Background: For any countably infinite amenable group G, Ornstein \& weiss ' 87 demonstrated that G-Bernoulli shifts $\left(G, K^{G}, K^{G}\right)$ are completely classified by the quantity $H(k)$, defined by

$$
H(k)=-\sum_{x \in K^{\prime}} n(\{x\}) \log H(\{x\})
$$

if K has a full-masure countable set $K^{\prime} \leq K, H(K)=+\infty$ otherwise.
(Here "Classified" is with regards to the section of being measurably conjugate)

- One wisher to similarly classify other G-systens, for G a countable discrete group, by "entropy" type quantities. Of interest to ar heme is the delos of G-Berruoll: shifts for G a countable discrete spic group all groups for today will be the.

A Crash course in soficity: Roughly speaking, sofic groups are groups G for which "most of G can mostly be combeded in finite symmetric groups".

Precisely: For $m \geqslant 1$, let $S_{y m}(m)$ be the full symmetric grow, in $\{1, \ldots, m\}$.
Let $\sigma: G \rightarrow$ Sym (m) be a function (not necessarily a homomor,hire).
For $F \subseteq G$ finite subset, let $V(F) \subseteq\{1,-m\}$ be the set of those v such that, for each $f_{1}, f_{2} \in F$,

$$
\sigma\left(f_{1}\right) \sigma\left(f_{2}\right) v=\sigma\left(f_{1} f_{2}\right) v \text { and } \sigma\left(f_{1}\right) v \neq \sigma\left(f_{2}\right) v \text { if } f_{1} \neq f_{2}
$$

If $|V(F)| \geqslant(1-\varepsilon) m$, then σ is an $(F, \varepsilon) \cdot$ approximation to G. v thinks that σ / F is an infective," homomor phish
A sufic approximation to G is a sequence $\sum=\left(\sigma_{j}\right)_{j=1}^{\infty}$, where σ_{j} is an $\left(F_{i}, \varepsilon_{i}\right)$-approximation with $F_{i} \leqq F_{i+1} \quad \forall i, \bigcup_{i=1}^{\infty} F_{i}=6$, and $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$.

Finally, G is sofic if it admits a sofic approximation.
Remark: G is sofic $\Longleftrightarrow G<\left(\prod_{\alpha}\left(S_{y-}\left(n_{\alpha}\right), d_{\text {hamm }}\right)\right)_{U}$
" Gist isomorphic to a rubgrour of a metric ultraprodact of Sym (M) groups with Hamming distance"
of interest to us today
The main result of an investigation into entropy invariants for sufic Bernoulli systems are as follows:
Thu: Let G be sofic and $\left(K_{1}, r_{1}\right),\left(k_{2}, \kappa_{2}\right)$ be standard Boned prob. spaces sat. $H\left(r_{1}\right)+H\left(r_{2}\right)<\infty$. Then the following are sufficient conditions for $H\left(K_{1}\right)=H\left(k_{2}\right)$:
(1) $\left(G, K_{1}^{G}, K_{1}^{G}\right)$ and $\left(G, K_{2}^{G}, K_{2}^{G}\right)$ are measurably corjingote $]$ this is what weill prove
(2) $G=G_{1} \times G_{2}$ has no nontrivial normal subgroups, $G_{y} G_{2}$ infinitit,
G, non-amenable, and $\left(G, K_{1}^{G}, K_{1}^{G}\right)$ is $O E$ to $\left(G, K_{2}^{G}, K_{2}^{G}\right)$
(3) G ICC property (T) and $\left(G, K_{1}^{G}, K_{1}^{G}\right)$ is UNE to $\left(G, K_{2}^{G}, K_{2}^{G}\right)$

In the case that G is Ornstein, then (a) the finiteness assumptions may be removed,
(b) the converses hold. Thus:

Thu: Suppose G is countable, sufic, and Ornstein. Suppose $\left(K_{1}, K_{1}\right),\left(K_{2}, k_{2}\right)$ are std Bored prat. spaces.
Then: (1) $\left(G, K_{1}^{G}, m_{1}^{G}\right)$ is misbly conjugate to $\left(G, K_{2}^{G}, K_{2}^{G}\right) \Leftrightarrow H\left(k_{1}\right)=H\left(K_{2}\right)$
(2) If $G=G_{1} \times G_{2}$ inf. countibe, G_{1} naw-amen., and G has no nontrivial sinter normal sublgrps, then $\left(G, K_{1}^{G}, k_{1}^{G}\right) O E$ to $\left(G, K_{2}^{G}, k_{2}^{G}\right) \Longleftrightarrow H\left(k_{1}\right)=H\left(k_{2}\right)$
(3) If G ICC prop. (T), then $\left(G, K_{1}, K_{1}^{G}\right)$ NE to $\left(G, K_{2}, K_{2} G^{6}\right) \Leftrightarrow H\left(K_{1}\right)=H\left(K_{2}\right)$

Rok: - Ornstein groups mast be countably infinite

- All countably infinite groups are Orastein (much Later)

The structure of the argument: We will first construct a "mean saficentropy," for $\left(G, K^{6}, k^{6}\right)$ ut G sofic,

It will be clear that any measure conjugacy $\Phi:\left(G, K_{1}^{G}, K_{1}^{G}\right) \rightarrow\left(G, K_{2}^{6}, K_{2}^{G}\right)$ preserves \sum and sends such a "generating partition" α of K_{1}^{G} to a gaunting partition β of K_{2}^{G}.

+ with gerambing
We will show that, if $H(\alpha)+f(\beta)<\infty$, then $h(\Sigma, \alpha)=h(\Sigma, \beta)$, and we conduce that the quantities $h(\zeta, \alpha)$ are invariants.

$$
\begin{aligned}
& \text { are invariants. } \\
& \text { of }\left(K^{g}, n^{a}\right)
\end{aligned}
$$

Finally, if $H(k)<\infty$, we will find a special partition α_{k}^{2} giving $h\left(\sum, \alpha_{k}\right)=H(n)$.

Sofic entropy: We construct softie entropy by counting microstates, which are "partitions of $\{1, \ldots, m\}$ that almost match partitions on K^{G} : abbreviate $K^{G}=X, K^{G}=\mu$

- Fix $\sigma: G \rightarrow \operatorname{Sym}(m), G$ unit. prob. on $\{1,-m\},\left\{\begin{array}{l}\alpha=\left(A_{1}, A_{2}, \ldots\right) \text { ptah of } X \\ \beta=\left(B_{1}, B_{2}, \ldots\right) \text { pttn of }\{1, \ldots, n\}\end{array}\right.$
- For each $F \subseteq G$ finite \& $\phi: F \rightarrow N$, denote

$$
A_{\phi}=\bigcap_{f \in F} f A_{\phi(f)} \quad B_{\phi}=\bigcap_{f \in F} \sigma(f) B_{\phi(f)}
$$

we set $d_{F}(\alpha, \beta)=\sum_{\phi: F \rightarrow \mathbb{N}}\left|\mu\left(A_{\phi}\right)-\xi\left(B_{\phi}\right)\right|$
We will be interested in $|A P(\sigma, a: F, \varepsilon)|$, where

$$
A P(\sigma, \alpha: F, \varepsilon)=\left\{\beta \text { pta of }\{1,-m\}, \quad|\beta|=|\alpha|, d_{F}(\alpha, \beta)<\varepsilon\right\}
$$

First, some examples:

- $F=\{e\}$, then

$$
d_{F}(\alpha, \beta)=\sum_{j=1}^{\infty}\left|\mu\left(A_{j}\right)-Y\left(\sigma(e) B_{j}\right)\right|
$$

\Rightarrow elements of $A P(0, \alpha:\{ \}, \varepsilon)$ are partitions of $\{1,-m\}$ when atoms are almost equal in mass to
$F \subseteq G$ finite $\alpha=\left(A_{1},-\right)$ attn of X $\beta=\left(B_{1},-\right)$ pin of $\{1,-, n\}$

$$
A_{d}=\bigcap_{f \subset F} f A_{(A A)}
$$

$$
B_{\phi}=\bigcap_{f \in f} \sigma(f) B_{p(f)}
$$

$\sigma: F \rightarrow S_{y m}(-)$ fath $\phi: F \rightarrow N$ fotn

- $F=\left\{f_{1}, f_{2}\right\}$, then

$$
d_{F}(\alpha, \beta)=\sum_{j_{1} k=1}^{\infty}\left|\mu\left(f_{1}\left(A_{j}\right) \wedge f_{2}\left(A_{k}\right)\right)-\zeta\left(\sigma\left(f_{1}\right)\left(B_{j}\right) \cap \sigma\left(f_{1}\right)\left(B_{k}\right)\right)\right|
$$

\Rightarrow elements of $\operatorname{AP}\left(\sigma, \alpha:\left\{f_{1}, f_{2}\right\}, \varepsilon\right)$ are partitions $\{1, \ldots, m\}=\frac{11}{j, k} C_{j, k}$ such that - $\operatorname{size}\left(f_{1}\left(A_{j}\right) \wedge f_{2}\left(A_{k}\right)\right) \approx \operatorname{size}\left(C_{j, k}\right)$

- $C_{j, k}=\sigma\left(f_{1}\right)(B) \wedge \sigma\left(f_{2}\right)\left(B_{k}\right)$, ie. $\left.C=\sigma f_{1}\right) B \vee \sigma\left(f_{2}\right) B$

Sofic entropy, ct'd : Let $\sum=\left(\sigma_{j}\right)_{j=1}^{\infty}$ be a sofic approximation for G.

$$
\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)
$$

For a finite partition of $X, \varepsilon>0$, and $F \leqslant a$ finite, set

$$
\begin{aligned}
& \text { - } H(\Sigma, \alpha: F, \varepsilon)=\limsup _{i \rightarrow \infty} \frac{1}{m_{i}} \log |A P(\sigma i, \alpha: F, \varepsilon)| \\
& \text { - } H(\Sigma, \alpha: F)=\lim _{\varepsilon \neq 0} H(\Sigma, \alpha: F, \varepsilon) \\
& \text { - } H(\Sigma, \alpha)=\inf _{F \leq G} H(\Sigma, \alpha: F) \text { mean } \Sigma \text {-entropy of } \alpha
\end{aligned}
$$

(If α is infinite and $\alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha$ is a sequence of finite pious refining to α_{1}, set $H(\varepsilon, \alpha: F)=\lim _{n \rightarrow \infty} H\left(\Sigma, \alpha_{n}: F\right) \quad w_{e} l l$-defined $)$

Partitions, their structure, and entropy functions thereof: The space P of moue partitions of a prob. sp. (X, μ) (up to ae. equivalence of atoms) admits the following structures:

- Conditional entropy fin $H(\alpha \mid \beta):=H(\alpha \mid \sigma(\beta)\}, H(\alpha):=H(\alpha \mid\{x, \phi\})$
- Order structure: $\beta \leqslant \alpha$ if ${ }^{V} A \in \alpha \quad \exists B \in \beta \quad \mu(A, D)=0$
- Joining : $\alpha \vee \beta=\{A \cap B: A \in \alpha, B \in \beta\}$
- (Robin) metric: $d(\alpha, \beta)=H(\alpha, \beta)+H(\beta(\alpha)$
- Action by $G: g \cdot \alpha=\{g A: A \in \alpha\}$

Putting together the joining / G-action: for $F \leq G$ finite $\& \alpha \theta P$, set

$$
\alpha^{F}=\bigvee_{f \circ F} f_{\alpha}
$$

Some facts:

- $H(\alpha \cup \beta)=H(\alpha)+H(\beta \mid \alpha)$
- if $\beta \leqslant \gamma, H(\alpha(\gamma) \leq H(\alpha \mid \beta)$
- $\alpha \mapsto \alpha^{F}$ is ats on P
- If $F_{1} \subseteq F_{2}$ then

$$
d_{F_{1}} \leq \frac{k_{F_{2}}}{}
$$

$$
\begin{aligned}
I(\alpha \mid \mathcal{F})(x) & =-\log \left(\mathbb{E}\left[A_{x}(F](x)\right)\right. \\
H(\alpha \mid \mathcal{F}) & =\int_{x} I(\alpha \mid F)(x) \rho_{\mu}(x)
\end{aligned}
$$

Further, we consider so-called "S-splitings", where $S S G: P>\sigma$ is a simple S-spliting of a
if $\exists_{s}=S, \beta \leq \alpha$ st. $\sigma=\alpha v s \beta$. σ is an S-splitting of α if $\exists_{\alpha}=\alpha_{0}, \ldots, \alpha_{m}=\sigma$ with α_{i+1} a simple S-splifting of $\alpha_{i}, \forall_{i} \in\{0, \ldots, m-1\}$.
If α, β have a common S-splitting, then they are said to be S-equivalent.

The utility of these notions is as follows:
Theorem: Let G be a (countable) group and $S \leqslant G$ a generating set. Let (G, X, p) be a G-system. Let ρ be the space of finite-entrory partitions of X.
Suppose $f: P \rightarrow \mathbb{R} \cup\{-\infty\}$ is upper semicts and that $f(\beta)=f(\alpha)$ whenever β is an S-splitting of α.
Then, if $\alpha, \beta \in P$ are generating (ie. $\sigma_{G \text {-mut }}(\alpha)=\operatorname{Meas}(\mu)=\sigma_{G \text {-invt }}(\beta)$ up to nulls) we have $f(\alpha)=f(\beta)$
(Pf is straight forced)

So, in orle r to jutty the equality $h(\Sigma, \alpha)=h(\Sigma, \beta)$ for α, β generating, it suffices to verify the following:
(1) $h(\mathcal{L}, \cdot): P \rightarrow \mathbb{R} \cup\{-\infty\}$ is upper semicts
(2) $h(\mathcal{L}, \beta)=h(\mathcal{E}, \alpha)$ if β is a simple S-splitting of α.

Well check each of these in turn.
(1) Upper semicontinuity of $h(\varepsilon, \cdot)$: We first consider the case where all partitions are finite and have the same number of atoms.

$$
\begin{aligned}
& H(\Sigma, a: F, \varepsilon)=\lim _{b \rightarrow \infty} \operatorname{san}_{1} \frac{1}{\infty} \log (A+A) \\
& H(\varepsilon, \infty: F)=\lim _{\varepsilon<0} H(\varepsilon, \alpha: F, \sigma) \\
& H(\Sigma, \alpha)=\inf _{P \& a} H(\Sigma, \alpha: F)
\end{aligned}
$$

Suppose $\alpha \in P$ and $P \nexists \beta^{i} \rightarrow \alpha$ in (P, d) as $i \rightarrow \infty$. By rearranging, th. means (for $\alpha=\left(A_{1}, A_{2}, \ldots\right), \beta^{i}=\left(B_{1}^{i}, B_{2}^{i}, \ldots\right)$),

$$
\lim _{i \rightarrow \infty} \mu\left(A_{j} \Delta B_{j}^{i}\right)=0 \quad \forall j
$$

Then, defining $d_{F}\left(\alpha, \beta^{i}\right)=\sum_{\phi: F \rightarrow N}\left|\mu\left(A_{\phi}\right)-\mu\left(B_{\phi}^{j}\right)\right|$, we have $d_{p}\left(\alpha, \beta^{i}\right) \rightarrow 0$ by continuity under splittings. By the triangle inequality, for each $\sigma, \varepsilon>0, i \geqslant 0$,

$$
A P\left(\sigma, \alpha: F, \varepsilon+d_{F}\left(\alpha, \beta^{i}\right)\right) \geqslant A P\left(\sigma, \beta^{i}: F, \varepsilon\right)
$$

Then, for enoch col, since $\operatorname{cd}_{F}\left(\alpha, \beta^{i}\right) \geqslant \varepsilon+d_{F}\left(\alpha, \beta^{i}\right)$ for small $z>0$, $H\left(\Sigma, \alpha: F, c d_{F}\left(\alpha, \beta^{i}\right)\right) \geqslant H(\Sigma, \alpha: F, \varepsilon)$ for suff small ε, and hence $H\left(\sum, \alpha^{2} F_{1}, \operatorname{cd}_{F}\left(\alpha, \beta^{i}\right)\right) \geqslant H\left(\zeta, \beta^{i}: F\right)$ for each $c>1$. Thus, taking $i \rightarrow \infty$,

$$
H(\Sigma, \alpha: F) \geqslant \limsup _{i \rightarrow \infty} H\left(\Sigma, \beta^{*}: F\right)
$$

as claimed.
(2) Invariance of $h(\Sigma, \cdot)$ under splittings

This takes the form of two lemmas:
(a): If $F \subseteq G$ finite and α is an F-splitting of β, than

$$
H(\Sigma, \alpha: F) \leq H(\Sigma, 1 s: F)
$$

(b): For each $\beta \in P, t \in G$,

$$
h\left(\sum, \beta v+\beta\right) \geqslant h\left(\sum, \beta\right)
$$

Both (a), (b) will follow from counting microstates.
(a): Here $F \subseteq G$ finite, α is F-sptsting of β. Want: $H(\mathcal{E}, a: P) \leq H(\varepsilon, \beta: F)$ We assume first α, β finite. It suffices to take $\alpha=\beta \vee f \xi$ where $f \in F, \xi \leq \beta$.

We want to show that, if a has lots of approximating partition, then so does β.

The method: Show that
\rightarrow each approximating partition of α determines an approximating partition of β
\rightarrow Any $\bar{\alpha}$ determining a $\bar{\beta}$ mut be "close to" a special $\overline{\alpha_{\bar{F}}}$ constructed using $\alpha=\beta \cup f \bar{\xi}$; thus we cant have too many $\bar{\alpha}$ giving a singe $\bar{\beta}$
(a): Here $F \subseteq G$ finite, α is F-spltting of β.

We assume first α, β finite. It suffices to take $\alpha=\beta$ vf where $f \in F, \xi \leqslant \beta$.
Then we write

$$
\begin{aligned}
& \beta=\left(B_{1}, \ldots, B_{v}\right) \\
& \xi=\left(x_{1}, \ldots, W_{\omega}\right) \\
& \alpha=\left(A_{1}, \ldots, A_{n}\right)
\end{aligned} \quad B_{j}=\bigcup_{i=b_{0}(i)=j} A_{i}
$$

and, for each $1 \leq i \leq u, A_{i}=B_{b(i)} \cap X_{x(i)}$ for some $b(i) \in\{1, \ldots, v\}^{3}$

$$
x(i) \in\{1, \ldots, \omega\}
$$

As before, this defines a coarsening map

$$
\begin{array}{r}
\Phi: A P(\sigma, \alpha: F, \varepsilon) \longrightarrow A P(\sigma, \beta: F, \varepsilon) \\
\left(\bar{A}_{1}, \ldots, \bar{A}_{n}\right)=\bar{\alpha} \longmapsto \Phi\left(\overline{)}=\bar{\beta}=\left(\bar{B}_{1}, \ldots, \bar{B}_{\nu}\right)\right. \\
\bar{\beta}_{j}=\bigcup_{i: b(j)=j} \bar{A}_{i}
\end{array}
$$

$\binom{$ as we cheelued prior, }{ this is well-defines }

If each $\left|\Phi^{-1}(\bar{\beta})\right|$ is small, then ce corded

$$
|A P(\sigma, \alpha: F, \varepsilon)|=\sum_{\bar{\beta} \in A P(\sigma, \beta: F, \zeta)}\left|\Phi^{-1}(\bar{\beta})\right| \leq(\operatorname{smcil}) \times|A P(\sigma, \beta: F, \xi)|
$$

which is what were laving for.
Since $\alpha=\beta \cup f \xi$ let's push ξ to $\{y, \ldots, m \xi$ as well: $\xi \leqslant \beta$, so $B_{i} \leqslant X_{t / i)}$ fr a wall-defind $t(i) \in\{\leq, \ldots, \omega\}$.

Set $\bar{\xi}=\left(\bar{X}_{1}, \ldots, \bar{X}_{w}\right)$ by $\bar{X}_{j}=\bigcup_{i: t(t) j} \overline{B_{i}}$
and $\bar{\alpha}=\left(\bar{A}_{1}, \ldots, \bar{A}_{n}\right)$ by $\bar{A}_{i}=\bar{B}_{b(i)} \cap \sigma(f) \bar{X}_{*(t)}$

$$
\Rightarrow \Phi(\alpha)=\bar{\beta}
$$

Further, any other $\bar{\alpha}^{1} \in \Phi^{-1}(\bar{\beta})$ satisfies unit. \mathbb{P} on $\{1, \ldots, \omega\}$
and hence one gets $\bar{\alpha}^{\prime}$ from $\bar{\alpha}$ by "marring" at most TEMT of the elemats of $\{1, \ldots, m\}$ from ore atom to another. Thus

$$
\left|\Phi^{-1}(\bar{\beta})\right| \leq\binom{ m}{\sin \varepsilon]} u^{\operatorname{sn} \varepsilon 7}
$$

and, adding up + taking logs, + using Stirling's,

$$
H\left(\sum, \alpha: F, \varepsilon\right) \leq 2 \varepsilon \log \left(\frac{1}{2 \varepsilon}\right)+(1-2 \varepsilon) \log \left(\frac{1}{1-2 \varepsilon}\right)+2 \varepsilon \log u+H(\Sigma, \beta: F, \varepsilon)
$$

and for ibo

$$
H(\Sigma, \alpha: F) \leq H(\Sigma, \beta: F)
$$

For α, β not necessarily finite, the full inequality follows by

$$
\begin{gathered}
a_{n}^{f_{n},} \rightarrow \alpha, \quad \beta_{n}^{f_{n}} \rightarrow \beta, \quad \xi_{n}^{f_{n}} \rightarrow \xi \\
\alpha_{n}=\beta_{n} \vee f \xi_{n}
\end{gathered}
$$

(b): We wish to show

$$
h(\Sigma, \beta \vee t \beta) \geqslant h(\Sigma, \beta) \quad t \in G
$$

As usual, take $\beta \in P$ to be a finite partition.

$$
\text { Set } \begin{aligned}
\alpha:= & \beta v \notin \beta=\left(A_{y \ldots,}, A_{u}\right] \\
& \beta=\left(B_{y} \ldots, B_{v}\right) \\
A_{i}= & B_{x(i)} \cap t B_{y(i)}
\end{aligned}
$$

$$
x(i), y_{i n}(i) \in\{1, \ldots, v\}
$$

$$
\text { assume }\left(x_{c}, y\right):[4] \rightarrow[0]^{2}
$$

As before, weill push these partition relations Sone A_{i} mag be ϕ to the approximating partitions:

$$
A_{i}=B_{x(r)} \wedge t B_{y(i)}
$$

\rightarrow Sat $F \in G$ finite with $e, t \in F$
\rightarrow Fix $\varepsilon, \delta>0$ and $\sigma: G \rightarrow \operatorname{Sym}(m)$ a (F, δ)-approximation to G, ie.

$$
\text { if } V(F)=\left\{v \in\left\{\left\{_{1}, \ldots, m\right\}, \forall f_{1}, f_{2}+F, \sigma\left(f_{1}\right) v \neq \sigma\left(f_{2}\right) v \quad \begin{array}{rl}
\text { and } \sigma\left(f_{1}\right) \sigma\left(f_{2}\right) v=\sigma\left(f_{1} f_{2}\right) \cup
\end{array}\right\}\right.
$$

then $|V(\mathbb{P})| \geqslant(1-\delta)_{m}$.
\rightarrow Define $\psi: A P(\sigma, \beta: F \cup F t, \varepsilon) \rightarrow A P(\sigma, \beta \cup \beta t: F, \varepsilon+51 F / \delta)$ by $\psi(\bar{\beta})=\bar{\alpha}=\left(A_{1}, \ldots, \bar{A}_{u}\right), \quad \bar{A}_{i}=\bar{B}_{\left.x_{i}\right)} \sim \sigma(t) \bar{B}_{y_{(i)}}$

It is very important that ψ is well-defined, but well skip it. Instead, note that ψ is infective: if $\quad \bar{\beta}=\left(\bar{B}_{1}, \ldots, \bar{B}_{j}\right) \neq \bar{\beta}^{\prime}=\left(\bar{B}_{1}^{\prime}, \cdots \bar{B}_{v}{ }^{\prime}\right)$
then some $\bar{B}_{w} \neq \bar{B}_{w}{ }^{\prime}$

$$
\begin{aligned}
& \bigcup_{i: x(i)=m} \bar{A}_{i}=\bigcup_{r \in\{11, \ldots, v\}} \bar{B}_{w} \cap \sigma(t) \bar{B}_{r} \quad \bigcup_{r \in\{1, \ldots, 0\}} \bar{B}_{w}^{\prime} \sim \sigma(t) \bar{B}_{r}^{\prime}=\bigcup_{i=r(i)=c} \bar{A}_{i}^{\prime} \\
& \text { so } \quad \overline{A_{i}} \neq \bar{A}_{i}^{\prime} \text { some } i \text {, so } \psi(\bar{\beta}) \neq \psi\left(\bar{\beta}^{\prime}\right) \text {. }
\end{aligned}
$$

Thus

$$
|A P(\sigma, \beta: F \cup F t, \varepsilon)| \leq \mid A P(\sigma, \beta \circ t \beta: F, \varepsilon+5 / \sigma(\delta) \mid
$$

for each choice of $\varepsilon, \delta>0, \quad e, t \in F^{f i n} \subseteq G, \forall_{\sigma}: G \rightarrow$ syce $)$ (F, $)$-app-or.

Since G is sofic, there is some $\sum=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ sofic approximation with σ_{i} a $\left(F, \delta_{i}\right)$-approx. for G with $0 \leq \delta_{i} \rightarrow 0$.

If $c>1$ arbitrary, then

$$
\varepsilon+5|F| \delta_{i} \leq c \varepsilon \text { for i large }
$$

and hence

$$
H(\Sigma, \beta: F \circ F t, \varepsilon) \leq H(\Sigma, \beta \cup \beta t: F, c \varepsilon)
$$

so

$$
H(\Sigma, \beta: F \circ F t) \leq H\left(\Sigma, \beta \cup t_{\beta}: F\right)
$$

and, taking an infimum over $e, t \in F^{F i} \subseteq G$
gets $h\left(\sum_{1} \beta\right) \leq h\left(\Sigma_{, \beta \cup t \beta}\right)$
when β finite.

Considering chains $\quad \beta_{1} \leq \beta_{2} \leq \ldots \leq \beta \quad$ finite, converging to β, we also get

$$
h(\Sigma, \beta) \leq h\left(\Sigma, \beta \cup t_{\beta}\right)
$$

forall $\beta \in P$.

Finally, we conclude: let S generate G.
\rightarrow If α is a simple S-splitting of β, ie. $\alpha=\beta \vee t \xi$ with $t \in S$, then for each FCG finite with $t \in F$ we have

$$
H(\Sigma, \alpha: F) \leq H(\Sigma, \beta: F)
$$

and hence

$$
h(\varepsilon, \alpha) \leq h(\varepsilon, \beta)
$$

\rightarrow One man g demonstrate r that $\beta \cup \in \beta$ is an S-splitter of α, So similarly

$$
h(\Sigma, \beta \vee \notin \beta) \leq h(\Sigma, \alpha) \leq h(\Sigma, \beta)
$$

- On the other hand,

$$
h(\Sigma, \beta \vee \notin) \geqslant h(\Sigma, \beta)
$$

and thus

$$
h(\Sigma, \alpha)=h(\Sigma, \beta)
$$

\rightarrow Thu $h(\Sigma, \cdot)$ is invariant under simple S-splitting. Inducting, we get that
$h(\Sigma, \alpha)=h(\Sigma, \beta)$ chorea α a an S-spliting of β

Thus, $h\left(\sum ; \cdot\right): P \rightarrow\{-\infty\} \cup \mathbb{R}$ is

- upper semicontinuoas
- Inerrant under S-Splittings
and hence $h(\Sigma, \alpha)=h(\Sigma, \beta)$ for all generating portion α, β with $H(\alpha)+H(\beta)<\infty$.

Thus, if $\left(G, K_{1}^{G}, K_{1}^{K}\right)$ and $\left(G, K_{2}^{G}, K_{2}^{G}\right)$ are mesannelly conjugate r and $\left.d \in P\left(K_{1}^{G}, R_{1}^{G}\right)\right\}$ are finite-centricif partition gementing (u ,te the action of G) the foll coly's up to null x 尿,
we conduce $h(\Sigma, \alpha)=h(\Sigma / \beta)$.
Hypotheses:

$$
\begin{aligned}
& \cdot\left(k_{j}, k_{j}\right) \text { std Moral } \\
& \cdot H\left(k_{j}\right)<\infty
\end{aligned}
$$

It remains to replace $h\left(\sum, \alpha\right)$ by $H\left(\kappa_{1}\right)$

$$
h(\varepsilon, \beta) \text { by } H\left(k_{2}\right) \text {. }
$$

To do this, assuming $H\left(r_{1}\right)<\infty$ cire. $\exists K^{\prime} \subseteq K_{1}$ countable, full measure,

$$
\left.H\left(h_{1}\right)=-\sum_{k+k^{\prime}} k_{1}(\{k\}) \lg k_{1}\{\alpha\}<\infty\right)
$$

we set $\alpha_{k_{1}}$ to be the canonical partition of $K_{1}{ }^{G}$:

$$
\begin{aligned}
& \alpha_{K_{1}}=\left\{\alpha_{K_{1}}^{(l)} \xi_{\ell+K^{i}}\right. \\
& \quad \alpha_{K_{1}}^{(\theta)}=\left\{\underline{x} \in K_{1}^{G}: \underline{x}(e)=t\right\}
\end{aligned}
$$

Then (1) $\alpha_{k_{1}}$ is garenting for $\left(G, K_{1}^{G}, K_{1}^{G}\right)$
(2) $h\left(\sum, \alpha_{K_{1}}\right)=H\left(k_{1}\right)$
and bance $H\left(r_{1}\right)$ is a mesure-coningacy ineriment, as long a) it is finite.

If G, Ornstein, "Finitener of $H(n)$ " can be removed, we cadudx:
If G is canklly infinite + sofic, and if $\left(K_{1}, K_{1}\right),\left(K_{2}, K_{2}\right)$ are std Bovel, then

$$
\left(K_{1}^{G}, K_{1}^{G}\right) \simeq\left(K_{2}^{G}, K_{2}^{G}\right) \Leftrightarrow H\left(r_{1}\right)=H\left(r_{2}\right)
$$

