|\delta_{i} \leq CE$ for i large
and hence
 $H(\mathcal{E}, F:FvFt, E) \leq H(\mathcal{E}, FvFt: F, CE)$
So $H(\mathcal{E}, F:FvFt) \in H(\mathcal{E}, Fvft: F)$

and, taking an infimum over
$$e, t \in F^{i_1} \subseteq G$$

gets $h(\mathcal{E}_1|^5) \leq h(\mathcal{E}_1|^5 \cup t_1^5)$
when \mathcal{F}_1 finite.

Considering chains
$$B_1 \leq B_2 \leq \dots \leq B$$
 finite, converging to B_1
we also get
 $h(\mathcal{E}, B) \leq h(\mathcal{E}, B \cup tB)$

and thus
$$h(\mathcal{E}, \alpha) = h(\mathcal{E}, \beta)$$

 \Rightarrow This h(\mathcal{Z}, \cdot) is invariant under simple S-splittings. Inducting we get that h(\mathcal{Z}, α) = h(\mathcal{Z}, β) therease α is an S-splitting of β

We conclude
$$h(\mathcal{E}, \alpha) = h(\mathcal{E}, p)$$
.
It remains to replace $h(\mathcal{E}, \alpha)$ by $H(\mathcal{K}_{i})$
 $h(\mathcal{K}_{i}, \alpha_{j}) = h(\mathcal{K}, \alpha)$
 $h(\mathcal{K}_{i}, \alpha_{j}) = h(\mathcal{K}, \alpha)$
 $h(\mathcal{K}_{i}, \alpha) = h(\mathcal{K}, \alpha)$
 $h(\mathcal{K}_{i}) = h(\mathcal{K}_{i})$
To do this, assuming $H(\mathcal{K}_{i}) < \alpha$ (i.e. $\exists \mathcal{K}' = \mathcal{K}_{i}$
 $countelle, full measure,$
 $H(\mathcal{K}_{i}) = -\sum_{w \in \mathcal{K}'} n_{i}(\mathcal{K}_{i}) \mathcal{K}_{i} \mathcal{K}_{i} < \alpha$
 \mathcal{K} set \mathcal{K}_{i} to be the canonical partition of \mathcal{K}_{i}^{G} :

$$\alpha_{\kappa_{i}} = \Xi \alpha_{\kappa_{i}}^{(Q)} \overline{\zeta}_{Q+K_{i}}^{i}$$

$$\alpha_{\kappa_{i}}^{(Q)} = \overline{\zeta} \times \varepsilon \times (G) = \mu \overline{\zeta}$$
Then
$$(1) \quad \alpha_{\kappa_{i}} \text{ is generating for } (G, K_{i}, K_{i}^{G})$$

$$(2) \quad h(\Sigma, \alpha_{\kappa_{i}}) = H(\kappa_{i})$$

G à Ornstein, "finitener of H(n)" can be removed; we cachide: If G is cauntuly infinite + sofic, and if (K1, K1), (K2, K2) are std Borel, then $(K_1, \kappa_1^6) \simeq (K_2, \kappa_2^6) \iff \mathcal{H}(\kappa_1) = \mathcal{H}(\kappa_2)$