
UCLA 245B discussion notes

Ben Johnsrude

These are a complete set of documents I wrote in the course of TAing Math 245B at UCLA in Winter
2024. The main focus of that discussion was preparation for the UCLA Analysis qualifying exam (real
half). The problems each week were chosen based on the material being covered in lecture.

Prior to each discussion, I sent out the selection of problems to be covered, together with some hints
and remarks. After the discussion, I would send out the version of the document seen here, with the
solutions filled in.
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1 : Week 1
Fall 2004, Problem 2 Let f : [0, 1] → [0,∞) be a nonnegative, L1 function (with respect to Lebesgue
measure). Prove that the following two statements are equivalent:

(a) There exists a constant 0 < C <∞ such that(∫ 1

0

f(x)pdx

)1/p

≤ Cp ∀p ≥ 1

(b) There exists a constant 0 < c <∞ such that∫ 1

0

ecf(x)dx <∞

You are free to make use of the following version of Stirling’s approximation:

lim
n→∞

n!√
2πn(ne−1)n

= 1

Proof. Assuming (a), we prove (b). For each choice of c and x ∈ [0, 1], we have

ecf(x) =
∞∑
n=0

cn

n!
(f(x))n

Since f is nonnegative and measurable, by Tonelli’s theorem we have∫ 1

0

ecf(x)dx =
∞∑
n=0

cn

n!

∫ 1

0

f(x)ndx

By the assumption, ∫ 1

0

f(x)ndx ≤ Cnnn

and hence ∫ 1

0

ecf(x)dx ≤
∞∑
n=0

(cC)n
nn

n!

Assume now that c is chosen so that cC ≤ e/2. Recall by Stirling’s approximation that

nn

n!
≲ n1/2en

Thus we have the estimate∫ 1

0

ecf(x)dx ≲
∞∑
n=0

(cCe)nn1/2 ≤
∞∑
n=0

2−nn1/2 <∞
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as was to be shown.
Now assume (b). Again by Tonelli,∫ 1

0

ecf(x)dx =
∞∑
n=0

cn

n!

∫ 1

0

f(x)ndx

Recall that Stirling provides
lim
n→∞

n!√
2πn(ne−1)n

= 1

In particular, we may find a constant C0 > 0 such that

n! ≤ C0n
n+ 1

2 e−n ∀n ∈ N

Thus
∞∑
n=0

cn

n!

∫ 1

0

f(x)ndx ≥ C−1
0

∞∑
n=0

(ce)nn−n− 1
2

∫ 1

0

f(x)ndx

We claim that
∫ 1

0
f(x)ndx ≤ ( 2

ce
)nnn for all n. If this doesn’t hold, then we may find an increasing

sequence k 7→ nk such that
∫ 1

0
f(x)nkdx > ( 2

ce
)nknnk

k for all k; but then
∞∑
n=0

(ce)nn−n− 1
2

∫ 1

0

f(x)ndx ≥
∞∑
k=0

(ce)nkn
−nk− 1

2
k

∫ 1

0

f(x)nkdx

≥
∞∑
k=0

(2)nkn
− 1

2
k = +∞

which violates the convergence from (b). Thus
∫ 1

0
f(x)ndx ≤ Cnnn for a suitable C > 0, for all n.

Finally, if n < p < n+ 1, we have by Hölder(∫ 1

0

f(x)pdx

)1/p

≤
(∫ 1

0

f(x)n+1dx

) 1
n+1

≤ C(n+ 1) ≤ 2Cp

and we are done.

Necessity of measurable hypothesis in Fubini-Tonelli, part 1. Observe the following easy conse-
quence of Fubini-Tonelli:

Suppose A ⊆ R2 is Lebesgue-measurable, and suppose that every intersection Av of A with the
line x = v is null. ThenA is null.

Of course, any nullset is Lebesgue measurable, so there’s a sense that the assumption that A is mea-
surable might not be necessary. The point of this problem is to demonstrate that the framed statement
fails if this assumption is removed.1

To this end, do the following:
1Method taken from van Douwen, “Fubini’s theorem for null sets.” The American Mathematical Monthly 96.8 (1989): 718-

721.
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(a) LetP be the family of setsK ⊆ R2 that are compact with positive measure. Write c = |R| for the
cardinality of the continuum. Show that |P| = c.

(b) LetK be a compact uncountable subset ofR. Show that |K| = c.

(c) Show that, for each P ∈ P , the set {v ∈ R : Pv ̸= ∅} also has cardinality c. Here, as before, the
subscript v denotes intersection with the line x = v.

(d) By standard set theory arguments, by (a) it follows that there is a well-order≺ onP such that every
set of the form {P ∈P : P < Q} has cardinality< c, whereQ ranges over P .
Using this, do the following. Let Q ∈ P and write LQ = {P ∈ P : P ≺ Q}. Suppose
{(xP , yP )}P∈LQ

is a collection of points (x, y) ∈ R2 such that (xP , yP ) ∈ P , and xP ̸= xP ′ for
P ̸= P ′ ∈ LQ. Show then that there is some (xQ, yQ) ∈ Q such that xQ is distinct from all xP
with P ≺ Q.

(e) By (d) and transfinite induction, there exists a family {(xP , yP )}P∈P of points in R2 such that
(xP , yP ) ∈ P for each P ∈ P . Write A = {(xP , yP ) : P ∈ P}. Show that A is not null, and
that each intersectionAv is finite.

Proof. (a): Let τ be the collection of Euclidean open sets in R2. We show that |τ | = c. Let τ0 be the
collection of open balls of rational radii, whose centers are pairs of rational points. Clearly τ0 is a base for
τ , and is countable. It follows that

2τ0
ϕ→ τ, U 7→

⋃
U∈U

U

is a surjection, so |τ | ≤ 2|τ0| = c. Thus the set C of closed sets has |C ≤ c as well. SinceP ⊆ C, it follows
that |P| ≤ c.

On the other hand, each box [v, v + 1]2 belongs to P for v ∈ R, so |P| ≥ c as well.
(b): Let a < b be any two real numbers such thatK0 = (−∞, a]∩K andK1 = [b,∞)∩K are both

uncountable. ThenK0, K1 are also compact uncountable subsets of R. Iterating this, we obtain a family
of compact subsets {Kw}w indexed by finite words in the alphabet 0, 1 such thatKw ⊇ Kw′ ifw′ extends
w (i.e. is given by adding extra digits onto the end of w). By taking intersections over all truncations w|n
of a given word w, we obtain (by the compact intersection theorem) a nonempty compact set Kw. Any
two infinite wordsw,w′ that are distinct haveKw ∩Kw′ = ∅. Consequently, we may find |2N| = cmany
distinct points inK . Since |K| ≤ c trivially, we conclude that |K| = c.

(c): Denote the set in question asC . Note thatC is the image of P under the (continuous) orthogonal
projection onto the x-axis. In particular,C is compact. Also,P ⊆ C×R, so (sinceP is positive measure),
C has positive measure. Thus C is uncountable, and since C is a compact metric space we conclude that
|C| = c.

(d): Note that LQ has cardinality< c. Thus π1(LQ), the collection of xP with P ≺ Q, has cardinality
< c. Since π1(Q) has cardinality c, we may find xQ ∈ π1(Q) \ π1(LQ), and hence (xQ, yQ) ∈ Qwith xQ
distinct from all xP with P ≺ Q.

(e): First we demonstrate that A is not null. In fact, we demonstrate that any U ⊇ A open has full
measure. Indeed, suppose U were a neighborhood of A such that C = R2 \ U has positive measure. In
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particular,K = C ∩B≤R(0) has positive measure for large enoughR. But thenK is a positive measure
compact set, hence intersects nontrivially withA, violating the fact thatK ∩ U = ∅.

Finally, observe that the {xP}P∈P are pairwise distinct, soAv is either empty or a singleton for each
v ∈ R. The result follows.

Necessity ofmeasurable hypothesis in Fubini-Tonelli, part 2.2 WriteA2 for the following propo-
sition:

Suppose that:

1. f : R2 → R is nonnegative,

2. for every x ∈ R, the function y 7→ f(x, y) is Borel measurable and the integral
∫
f(x, y)dy

converges to a Borel measurable function,

3. for every y ∈ R, the function x 7→ f(x, y) is Borel measurable and the integral
∫
f(x, y)dx

converges to a Borel measurable function, and

4. the iterated integrals
∫ ∫

f(x, y)dxdy and
∫ ∫

f(x, y)dydx converge.

Then
∫ ∫

f(x, y)dxdy =
∫ ∫

f(x, y)dydx.

A2 is called a strong Fubini theorem. The point of this problem is to demonstrate one-half of the state-
ment “ZFC does not prove nor disproveA2 (unless ZFC is inconsistent).” To this end, do the following:

Assume CH, that is, assume that any uncountable cardinal κ satisfies κ ≥ c := |R| = |[0, 1]|. By
standard set theoretic arguments, this implies that there is a well-order ≺ on [0, 1] such that every half-
line Lx := {y ∈ [0, 1] : y ≺ x} is countable.

Taking this for granted, f(x, y) = 1E(x, y), whereE = {(x, y) : x ≺ y}, violatesA2.

Proof. We validate that f satisfies all the hypotheses of A2, but violates the conclusion. Clearly f is non-
negative. For each fixedx ∈ [0, 1], the function y 7→ f(x, y) is just the function 1Lx , which is the indicator
of a countable set, hence is Borel measurable. Additionally, since countable sets have measure zero, we
conclude that

∫
f(x, y)dy = 0 for all x, and hence

∫ ∫
f(x, y)dydx = 0.

On the other hand, for each y ∈ [0, 1], the function x 7→ f(x, y) is the indicator of a co-countable set
in [0, 1], hence is Borel measurable and satisfies

∫
f(x, y)dx = 1. Since this holds for each y, we conclude∫ ∫

f(x, y)dxdy = 1, and we are done.

2The content of this problem is borrowed from Shipman, “Cardinal Conditions for Strong Fubini Theorems.”
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Hints and remarks regarding the preceding problems.

First problem:
Hint (a): consider the power series for exp(x).
Hint (b): Tonelli; to apply Stirling’s in either direction, you need a “uniform” version which applies for all n.

By the limit, there is a large N such that, beyond N , the fraction is within ε of 1. On the other hand, we only
ignored finitely many, so at a constant cost you have a uniform statement.

You could view (a) as being a quantitative version of the finiteness statement (b).

Second problem:
Hint for (a): Howmany open sets are there?
Hint for (b): Try to find a Cantor set inK .
Hint for (c):What can the projection of P ontoR be?
Hint for (d): Howmany points do you need to avoid?
Hint for (e): Use outer regularity. A would need to avoid some sets.

Third problem:
Hint: How often is y 7→ f(x, y) equal to 1? What about x 7→ f(x, y)? Remember, this is Lebesgue

measure.

Remark. We have shown that ZFC does not prove A2, because then ZFC would refute CH (which it
does not, unless it is inconsistent). The other direction is overmy head, so I won’t discuss it here; the point
is that “there are cardinals κ1, κ2 with the property that there is a non-Lebesgue measurable subset of R
with cardinality κ1, and there is a subset B of the real numbers of cardinality κ2 such that B is not the
union of κ1 measure-0 sets” is consistent with ZFC and impliesA2. See the linked paper.

6



2 : Week 2
Fall 2022 Problem 2: Let f ∈ Lp(R), for some 1 ≤ p < 2. Show that the series

∞∑
n=1

f(x+ n)√
n

converges absolutely for almost allx ∈ R. For each 2 ≤ p ≤ ∞, give an example of a function f ∈ Lp(R)
for which the series diverges for every x ∈ R.

Proof. We first demonstrate that the integral∫ c+1

c

(
∞∑
n=1

|f(x+ n)|√
n

)p

dx

converges for each c ∈ R. Indeed, applying Hölder to the sum, writing 1
p
+ 1

p′
= 1,(

∞∑
n=1

|f(x+ n)|√
n

)p

≤

(
∞∑
n=1

|f(x+ n)|p
)(

∞∑
n=1

n− p′
2

) p
p′

Note that p′ > 2, so the rightmost factor is a convergent series. Thus

∫ c+1

c

(
∞∑
n=1

|f(x+ n)|√
n

)p

dx ≤

(
∞∑
n=1

n− p′
2

) p
p′ ∫ c+1

c

∞∑
n=1

|f(x+ n)|pdx =

∫ ∞

−∞
|f(x)|pdx <∞

as was to be shown.
Write nowN = {x ∈ R :

∑∞
n=1

|f(x+n)|√
n

= +∞}; one may verify that this set is Lebesgue measur-
able. If λ(N) > 0, then λ(N ∩ [c, c+ 1]) > 0 for some c ∈ R, and hence∫ c+1

c

(
∞∑
n=1

|f(x+ n)|√
n

)p

dx ≥
∫
N∩[c,c+1]

(+∞)dx = +∞

violating the previous finiteness conclusion. ThusN is null, so the series converges absolutely a.e., as was
to be shown.

Now we consider the second half of the problem. Observe that f ≡ 1 suffices in the case p = ∞, so
we assume p ∈ [2,∞). Define then

f(x) =
x−1/p

log x
1x>e

We claim that f ∈ Lp(R). Indeed, |f(x)|p ≤ x−1

(log x)2
, and so∫

|f(x)|pdx ≤
∫ ∞

e

x−1

(log x)2
dx

=

∫ ∞

1

du

u2
<∞
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by a change-of-variable. Note that |f(x)| ≥ x−1/2

log x
for each x > e, so we may consider the p = 2 case.

For each a, b ∈ R with |b| ≥ 1, we have the elementary inequality

|a+ b| ≤ |a||b|+ |b| = (|a|+ 1)|b|

from which we evaluate
∞∑
n=1

|f(x+ n)|√
n

≥
∑

n>max(2,e−x)

(x+ n)−1/2

n1/2 log(x+ n)

≥ 1

(|x|+ 1)1/2(log(|x|+ 1) + 1)

∑
n>max(2,e−x)

1

n log n
= +∞

where we have appealed to the divergence calculation

∞∑
n=2

1

n log n
=

∞∑
k=1

2k+1−1∑
n=2k

1

n log n
≳

∞∑
k=1

1

k
= +∞

or, written another way,
∞∑
n=2

1

n log n
≳
∫ ∞

2

1

t log t
dt =

∫ ∞

log 2

1

u
du = +∞

Spring 2010 Problem 5 (with added scaffolding). Do the following:

(a) Let f be a real-valued continuous compactly-supported function onR. Let {xn}∞n=1 be a sequence
of real numbers tending to 0. Show that the sequence of functions

fn(x) := f(xn + x)

converges to f in the L2 sense.

(b) Using the prior and approximation theorems, show that for any f ∈ L2(R) and any sequence
{xn}∞n=1 tending to zero, the sequence of functions

fn(x) := f(xn + x)

converges to f in the L2 sense.

(c) Conclude that, for each f ∈ L2, the map τ·f : R→ L2(R) defined by

R ∋ r 7→ τrf ∈ L2(R), τrf(x) := f(r + x)

is continuous as a function fromR to L2(R).

(d) SupposeE ⊆ R is Lebesgue measurable with positive finite measure. Show that the function

R ∋ t 7→ ϕ(t) :=

∫
R
χE(t+ y)χE(y)dy

is continuous.
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(e) Finally, show that, forE Lebesgue measurable with positive measure, the set

E − E = {z ∈ R : ∃x, y ∈ E s.t. z = x− y}

contains a neighborhood of the origin (−ε, ε).

Proof. (a): Let C > 0 be a uniform upper bound for the sequence {xn}n, and let J ⊆ R be a compact
interval containing (suppf)+[−C,C]; thus suppfn ⊆ J for everyn. Let δ = δ(ε) be a uniformmodulus
of continuity for f , i.e. |x− y| < δ(ε) =⇒ |f(x)− f(y)| < ε for each ε > 0.

Fix now ε > 0. LetN ∈ N be such that n ≥ N implies |xn| < δ( ε
2ℓ(J)1/2

). Then, for each n ≥ N ,∫
|fn(x)− f(x)|2dx =

∫
J

|f(x+ xn)− f(x)|2 ≤
∫
J

ε2

4ℓ(J)
dx < ε2

so that ∥fn − f∥L2(R) < ε. Thus we have shown that fn → f in L2, as was to be shown.
(b): Let ε > 0 be arbitrary. By the density of Cc functions in L2, we may find g ∈ Cc(R) such that

∥g − f∥2 < ε
3
. By (a), we may findN ∈ N such that n ≥ N implies ∥g − gn∥2 < ε

3
. Then, for each such

n,

∥f − fn∥2 ≤ ∥f − g∥2 + ∥g − gn∥2 + ∥gn − fn∥2
<
ε

3
+
ε

3
+
ε

3
= ε (∗)

where in (∗) we noted that by change-of-variable∫
|g(x+ xn)− f(x+ xn)|2dx =

∫
|g(x)− f(x)|2dx

Thus we have fn → f in L2.
(c): Indeed, if u ∈ R and un → u,

∥τunf − τuf∥2 = ∥τun−uf − f∥2 → 0

since un − u→ 0. Thus τ·f is continuous at u, hence continuous everywhere.
(d): Let ψ : R → L2(R) be the function ψ(t) = τt(χE). Let Φ : L2(R) → R be the function

Φ(f) =
∫
f(y)χE(y)dy. Note by Cauchy-Schwarz that Φ is a well-defined bounded linear map, and by

(c) ψ is a continuous function. Thus the compositionΦ ◦ ψ is a continuous functionR→ R. But

(Φ ◦ ψ)(t) =
∫
R
χE(y + t)χE(y)dy = ϕ(t)

so ϕ is also continuous.
(e): We assume first thatE has finite measure. Then

ϕ(0) =

∫
R
χE(y)dy = λ(E) > 0

so, since ϕ is continuous, there is some ε > 0 such that ϕ > 0 on (−ε, ε).
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Next, observe that

χE(t+ y)χE(y) = 1 ⇐⇒ y ∈ E and ∃z ∈ E s.t. z − y = t

so that
∃y s.t. χE(t+ y)χE(y) = 1 ⇐⇒ ∃y, z ∈ E s.t. z − y = t

i.e. if and only if t ∈ E − E.
Finally, for each−ε < t < ε,ϕ(t) > 0, so in particularχE(t+y)χE(y) = 1 for some y, so t ∈ E−E.

Thus (−ε, ε) ⊆ E − E, as was to be shown.
Lastly, we remove the finiteness assumption. Taking E ⊆ R measurable with positive measure, we

may find En = [−n, n] ∩ E of positive finite measure, so for some ε > 0 we have (−ε, ε) ⊆ En − En.
But of courseEn − En ⊆ E − E, and we are done.

Fall 2022 Problem 6: Let E = {x = (x1, x2) ∈ R2 : x1 − x2 ̸∈ Q}. Show that E does not contain
a set of the formA1 × A2, whereA1 ⊆ R, A2 ⊆ R are measurable, both of positive Lebesgue measure.

Proof. Consider A1, A2 ⊆ R arbitrary Lebesgue measurable sets with positive measure; we will show
thatE does not containA1 × A2. Let I1, I2 be any two intervals of positive finite length such that

λ(I1 ∩ A1) > 0.99λ(I1), λ(I2 ∩ A2) > 0.99λ(I2)

Without loss of generality we may assume λ(I1) ≤ λ(I2). We may also assume that λ(I2) ≤ 2λ(I1), by
repeatedly dividing I2 in half and selecting the denser subinterval. Let t ∈ R be such that I1 + t has the
same left endpoint as I2; then I1 + t ⊆ I2, by the size assumption. Write I ′1 = I1 + t, A′

1 = A1 + t. Note
that

χI′1∩A′
1∩A2

+ χI′1∩(A′
1∪A2) = χI′1∩A′

1
+ χI′1∩A2

so upon integrating

λ(I ′1 ∩ A′
1 ∩ A2) + λ(I ′1 ∩ (A′

1 ∪ A2)) = λ(I ′1 ∩ A′
1) + λ(I ′1 ∩ A2)

Note that

λ(I ′1 ∩ A2) + λ(I2 \ I ′1) ≥ λ(I ′1 ∩ A2) + λ(I2 ∩ A2 \ I ′1) = λ(I2 ∩ A2) > 0.99λ(I2)

so
λ(I ′1 ∩ A2) > 0.99λ(I ′1)− 0.01λ(I2 \ I ′1) ≥ 0.98λ(I ′1)

Thus
λ(I ′1 ∩ A′

1 ∩ A2) > 1.97λ(I ′1)− λ(I ′1 ∩ (A′
1 ∩ A2)) ≥ 0.97λ(I ′1)

so in particularλ(I ′1∩A′
1∩A2) > 0. WriteB = I ′1∩A′

1∩A2; thusB is a positivemeasure, measurable set,
such thatB−B ⊆ A′

1−A2. By the previous problem,B−B contains a neighborhood of 0, soA1−A2

contains a neighborhood of t. In particular,A1 ×A2 contains a point (x1, x2) such that x1 − x2 ∈ Q, so
A1 × A2 ̸⊆ E. SinceA1, A2 were arbitrary, we are done.
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Hints and remarks regarding the preceding problems.

Fall 2022 Problem 2:

Hint: consider suitable integrals of the series, and show that they are finite. You will need Fubini and Hölder.
For the second half, you’ll need a function that is in L2, but not in any Lp with p < 2.

Remark: many problems of this sort have appeared on the qual over the years. They usually proceed
by the method indicated here.

Spring 2010 Problem 5:

Hint for (a): use uniform continuity. Hint for (d): write ϕ as the composition of two continuous functions.
Hint for (e): consider ϕ(0).

Remark: This is essentially the “Steinhaus theorem.” Several versions of this problem have appeared
on the analysis qualifying exam over the years, usually without the step-by-step guidance. One version of
interest (Q3 and 4, Fall 2004) uses this to demonstrate that a measurable additive bijection f : R → R is
necessarily linear. Consequently, in order to find additive bijectionsR→ R that are nonlinear, one needs
the existence of non-Lebesgue-measurable sets.

Fall 2022 Problem 6:

Hint: use the previous problem. A1 − A2 need not contain a neighborhood of the origin, but it will contain
an open interval somewhere. Translate A1 to intersect a lot with A2. To justify the latter, use problem 4 from the
final and elementary inclusion/exclusion.

Remark: It is easy to see thatE is a Borel subset ofR2, and has positivemeasure (in fact, it is a denseGδ

set of full measure!). On the other hand, this shows that you cannot always extract good approximations
from below using (countable unions of) measurable rectangles.
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3 : Week 3

Recall the following:

• Measures µ, ν on a measurable space (X,Σ) are said to be mutually singular if there is some
A ∈ Σ such that µ(A) = 0 and ν(X \ A) = 0.

• For any (real) signed measure µ on a measurable space, there are mutually singular measures
µ+, µ− such that µ(A) = µ+(A)− µ−(A) for all measurable setsA.

• For any complex measure µ, there are finite real signed measures µ1, µ2 such that µ(A) =
µ1(A) + iµ2(A) for all measurable setsA.

• If µ = µ+ − µ− is the Hahn/Jordan decomposition of a real signed measure, we write |µ| =
µ+ + µ−. If the total underlying space isX , we abbreviate ∥µ∥ = |µ|(X).

Spring 2021 Problem 2: Let µ and ν be two finite positive Borel measures onRd.

(a) Suppose that there exist Borel setsAn ⊆ X,n ∈ N so that

lim
n→∞

µ(An) = 0 and lim
n→∞

ν(X \ An) = 0.

Show that µ and ν are mutually singular.

(b) Suppose there are non-negative Borel functions {fn}n≥1 so that fn(x) > 0 for ν-a.e. x and

lim
n→∞

∫
fn(x)dµ(x) = 0 and lim

n→∞

∫
1

fn(x)
dν(x) = 0.

Show that µ and ν are mutually singular.

Proof. (a): Using the hypothesis we may find a subsequence n1 < n2 < n3 < . . . such that

µ(Ank
) ≤ 2−k (∀k ∈ N)

Write A =
⋂∞

r=1

⋃∞
k=r Ank

; we claim that µ(A) = 0 and ν(X \ A) = 0. To establish the first claim,
notice that for each r ∈ N

µ(A) ≤ µ(
∞⋃
k=r

Ank
) ≤

∞∑
k=r

µ(Ank
) ≤ 2−r+1

so µ(A) = 0. On the other hand,

ν(X \ A) ≤
∞∑
r=1

ν(
∞⋂
k=r

(X \ Ank
))
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and, for each r,

ν(
∞⋂
k=r

(X \ Ank
)) = lim

N→∞
ν(

N⋂
k=r

(X \ Ank
)) ≤ lim

N→∞
ν(X \ AN) = 0

Thus ν(X \ A) = 0, as claimed. SinceA is obviously measurable, µ and ν are mutually singular.
(b): WritingAn = f−1

n ([1,∞)),

µ(An) =

∫
1Andµ ≤

∫
fndµ→ 0

and
ν(X \ An) =

∫
1X\Andν ≤

∫
1

fn
dν → 0

so by (a) we are done.

Fall 2020 Problem 5: Suppose f ∈ L1([0, 1]) has the property that∫
E

|f(x)|dx ≤
√
λ(E), (3.1)

for every BorelE ⊆ [0, 1].

(a) Show that f ∈ Lp([0, 1]) for all p < 2.

(b) Give an example of an f satisfying 3.1 that is not in L2([0, 1]).

Proof. (a): Recall the layer-cake decomposition∫
[0,1]

|f(x)|pdx =

∫
[0,1]

∫ |f(x)|

0

ptp−1dtdx

= p

∫ ∞

0

tp−1

∫
x∈[0,1]:|f(x)|≥t

dxdt

= p

∫ ∞

0

tp−1λ({x ∈ [0, 1] : |f(x)| ≥ t})dt

= p

∫ ∞

0

tpλ({x ∈ [0, 1] : |f(x)| ≥ t})dt
t

From now on, we abbreviate Ut = {x ∈ [0, 1] : |f(x)| ≥ t}. For each t ≥ 0 we have t1Ut(x) ≤
|f(x)|1Ut(x). Thus,

tλ(Ut) =

∫
t1Ut(x)dx

≤
∫
Ut

|f(x)|dx

≤ λ(Ut)
1/2

13



i.e.
tλ(Ut)

1/2 ≤ 1

If we choose some q ∈ (2p− 2, 2), then the preceding implies the inequality

tqλ(Ut)
q
2 ≤ 1

We now use the preceding to control the Lp norm. Indeed,∫ ∞

1

tpλ(Ut)
dt

t
=

∫ ∞

1

tp−1− q
2 · t1−

q
2λ(Ut)

1− q
2 · tqλ(Ut)

q
2
dt

t

≤
∫ ∞

1

tp−1− q
2 · t1−

q
2λ(Ut)

1− q
2
dt

t

≤
(∫ ∞

1

t
2p−2−q

q
dt

t

) q
2
(∫ ∞

0

tλ(Ut)
dt

t

)1− q
2

where we have used the fact that q < 2, so 1− q
2
> 0. Note that 2p− 2− q < 0, so(∫ ∞

1

t
2p−2−q

q
dt

t

) q
2

<∞

Since the second factor in the preceding display was just ∥f∥1−
q
2

1 <∞, we conclude that∫ ∞

1

tpλ(Ut)
dt

t
<∞

But of course the remaining portion of the integral is finite, viz,∫ 1

0

tpλ(Ut)
dt

t
=

∫ 1

0

tp−1λ(Ut)dt ≤ 1 <∞

so we conclude by the layer-cake decomposition that
∫
|f |p <∞, i.e. f ∈ Lp([0, 1]).

We present as well a dyadic decomposition argument. For n ∈ Z, write Ln = {x ∈ [0, 1] : 2n ≤
|f(x)| < 2n+1}. Then we have

2nλ(Ln) ≤
∫
Ln

|f(x)|dx ≤ λ(Ln)
1/2

so that 2nλ(Ln)
1/2 ≤ 1. Let q ∈ (2p− 2, 2); then 2qnλ(Ln)

q
2 ≤ 1 as well. We may also write

∥f∥1 ≥
∑
n∈Z

2nλ(Ln)

so that the right-hand side is finite.
Finally, we compute:∫

[0,1]

|f(x)|pdx ≤ 2p
∑
n∈Z

2npλ(Ln)

≤ 22p

2p − 1
+ 2p

∑
n≥1

2n(p−1− q
2
) · 2n(1−

q
2
)λ(Ln)

1− q
2 · 2qnλ(Ln)

q
2

≤ 22p

2p − 1
+ 2p

(∑
n≥1

2
n(2p−2−q)

q

) q
2
(∑

n≥1

2nλ(Ln)

)1− q
2
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Observe that the first series in the latter display is a geometric series with common ratio in (0, 1), hence
converges. The second series in the latter display is finite, by the previous comparison to ∥f∥1. Thus,
f ∈ Lp([0, 1]), as claimed.

(b): Let f(x) = 1
4
√
x
. Note that f ∈ L1 but not L2, so it remains to show that f satisfies 3.1. Suppose

E ⊆ [0, 1] is Borel. We will write |E| = λ(E). Then∫
E

|f(x)|dx =

∫
E∩[0,|E|]

|f(x)|dx+
∫
E∩(|E|,1]

|f(x)|dx

≤
∫ |E|

0

1

4
√
x
dx+

|E|
4
√
|E|

=
1

2

√
|E|+ 1

4

√
|E| ≤

√
|E|

as claimed.

Spring 2017 Problem 5: Let dµ be a finite complex Borel measure on [0, 1] such that

µ̂(n) =

∫ 1

0

e2πinxdµ(x)→ 0 as n→∞

Let f ∈ L1(|µ|) and dν = fdµ. Show that

ν̂(n)→ 0 as n→∞

Proof. It suffices to assume ∥µ∥ > 0. Suppose first f(x) =
∑N

k=−N ake
2πikx for some N ∈ N and

complex numbers a−N , . . . , aN . Then

ν̂(n) =
N∑

k=−N

ak

∫
e2πi(k+n)xdx =

N∑
k=−N

akµ̂(k + n)→ 0, as n→∞

We now weaken the assumption to f ∈ C([0, 1];C). Fix ε > 0 arbitrary and, by Stone-Weierstrass, let
g(x) =

∑N
k=−N ake

2πikx be a trigonometric polynomial such that ∥f − g∥L∞([0,1]) <
ε

∥µ∥ . Then

lim sup
n→∞

|ν̂(n)| ≤ lim sup
n→∞

∫ 1

0

|f(x)− g(x)|d|µ|(x) + lim sup
n→∞

∣∣∣∣∫ e2πinxg(x)dµ(x)

∣∣∣∣ ≤ ε

Since ε > 0 was arbitrary, we see that lim supn |ν̂(n)| ≤ 0, i.e. ν̂ → 0. Thus we are done in this case.
Finally, note that |µ| is a Radon measure, so continuous functions of compact support are dense in

L1(|µ|). Let f ∈ L1(|µ|) be arbitrary and g ∈ C([0, 1];C) be such that ∥f − g∥L1(µ) < ε. Then

lim sup
n→∞

|ν̂(n)| ≤ lim sup
n→∞

∫ 1

0

|f(x)− g(x)|d|µ|(x) + lim sup
n→∞

∣∣∣∣∫ 1

0

g(x)e2πinxdµ(x)

∣∣∣∣ ≤ ε

and since ε > 0 was arbitrary we are done.

15



Hints and remarks regarding the preceding problems.

Spring 2021 Problem 2.

Hint for (a): you will need suitable “limits” of the setsAn. You may find it useful to pass to a subsequenceAnk

for which the measures limit to zero sufficiently fast.

Hint for (b): consider suitable superlevel sets of the fn.

Remark. If µ is Lebesgue measure on [0, 1] and ν is Cantor measure, then you may take An to be
the indicators of the intervals remaining in the n-th stage of the construction of the Cantor set. In the
language of the fn’s, you might take fn = (2 + ε)n1An .

Fall 2020 Problem 5.

Hint for (a), part 1: one approach is to decompose f(x) =
∑

n∈Z f(x)1|f(x)|∈[2n,2n+1). Another is to use the
classical “layer-cake” decomposition of f ; to derive the latter, you’ll need to use Fubini in a very clever way.

Hint for (a), part 2: Apply the hypotheses to sets of the form {x ∈ [0, 1] : |f(x)| ∈ [2n, 2n+1)}. This will
give you a useful “exponent-lowering” inequality for the measures of such sets.

Hint for (a), part 3: Raise the preceding inequality to a power of the form 2− ε (or 1− ε, depending on how
you formulate things) so as to overwhelm the exponent p < 2. You will actually need 2− ε > 2p− 2. You will
need to use Hölder, together with an alternate expression for ∥f∥1.

Hint for (b): use the standard example of a function in Lp for all p < 2, that is not in L2. For a given E ,
break E into the part near the singularity and the part away from it.

Remark. The inequality 3.1 establishes the statement “f ∈ L2,∞([0, 1]).” The latter is the so-called
“weak L2,” a special case of the Lorentz spaces Lp,q . The conclusion of the problem is that f ∈ L1 ∩
L2,∞ =⇒ f ∈ Lp for all 1 < p < 2. The latter would also hold withL2 in place ofL2,∞, but the former
is a milder condition.

In fact, one major reason for the study of spaces like L2,∞ is that they do just as well as classical
Lebesgue spaces for the purpose of “interpolation” (read: statements like the implication in the last para-
graph), while often being easier to establish.

Spring 2017 Problem 5.

Hint: use approximation theorems to bootstrap simple f to complicated f . As your base case, try trigonometric
polynomials.

Remarks. The condition “dν = fdµ for some f ∈ L1(|µ|)” is just the condition that “ν is absolutely
continuous with respect to µ,” which is usually defined as the implication “µ(N) = 0 =⇒ ν(N) = 0.”
The equivalence of these definition is the content of the Radon-Nikodym theorem.
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Note, by a standard calculation, that the hypothesis holds for µ = λ|[0,1]. Thus, ν̂(n) → 0 for all
measure ν which are absolutely continuous with respect to µ. The converse does not hold; there are
measures ν which are mutually singular with respect to Lebesgue measure for which the stated decay
holds (indeed, this is one of your TA’s research areas); however, there do exist partial converses. Indeed,
note the following:

• If µ is a “pure-point measure” (i.e. it is a sum of δ-masses), then µ̂ never decays.

• If µ is our Cantor measure, then (up to a constant) |µ̂(ξ)| =
∣∣∏∞

k=1 cos(
π
3k
ξ)
∣∣ (in the sense of

pointwise limit). In particular, for ξ = 3n an integer power of 3, then the first k ≤ n factors are all
1, and for k > n the factor is approximately 1 − π2

2·32k−2n , which when multiplied together results
in a quantity bounded uniformly away from 0.

• Fourier decay is frequently useful to assert regularity estimates on various approximations f to
µ, i.e. thinking of µ as a limit of expressions of the form fdλ; if the f are all sufficiently regular,
then any limit will retain some regularity, which will imply absolute continuity. Indeed, regularity
(say,C1) implies that f varies slowly over small intervals, so f cannot look like (3/2)n1[0,3−n] (as in
Cantor measure).
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4 : Week 4
Some non-qual material:

Zorn’s lemma: Suppose (P,≤) is a nonempty partially-ordered set, such that any C ⊆ P with
the property that (C,≤) is totally-ordered (i.e. is a chain), has the property that there exists some
p ∈ P with c ≤ p for all c ∈ C . Then there is somem ∈ P such that p ≥ m =⇒ p = m for all
p ∈ P , (i.e.m is maximal).

The slogan version of Zorn’s lemma is, “in a partially-ordered set, if every chain has an upper-
bound, then there exists a maximal element.”

In ZF, it turns out that Zorn’s lemma is equivalent to the axiom of choice. So, since we take choice
for granted in measure theory, we will also take Zorn’s lemma for granted.

Here is the standard application of Zorn’s lemma:

Theorem 4.1. Every vector space has a basis.

Proof. Wewill not need any assumptions on the underlying field or the vector space. LetV be an arbitrary
vector space over an arbitrary fieldK. Let P be the set of all linearly-independent subsets of V , ordered
with respect to inclusion. We verify that P satisfies the hypothesis of Zorn’s lemma.

First, observe that ∅ ⊆ V is always linearly-independent, so ∅ ∈ P . Thus P is nonempty.

Now, let C be any chain of linearly-independent subsets of V . Take L =
⋃

c∈C c to be the union of
elements of C , i.e. the collection of vectors v ∈ V such that v ∈ c for some c ∈ C . Observe that L ⊆ V ,
and that L is linearly-independent. Indeed, take v1, . . . , vn ∈ L to be arbitrary; it will suffice to show
that they are linearly-independent. We may find c1, . . . , cn ∈ C such that vj ∈ cj for each j. Since C is
totally ordered and {c1, . . . , cn} is finite, we may find 1 ≤ k ≤ n such that cj ⊆ ck for each 1 ≤ j ≤ n.
Consequently, v1, . . . , vn ∈ ck. Thus v1, . . . , vn are linearly-independent, as claimed; hence we conclude
that L ∈ P .

Finally, we observe that L is an upper bound for C ; indeed, each c ∈ C has c ⊆ L by the definition
of L. Thus we have shown that every chain in P has an upper bound.

Thus Zorn’s lemma implies that there is some m ∈ P such that no other p ∈ P has p > m. If
span(m) ̸= V , then we may find v ∈ V \ span(m). But then, by elementary linear algebra, we conclude
that v is linearly-independent ofm, i.e. {v}∪m ∈ P , contradicting our assumption onm. Thusm spans
V , som is a linearly-independent spanning set for V , i.e.m is a basis.
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Bounded linear operators.
Recall that, for (V, ∥ ∥1) and (W, ∥ ∥2)normedvector spaces, we say that a linearmapT : V → W

is bounded if there exists some C > 0 such that

∥Tx∥2 ≤ C∥x∥1, ∀x ∈ V

The least suchC is called the operator norm of T (with respect to the norms ∥ ∥1, ∥ ∥2). Recall also that
T : V → W is continuous (in the norm topologies) if and only if it is bounded.

Theorem 4.2. (a) Let ∥ ∥1, ∥ ∥2 be two norms onRn. Then there exists a constant C > 0 such that

C−1∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1 ∀x ∈ Rn

(b) Let T : Rn → Rm be an arbitrary linear map, and equip Rn,Rm with arbitrary norms. Then T is
automatically bounded.

Proof. (a): It suffices to exhibit a particular norm, such that any other norm is equivalent to that norm. So,
we change notation and let ∥ ∥∞ be the max norm (∥(x1, . . . , xn)∥∞ = max1≤j≤n |xj|) and let ∥ ∥ be any
other norm. Write e1, . . . , en be the standard basis ofRn. Then, for each x ∈ Rn,

∥x∥ ≤
n∑

j=1

|xj|∥ej∥ ≤ ∥x∥∞
n∑

j=1

∥ej∥

so that
∑n

j=1 ∥ej∥ is a suitable constant for one of the inequalities.
Next, observe that in particular we have shown that ∥ · ∥ : Rn → R≥0 is a continuous function

(since the topology on Rn induced by the sup-norm is clearly the usual topology). Thus, ∥ · ∥ achieves
a minimum on the compact set {x ∈ Rn : ∥x∥∞ = 1}, say c. Since each element of the latter set is
nonzero, we conclude that c > 0. Then, for any x ∈ Rn nonzero and λ = ∥x∥∞,

∥x∥ = |λ|∥λ−1x∥ ≥ c|λ| = c∥x∥∞

so that

c∥x∥∞ ≤ ∥x∥ ≤

(
n∑

j=1

∥ej∥

)
∥x∥∞

so we are done if we take C = max(c−1,
∑n

j=1 ∥ej∥).

(b): By (a) and basic topology, it suffices to show the conclusion in the casem = 1, and both spaces
have the standard Euclidean norm. By elementary linear algebra, T is necessarily of the form v 7→ v · w
for a fixed w ∈ Rn. By Cauchy-Schwarz,

|Tv| ≤ ∥v∥ · ∥w∥

so T is bounded with constant ∥w∥.
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Remark. One can further show that the Euclidean topology is in fact the unique Hausdorff topology
on Rn (n ∈ N), such that addition+ : Rn × Rn → Rn and scalar multiplication · : R × Rn → Rn are
continuous.

Spring 2022 Problem 1: Given a finite (positive) Borel measure µ onR, its support is the set

spt(µ) = {x ∈ R : µ((x− ε, x+ ε)) > 0 for every ε > 0}

(a) Prove that spt(µ) is closed, thatµ(R\ spt(µ)) = 0, and that any other set with these two properties
must contain spt(µ).

(b) Prove that there is a finite Borel measure µ onR such that

(i) µ has support equal toR;
(ii) µ and Lebesgue measure are mutually singular.

Proof. (a): Let y ∈ R \ spt(µ). Then for some ε > 0, we have µ((y − ε, y + ε)) = 0. But then any other
z ∈ (y − ε, y + ε) has z ∈ R \ spt(µ), soR \ spt(µ) is open, i.e. spt(µ) is closed.

Note that µ is a Radon measure, so is inner regular. Thus, to show µ(R \ spt(µ)) = 0, it suffices to
show thatµ(K) = 0 for any compactK ⊆ R\spt(µ). So, fix some compactK as indicated. Let {Ix}x∈K
be a collection of nonempty open intervals such that Ix is centered at x and µ(Ix) = 0, as guaranteed by
the fact thatK ∩ spt(µ) = ∅. By compactness, there are x1, . . . , xn ∈ K such thatK ⊆ Ix1 ∪ · · · ∪ Ixn .
But then

µ(K) ≤
n∑

j=1

µ(Ixj
) = 0

and we are done.
Finally, we show that any closed setS with the propertyµ(R\S) = 0, must contain spt(µ). It suffices

to fix some x ∈ R such that all ε > 0 have µ((x− ε, x + ε)) > 0, and show that x ∈ S. So, fix such an
x. If x ̸∈ S, then since S is closed we may find ε > 0 such that (x− ε, x+ ε) ∩ S = ∅. But then

0 = µ(R \ S) ≥ µ((x− ε, x+ ε)) > 0

a contradiction. Thus x ∈ S, and we are done.
(b): Fix an enumeration {qn}∞n=1 ofQ. Define

µ =
∞∑
n=1

2−nδqn

Then µ(U) > 0 for every nonempty open set U , so spt(µ) = R. Note that µ(R \Q) = 0 andm(Q) = 0
(wherem is Lebesgue measure), som and µ are mutually singular. Lastly, µ(R) =

∑
n 2

−n = 1 <∞, so
we are done.

Spring 2022 Problem 5 (modified): Let µ be a Borel measure onR2, and assume it has the following
property: for every fixed r > 0, the quantity µ(B(x, r)) is finite and independent of x, whereB(x, r) is
the open ball of radius r around x.
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(a) Prove that there is a finite constant c such that µ(B(x, r)) ≤ cr2 whenever 0 < r ≤ 1.

(b) Prove that µ is absolutely continuous with respect to Lebesgue measure.

Proof. (a): We argue by geometric considerations. For each 0 < r ≤ 1, let cr be the unique constant
such that µ(B(x, r)) = crr

2 for each x ∈ R2. We note that, for λ ≥ 10, there are ≥ 1
32
λ2 disjoint

disks of radius r/λ that fit in any disk of radius r; this may be seen by considering the grid of points with
separation r/λ, centered at the center of the large disk, and considering a square inscribed in the large
disk; by adding a small disk at every other point in the grid in the square, we get 1

32
λ2 small disks in the

large disk, as claimed.
Consequently,

crr
2 = µ(B(x, r)) ≥ 1

32
λ2cr/λ(

r

λ
)2 =

1

32
cr/λr

2

so
cr ≥

1

32
cr/λ ∀0 < r ≤ 1, λ ≥ 10

To finish, note thatB(x, r) can be covered by≤ 4λ2 disksB(x′, r/λ) for all λ ≥ 1, so

crr
2 ≤ 4λ2cr/λ(

r

λ
)2

and
cr ≤ 4cr/λ

for all λ ≥ 10. Thus, for any 0 < r ≤ 1, since 10
r
≥ 10,

cr ≤ 4c r
10
≤ 128c1

so by setting c = 128c1 we get
µ(B(x, r)) = crr

2 ≤ cr2

for all 0 < r ≤ 1, as desired.

(b): First, we claim that µ is absolutely continuous with respect to Lebesgue measurem. To demon-
strate this, supposeN is Borel and hasmeasure 0. By the definition ofm, for each ε > 0 there is a sequence
of open squares Qi such that

∑
im(Qi) <

ε
2
and N ⊆

⋃
iQi. Writing Bi for circumscribed ball about

Qi, notice thatm(Bi) =
π
2
m(Qi) < 2m(Qi), so

∑
im(Bi) < ε. Thus

µ(N) ≤
∑
i

µ(Bi) ≤ c̃ε

where c̃ = c
π
. Sending ε → 0, we see µ(N) = 0 as claimed, so indeed µ is absolutely continuous with

respect tom.
Thus we may write dµ = fdm for some nonnegative locally integrable Borel function f . By the

assumption, the average of f onB(x, r) is independent of x. If f is nonconstant, then there is some ε > 0
andpositivemeasure setsA,B such that supx∈A f(x)+ε < infx∈B f(x). ByLebesguedifferentiation, a.e.
point ofA (resp. B) is a Lebesgue point forA (resp. forB). Consequently, wemay find somex ∈ A, y ∈ B
and r > 0 such that µ(B(x, r)) < µ(B(y, r)), contradicting our assumption. Thus f is constant a.e., so
µ is a constant multiple of Lebesgue measure.
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Fall 2009 Problem 5 (with added scaffolding): Construct a Borel subsetE of the real lineR such that
for all intervals [a, b] we have

0 < λ(E ∩ [a, b]) < |b− a|

where λ denotes Lebesgue measure, by the following procedure:

(a) By modifying the construction of the standard Cantor set, show that there exists a compact totally
disconnected subset ofR with positive measure.

(b) LetC denote the family of compact totally disconnected subsets ofRwith positive measure. Show
that, if I is any nonempty open interval, there existA,B ∈ C such thatA∩B = ∅ andA∪B ⊆ I .

(c) Let {In}n be an enumeration of the nonempty open intervals in R with rational endpoints. Show
that there exist sequences {An}n, {Bn}n in C such thatAn ∪Bn ⊆ In, (An ∪Bn) ∩

⋃
j<n(Aj ∪

Bj) = ∅.

(d) Show thatA =
⋃

nAn has the desired property.

Proof. (a): Repeat the Cantor-set construction, but in the nth stage remove an interval of length (3n)−n.
The resulting setC will be compact and totally disconnected, whereas [0, 1]\C will havemeasure at most∑

n 2
n(3n)−n < 1.

(b): Let I1, I2 ⊆ I be disjoint nonempty open intervals. By rescaling and shifting any elementC ∈ C ,
we obtainA,B ∈ C withA ⊆ I1, B ⊆ I2. This clearly suffices.

(c): Suppose we have definedA1, . . . , An, B1, . . . , Bn ∈ C such thatAj ∪Bj ⊆ Ij and (Aj ∪Bj)∩⋃
k<j(Ak ∪Bk) = ∅ for each j ≤ n. Then In+1 \

⋃
j≤n(Aj ∪Bj) is nonempty and open, hence contains

a nonempty open interval J . But then we may apply (b) to J to constructAn+1, Bn+1.
(d): A is clearly Borel. If I is any nonempty interval, then we may pick n such that In ⊆ I . Then

0 < λ(An) ≤ λ(I ∩ A) < λ(I ∩ A) + λ(Bn) ≤ λ(I)

and we are done.
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[Bonus problem] Spring 2013 Problem 1: Suppose f : R → R is bounded, Lebesgue measurable,
and

lim
h→0

∫ 1

0

|f(x+ h)− f(x)|
h

dx = 0

Show that f is a.e. constant on the interval [0, 1].

Proof. It suffices to demonstrate that, for all ε > 0,∫∫
[0,1]2
|f(y)− f(x)|dxdy < ε

Let h0 be such that the given integral is< ε for any 0 < h ≤ h0. Fix any y ∈ [0, 1]. Then, if 0 ≤ x < y,
if h0 ≥ h > 0 andN = Nh = y−x

h
≤ 1

h
,

|f(y)− f(x)| ≤
Nh∑
n=1

|f(x+ nh)− f(x+ (n− 1)h)|

so that ∫ y

0

|f(y)− f(x)|dx ≤
Nh∑
n=1

∫ y

0

|f(x+ nh)− f(x+ (n− 1)h)|dx

When 0 ≤ x < y, (n− 1)h ≤ x+ (n− 1)h < y, so certainly∫ y

0

|f(x+ nh)− f(x+ (n− 1)h)|dx ≤
∫ 1

0

|f(x+ h)− f(x)|dx < εh

which implies ∫ y

0

|f(y)− f(x)|dx < εhNh ≤ ε

Since this holds for each y, we conclude∫ 1

0

∫ y

0

|f(y)− f(x)|dx < ε

which is just the estimate ∫∫
[0,1]2
|f(y)− f(x)| < 2ε

Taking ε→ 0, we’re done.

23



Hints and remarks about the preceding problems

Spring 2022 Problem 1:

Hint for (a): compactness and covering.

Hint for (b): useQ.

Spring 2022 Problem 5:

Hint for (a): consider coverings of large disks by small disks, and use this to compare the different c.

Remark. UsingLebesgue differentiation, you can further show thatµ is a constantmultiple of Lebesgue
measure. If you know the statement of Lebesgue differentiation, try to show this! This is the original
formulation of (b).

Fall 2009 Problem 5:

Hint for part (a): arrange for the middle intervals being removed to go to zero sufficiently fast.

Hint for (c): What are the properties of In+1 \
⋃

j≤n(Aj ∪Bj)?

Remark. Why doesn’t this violate Lebesgue differentiation?

Spring 2013 Problem 1 [Bonus problem]:

Hint, part 1: no covering lemmas are necessary.

Hint, part 2: how big is |f(y)− f(x)| on average?

Remark: Our condition implies that, if f is differentiable a.e., then its derivative is 0 a.e. If the limit
could be pushed inside the integral, then our condition would be equivalent to that statement. On the
other hand, there exists a continuous function f which increases monotonically on [0, 1] from f(0) = 0
to f(1) = 1 for which f ′ = 0 a.e., i.e. the Cantor function. Conclude that our condition is strictly
stronger than the condition that f ′ = 0 a.e.
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5 : Week 5
Fall 2019 Problem 6 Recall that ℓ∞(N) = {x = {xn}n≥1 : supn≥1 |xn| < ∞} is a Banach space with
respect to the norm ∥x∥∞ = supn≥1 |xn|.

(a) Prove that there exists a continuous linear functional ϕ on ℓ∞(N) such that

ϕ(x) = lim
n→∞

xn

whenever the limit exists.

(b) Prove that ϕ is not unique.

Proof. (a): Let L ⊆ ℓ∞(N) be the subset of ℓ∞(N) consisting of elements x for which limn xn exists.
Observe that L is a linear subspace. Write ϕ0 for the map L → R, ϕ0(x) = limn xn. One can note that
ϕ0 is certainly linear. Then, for any x ∈ L,

| lim
n
xn| ≤ lim

n
|xn| ≤ lim sup

n
|xn| ≤ sup

n≥1
|xn|

so that ϕ0 satisfies the bound |ϕ0(x)| ≤ ∥x∥∞ for all x ∈ L. By Hahn-Banach, there exists a linear map
ϕ : ℓ∞(N)→ R such that |ϕ(x)| ≤ ∥x∥∞ for all x ∈ ℓ∞, and such that ϕ|L = ϕ0 Then ϕ is a continuous
linear map such that

ϕ(x) = lim
n→∞

xn

whenever x ∈ L, i.e. whenever the limit exists.
(b): Write L1 for the linear subspace of ℓ∞(N) spanned by L and b = {bn}n≥1, with bn = (−1)n.

Then, for any x ∈ L1, there by definition exists a scalar α and y ∈ L such that

x = αb+ y

Then observe that, since {yn}∞n=1 converges, from the identity

xn+1 − xn = 2(−1)n+1α + (yn+1 − yn)

we in particular have
1

2
lim
k→∞

(x2k+2 − x2k+1) = α (5.1)

and
yn = xn − (−1)n · 1

2
lim
k→∞

(x2k+2 − x2k+1) (5.2)

Define linear maps ϕ1, ϕ2 : L1 → R via

ϕ1(αb+ y) = α + lim
n→∞

yn

ϕ2(αb+ y) = −α + lim
n→∞

yn

By (5.1) and (5.2), these arewell-defined. They are also clearly linear. Wewish to prove a bound that allows
us to use Hahn-Banach again. To this end, write y∞ = limn yn. Then

|α|+ |y∞| = lim sup
n→∞

|(−1)nα + yn| ≤ ∥αb+ y∥∞
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so that, for i = 1, 2, we have

|ϕi(αb+ y)| ≤ |α|+ |y∞| ≤ ∥αb+ y∥∞

Thus ϕ1, ϕ2 both extend to bounded linear maps ℓ∞(N)→ R that extend the linear functional on L.
Since they disagree on the element b, we conclude that the extension in part (a) is not unique.

Spring 2019 Problem 4: Let V be the subspace of L∞([0, 1],m) (where m is Lebesgue measure)
defined by

V = {f ∈ L∞([0, 1], µ) : lim
n→∞

n

∫
[0,1/n]

fdm exists}

(a) Prove that there existsφ ∈ L∞([0, 1],m)∗ (i.e. a continuous linear functionalL∞([0, 1],m)→ R)
such that φ(f) = limn→∞ n

∫
[0,1/n]

fdm for every f ∈ V .

(b) Show that, given any φ ∈ L∞([0, 1],m)∗ satisfying the condition in (a), there exists no g ∈
L1([0, 1],m) such that φ(f) =

∫
fgdm for all f ∈ L∞([0, 1],m).

Proof. (a): Note first that, for each n,

|n
∫
[0,1/n]

fdm| ≤ ∥f∥∞ × n
∫
[0,1/n]

dm = ∥f∥∞

so the linear map φ0 : V → R, φ0(f) = limn→∞ n
∫
[0,1/n]

fdm satisfies the bound

|φ0(f)| ≤ sup
n
∥f∥∞ = ∥f∥∞

ByHahn-Banach, there existsφ : L∞([0, 1],m)→ R linearwith normbounded by 1 such that φ|V = φ0,
as was to be shown.

(b): Suppose to the contrary that g ∈ L1([0, 1],m) is such that, for any f ∈ L∞([0, 1],m),

φ(f) =

∫
fgdm

where φ is as in (a). In particular, testing against f = 1 ∈ V ,

1 = φ(1) =

∫
gdm

so certainly ∥g∥1 ≥ 1. On the other hand, for any ε > 0 and any f ∈ L∞([0, 1],m) such that f |[0,ε] ≡ 0,
we have

0 = φ(f) =

∫
fgdm

In particular, g|(ε,1] ≡ 0 a.e. Since ε > 0was arbitrary, we conclude that g has essential support contained
in {0}, i.e. g ≡ 0 as an element of L1([0, 1],m). But this contradicts the estimate ∥g∥1 ≥ 1 from earlier,
and we’re done.
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Spring 2021 Problem 5: Let x ∈ RN be such that the series
∞∑
i=1

xiyi

converges for all y ∈ RN such that limn yn = 0. Show that the series
∑∞

i=1 |xi| converges.

Proof. Write c0 ⊆ ℓ∞(N) for the space of y ∈ RN such that limn yn = 0. We show the contrapositive: if
x ̸∈ ℓ1(N), then there exists a y ∈ c0 such that

∑
i≥1 xiyi fails to converge.

Assuming that hypothesis on x, we may find 1 = n1 < n2 < . . . an infinite sequence of indices inN
such that

∑nk+1−1
i=nk

|xi| ≥ 1. Define then y by

yi = sign(xi) ·
1

k
, when nk ≤ i < nk+1

Then clearly yi ∈ c0, and

∞∑
i=1

yixi =
∞∑
k=1

nk+1−1∑
i=nk

sign(xi) ·
1

k
· xi =

∞∑
k=1

1

k

nk+1−1∑
i=nk

|xi| ≥
∞∑
k=1

1

k
= +∞

and we are done.

27



[Bonus problem]; taken from mathoverflow: Consider the Hilbert space ℓ2(N), and consider a
matrix A = [aij]i,j , consisting of nonnegative entries, such that, for all y ∈ ℓ2(N), the entries of the
vector Ay all converge, and the vector Ay also belongs to ℓ2(N). Show that A is a bounded linear map
ℓ2(N)→ ℓ2(N).

Important remark: we are not here claiming that every linear map ℓ2(N)→ ℓ2(N) is bounded!
The statement is also true when the entries are assumed only to be real numbers.

Proof. Consider the linear maps TN defined by the matrix given by the entries (TN)i,j = aij if 1 ≤ i, j ≤
N , 0 otherwise. Then each TN is clearly a bounded linear map. Furthermore, for each y ∈ ℓ2(N),

TN(y) = (11≤i≤N

N∑
j=1

aijyj)i≥1

which satisfies

∥TN(y)∥2ℓ2 =
N∑
i=1

|
N∑
j=1

aijyj|2 ≤
N∑
i=1

|
N∑
j=1

aij|yj||2 ≤
∞∑
i=1

|
∞∑
j=1

aij|yj||2

By assumption, writing |y| = {|yn|}n≥1, the vector A|y| ∈ ℓ2(N), so the terminal expression above
converges to a finite number. Thus, for each y,

sup
N
∥TN(y)∥ℓ2 <∞

so by the uniform boundedness principle we see that

sup
N
∥TN∥ℓ2→ℓ2 <∞

On the other hand, for arbitrary y ∈ ℓ2,

∥TN(y)− A(y)∥2ℓ2 =
N∑
i=1

|
∞∑

j=N+1

aijyj|2 +
∞∑

i=N+1

|
∞∑
j=1

aijyj|2 = (I) + (II)

Considering (I), we have the estimate

N∑
i=1

|
∞∑

j=N+1

aijyj|2 ≤
∞∑
i=1

|
∞∑

j=N+1

aij|yj||2

Again, the latter series all converge; for each i, the quantity

|
∞∑

j=N+1

aij|yj||

is decreasing inN , and has limit 0 asN →∞. Thus the full sum
∞∑
i=1

|
∞∑

j=N+1

aij|yj||2
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is (a) convergent, (b) has summands over i that decrease to 0, hence (c) limits to zero by dominated con-
vergence, i.e.

lim
N→∞

(I) = 0

Considering (II), we have assumed

∞ > ∥Ay∥2ℓ2 =
∞∑
i=1

|
∞∑
j=1

aijyj|2

so by looking at the tail of the outside convergent sum we have

lim
N→∞

(II) = 0

Thus
lim

N→∞
∥TN(y)− A(y)∥2ℓ2 = 0

and thus TN(y) → A(y) for all y ∈ ℓ2(N). Since the TN are uniformly bounded in operator norm, we
conclude thatA is a bounded linear map, as was to be shown.

29



Hints and remarks about the preceding problems

Fall 2019 Problem 6:

Hint for (a): Hahn-Banach.

Hint for (b): Assign ϕ competing values on some larger space.

Remark. one might describe this as a version of “generalizing the limit functional to all bounded se-
quences.” Notice, however, that such a ϕ need not extend the properties limn→∞ an = limn→∞ an+1 or
limn→∞ anbn = (limn→∞ an)(limn→∞ bn).

Spring 2019 Problem 4:

Hint for (a): Hahn-Banach.

Hint for (b): Inspect a putative g on intervals on the form [ε, 1]. On the other hand, try f = 1.

Remark. In part (b) we have verified that L∞([0, 1],m)∗ is not equal to L1([0, 1],m). In contrast, for
any 1 ≤ p <∞, if we write q = p

p−1
then (Lp([0, 1],m))∗ ≃ Lq([0, 1],m).

Spring 2021 Problem 5:

Hint: uniform boundedness.

Remark. The conclusion of the problem is that every element of c∗0 can be regarded as an element of ℓ1.
On the other hand, each element of ℓ1 clearly induces a bounded linear functional on c0, and this mapping
is faithful (i.e. x ∈ ℓ1 nonzero implies that the functional is nonzero). Consequently, c∗0 ≃ ℓ1 in the sense
that c∗0, ℓ1 are isomorphic normed vector spaces.

By comparison, it turns out that L1([0, 1]) is not isomorphic to any dual of a Banach space (using
some facts about convex sets in weak-∗ topologies, e.g. Krein-Milman). As an immediate consequence,
L1([0, 1]) ̸≃ ℓ1(N).

Bonus problem:

Hint, part one: uniform boundedness.

Hint, part two: consider the various truncations of A given by zeroing out matrix entries outside of finite
sub-matrices.

Remark. Observe for comparison that there do exist discontinuous linear maps between any infinite-
dimensional normed vector spaces. Indeed, between any two vector spaces, there exists a linear trans-
formation sending linearly independent elements to any prescribed values; in particular, if {en}n≥1 are
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linearly independent andw is nonzero, then there is a linear map for which T (en) = nw; this extends to
a linear map on the whole space, and is clearly unbounded.

The reason we can reconcile this fact with the bonus problem is that an arbitrary linear map ℓ2(N)→
ℓ2(N) may have a matrix that does not define a bounded linear map ℓ2(N) → ℓ2(N) (see the last para-
graph).

Finally, we briefly suggest how to extend this to matricesAwith signed entries. It would be tempting
to attempt to demonstrate that, if A is a signed matrix defining a linear map ℓ2(N) → ℓ2(N), then the
matrix of absolute values does the same. Unfortunately, this fails; examples are a little tricky to write
down, so we won’t do that here. We instead need to adapt our argument directly. The most difficult part
is to arrange forANy to have uniformly bounded ℓ2(N) norm for each fixed y. Almost the same method
as above works, but instead of truncating the rowswe instead keep the full rows and consider only finitely
many rows (truncating the columns).
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Appendix: Isomorphism problems for infinite-dimensional vector spaces

In functional analysis, there are a variety of infinite-dimensional vector spaceswithmetric/topological
structures. In this short summary, we will use the language of category theory to efficiently communicate
a variety of general, and often highly nontrivial, results about these spaces. In particular: we will consider
various strengths of isomorphism between different spaces; roughly speaking, we are interested in the
question “are Lp(X) and Lq(Y ) the same space?”

To be more precise: one could spend a great deal of time studying Hilbert spaces, Banach spaces,
normed vector spaces, or topological vector spaces (in order of increasing abstraction). Recall that:

• AHilbert space is an inner-product vector space that is complete with respect to the norm induced
by the inner product,

• a Banach space is a complete normed vector space,

• a normed vector space is a vector space equipped with a (1-homogeneous, faithful) norm, and

• a topological vector space is a vector space V equipped with a topology τ such that the maps + :
V × V → V and · : R× V → V are continuous.

At this level of abstraction, we will only be considering maps which are continuous. For the sake of
discussion, we will not only consider linear functions, though those will be the majority of the cases of
interest. A function T between normed vector spaces is said to be:

• an isometry if ∥Tx∥ = ∥x∥ for all x;

• bounded if there is a constant C such that ∥Tx− Ty∥ ≤ C∥x− y∥ for all x, y;

• uniform if, for all ε > 0 there exists δ > 0 such that, for any x, y satisfying ∥x− y∥ < δ, we have
∥Tx− Ty∥ < ε

If both the source and target of T are inner product spaces, then T is said to be unitary if T is a linear
bijection and ⟨Tx, Ty⟩ = ⟨x, y⟩ for all x, y.

Consider the following categories.

• Hilb, whose objects are Hilbert spaces and whose maps are unitaries

• Banstr , whose objects are Banach spaces and whose maps are linear isometries

• Banwk
3, whose objects are Banach spaces and whose maps are bounded linear maps

• Banu,4 whose objects are Banach spaces and whose maps are uniformly continuous functions

• TVSstr , whose objects are topological vector spaces and whose maps are continuous linear maps

• TVSwk , whose objects are topological vector spaces and whose maps are continuous functions.
3This is what is usually referred to when one says “isomorphic Banach spaces”
4We could actually extend the adjective “uniform” to talk about arbitrary topological vector spaces, even though they don’t

carry metric information; the idea is that arbitrary open neighborhoods can be translated around to give a universal/uniform
notion of smallness
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Note carefully that the maps in Banu andTVSwk need not be linear.
The corresponding notions of isomorphism are frequently called:

• unitary isomorphism, inHilb,

• isometric isomorphism, in Banstr ,

• Banach space isomorphism, or just isomorphism, in Banwk ,

• uniformly homeomorphic, in Banu,

• linearly homeomorphic, inTVSstr ,

• homeomorphic, inTVSwk.

We now list the following facts:

Theorem 5.1. If B1, B2 are any two Banach spaces, then they are isomorphic in Banwk iff they are iso-
morphic inTVSstr .

Theorem 5.2. If B1, B2 are any two Banach spaces with the same density character5, then they are iso-
morphic inTVSwk.

Theorem 5.3. If p ̸= q ∈ [1,∞] and (X,µ), (Y, ν) are two measure spaces for which Lp(X,µ) and
Lq(Y, ν) are infinite-dimensional, then they are not isomorphic inBanu (hence neither inBanwk,Banstr ,
norTVSstr).

The preceding failure of isomorphism for distinct p, q may be realized in the following way. If∆,Γ
are nonempty sets and 1 ≤ q < p < ∞, then any continuous linear map T : ℓp(∆) → ℓq(Γ) takes the
unit ball to a precompact set (i.e. T is a compact operator; this is known as Pitt’s theorem). Observe that
this is a dramatic obstruction to isomorphism in infinite-dimensional topology.

On the subject of sequence spaces, one classical example is the closed subspace c0 := {x ∈ ℓ∞(N) :
limn xn = 0}. Since it is a closed subspace of a Banach space, it is a Banach space in its own right.

Theorem 5.4. c0 is not isomorphic in Banwk to any ℓp(N), 1 ≤ p ≤ ∞.

Fixing a single exponent p, we have the following:

Theorem 5.5. IfH1 andH2 are Hilbert spaces, then they are isomorphic inHilb if and only if they have
the same (Schauder/Hilbert)6 dimension.

Theorem 5.6. Lp(0, 1) and ℓp(N) are not isomorphic in Banwk for any p ̸= 2, 1 ≤ p < ∞ (hence not
isomorphic in Banstr orTVSstr).

When 1 ≤ p < 2, we can say a little more:

Theorem 5.7. Lp(0, 1) and ℓp(N) are not isomorphic in Banu for any 1 ≤ p < 2.
5the minimal cardinality of a dense subset
6the cardinality of the minimal generating set, in the sense of linear span and metric closure
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The analogous statement for p > 2 appears to be a long outstanding open problem.
The importance of the last facts comes from the fact that the spaces (0, 1) and N (equipped with

Lebesgue and counting measure, respectively) are the simplest versions of the very few ways that (suf-
ficiently regular) measure spaces can be distinct. More precisely, as a consequence of a deep result known
asMaharam’s theorem, if Lp(X) is separable, then it is isomorphic in Banstr to a space of the form

ℓp(D)⊕p L
p(0, 1) or ℓp(D)

where the p subscript indicates that the norm on the direct sum is given by taking the ℓp combinations
of the inner norms; hereD is understood to be a purely atomic measure space of cardinality≤ ℵ0. As a
consequence, the isomorphism problem forLp spaces essentially reduces to comparisons between spaces
like (0, 1) andN.

A special version of this arises whenX is a non-discrete Polish space andµ is aσ-finite Borelmeasure,
in which case the isometry Lp(X,µ)→ Lp([0, 1]) is implemented by a Borel isomorphism7 between the
underlying measurable spaces.

The conclusion of the prior series of results is that the sort of spaces one normally considers in mea-
sure theory are usually homeomorphic, but usually not linearly homeomorphic. One slight oddity is the
following:

Theorem 5.8. L∞(0, 1) and ℓ∞(N) are isomorphic in Banwk.

This essentially reflects that L∞ spaces are unable to witness the measures of subsets, which roughly
reduces the problem of isomorphism to that of distributive lattices. Another way to look at this is that L∞

spaces have the structure of algebras, in addition to Banach spaces.
We now consider a more delicate situation, that of the function spacesC(X), Cp(X). In this context,

we will generally be obtaining non-existence results, where we show that function spaces can only be
isomorphic if the underlying spaces are sufficiently similar.

Given a compact Hausdorff topological space X , define the space C(X) of continuous real-valued
functions with the topology of uniform convergence; similarly, define Cp(X) as the space of continuous
functions with pointwise convergence. Note thatC(X) has a finer topology thanCp(X), and thatC(X)
is a Banach space.

We begin with the theory of the spaces C(X), which is closer to the preceding facts.

Theorem 5.9 (Banach-Stone). Let X, Y be compact Hausdorff spaces. Suppose C(X) and C(Y ) are
isomorphic in Banstr . ThenX, Y are homeomorphic.

It is worth remarking that this implies that Theorem 5.8 cannot be improved toBanstr . More specifi-
cally, ℓ∞(N) is in fact isometric toC(βN)withβN the Stone-Cech compactification ofN (in fact, this iso-
morphism is also an algebra isomorphism); similarly, L∞(0, 1) is isometric toC(S(0, 1)), where S(0, 1)
is the “Stone space” of (0, 1). However, βN and S(0, 1) are not homeomorphic (indeed, βN is separable
and S(0, 1) is not), so there is no isometry between ℓ∞(N) and L∞(0, 1).

The other conclusion of this, of course, is that Banach-Stone can’t be improved to only assuming
isomorphisms in Banwk. In fact, the setting in Banwk is as different as can be:

Theorem 5.10 (Miljutin 1966). SupposeX is an uncountable compact metric space. Then C(X) is iso-
morphic to C([0, 1]) in Banwk.

7see “Kuratowski’s theorem.”
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Thus far our only examples have been normed vector spaces. There are manymore topological vector
spaces of interest - e.g. weak topologies, weak-∗ topologies, etc. One quick way to distinguish these
spaces from our earlier examples is to note that, for some of these weaker topologies, every neighborhood
of 0 contains a line! Indeed, as an exercise you might justify that this holds forCp([0, 1]). For comparison,
in any normed vector space, the unit ball is a neighborhood of the origin that doesn’t contain a line. The
subject of general topological vector spaces is quite vast; we conclude this note by looking at only one type
that goes beyond our normed vector spaces.

Let’s consider the spacesCp(X)withX compact Hausdorff. In this case, we have a much more com-
plicated theory: within a single category, there are nontrivial isomorphisms, but also nontrivial invariants.

We first note an example of the first:
Theorem 5.11. Let X = [0, 1] ∪ [2, 3] and Y = [0, 2] ∪ {3}. Then Cp(X), Cp(Y ) are isomorphic in
TVSstr .
Proof. DefineΦ : Cp(X)→ Cp(Y ) by

Φ(f)(y) :=


f(y) 0 ≤ y ≤ 1

f(y + 1)− (f(2)− f(1)) 1 ≤ y ≤ 2

f(2)− f(1) y = 3

On the other hand, there are “small” spaces which witness a failure of linear isomorphism:
Theorem 5.12. There are countable compact Tychonoff spaces X, Y for which Cp(X), Cp(Y ) are not
isomorphic inTVSstr . C(X), C(Y ) are also not isomorphic inTVSstr .

If we are willing to extend the definition of Cp(Y ) to non-compact spaces Y (still using pointwise
convergence as the topology), then one sees a variety of interesting examples:
Theorem 5.13. Cp([0, 1]) andCp(R) are not isomorphic inTVSstr , but they are isomorphic inTVSwk.

We conclude by noting some ways in which the topology of Cp(X) witnesses the topology ofX , i.e.
considering the isomorphism problem of Cp(X) inTVSwk andTVSstr:
Theorem 5.14. SupposeX, Y are Tychonoff spaces such thatCp(X) is isomorphic toCp(Y ) inTVSstr .
Then the following holds:

(a) X is compact iff Y is compact

(b) X is σ-compact iff Y is σ-compact

(c) X and Y have the same (topological) dimension8

Theorem 5.15. SupposeX is Tychonoff. TFAE:
(a) Cp(X) is separable and metrizable

(b) Cp(X) is metrizable

(c) Cp(X) is first-countable

(d) X is countable
8the so-called “covering dimension;” it takes the right value on manifolds.

35



A few sources:

1. Lacey, “The Isometric Theory of Classical Banach Spaces”

2. Albiac and Kalton, “Topics in Banach Space Theory”

3. van Mill, “The Infinite-Dimensional Topology of Function Spaces”

4. Weston, “On the Uniform Classification of Lp(µ) Spaces”
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6 : Week 6

This discussion will be focused on Hilbert spaces. We briefly detail the basics of the subject here.

• For F one of R,C, an F-inner product space (H, ⟨·, ··⟩) is a vector space over F equipped with
an inner product ⟨·, ··⟩. That is, ⟨·, ··⟩ is a functionH×H → F, which satisfies the following
axioms:

1. ⟨·, ··⟩ is F-linear in the second entry and conjugate-linear in the first entry, that is,

⟨v, αx+ y⟩ = α⟨v, x⟩+ ⟨v, y⟩

⟨αx+ y, v⟩ = ᾱ⟨x, v⟩+ ⟨y, v⟩

2. ⟨·, ··⟩ is conjugate symmetric, i.e.

⟨x, y⟩ = ⟨y, x⟩

3. If x ̸= 0, then ⟨x, x⟩ > 0.

Of course, if F = R, then conjugation is just the identity.

• In any inner product space, one has the Cauchy-Schwarz inequality |⟨x, y⟩| ≤
|⟨x, x⟩|1/2|⟨y, y⟩|1/2

• For F one of R,C, a F-Hilbert space H is a Banach space (i.e. complete normed vector space)
over Fwhose norm ∥ · ∥ is of the form x 7→ ∥x∥ = ⟨x, x⟩1/2, where ⟨·, ··⟩ is an inner product.

• In any Hilbert spaceH, we have the parallelogram law

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

• If (X,A, µ) is any measure space, thenL2(X,µ) is a Hilbert space, with inner product defined
by

(f, g) 7→
∫
X

f̄ gdµ

• IfH is a Hilbert space and f ∈ H∗, then there is a unique v ∈ H such that f(x) = ⟨v, x⟩ for
every x ∈ H. Thus,H∗ ≃ H canonically. This is the Riesz representation theorem.

Fall 2012 Problem 3. LetH be a Hilbert space andE a closed convex subset ofH. Prove that there exists
a unique element x ∈ E such that

∥x∥ = inf
y∈E
∥y∥
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Proof. Consider a sequence {xn}∞n=1 ⊆ E with the property that ∥xn∥ → infy∈E ∥y∥. By the parallelo-
gram law, applied to 1

2
xn and 1

2
xm,

1

4
∥xn − xm∥2 =

1

2
∥xn∥2 +

1

2
∥xm∥2 −

∥∥∥∥xn − xm2

∥∥∥∥2 ≤ 1

2
∥xn∥2 +

1

2
∥xm∥2 − inf

y∈E
∥y∥2

It follows immediately that {xn}∞n=1 is a Cauchy sequence. The result follows.

Fall 2009 Problem 1 (modified). Find a non-empty closed set in the Hilbert space ℓ2(N) that does not
contain an element of smallest norm. Prove your assertion.

Proof. Let en be the element of ℓ2(N) which is 1 in entry n and 0 otherwise. We claim that E = {(1 +
1
n
)en : n ∈ N} does the job.
ClearlyE is nonempty, and ∥(1+ 1

n
)en∥ = 1+ 1

n
, soE does not contain an element of smallest norm.

It remains to establish thatE is closed. Indeed, for n ̸= m,

∥(1 + 1

n
)en − (1 +

1

m
)em∥ =

(
(1 +

1

n
)2 + (1 +

1

m
)2
)1/2

>
√
2

soE has no limit points other than elements ofE itself. It follows thatE is closed, and we are done.

Spring 2014 Problem 6. Given a (complex) Hilbert spaceH, let {an}∞n=1 ⊆ H be a sequence with
∥an∥ = 1 for all n ≥ 1. Recall that the closed convex hull of {an}∞n=1 is the closure of the set of all convex
combinations of elements of {an}∞n=1.

(a) Show that if {an}∞n=1 spansH linearly (i.e. any x ∈ H is of the form
∑m

k=1 ckank
for somem ∈ N

and ck ∈ C), thenH is finite dimensional.

(b) Show that if ⟨an, ζ⟩ → 0 for all ζ ∈ H, then 0 is in the closed convex hull of {an}n.

Proof. (a): We first observe that there exists a maximal subset S ⊆ N such that {as : s ∈ S} is linearly
independent; this is completely straightforward from Zorn’s lemma, repeating the argument that estab-
lishes the existence of a basis for every vector space. Since the full sequence spans, we quickly see that
{as : s ∈ S} is also spanning. Thus {as : s ∈ S} is a basis.

It suffices to consider the case that S is infinite; relabeling, we will take S = N and simply refer to
an. SinceH is an inner product space and and each initial segment {a1, . . . , an} is linearly independent,
we may run the Gram-Schmidt procedure and assume that the {an}∞n=1 are orthonormal (i.e. ⟨an, am⟩ =
δnm). Take now

x =
∞∑
n=1

1

n
an
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Since the an are orthonormal andH is complete, this sum converges; indeed, ifM < N ,∥∥∥∥∥
(

N∑
n=1

1

n
an

)
−

(
M∑
n=1

1

n
an

)∥∥∥∥∥ =

(
N∑

n=M+1

1

n2

)1/2

which is uniformly small whenM is large. Thus the partial sums are Cauchy, so the series converges to
x ∈ H.

Since {an}n is spanning, we have x =
∑m

k=1 ckank
for some m ∈ N and ck ∈ C. In particular,

⟨x, am+1⟩ = 0. By continuity of the inner product (from Cauchy-Schwarz),

⟨
N∑

n=1

1

n
an, am⟩ → ⟨x, am⟩ = 0

asN →∞. However, the LHS is eventually 1/m, a contradiction.
Recalling our assumption, we see that instead S has to be finite, so indeedH is finite dimensional, as

was to be shown.

(b): Let C = conv({an}n) be the norm-closure of the convex hull of the members of {an}n. It
is easy to see that C is still convex. Assume for the sake of contradiction that 0 ̸∈ C . By Fall 2012
Problem 3 (above), there is some x ∈ C of minimal norm, which under our assumption is nonzero.
Choose ε = 1

2
∥x∥2 > 0.

Write U = {y ∈ H : Re ⟨x, y⟩ > ε}. We first claim that C ⊆ U . Let z ∈ C be arbitrary, and for
t ∈ (0, 1) observe that ∥x∥ < ∥x+ t(z − x)∥. Expanding, we have

∥x∥2 < ∥x+ t(z − x)∥2

= ∥x∥2 + t2∥z − x∥2 + 2tRe ⟨x, z − x⟩

so that
2ε− t

2
∥z − x∥2 < Re ⟨x, z⟩

Sending t→ 0, we conclude thatRe ⟨x, z⟩ ≥ 2ε > ε, so z ∈ U . We have shown thatC ⊆ U , as claimed.
Thus x ∈ H is a vector such that |⟨x, y⟩| > ε for all y ∈ C , so in particular |⟨x, an⟩| > ε for each n. But
this contradicts the assumption on the {an}n, and we are done.
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Bonus problem: Show that there exists a continuous function f : [0, 1] → L2([0, 1]) satisfying the
following. For all a < b ≤ c < d, f(b) − f(a) is orthogonal to f(d) − f(c). Such a curve is called
crinkled.

Proof. Choose f(t) = 1[0,t]. Then ∥f(t) − f(s)∥2 = |t − s|1/2, so f is continuous. If a < b ≤ c < d,
then ∫

[0,1]

[f(b)− f(a)][f(d)− f(c)]dλ =

∫
[0,1]

1[a,b]1[c,d]dλ = 0

as was to be shown.
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Hints and remarks about the preceding problems.

Fall 2012 Problem 3

Hint: use the parallelogram law to control an infimizing sequence.

Remark. Applying this to sets of the form {x− y : y ∈ U}withU a closed subspace ofH, we recover
a vector w such that x− w is the orthogonal projection of x onto U .

Fall 2009 Problem 1

Hint: you should leverage the infinite dimensions and try to avoid 0.

Spring 2014 Problem 6

Hint for (a), part 1: as a warm-up, figure out why the standard vectors {en}n are not linearly spanning.

Hint for (a), part 2: use Zorn’s lemma and a contradiction assumption to suppose that {an}n is actually a
basis. Gram-Schmidt will also be helpful.

Hint for (a), part 3: use the inner product to reach a contradiction. Cauchy-Schwarz is your friend.

Hint for (b), part 1: assuming the result is false, show that the closed convex hull is contained in a half-space of
the form {y ∈ H : Re⟨x, y⟩ > ε} for a suitable ε > 0. You will find the result of Fall 2012 Problem 3 helpful
in more than one way.

Hint for (b), part 2: a useful manipulation in inner product spaces is ∥a+ b∥2 = ∥a∥2+∥b∥2+2Re ⟨a, b⟩.

Remark. Part (a) shows that an infinite-dimensional Hilbert space must have uncountable Hamel di-
mension. Part (b) is part of a general phenomenology in functional analysis, whereby several different
topologies can look very similar when restricted to convex sets.

Bonus problem

Hint: this is possible in any infinite-dimensional Hilbert spaces, but L2([0, 1]) is the best model for this
problem.

Remark. Try to draw this in finite dimensions. Conclude that infinite dimensional Hilbert spaces are
weird. Also, note the resemblance to Brownian motion.
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Appendix: conditional expectation

The midterm contained a special case of the “conditional expectation” construction. The general
version of it is as follows: given a probability measure µ on the measurable space (X,Σ) and a sub-σ-
algebra N ⊆ Σ, we write ν = µ|N . For each f ∈ L1(Σ, µ), there is a Radon-Nikodym derivative
g = d(f · µ|N )/dν and denote E[f |N ] := g. Thus, E[f |N ] is the (a.e. class of the) N -measurable
function satisfying the relation ∫

A

fdµ =

∫
A

E[f |N ]dν

for allA ∈ N .
The purpose of this appendix is to record some of the critical properties of this operator from the

perspective of analysis. For the entirety of this appendix, we will take µ to be a probability measure.
Theorem 1: Lp(N ) is a closed linear subspace of Lp(Σ), for all 1 ≤ p ≤ ∞. If p =∞, then it is also

a subalgebra.

Proof. It is a familiar fact from last quarter that the sum and product of N -measurable functions is N -
measurable. Thus it remains to demonstrate norm-closure. But notice thatLp(ν,N ) is a Banach space in
its own right, hence is complete, so is certainly closed in Lp(µ,Σ).

Lemma 1: E[ · | N ] is a positive operator, i.e. if 0 ≤ f ∈ L1(µ; Σ), then E[f | N ] ≥ 0 ν-a.e.

Proof. For anyA ∈ N , ∫
A

E[f | N ]dν =

∫
A

fdµ ≥ 0

so we conclude E[f | N ] ≥ 0 ν-a.e.

Theorem 2: E[ · | N ] : Lp(µ,Σ)→ Lp(ν,N ) is a bounded linear map with operator norm 1, for all
1 ≤ p ≤ ∞.

Proof. Regarding it first as a map Lp(µ,Σ) → L1(ν,N ) (using Lp(µ,Σ) ⊆ L1(µ,Σ) since ∥µ∥ = 1), it
is clear that this map is linear.

We focus on the case p <∞; p =∞ is left as an exercise. In our case, we claim that E[ · | N ] satisfies
a version of Jensen’s inequality:

|E[f | N ]|p ≤ E[|f |p| N ]

It clearly suffices to consider f positive, so we’ll disregard absolute value bars. Note that, for x > 0,

xp = sup
c>0

pcp−1x+ (1− p)cp

(this comes from considering all supporting hyperplanes under the function x 7→ xp). For any such c,

(pcp−1)E[f | N ] + (1− p)cp = E[(pcp−1f + (1− p)cp)| N ]

For each x, (pcp−1)f(x) + (1− p)cp ≤ f(x)p, so by Lemma 1

E[(pcp−1f + (1− p)cp)| N ] ≤ E[f(x)p| N ]
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Thus we have shown
(pcp−1)E[f | N ] + (1− p)cp ≤ E[f(x)p| N ]

for all c > 0. Taking a supremum, we get

|E[f | N ]|p ≤ E[|f |p| N ]

as desired.
It immediately follows that (1 ≤ p <∞)

∥E[f | N ]∥Lp(ν,N ) ≤ (

∫
E[|f |p| N ]dν)1/p = (

∫
|f |pdµ)1/p = ∥f∥Lp(Σ,µ)

and, since conditional expectation fixes constants, we see that the operator norms are all 1.

Theorem 3: If g ∈ L∞(ν,N ) and f ∈ Lp(µ,Σ), then E[fg| N ] = E[f | N ]g.

Proof. Suppose g = 1A for someA ∈ N . Then∫
E

fgdµ =

∫
A∩E

fdµ =

∫
E∩A

E[f | N ]dν =

∫
E

E[f | N ]gdν

so E[fg| N ] = E[f | N ]g in this case. By the linearity of expectation, we have the result for all simple
functions g. Finally, for arbitrary g, if gε is simple and has ∥g − gε∥∞ < ε,

E[fg| N ] = E[f | N ]g + E[f(g − gε)| N ] + E[f | N ](gε − g)

which implies

∥E[fg| N ]− E[f | N ]g∥p ≤ ∥E[f(g − gε)| N ]∥p + ∥E[f | N ](gε − g)∥p
≤ ∥f(g − gε)∥p + ∥f∥p∥gε − g∥∞
≤ 2∥f∥pε

Sending ε→ 0, we get
E[fg| N ] = E[f | N ]g

for any g ∈ L∞(ν,N ), as claimed.

Theorem 4: E[ · | N ] restricts to a mapping L2(µ; Σ) → L2(ν,N ). Regarded as such, it is the or-
thogonal projection onto that subspace.

Proof. The first part of this statement is enclosed in Theorem 2. We need to demonstrate that, for any
f ∈ L2(µ,Σ),

f − E[f | N ] ⊥ L2(ν,N )

If g ∈ L∞(ν,N ), ∫
fḡdµ =

∫
E[fḡ| N ]dν =

∫
E[f | N ]ḡdν

so ∫
(f − E[f | N ]) ḡdµ = 0
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Now, if g ∈ L2(ν,N ), we may find gε ∈ L∞(ν,N ) such that ∥g − gε∥2 < ε. Then

|
∫

(f − E[f | N ]) ḡdµ| = |
∫

(f − E[f | N ]) g − gεdµ| by the above

≤ ∥f − E[f | N ]∥2∥g − gε∥2 by Hölder
≤ 2∥f∥2ε by Theorem 2

Since ε > 0 was arbitrary, we get that f − E[f | N ] ⊥ L2(ν,N ), as claimed.

One special case of this comes from the setting N = σ(Y ) for a suitable Σ-measurable R-valued
function Y . In this case, one can show that:

Proposition 5 [The “Doob-Dynkin lemma”]: g is σ(Y )-measurable if and only if there exists h :
R→ R Borel such that g = h(Y ).

Proof. Clearly any function of the form h(Y ) with h Borel is σ(Y )-measurable, so we consider the con-
verse. Suppose g is σ(Y )-measurable. In particular, σ(g) ⊆ σ(Y ). Fix n ∈ N and consider the mesh
{m2−n}m∈Z. Then, for each (m,n), g−1[m2−n, (m + 1)2−n) ∈ σ(g), so belongs to σ(Y ), i.e. there is a
Borel setBm,n ⊆ R such that

Y −1(Bm,n) = g−1[m2−n, (m+ 1)2−n)

Define hn(x) =
∑

m∈Zm2−n1Bm,n . Then ∥hn◦Y −g∥∞ ≤ 2−n. On the other hand,Bm,n = B2m,n+1∪
B2m+1,n+1 so onBm,n we have

(hn+1 − hn)(x) =

{
0 x ∈ B2m,n+1

2−n−1 x ∈ B2m+1,n+1

so the sequence hn is monotone increasing. It is also clearly bounded above, so converges pointwise to
some Borel h. Finally, notice that for each n

hn(Y ) ≤ g ≤ hn(Y ) + 2−n

so by taking limits we obtain h(Y ) = g, as claimed.

Remark 1: one frequently writes E[f |Y ] as shorthand for E[f |σ(Y )].
Remark 2: as an immediate consequence, there exists a Borel function ef such that E[f |Y ] = ef (Y ).
Corollary 1: for any Borel function h,∫

|f − E[f |σ(Y )]|2 ≤
∫
|f − h(Y )|2

and, moreover, ∫
|f − E[f |σ(Y )]|2 = inf

h Borel

∫
|f − h(Y )|2

Proof. The first statement is an immediate consequence of Theorem 4 and Proposition 5. The second
statement follows from noticing that E[f |σ(Y )] is σ(Y )-measurable, so we can again use Proposition
5.
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Remark: one can find situations where there exists non-Lebesgue measurable h : R → R such that∫
|f − h(Y )|2 is defined, and is strictly smaller than

∫
|f − E[f |σ(Y )]|2. We will not explore this here.

We conclude our discussion by considering the subspaceL∞(ν, σ(Y )) ⊆ L∞(µ,Σ) for Y a bounded
Σ-measurable function. It is a vector subspace, but it is clearly not the subspace spannedbyY ;L∞(ν, σ(Y ))
contains all linear combinations of indicators of preimages of Y , for example. If p is any polynomial, then
p(Y ) ∈ L∞(ν, σ(Y )). In fact, that’s almost everything:

Theorem 6: L∞(ν, σ(Y )) is the “weak-*” closure of the set {p(Y )}p∈Poly in L∞(µ,Σ); here the
“weak-* topology” is the topology generated by the prebase

U ε
f,g = {h ∈ L∞(µ,Σ) : |

∫
f(g − h)dµ| < ε}

This is wildly outside the scope of things provable in an appendix, so I don’t prove this here.
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7 : Week 7

For the purposes of this document, we will assume the following covering theorem.

Besicovitch covering theorem. For every dimension d, there is a constant cd ∈ N satisfying the
following. Suppose V is a set of open balls in Rd and A is the set of centers of the balls in V . Then
there exist subsets V1, . . . , Vcd ⊆ V such that, for each i, the elements of Vi are pairwise disjoint, and

A ⊆
cd⋃
i=1

⋃
B∈Vi

B

Spring 2018 Problem 3: Suppose f ∈ L1(R) satisfies

lim sup
ε→0

∫
R

∫
R

|f(x)f(y)|
|x− y|2 + ε2

dxdy <∞

Show that f = 0 almost everywhere.

Proof. The proof is via Lebesgue differentiation. The moral version is this. Suppose [a, b] is an interval
(of positive length) such that f ≥ c on [a, b], for a suitable constant c > 0. Then the integral diverges:∫

R

∫
R

|f(x)f(y)|
|x− y|2 + ε2

dxdy ≥
∫
[a,b]2

c2

|x− y|2 + ε2
dxdy →

∫
[a,b]2

c2

|x− y|2
dxdy = +∞

Wewill assume that f is nontrivial, and use Lebesgue differentiation to find a Lebesgue point x ∈ R such
that f(x) = c > 0 (replacing f with −f , if necessary), hence find small intervals on which f is mostly
large (e.g. ≥ c/2). With some arbitrage, this will be strong enough to recover divergence.

We proceed to the argument. For simplicity, we take f to be real-valued; note from the complex
inequalities |z| ≥ |Re(z)|, |Im(z)| that this case suffices. Let x ∈ R be a Lebesgue point for f . It suffices
to show that f(x) = 0. For the sake of contradiction, we assume f(x) ̸= 0; by symmetry, wemay assume
f(x) = c > 0. For arbitrary 1

4
> δ > 0, we may find ε = ε(δ) > 0 be such that

1

2ε

∫
|y−x|<ε

|f(y)− c|dy < δc

2

In particular, if U = {y ∈ R : f(y) ≥ c
2
}, we see by Markov’s inequality (using the implication f(y) <

c
2

=⇒ |f(y)− c| ≥ c
2
)

λ (U ∩ (x− ε, x+ ε)) ≥ 2ε− 2

c

∫
(x−ε,x+ε)\U

|f(y)− c|dy > 2ε− 2δε = (1− δ)2ε

If we directly apply these estimates to the iterated integral, we obtain a lower bound of the form ≳
c2(1− δ)2, with some absolute constants. This does not suffice to show divergence; similarly, if we try to
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“zoom” in to the diagonal z = y, i.e. constrain the integral to an interval of the form (x−ηε, x+ηε)with
η ≪ 1, then we quickly lose density estimates on U in the set. It transpires that no single scale suffices to
show blowup. Instead, we will consider many (∼ log δ−1) scales, each of which will give∼ c2 as a lower
bound, and sum.

For each n ∈ N, write Ln = {y ∈ R : |y − x| ∈ [ε2n−1δ, ε2nδ)}; when n ≤ log2(δ
−1), we have

Ln ⊆ (x− ε, x+ ε). By the union bound, we compute

λ(U ∩ Ln) ≥ 2ε(1− δ − (1− δ2n−1)) = 2εδ(2n−1 − 1)

Observe then that the Ln are pairwise disjoint, contained in (x − ε, x + ε), and U ∩ Ln has nontrivial
density in Ln.

Then we have, for each ρ > 0,∫
R

∫
R

|f(z)f(y)|
|z − y|2 + ρ2

dzdy ≥
∫∫

z,y∈U∩(x−ε,x+ε)

|f(z)f(y)|
|z − y|2 + ρ2

dzdy

≥
∑

1≤n≤log2(δ
−1)

∫∫
z,y∈U∩Ln

|f(z)f(y)|
|z − y|2 + ρ2

dzdy

≥
∑

1≤n≤log2(δ
−1)

c2

4(4ε2δ222n + ρ2)
λ(U ∩ Ln)

2

≥
∑

1≤n≤log2(δ
−1)

c2ε2δ2(2n−1 − 1)2

4ε2δ222n + ρ2

≥ c2

16

∑
2≤n≤log2(δ

−1)

1

4 + ε−2δ−22−2nρ2

Note that δ, ε were unrelated to ρ. Sending ρ to 0, we conclude

lim inf
ρ→0

∫
R

∫
R

|f(z)f(y)|
|z − y|2 + ρ2

dzdy ≥ c2

16

∑
2≤n≤log2(δ

−1)

1

4
=

c2

64 log 2
log(δ−1)

We have demonstrated this bound for arbitrarily small δ > 0, so we conclude that the lim inf is +∞, as
was to be shown.

Fall 2016 Problem 2: Let µ be a finite positive Borel measure onR that is singular to Lebesgue mea-
sure. Show that

lim
r→0+

µ([x− r, x+ r])

2r
= +∞

for µ-a.e. x ∈ R.

Proof. Let A be a Borel subset of R such thatm(A) = 0, µ(R \ A) = 0. For each ε > 0, let Aε ⊇ A be
open such thatm(Aε) < ε. For each α > 0, defineAα to be the subset

Aα :=
{
x ∈ A : ∃{rn}∞n=1, rn ↓ 0, µ((x− rn, x+ rn)) ≤ 2αrn

}
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We leave it to the reader to verify that Aα is Borel as well. For each x ∈ Aα, we may in particular find
some sequence {rn}∞n=1 as above for which [x− rn, x+ rn] ⊆ Aε. Let V be the (fine!) covering defined
by these intervals. By the Besicovitch covering theorem, there is some universal constantN 9 such that V
possesN subfamilies V1, . . . , VN for which

Aα ⊆
N⋃
i=1

⋃
I∈Vi

I

and
∀I ̸= J ∈ Vi, I ∩ J = ∅

Then

µ(Aα) ≤
N∑
i=1

µ(
⋃
I∈Vi

I) ≤ α

N∑
i=1

m(
⋃
I∈Vi

I) < αNε

SinceAα was independent of ε, we may take ε→ 0 to get µ(Aα) = 0 for all α > 0.
Lastly, the set of points x for which

µ([x− r, x+ r])

2r
̸→ +∞

is contained in the union of theAα, which is equal to
⋃∞

n=1An. Since eachAn isµ-null, the set of problem
points is µ-null, and we’re done.

Fall 2023 Problem 5: Let ω : R → [0,∞) be a locally integrable function to which we associate a
Borel measure via

ω(E) =

∫
E

ω(x)dx.

LetM denote the (centered) Hardy-Littlewood maximal function:

(Mf)(x) = sup
r>0

1

2r

∫ x+r

x−r

|f(y)|dy.

Assume that the function 1
ω
is locally integrable and that there exists C > 0 so that

ω({x ∈ R : |(Mf)(x)| > λ}) ≤ C

λ2

∫
R
|f(x)|2dx

uniformly in λ > 0 and functions f : R→ R for which the right-hand side above is finite. Prove that

sup
x∈R,r>0

(
1

2r

∫ x+r

x−r

ω(y)dy

)(
1

2r

∫ x+r

x−r

1

ω(y)
dy

)
<∞.

Hint: Apply the hypothesis to a well-chosen function f and constant λ.
9I believeN = 2 here.
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Proof. Fix x ∈ R and r > 0. Write f(y) = 1[x−r,x+r](y)
1

ω(y)1/2
and λ = 1

8r

∫ x+r

x−r
1

ω(y)
dy, which we may

assume is positive. Then, by the hypothesis,

ω({y ∈ R : |(Mf)(y)| > λ}) ≤
C
∫ x+r

x−r
1

ω(y)
dy(

1
8r

∫ x+r

x−r
1

ω(y)
dy
)2 =

32Cr
1
2r

∫ x+r

x−r
1

ω(y)
dy

If |y − x| ≤ r,

Mf(y) ≥ 1

4r

∫ x+r

x−r

1

ω(t)
dt = 2λ

so we reach the conclusion that {y ∈ R : |(Mf)(y)| > λ} contains all of [x− r, x+ r]. Thus

ω({y ∈ R : |(Mf)(y)| > λ}) ≥
∫ x+r

x−r

ω(y)dy

and we conclude by rearranging the first inequality that(
1

2r

∫ x+r

x−r

ω(y)dy

)(
1

2r

∫ x+r

x−r

1

ω(y)
dy

)
≤ 16C
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Bonus problem

Spring 2022 Problem 5: Let µ be a Borel measure on R2, and assume it has the following property:
for every fixed r > 0, the quantity µ(B(x, r)) is finite and independent of x, where B(x, r) is the open
ball of radius r around x.

(a) Prove that there is a finite constant c such that µ(B(x, r)) ≤ cr2 whenever 0 < r ≤ 1.
[We did this one in a previous week, so we’ll skip it for today.]

(b) Prove that µ is a constant multiple of Lebesgue measure.

Proof. (b): When this problem came up previously we established that µ is absolutely continuous with
respect to Lebesgue measure, so we’ll take that for granted now.

Thus we may write dµ = fdλ for some nonnegative locally integrable Borel function f . By the
assumption, the average of f onB(x, r) is independent of x. If f is nonconstant, then there is some ε > 0
andpositivemeasure setsA,B such that supx∈A f(x)+ε < infx∈B f(x). ByLebesguedifferentiation, a.e.
point ofA (resp. B) is a Lebesgue point forA (resp. forB). Consequently, wemay find somex ∈ A, y ∈ B
and r > 0 such that µ(B(x, r)) < µ(B(y, r)), contradicting our assumption. Thus f is constant a.e., so
µ is a constant multiple of Lebesgue measure.
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Hints and remarks about the preceding problems.

Spring 2018 Problem 3.

Hint, part 1: Lebesgue differentiation.

Hint, part 2: if f(y) ∼ c > 0 for most y ∼ x, the double integral should be large as ε→ 0.

Hint, part 3: assume f(x) = c > 0 and x is a Lebesgue point. Write U for the “good” set where f(y) ≥ c
2
,

and conclude that it has arbitrarily high density near x. Decompose the integral into many scales |y− z| ∼ 2−n,
over which the integral is always large. You will need to estimate the concentration of U × U on small sets; for
this, use the union bound on the complement.

Remark. The upshot of this problem is that, for nontrivial f , the double integral diverges as ε→ 0. In
contrast to other singular integral qual problems, where the goal is to show convergence, we cannot use
approximation. Indeed, it is easy to see that one expects any error term to also diverge, and we cannot
subtract∞−∞.

In general, Lebesgue differentiation is a good thing to try when the goal is to show that a singular
integral operator is badly behaved.

Fall 2016 Problem 2.

Hint, part 1: for each constant α > 0, show that the set of x for which the quotient is bounded by α infinitely
often, is µ-null.

Hint, part 2: It will be helpful to consider a setA ⊆ R such that λ(A) = 0, µ(R \A) = 0, and consider an
open neighborhood U which has small λ-mass. Use Besicovitch to bound the “bad” sets from the previous hint by
something like α times λ(U).

Remark. Compare with Fall 2009 Problem 4, where the goal is to show that for λ-a.e. x ∈ R, the
quotient limits to 0.

Fall 2023 Problem 5.

Hint, part 1: try to arrange for ω({x ∈ R : |(Mf)(x)| > λ}) ≥
∫ x+r

x−r
ω(y)dy and λ−2

∫
R |f(x)|

2dx ≲
2r

1
2r

∫ x+r
x−r

1
ω(y)

dy
.

Hint, part 2: Suppose f is supported on [x − r, x + r]. Then, whenever |y − x| ≤ r, one hasMf(y) ≥
1
4r

∫ x+r

x−r
|f(t)|dt.

Hint, part 3: Take f(y) = 1[x−r,x+r](y)
1

ω(y)1/2
.

Remark. The celebrated Muckenhoupt theorem says that the following are equivalent, for each ω :
Rn → [0,∞) and each 1 < p <∞:
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(a) The centered Hardy-Littlewood maximal function M is bounded on Lp(ω(x)dx), i.e. there is a
constant C > 0 such that for which∫

|M(f)(x)|pω(x)dx ≤ C

∫
|f(x)|pω(x)dx, ∀f ∈ Lp(ω(x)dx)

(b) ω is locally integrable, and ω satisfies theAp condition: there is someC > 0 such that, for any ball
B inRn, (

1

λn(B)

∫
B

ω(x)dx

)(
1

λn(B)

∫
B

ω(B)−
1

p−1dx

)p−1

≤ C <∞

In this problem, we have verified that, when p = 2, theAp condition is necessary forM to be bounded in
Lp(ω(x)dx).

A component of theAp condition is thatω satisfies “reverseHölder inequalities,” which shouldmorally
be thought of as ω being nonzero and slowly varying.

Spring 2022 Problem 5.

Hint: we previously showed that µ is absolutely continuous with respect to λ, so we may write dµ = fdλ for
a suitable f . It remains to show that f is nonconstant; use Lebesgue differentiation.

52



Appendix: the algebraic (Hamel) dimension of Banach spaces

Recall that a Banach space is a complete normed vector space (for us, over R). Such a space V is in
particular a vector space, so we can ask about its dimension (the axiom of choice implies, and is equivalent
to, the statement that every vector space has a basis). This notion of dimension is called theHamel, linear, or
algebraic dimension. In most functional-analytic contexts, this is not the notion of dimension that people
usually refer to, as what is often more important is to consider sets whose closed linear span is the full
space; we won’t discuss the latter here, as in the Banach context this becomes extremely delicate. We’ll
write dimalg for the algebraic dimension. In this note, we will give intuition for the following result:

Theorem 7.1. If V is an infinite-dimensional Banach space, then dimalg(V ) ≥ c, where c = |R| = 2ℵ0 .

To compare, if V is an infinite-dimensional separable Banach space, then a simple argument implies
|V | = c, so certainly the algebraic dimension of V is at most c. We will discuss this directly, namely:

Theorem 7.2. Let B be an infinite-dimensional separable Banach space. Then the algebraic dimension
ofB is c.

Observe that Theorem 1 is straightforward to prove from Theorem 2. Indeed, given V , from the in-
finite dimensions we may find a countably infinite linearly independent set {vn}∞n=1, and apply Theorem
2 to span{vn}∞n=1.

We first establish a lemma:

Lemma 7.3. There exists a family A ⊆ P(N) such that |A | = c and, if A ̸= B ∈ A , then A ∩ B is
finite.

Proof of lemma. We follow Gillman and Jerison’s proof in Rings of Continuous Functions.
Let φ : N → Q be a bijection. For each irrational number r, fix an increasing sequence of rational

numbers s1 < s2 < . . . such that limn sn = r, and define Ar = {φ−1(sn) : n ∈ N}. Let A = {Ar :
r ∈ R \Q}.

We verify that A has the right properties. For each r ∈ R \ Q, r = supAr , so the sets Ar are all
distinct, and hence |A | = c. On the other hand, if r1 ̸= r2 ∈ R \ Q, say r1 < r2, then there is some n
such that, if Ar2 = {s1 < s2 < . . .}, then sn ≥ r1, so Ar1 ∩ Ar2 is contained in the set {s1, . . . , sn−1}
(hence is finite).

We now proceed to Lacey’s proof of Theorem 2.

Proof of Theorem 2. By induction, we find a sequence of elements xn ∈ B and fn ∈ B′ such that

fn(xn) ̸= 0, fn(xm) = 0 ∀m ̸= n

Indeed, pick first x1 ̸= 0 and f1 such that f1(x1) ̸= 0. Once {x1, f1, . . . , xn, fn} have been selected with
{x1, . . . , xn} linearly independent, takexn+1 ∈ ker(f1)∩· · ·∩ker(fn)\{0} to be arbitrary; then certainly
{x1, . . . , xn+1} is linearly independent.. Define gn+1 to be the functional on {x1, . . . , xn+1} defined by
gn+1(xn+1) = 1 and gn(xj) = 0 for all 1 ≤ j ≤ n, and extend by Hahn-Banach to fn+1 ∈ B′. Thus we
have the full countably infinite family.

For 0 < t < 1 irrational, define xt =
∑

n∈At
xn2

−n with At as in the preceding lemma. We claim
that the family {xt}t∈(0,1)\Q is linearly independent. Indeed, for any t1, . . . , tk distinct, the intersection
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At1 ∩ · · · ∩ Atk is finite, hence (sinceAt1 is infinite) there is some n ∈ At1 \ (At2 ∪ · · · ∪ Atk), so given
any linear relation

α1xt1 + . . .+ αkxtk = 0

after applying fn we obtain
α12

−nfn(xn) = 0

so α1 = 0. Running the same argument for the other tj , we see that all linear relations are trivial, hence
the xt are linearly independent, as claimed.

Lastly,B itself has cardinality c, so we conclude thatB has algebraic dimension c.

We briefly remark as well that, if λ ≥ c, then a Banach space has cardinality λ if and only if it has
algebraic dimension λ. Not every λ can be the cardinality/dimension of a Banach space; there is at least
one constraint in the “cofinality” of λ. On the other hand, if λ = κℵ0 for some κ, then ℓ2(λ) (suitably
interpreted) has cardinality λℵ0 = κℵ

2
0 = λ, so there at least exist “large” Banach spaces in some sense.

Wehavenowestablished that the separableBanach spaces have continuumalgebraic dimension, though
this involved a somewhat difficult argument. We would like to offer evidence in support of Theorem 1,
which does not rely on clever combinatorial constructions. In particular, we’ll give a short argument that
the algebraic dimension of an infinite dimensional Banach space must be uncountable.

Lemma 7.4. SupposeW ⊆ V is a finite-dimensional algebraic subspace of a Banach space V . ThenW
is closed in V .

Proof. You did this on your homework 5.

Corollary 7.5. Any infinite-dimensional Banach space has uncountable algebraic dimension.

Remark. We showed this in discussion, in the special case of Hilbert spaces.

Proof. Each linearly-independent set {v1, v2, . . .} defines an increasing sequence Vn = span(v1, . . . , vn)
of finite-dimensional vector subspaces. By the previous lemma, each Vn is closed. Since V is infinite-
dimensional andVn is finite-dimensional, eachVn has empty interior inV . By the Baire category theorem
(sinceV is a completemetric space),

⋃
n≥1 Vn has empty interior inV . On the other hand, span({vj}∞j=1) =⋃

n≥1 Vn. In particular, V is not the span of the vj , so any basis must be uncountable.

So goes the usual formulation of the uncountability reult. Note carefully that, unless we assume the
continuum hypothesis, this doesn’t quite prove Theorem 1.
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8 : Week 8
Spring 2022 Problem 4. Let f : [0,∞)→ [0,∞). Assume that f(0) = 0 and that f is convex, meaning
that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ≥ 0, 0 < t < 1.

Prove that
f(x) =

∫ x

0

g(y)dy

for some increasing function g : [0,∞) → [0,∞). [Hint: the question does not tell you that f is differ-
entiable, or even continuous.]

Proof. We start by picking T > 0 and showing that f is absolutely continuous on [0, T ]. Observe the
following facts about f :

1. f is monotone increasing on [0,∞).

2. If 0 ≤ a < b < c <∞, then

f(c)− f(a)
c− a

≥ f(b)− f(a)
b− a

.

3. If 0 ≤ a < b < c <∞, then
f(c)− f(b)

c− b
≥ f(b)− f(a)

b− a
.

We justify each fact in turn. For (1): if 0 ≤ x < y, then

f(x) ≤ x

y
f(0) +

y − x
y

f(y) ≤ f(y)

so indeed f is monotone increasing.
For (2): the claim is equivalent to the inequality

f(b) ≤ f(a) +
b− a
c− a

[f(c)− f(a)]

But note that the right-hand side may be written as

b− a
c− a

f(c) +
c− b
c− a

f(a)

so the inequality follows directly from the definition of convexity.
For (3): the claim is equivalent to the inequality

f(b) ≤ (c− b)(b− a)
c− a

[
f(c)

c− b
+
f(a)

b− a

]
But the right-hand side is just

b− a
c− a

f(c) +
c− b
c− a

f(a)

which we considered previously.
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We apply these facts to the problem. LetL = f(T +1)−f(T ). Let 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤
ak < bk ≤ T be a sequence of intervals in [0, T ]. Then, by repeated application of the above facts,

f(bj)− f(aj)
bj − aj

≤ L ∀j = 1, . . . , k

Thus, if we take ε > 0 arbitrary and write δ = ε
L
, if a1, b1, . . . , ak, bk is a sequence of intervals with∑k

j=1 bj − aj < δ, we have

k∑
j=1

|f(bj)− f(aj)| ≤
k∑

j=1

L|bj − aj| < ε

and we conclude that f is absolutely continuous on [0, T ].
In particular, we may find a Radon-Nikodym derivative g ∈ L1

loc(0,∞) such that

f(x) = f([0, x]) =

∫ x

0

g(y)dy.

Since f is nonnegative and increasing, g takes values in [0,∞]. If x < y are Lebesgue points for g, we
have

g(y)− g(x) = lim
n→∞

f(y + 1
n
)− f(y − 1

n
)

2/n
− lim

n→∞

f(x+ 1
n
)− f(x− 1

n
)

2/n

For each particular n > 2
y−x

, we may appeal to to the facts about f to conclude that g(y) − g(x) ≥
0. Thus g is increasing on the set of Lebesgue points, so we may replace g with an almost everywhere
equivalent function that is increasing (say, g̃(x) = supy≤x Lebesgue g(y)). Since f is finite everywhere and
g is increasing, we must have g is finite. Thus we have shown all claimed facts about g.

Spring 2018 Problem 4:

(a) Fix 1 < p <∞. Show that

f 7→ [Mf ](x, y) = sup
r>0,ρ>0

1

4rρ

∫ r

−r

∫ ρ

−ρ

f(x+ h, y + ℓ)dhdℓ

is bounded on Lp(R2).

(b) Show that

[Arf ](x, y) =
1

4r3

∫ r

−r

∫ r2

−r2
f(x+ h, y + ℓ)dhdℓ

converges to f a.e. in the plane as r → 0.

Proof. (a): SinceM is subadditive, it suffices to exhibit a bound for the dense subset C∞
c (R2). Let f ∈

C∞
c (R2) be arbitrary. LetM1,M2 be the maximal functions defined by

[Mjf ](x, y) = sup
r>0

1

2r

∫ r

−r

f((x, y) + hej)dh (j = 1, 2)
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where e1, e2 are the standard unit vectors inR2. Note that

[Mf ](x, y) ≤ [M2[M1f ]](x, y)

so that
∥Mf∥Lp ≤ ∥M2[M1f ]∥Lp(R2)

Wewish to appeal to boundedness of the usual Hardy-Littlewoodmaximal function. Expanding the right-
hand side,

∥M2[M1f ]∥pLp(R2) =

∫
R

∫
R
|M2[M1f ]|p(x, y)dydx

Let g = M1f . Then g is nonnegative and measurable, and by boundedness of the Hardy-Littlewood
maximal function, we have the estimate∫

R
|M2g|p(x, y)dy ≲p

∫
R
|g|p(x, y)dy

for each x ∈ R. It follows that∫
R

∫
R
|M2[M1f ]|p(x, y)dydx ≲p

∫
R

∫
R
|M1f |p(x, y)dydx =

∫
R

∫
R
|M1f |p(x, y)dxdy

where we may appeal to boundedness again to see

∥M2[M1f ]∥pLp(R2) ≲p

∫
R2

|f |p(x, y)dxdy

so thatM is bounded, as was to be shown.

(b): Observe that Arf → f uniformly when f ∈ C∞
c (R2). Consider now f ∈ Lp(R2) arbitrary,

ε > 0, and g ∈ C∞
c (R2) so that ∥f − g∥Lp ≤ ε. Write T for the (subadditive) operator

Tu(x) = lim sup
r→0+

Ar[u− u(x)](x)

We clearly have Tg = 0 and Tf ≤ T [f − g]. Additionally, we have the pointwise bound

Ar[f − g − f(x) + g(x)] ≤M [f − g](x) + |f(x)− g(x)|

so that
T [f − g] ≤M [f − g] + |f − g|

and hence
∥T [f − g]∥Lp(R2) ≲p ε

It follows that, for each α > 0,

λ2({x : Tf(x) > α}) ≤ λ2({x : T [f − g](x) > α}) ≤ 1

αp

∫
|T [f − g]|p ≲ εp

αp

This holds for every choice of α, ε. Sending ε→ 0, we conclude

λ2({x : Tf(x) > α}) = 0

Since this holds for each α > 0, we conclude that Tf = 0 a.e., as was to be shown.
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Fall 2013 Problem 12: Let f : [0, 1]→ R be a continuous function that is absolutely continuous on
each interval [ε, 1] with 0 < ε ≤ 1.

(a) Show that f is not necessarily absolutely continuous on [0, 1].

(b) Show that if f is of bounded variation on [0, 1], then f is absolutely continuous on [0, 1].

Proof. (a): Let f(x) = x sin(1/x) for x ̸= 0 and f(0) = 0. Clearly f : [0, 1] → R is continuous. If
0 < ε ≤ 1, then from the derivative estimate

|f ′(x)| = | sin(1/x)− x−1 cos(1/x)| ≤ 1 + ε−1

we see that, for any collection of disjoint intervals (a1, b1), . . . , (ak, bk) in [ε, 1]with total length at most
ρ

1+ε−1 , we have

k∑
j=1

|f(bj)− f(aj)| ≤
k∑

j=1

∫ bj

aj

|f ′(x)|dx ≤ ρ

1 + ε−1
(1 + ε−1) ≤ ρ

from which absolute continuity on [ε, 1] follows.
It remains to establish thatf is not absolutely continuous on [0, 1]. To this end, observe that forxk = π

k

(n > 3), we have for any n > 3

N∑
k=n

|f(xn+1)− f(xn)| = 2(N − n− 1)

In particular, choosing ε := 1, we see that for any δ > 0we may choose n > πδ−1 + 1 andN = 2n+ 1
to obtain

N∑
k=n

|f(xn+1)− f(xn)| > πδ−1 + 1 > ε

whereas
N∑

k=n

|xn+1 − xn| <
π

n
< δ

violating the condition for absolute continuity, if we choose aj = xj and bj = xj+1.

(b): We first note the following lemma.

Lemma. Suppose f is continuous and of finite variation on [0, 1]. Then, for each ε > 0, there is δ > 0
such that the total variation of f on [0, δ] is at most ε.

Proof of lemma. Suppose not. Let ε > 0 be such that the total variations of f on any [0, δ] is greater than
ε > 0. Let δ be such that 0 ≤ y ≤ δ implies |f(y) − f(0)| < ε/4. LetM < +∞ be the total variation
of f on [0, 1], and let 0 = x0 < x1 < . . . < xn = 1 be such that

n∑
j=1

|f(xk)− f(xk−1)| > M − ε/4
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Wemay freely assume thatx1 < δ′, since adjoining additional points only increases variation. By assump-
tion, we may find 0 = y0 < y1 < . . . < yN = δ such that

N∑
j=1

|f(yj)− f(yj−1)| > ε

Then the new sequence {zj}N+n
j=0 defined by

zj =

{
yj 0 ≤ j ≤ N

xj−N N + 1 ≤ j ≤ N + n

satisfies
N+n∑
j=1

|f(zj)− f(zj−1)| =
N∑
j=1

|f(yj)− f(yj−1)|+
n∑

j=1

|f(xj)− f(xj−1)| − |f(x1)− f(x0)|

> (M − ε/4) + ε− ε/4 > M

which violates thatM < +∞ was the total variation.

We now use the lemma. Let ε > 0 be arbitrary. Let δ1 > 0 be such that the variation of f on [0, δ1] is
less than ε/2; this is possible, since f is continuous and bounded variation. By assumption, f is absolutely
continuous on [δ1, 1], so there is a δ2 > 0 such that, for any tuple of disjoint intervals (a1, b1), . . . , (ak, bk),
we have

k∑
j=1

|bj − aj| < δ2 =⇒
k∑

j=1

|f(bj)− f(aj)| < ε/2

We claim that δ := min(δ1, δ2) suffices. Let (a1, b1), . . . , (ak, bk) be an increasing sequence of pair-
wise disjoint intervals with

∑k
j=1 |bj − aj| < δ. Suppose j∗ is the first index such that bj∗ ≥ δ1. Then the

intervals (aj∗ , bj∗) ∩ [δ1, 1], . . . , (ak, bk) ∩ [δ1, 1] are pairwise disjoint of total length< δ2, so we have

|f(bj∗)− f(δ1)|+
k∑

j=j∗+1

|f(bj)− f(aj)| < ε/2

Similarly, since f has total variation less than ε/2 on [0, δ1], we have∑
1≤j<j∗

|f(bj)− f(aj)|+ |f(δ1)− f(aj∗)|1aj∗≤δ1 < ε/2

so in total we have
k∑

j=1

|f(bj)− f(aj)| < ε/2 + ε/2 = ε

as claimed.

59



Bonus problem

Fall 2018 Problem 4. Let T be the unit circle in the complex plane C and for each α ∈ T define the
rotation mapRα : T→ T byRα(z) = αz. A Borel probability measure µ on T is called α-invariant if
µ(Rα(E)) = µ(E) for all Borel setsE ⊆ T.

(a) Let m be Lebesgue measure on T (defined, for instance, by identifying T with [0, 1) through the
exponential function). Show that for every α ∈ T,m is α-invariant.

(b) Prove that if α is not a root of unity, then the set of powers {αn : n ∈ Z} is dense in T.

(c) Prove that if α is not a root of unity, thenm is the only α-invariant Borel probability measure on
T.

Proof. (a): We omit this, other than noticing that it is an obvious consequence of translation invariance of
Lebesgue measure onR and an easy mod 1 rearrangment.

(b): SinceT is compact, there is some β ∈ T and k 7→ nk subsequence such that αnk → β as k →∞.
If ε > 0 is arbitrary andK is large enough so that k ≥ K implies |αnk − β| < ε/2, then we also have

k > K =⇒ |αnk−nK − 1| = |αnk − αnK | < ε

Since α is not a root of unity and nk − nK ̸= 0, we have that αnk−nK is a nontrivial element of T. Thus,
0 is an accumulation point of {αn}n∈Z.

Lastly, if β ∈ T is arbitrary and ε > 0, we may find n ∈ Z such that |αn− 1| < ε. Then the sequence
αn, α2n, . . . , αkn, with k > ε−1, has the property that any γ ∈ T is within ε > 0 of some αjn. But in
particular β is within ε > 0 of a power of α. Thus the sequence of powers is dense in T.

(c): Let µ be an α-invariant Borel probability measure. Note that the orbit n 7→ αn is infinite, so µ
has no pure points.

It is convenient to identifyTwith [0, 1) by a complex logarithm. Write θ for the element of [0, 1) such
that e2πiθ = α. We claim that, for every interval I in [0, 1), we have the inequality

µ(I) ≤ 3m(I)

We first demonstrate this for intervals of the form [0, 1
2n
) with a constant of 2. By part (b), we may find

k1, . . . , kn−1 ∈ Z such that

j − 1/2

n
< kjθ <

j

n
, j = 1, . . . , n− 1

It follows that
1

2n
< k1θ, kn−1θ +

1

2n
< 1, kj−1θ +

1

2n
< kjθ j = 2, . . . , n− 1

so that the intervals I0, . . . , In−1 defined by

I0 = [0,
1

2n
), Ij = [kjθ, kjθ +

1

2n
) j = 1, . . . , n− 1
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are pairwise disjoint and contained in [0, 1). Since they all have the same length, their µ-value is the same,
so

nµ([0,
1

2n
) = µ

(
n−1⋃
j=0

Ij

)
≤ 1

i.e. µ([0, 1
2n
)) ≤ 2 · 1

2n
, as claimed.

The result follows for arbitrary intervals; indeed, if I ⊆ [0, 1) has length ρ, then for each N > ρ−1

we may find I1, . . . , IK pairwise disjoint intervals covering I of length 1
2N

andK ≤ 2Nρ+ 2, so that

µ(I) ≤ 2
K

2N
≤ 2(ρ+

1

2N
) ≤ 3ρ

as claimed.
Finally, observe that this immediately implies that µ ≪ λ, so dµ = fdλ for a suitable nonnegative

L1 function f of total mass 1. It remains to establish that f ≡ 1 Lebesgue a.e. But notice that, for any
Lebesgue point x,

f(x) = lim
r→0+

µ((x− r, x+ r))

2r

Let x, y be any pair of Lebesgue points and ε > 0 be arbitrary. Let δ > 0 be such that, for any r ≤ δ,∣∣∣∣µ((x− r, x+ r))

2r
− f(x)

∣∣∣∣ , ∣∣∣∣µ((y − r, y + r))

2r
− f(y)

∣∣∣∣ < ε

Let n, k ∈ Z be such that |nθ + x− y − k| < δε/6. We have

(x+ nθ − δ, x+ nθ + δ) ⊆ (y + k − δ − δε/6, y + k + δ + δε/6)

so that, appealing to the upper bound on µ from earlier,∣∣∣∣µ((x− δ, x+ δ))

2δ
− µ((y − δ, y + δ))

2δ

∣∣∣∣ ≤ 4δε

4δ
= ε

Thus |f(x) − f(y)| < 2ε. Since ε > 0, we conclude that all Lebesgue points have the same f-value.
Since the Lebesgue points are a full-measure set, we conclude that f ≡ 1 almost everywhere, so µ = λ as
claimed.
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Hints and remarks about the preceding problems

Spring 2022 Problem 4.

Hint, part 1: as a warm-up, show that convex functions R→ R are necessarily continuous.

Hint, part 2: show that f is absolutely continuous on each [0, T ]. Then, analyze the Radon-Nikodym deriva-
tive.

Hint, part 3: to show that f is absolutely continuous on each [0, T ], control the slopes of secant lines. Find
inequalities to relate the sizes of secant lines between points (a, f(a)), (b, f(b)), (c, f(c)) with a < b < c. To
find the inequalities that should be true, draw pictures of typical convex functions.

Remark. This implies in particular that convex functions have well-behaved distributional derivatives
(e.g. FTC holds). It turns out that they also have well-behaved second-order derivatives as well, which
arises from studying the Lebesgue-Stieltjes measure arising from monotone increasing functions g.

Spring 2018 Problem 4.

Hint, part (a): control M by two applications of the one-dimensional HL maximal function, one for each
dimension.

Hint, part (b): follow the proof of the Lebesgue differentiation theorem.

Remark. On the homework, you’re taskedwith showing that you can performLebesgue differentiation
with “balls” replaced with setsBr satisfyingBr ⊆ B(x, r) and λn(Br) ≳ λn(B(x, r)). In particular, that
problem does not apply here.

Thus we have justified that you can do Lebesgue differentiation for sets that are comparable to metric
balls, and with axis-parallel rectangles of arbitrary eccentricity. It turns out that things break down when
you permit (a) arbitrary eccentricity and (b) arbitrary rotations, simultaneously! This is related to the
so-called Kakeya problem.

Fall 2013 Problem 12.

Hint for (a): try something with unbounded variation near 0.

Hint for (b), part 1: break f into a “small variation” part near 0, and an “absolutely continuous” part away
from 0.

Hint for (b), part 2: try showing the following lemma: “If f is continuous and of finite variation on [0, 1], then
for each ε > 0 there is δ > 0 such that the total variation of f on [0, δ] is at most ε > 0.” Observe carefully that
the assumption of continuity is necessary!

Fall 2018 Problem 4.
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Hint for (a): appeal to translation-invariance of usual Lebesgue measure, together with a simple cut-and-
rearrange procedure on [0, 1) mod 1.

Hint for (b): use compactness of T to find an accumulation point. Rotate to 1 to find a dense mesh.

Hint for (c): remember, we don’t have arbitrary translation invariance. Instead, show that µ is necessarily
absolutely continuous with respect to λ, and then use Lebesgue differentiation. As a warm-up, convince yourself
that µ has no pure point component.

Remark. Although we don’t have arbitrary translation invariance, this problem is still a bit easier than
when we showed that Lebesgue measure was uniquely specified by special values and translation invari-
ance. This is because of Lebesgue differentiation, which allows us to skip a lot of technical manipulations.

By the “Krein-Milman theorem,” you can in fact show that Lebesgue measure is automatically “er-
godic” for irrational rotations Rα. The argument goes as follows: invariant measures are convex combi-
nations of ergodic measures. But, the space of invariant measures is just {λ}, and ergodic measures are
necessarily invariant, so λ itself has to be ergodic.
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9 : Week 9
Fall 2021 Problem 1: Let f : [0, 2π]→ C belong to L1 and assume that∫ 2π

0

f(x)

(
∂2φ

∂x2
+
∂4φ

∂x4

)
dx = 0

whenever φ : R→ C is smooth and (2π)-periodic. Prove that

f(x) = a+ beix + ce−ix a.e.

for some complex scalars a, b, c.

Proof. We first consider the warm-up. Suppose f ∈ L1([0, 2π]) is such that
∫
fφ′dx = 0 whenever φ is

smooth and (2π)-periodic. Extend f periodically to all ofR. Let η be a mollifier; then, for each ε > 0,∫ 2π

0

(f ∗ ηε)φ′dx =

∫
R

∫ 2π

0

f(x− t)ηε(t)φ′(x)dxdt

=

∫
R
ηε(t)

∫ 2π−t

−t

f(x)φ′(x+ t)dxdt

If φ̃(x) = φ(x+ t), then φ̃′(x) = φ′(x+ t) and φ̃ is smooth and (2π)-periodic. We conclude that∫ 2π

0

(f ∗ ηε)φ′dx = 0

for all choices of φ. Integrating by parts,

0 =

∫ 2π

0

(f ∗ ηε)φ′dx = −
∫ 2π

0

(f ∗ ηε)′φdx

Since φ can be taken to be an approximate identity near any point, we conclude that (f ∗ ηε)′ is a.e. zero.
Since f ∗ ηε is smooth, we conclude that f ∗ ηε ≡ cε for a suitable constant cε.

Finally, if x is any Lebesgue point for f ,

f(x) = lim
ε→0+

f ∗ ηε(x) = lim
ε→0+

cε

In particular, the cε are convergent as ε→ 0; it follows immediately that f is a.e. constant.

We now consider the current case. Towards the end of the argument, we will need a lemma:
Lemma. Suppose φ is a mollifier inRn. Then, for any f ∈ L1(Rn), we have

∥f ∗ φt − f∥1 → 0 as t→ 0+

Proof of lemma. Let ε > 0 be arbitrary. Let g ∈ C∞
c (Rn) be such that ∥f − g∥1 < ε/3. By elementary

considerations, g ∗ φt → g uniformly as t → 0, so we may find δ > 0 such that 0 < t < δ implies
∥g ∗ φt − g∥1 < ε/3. Consequently,

∥f ∗ φt − f∥1 ≤ ∥f ∗ φt − g ∗ φt∥1 + ∥g ∗ φt − g∥1 + ∥g − f∥1 < ε

where we have used the operator norm bound ∥h ∗ φt∥1 ≤ ∥h∥1.
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We now proceed to the argument. Extend f periodically to all of R. Let η : R → R be smooth,
nonnegative,≡ 1 on [−1

2
, 1
2
], supported in [−1, 1], such that

∫
η = 1. For ε > 0, write ηε(t) = ε−1(ε−1t),

so that
∫
ηε = 1 and (f ∗ ηε)(x)→ f(x) as ε→ 0+, whenever x is a Lebesgue point of f .

Then f ∗ ηε is smooth; further,

(f ∗ ηε)(x+ 2π) =

∫
f(x+ 2π − t)ηε(t)dt =

∫
f(x− t)ηε(t)dt = (f ∗ ηε)(x)

so that f ∗ ηε is (2π)-periodic. Lastly, if φ : R→ C is smooth and (2π)-periodic, then by Fubini-Tonelli∫ 2π

0

(f ∗ ηε)(x)
[
∂2φ

∂x2
+
∂4φ

∂x4

]
dx =

∫ 2π

0

∫
R
f(x− t)ηε(t)

[
φ(2)(x) + φ(4)(x)

]
dtdx

=

∫
R
ηε(t)

∫ 2π

0

f(x− t)
[
φ(2)(x) + φ(4)(x)

]
dxdt

=

∫
R
ηε(t)

∫ 2π

0

f(x− t)
[
φ̃(2)(x− t) + φ̃(4)(x− t)

]
dxdt

where we write φ̃ for the function φ̃(x) = φ(x+ t); note that φ̃ is still smooth and (2π)-periodic. By the
assumption on f , together with periodicity,∫ 2π

0

f(x− t)
[
φ̃(2)(x− t) + φ̃(4)(x− t)

]
dx =

∫ 2π

0

f(x)
[
φ̃(2)(x) + φ̃(4)(x)

]
dx = 0

so that ∫ 2π

0

(f ∗ ηε)(x)
[
∂2φ

∂x2
+
∂4φ

∂x4

]
dx = 0

as well, for all ε > 0 and all smooth (2π)-periodic φ .
Abbreviate gε = f ∗ ηε. Then gε is smooth and (2π)-periodic. Integrating by parts twice, we obtain∫ 2π

0

g(2)ε (x)
[
φ(x) + φ(2)(x)

]
dx = 0

for all φ smooth (2π)-periodic. Thus, for such φ,∫ 2π

0

g(2)ε (x)φ(x)dx = −
∫ 2π

0

g(2)ε (x)φ(2)(x)dx

and, integrating the second expression by parts twice,∫ 2π

0

g(2)ε (x)φ(x)dx = −
∫ 2π

0

g(4)ε (x)φ(x)dx,

i.e. the function x 7→ g
(2)
ε (x) + g

(4)
ε (x) is orthogonal to all smooth (2π)-periodic functions φ. Thus

g
(2)
ε (x) + g

(4)
ε (x) = 0 for all x ∈ R.

Write hε = g
(2)
ε , so that hε = −h(2)ε . By standard ODE theory, it follows that

hε(x) = aεe
ix + bεe

−ix
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for suitable complex constants aε, bε ∈ C. By FTC, it follows that

gε(x) = −aεeix − bεe−ix + cεx+ dε

for suitable complex constants c, d; since gε is periodic, cε = 0.
We have concluded that, for every ε > 0, there are complex constants aε, bε, dε so that

(f ∗ ηε)(x) = aεe
ix + bεe

−ix + cε

For any x ∈ [0, 2π] Lebesgue point for f , we have

lim
ε→0+

aεe
ix + bεe

−ix + cε = f(x)

We claim that the coefficients aε, bε, cε are Cauchy as ε→ 0+. Since

1

2π

∫ 2π

0

(f ∗ ηε)(x)dx = cε

and (f ∗ ηε)→ f in L1([−π, 3π]) (say), we see that

1

2π

∫ 2π

0

(f ∗ ηε)(x)dx→
1

2π

∫ 2π

0

f(x)dx

Thus cε is Cauchy. Similarly,

1

2π

∫ 2π

0

e−ixf(x)dx← 1

2π

∫ 2π

0

e−ix(f ∗ ηε)(x)dx = aε

so aε is Cauchy; the same holds for bε. Thus the coefficients aε, bε, cε are Cauchy, so converge to some
a, b, c, and hence

(f ∗ ηε)(x)→ aeix + be−ix + c

pointwise everywhere as ε → 0. Since the left-hand side converges a.e. to f , we conclude that f agrees
with the right-hand side a.e.

Fall 2011 Problem 3: Let 1 < p, q <∞ satisfy 1
p
+ 1

q
= 1. Fix f ∈ Lp(R3) and g ∈ Lq(R3).

(a) Show that
[f ∗ g](x) :=

∫
R3

f(x− y)g(y)dy

defines a continuous function onR3.

(b) Moreover, show that [f ∗ g](x)→ 0 as |x| → ∞.

Proof. (a): We first claim that, for each g ∈ Lq(R3), the function v 7→ τvg, where τvg(x) = g(x + v),
is continuous. Indeed, if g ∈ Cc(R3) and vn → v, then τvng → τvg uniformly, hence in Lq(R3). If
g ∈ Lq(R3), v ∈ R3, and ε > 0 arbitrary, then we may find g′ ∈ Cc(R3) with ∥g − g′∥Lq < ε/4. Let
δ > 0 be such that ∥v′ − v∥ < δ implies ∥τv′g′ − τvg′∥Lq < ε/2. Then

∥τv′g − τvg∥Lq(R3) ≤ ∥τv′g − τv′g′∥Lq(R3) + ∥τv′g′ − τvg′∥Lq(R3) + ∥τvg′ − τvg∥Lq(R3) < ε
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since τv, τv′ are linear and preserve Lq . Thus v 7→ τvg is continuous for each choice of g ∈ Lq(R3).
By Lp-Lq duality, for each choice of f, g, the function

x 7→
∫
R3

f(−y)τxg(y)dy =

∫
R3

f(−y)g(y + x)dy

is a composition of two continuous functions, hence is continuous. Changing variables, we conclude that

x 7→
∫
R3

f(y)g(x− y)dy = [f ∗ g](x)

is continuous, as was to be shown.

(b): We may assume ∥f∥Lp = 1 = ∥g∥Lq . Let ε > 0 be arbitrary. Since the sequence of functions
{1B(0,n)(x)|f(x)|p}∞n=1 is uniformly dominated by the integrable function |f |p, we see by DCT that

lim
n→∞

∫
B(0,n)

|f(x)|pdx =

∫
R3

|f(x)|p

In particular, we may find anN1 ∈ N such that∫
R3\B(0,N1)

|f(x)|pdx < (ε/2)p

Similarly, we may findN2 ∈ N such that∫
R3\B(0,N2)

|g(x)|qdx < (ε/2)q

Suppose ∥x∥ > N1 +N2. Then

|[f ∗ g](x)| ≤
∫
B(0,N2)

|f(x− y)g(y)|dy +
∫
R3\B(0,N2)

|f(x− y)g(y)|dy

By Hölder, we have∫
B(0,N2)

|f(x− y)g(y)|dy ≤ ∥g∥Lq

(∫
B(x,N2)

|f(y)|pdy
)1/p

< ε/2

sinceB(x,N2) is disjoint fromB(0, N1). Similarly,∫
R3\B(0,N2)

|f(x− y)g(y)|dy ≤ ∥f∥Lp(R3)

(∫
R3\B(0,N2)

|g(y)|q
)1/q

< ε/2

by the assumption onN2. Thus |[f ∗ g](x)| < ε for large ∥x∥, as was to be demonstrated.

Winter 2007 Problem 3: Let f ∗ g(x) =
∫
R f(x− y)g(y)dy denote the convolution of f and g. Fix

g ∈ L1(R). Do the following:

(a) Show thatAg(f) := f ∗ g is a bounded operator L1(R)→ L1(R).
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(b) Suppose in addition that g ≥ 0. Find the corresponding norm ∥Ag∥L1→L1 .

Proof. (a): By Tonelli,

∥f ∗ g∥L1(R) ≤
∫ ∫

|f(x− y)||g(y)|dydx =

∫
|g(y)|

∫
|f(x− y)|dxdy = ∥f∥L1(R)∥g∥L1(R)

so thatAg is bounded, and ∥Ag∥L1→L1 ≤ ∥g∥L1 .
(b): Let f ≥ 0 be any measurable function with ∥f∥L1(R) = 1. Then

∥Ag(f)∥L1(R) =

∫
R

∫
R
f(x− y)g(y)dydx = ∥f∥L1(R)∥g∥L1(R)

so that ∥Ag∥L1→L1 = ∥g∥L1 , using the fact mentioned in (a) above.

We omit (c) here.
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Hints and remarks about the preceding problems

Fall 2021 Problem 1.

Hint, part 1: as a warm-up, show that
∫
fφ′dx = 0 for all φ smooth and periodic implies that f is a.e.

constant.

Hint, part 2: mollify f .

Hint, part 3: consider mollifications f ∗ ηt, as considered on the homework. The mollified f satisfies the same
identity by Fubini-Tonelli. So we may assume f is smooth; then, integrate by parts and solve an ODE.

Remark. It’s also possible to handle this directly by Fourier analysis techniques.

Fall 2011 Problem 3.

Hint for (a): Hölder + uniform integrability.

Hint for (b): Hölder + dominated convergence.

Winter 2007 Problem 3.

Hint for (a): Fubini-Tonelli.

Hint for (b): for one inequality, use Fubini-Tonelli. For the other, sample g ≈ δ0.

Remark. Part (c) asks you to demonstrate that the only f ∈ L1(R) with f ∗ f = f is f = 0. This
is best handled with Fourier analysis techniques. Another approach is to consider the g ≥ 0 case, and
consider the function η(t) = −t log t, together with Jensen.
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10 : Week 10

The following is a collection of problems that I might have used if the quarter ran several weeks
longer. Some of them are directly relevant to what we have done so far (e.g. the Banach-Alaoglu and
weak-∗ topology), and some would have been relevant later (uniform boundedness, open mapping).

I suggest the document be used as such:

• For this week, I will consider the following problems: Fall 2021 Problem 4, Spring 2018 Prob-
lem 6, and Spring 2017 Problem 4.

• I strongly suggest that you think about Fall 2019 Problem 9 (in the uniform boundedness prin-
ciple section), and the non-qual open mapping theorem problem, once you have learned those
two results.

• The remaining problems I will leave as options if you want to further build on your familiarity
with the techniques.

10.1 Weak and weak-∗ topologies, and Banach-Alaoglu
Non-qual problem: LetX be a compact metric space and T : X → X a homeomorphism. Show that
there exists an invariant Radon probability measure for T , i.e. a Radon probability measure µ such that
T∗µ := µ ◦ T−1 is equal to µ.

Fall 2021 Problem 4: Let r1 > r2 > · · · > 0. For each positive integer n, let Cn be a pairwise disjoint
collection of 2n closed disks of radius rn in [0, 1]2, and assume that every member of Cn contains exactly
two members of Cn+1. LetKn =

⋃
D∈Cn D, and letK =

⋂∞
n=1Kn.

(a) Prove that there is a Borel probability measure µ such that µ(K) = 1 and µ(D) = 2−n for every
D ∈ Cn.

(b) Prove thatK is the support of µ; that is, the smallest closed set whose measure equals 1.

Proof. (a): For each n andD ∈ Cn, let cD be the center ofD, and we write

µn = 2−n
∑
D∈Cn

δcD

where as usual δcD denotes the point mass at cD . We claim that {µn}∞n=1 is weak-∗ convergent. To do this,
let f ∈ C([0, 1]2) be arbitrary; we will show that the pairings ⟨f, µn⟩ converge inR.

Let ε > 0 be arbitrary and δ > 0 be such that ∥x − y∥ < δ implies |f(x) − f(y)| < ε for any
x, y ∈ [0, 1]2; here ∥ · ∥ is the usual Euclidean distance. LetN ∈ N be such that rN < δ/2.
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Then, for any n,m ≥ N , where we assumem > n without loss of generality,

⟨f, µn⟩ − ⟨f, µm⟩ = 2−n
∑
D∈Cn

f(cD)− 2−m
∑
D∈Cm

f(cD)

= 2−n
∑
D∈Cn

f(cD)− 2n−m
∑

D′∈Cm
D′⊆D

f(cD′)


because each D′ ∈ Cm is a subset of a unique D ∈ Cn; furthermore, for each D ∈ Cn, there are 2m−n-
manyD′ ∈ Cm such thatD′ ⊆ D. Thus,

|⟨f, µn⟩ − ⟨f, µm⟩| ≤ 2−n
∑
D∈Cn

∣∣∣∣∣∣∣∣f(cD)− 2n−m
∑

D′∈Cm
D′⊆D

f(cD′)

∣∣∣∣∣∣∣∣
≤ 2−n

∑
D∈Cn

2n−m
∑

D′∈Cm
D′⊆D

|f(cD)− f(cD′)|

< 2−n
∑
D∈Cn

2n−m
∑

D′∈Cm
D′⊆D

ε = ε

Thus we have shown that ⟨f, µn⟩ is Cauchy, hence convergent.
Finally, since {µn}∞n=1 is a sequence in the (norm-closed) unit ball (M([0, 1]2))1, and the latter is a

compact metrizable space in the weak-∗ topology, it follows that there is some µ ∈M([0, 1]2) for which
µnk

⇀ µ in the weak-∗ topology for a suitable subsequence k 7→ nk. Thus ⟨f, µnk
⟩ → ⟨f, µ⟩ as k →∞

for each f ∈ C([0, 1]2), so we further have ⟨f, µn⟩ → ⟨f, µ⟩ as n → ∞. Thus in fact µn ⇀ µ in the
weak-∗ topology.

We claim that this µ does the job. Testing against f ≡ 1, we see that µ([0, 1]2) = 1. For each n ∈ N
and D ∈ Cn, we may find a sequence {fk}∞k=1 in [0, 1]2 such that fk ↓ 1D , fk ≡ 1 on D, 0 ≤ fk ≤ 1,
fk ≡ 0 on eachD′ ∈ Cn other thanD. Then

⟨fk, µ⟩ = lim
j
⟨fk, µj⟩ = 2−n

since the value is 2−n for all j ≥ n. By dominated convergence,

µ(D) = lim
k

∫
fkdµ = 2−n

as claimed.
In particular, µ(Kn) = 1 for all n. Since theKn are nested, continuity from above implies

µ(K) = lim
n
µ(Kn) = 1

as was to be shown.
(b): Since µ is positive and µ([0, 1]2) = µ(K), we see that supp(µ) ⊆ K . Pick any x ∈ K and ε > 0.

In particular, x ∈ Kn for every n, so for each n we may findDn,x ∈ Cn such that x ∈ Dn,x. Let n ∈ N
be such that rn < ε/2. ThenB(x, ε) ⊇ Dn,x, so

µ(B(x, ε)) ≥ µ(Dn,x) = 2−n > 0.
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Since ε > 0 was arbitrary, we see that x ∈ supp(µ). Since x ∈ K was arbitrary, we conclude that
supp(µ) = K , as was to be shown.

Spring 2018 Problem 6 [slightly modified]: Let P([0, 1]) denote the space of Borel probability
measures on [0, 1] and P([0, 1]2) denote the space of Borel probability measures on [0, 1]2. Fix µ, ν ∈
P([0, 1]) and define

M = {γ ∈ P([0, 1]2) :
∫∫

[0,1]2
f(x)g(y)dγ(x, y) =

∫
[0,1]

f(x)dµ(x)

∫
[0,1]

g(y)dν(y)

for all f, g ∈ C([0, 1])}
Show that F :M→ R defined by

F (γ) =

∫∫
[0,1]2

sin2(π(θ − ϕ))dγ(θ, ϕ)

achieves its infimum onM.

Proof. Weclaim that, ifM is equippedwith theweak-∗ topology, thenM is compact andF is continuous.
First, we demonstrate thatM is precompact, i.e. for any sequence {γn}∞n=1 inM there is some γ ∈

P([0, 1]2) such that γn ⇀ γ. Note that [0, 1]2 is compact and every γ ∈ P([0, 1]2) has total mass 1, so
by Banach-Alaoglu, P([0, 1]2) is compact. Thus the closure ofM in P([0, 1]2) is compact, henceM is
precompact, as claimed.

Next, we demonstrate that in factM is closed. Suppose γn ⇀ γ. Then, for each ε > 0 and f, g ∈
C([0, 1]), there is n ∈ N such that∫∫

[0,1]2
f(x)g(y)dγ(x, y) =

∫∫
[0,1]2

f(x)g(y)dγn(x, y) +O(ε)

=

∫
[0,1]

f(x)dµ(x)

∫
[0,1]

g(y)dν(y) +O(ε)

Thus, for each f, g ∈ C([0, 1]) and each ε > 0,

|
∫∫

[0,1]2
f(x)g(y)dγ(x, y)−

∫
[0,1]

f(x)dµ(x)

∫
[0,1]

g(y)dν(y)| < ε

so in particular ∫∫
[0,1]2

f(x)g(y)dγ(x, y) =

∫
[0,1]

f(x)dµ(x)

∫
[0,1]

g(y)dν(y)

and hence γ ∈M, i.e.M is closed.
Lastly, we demonstrate that F is continuous. If γn ⇀ γ, then in particular for

h(x, y) = sin2(π(x− y)) ∈ C([0, 1])

we get ∫∫
[0,1]2

h(x, y)dγn(x, y)→
∫∫

[0,1]2
h(x, y)dγ(x, y)
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which is the statement
F (γn)→ F (γ)

i.e. F is continuous (sinceM is metrizable, sequences are all that is needed!). Thus, F is a continuous
function on a compact space, so achieves its minimum.

Fall 2020 Problem 2: Show that there is a constant c ∈ R such that

lim
n→∞

∫ 1

0

f(x) cos(sin(nπx))dx = c

∫ 1

0

f(x)dx

for every f ∈ L1([0, 1]).

Spring 2022 Problem 3: LetX be a real Banach space and letX ′ be its dual. If Y ⊆ X , then let

Y ⊥ := {ℓ ∈ X ′ : ℓ(y) = 0∀y ∈ Y }

On the other hand, if Z ⊆ X ′, then let
⊥Z := {x ∈ X : ℓ(x) = 0∀ℓ ∈ Z}

(a) Prove that ⊥(Y ⊥) is the closed linear span of Y inX for any Y ⊆ X .

(b) Provide an example of a real Banach space X and a subset Z ⊆ X ′ for which (⊥Z)⊥ is not the
closed linear span of Z in X ′. [Hint: try something involving the spaces L1(m), C([0, 1]), and
L∞(m), wherem is Lebesgue measure on [0, 1].]

For the next problem, you may find it convenient to quote the following result of Baire:

Theorem (Baire). If X is a compact metric space and ϕ : X → R ∪ {∞} is lower semi-
continuous, then there is a sequence of functions fn : X → R such that fn ≤ fn+1 and ϕ = limn fn
pointwise.

Fall 2016 Problem 3: If X is a compact metric space, we denote by P(X) the set of positive Borel
measures µ onX with µ(X) = 1. By a theorem of Baire, one can prove the following:

(a) Let ϕ : X → [0,∞] be a lower semi-continuous function on a compact metric spaceX . If µ and
µn for n ∈ N are in P(X) and µn ⇀ µ with respect to the weak topology on P(X), then∫

ϕdµ ≤ lim inf
n→∞

∫
ϕdµn (10.1)

(b) LetK ⊆ Rd be a compact set. For µ ∈ P(K), we define

E(µ) :=

∫
K

∫
K

1

∥x− y∥
dµ(x)dµ(y)

Here ∥z∥ denotes the Euclidean norm of z ∈ Rd.
Show that the functionE : P(K)→ [0,∞] attains its minimum on P(K) (possibly∞).
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Reminder: a function f is said to be lower semi-continuous if lim infy→x f(y) ≥ f(x) for all x.

Spring 2017 Problem 4: For n ≥ 1, let an : [0, 1) → {0, 1} denote the nth digit in the binary
expansion of x, so that

x =
∑
n≥1

an(x)2
−n for all x ∈ [0, 1)

where we remove digit expansion ambiguity by requiring that lim infn an(x) = 0 for all x ∈ [0, 1). Let
M([0, 1)) denote the space of finite signed Borel measures on [0, 1) and define linear functionals Ln on
M([0, 1)) via

Ln(µ) =

∫ 1

0

an(x)dµ(x)

Show that no subsequence of the Ln converge in the weak-∗ topology onM([0, 1))∗.

Solution taken from here. It suffices, for any subsequence nk , to identify µ ∈ M([0, 1)) such that the se-
quence Lnk

(µ) does not converge as k → ∞. Notice that, if µ = δb for some b ∈ [0, 1), then Lnk
(µ) is

the entry in position nk in the binary expansion of b. Thus, if we take

b =
∞∑
k=1

(k mod 2)2−nk

then Lnk
(δb) = (k mod 2), which does not converge as k →∞.

Fall 2017 Problem 4: Consider the Banach space V = C([0, 1]) of all real-valued continuous func-
tions on [0, 1] equipped with the supremum norm. Let B = {f ∈ V : ∥f∥ ≤ 1} be the closed unit ball
in V .

Show that there exists a bounded linear functional Λ : V → R such that Λ(B) is an open subset of
R.

Proof. Let Λ be defined by

Λ(f) =

∫ 1

0

f(x)dx+ f(1)− f(0)

It is easy to see that Λ is a bounded linear functional. We claim that Λ(B) = (−3, 3). Since Λ(B) is
clearly connected and symmetric, for the⊇ containment it suffices to find fn such that Λ(fn) > 3 − 1

n
.

To this end, define

fn(x) =

{
2nx− 1 x ≤ 1

n

1 1
n
< x ≤ 1

Clearly fn ∈ B for each n. Also,

Λ(f) =
1

2n
+ (1− 1

n
) + 1− (−1) = 3− 1

2n
> 3− 1

n

so (−3, 3) ⊆ Λ(B).
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We consider the reverse inclusion. Note that

|Λ(B)| ≤
∫ 1

0

|f(x)|dx+ |f(1)− f(0)| ≤ 3,

and equality can only hold if |f(x)| = 1 a.e. and |f(0)| = |f(1)| = 1 while f(0), f(1) have opposite
signs. We claim this cannot happen; indeed, we may assume f(1) = 1 = −f(0), and then we will find
x ∈ (0, 1) and ε ∈ (0, 1) such that |f(y)| ≤ ε for |y − x| ≤ ε, so that |f(x)| is not a.e. 1. Thus
Λ(B) ⊆ [−3, 3] and 3 ̸∈ Λ(B), so by symmetry−3 ̸∈ Λ(B) as well. ThusΛ(B) = (−3, 3), as was to be
shown.

10.2 Uniform boundedness principle
Fall 2019 Problem 5: LetH be a Hilbert space with the scalar product of x, y denoted by ⟨x, y⟩, and let
A,B : H → H be (everywhere-defined) linear operators with

∀x, y ∈ H : ⟨Bx, y⟩ = ⟨x,Ay⟩

ThenA andB are both bounded (and thus continuous).

Problem frommathoverflow: Consider theHilbert space ℓ2(N), and consider amatrixA = [aij]i,j ,
consisting of nonnegative entries, such that, for all y ∈ ℓ2(N), the entries of the vector Ay all converge,
and the vectorAy also belongs to ℓ2(N). Show thatA is a bounded linear map ℓ2(N)→ ℓ2(N).

Important remark: we are not here claiming that every linear map ℓ2(N)→ ℓ2(N) is bounded!

The statement is also true when the entries are assumed only to be real numbers.

10.3 Openmapping theorem
Non-qual problem.10 The following display is a false statement:

If V is a vector space and ∥ · ∥1, ∥ · ∥2 are two norms on V such that (V, ∥ · ∥1) and (V, ∥ · ∥2) are
complete, then ∥ · ∥1, ∥ · ∥2 are equivalent.

What follows is a “proof” of this statement. Identify the mistake in the argument!

Denote ∥ · ∥3 = ∥ · ∥1 + ∥ · ∥2. Then ∥ · ∥3 is another norm on V : indeed,

∥x+ y∥3 = ∥x+ y∥1 + ∥x+ y∥2 ≤ ∥x∥1 + ∥y∥1 + ∥x∥2 + ∥y∥2 = ∥x∥3 + ∥y∥3

and the other axioms are obvious.

10Taken from an old mathoverflow post that I cannot find.
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We claim that (V, ∥·∥3) is complete as well. Indeed, if {xn}∞n=1 is Cauchy in ∥·∥3, then it is clearly
Cauchy in ∥ · ∥1, ∥ · ∥2, so by completeness we may find y ∈ V such that xn → y in ∥ · ∥1, ∥ · ∥2. But
then

∥xn − y∥3 = ∥xn − y∥1 + ∥xn − y∥2 → 0

so xn → y in ∥ · ∥3. Thus (V, ∥ · ∥3) is complete.

Let T : (V, ∥ · ∥3)→ (V, ∥ · ∥1) be the identity map on V . Then T is clearly linear. Furthermore,
T is bounded:

∥Tv∥1 = ∥v∥1 ≤ ∥v∥1 + ∥v∥2 = ∥v∥3
Additionally, T is bijective. In particular, T is surjective, so by the open mapping theorem we see that
T is open. Thus T is an open continuous bijection, so T is a homeomorphism. Since T is a linear
homeomorphism, we in particular have that ∥ · ∥1 and ∥ · ∥3 are equivalent.

By the same argument, ∥ · ∥2 and ∥ · ∥3 are equivalent. But, as we have seen, equivalence of norms
is transitive, so ∥ · ∥1 and ∥ · ∥2 are equivalent, as was to be shown.

Remark. As an example to demonstrate that the statement itself cannot be true: one can demonstrate
without too much difficulty that ℓ1(N) and ℓ2(N) are isomorphic as vector spaces, but it turns out that
they are not isomorphic as normed vector spaces (here, “isomorphism” means a linear bijection that is
open and bounded); this can be shownwith a little more difficulty by considering adjoints. Consequently,
we can regard ℓ1(N), ℓ2(N) as the same vector space with two incomparable complete norms.
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Hints and remarks about the preceding problems

Fall 2021 Problem 4.

Hint: approximate µ by models µn at level n. Use compactness to find limit points.

Remark. Recall that our construction of the Cantor measure last quarter was very involved. With
Banach-Alaoglu, we can instead find Cantor measure by a simple approximation procedure.

Spring 2018 Problem 6.

Hint: compactness and continuity.

Remark. Many optimization problems can be characterized by attempting to find suitable topologies
such that the functional (in our case, F ) is continuous (or semi-continuous), and the domain is compact.
Depending on the subject, this might be the weak-∗ topology onmeasures,Lp topology,Ck topology, etc.

Spring 2017 Problem 4.

Hint: it suffices to consider arbitrary subsequence k 7→ nk and find µ such that Ln(µ) does not converge.
Try something of the form µ = δb for suitably-defined b ∈ [0, 1).

Remark.Why doesn’t this contradict Banach-Alaoglu?
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