UCLA 245B discussion notes

Ben Johnsrude

These are a complete set of documents I wrote in the course of TAing Math 245B at UCLA in Winter
2024. The main focus of that discussion was preparation for the UCLA Analysis qualifying exam (real
half). The problems each week were chosen based on the material being covered in lecture.

Prior to each discussion, I sent out the selection of problems to be covered, together with some hints
and remarks. After the discussion, I would send out the version of the document seen here, with the
solutions filled in.



1 : Weekl

Fall 2004, Problem 2 Let f : [0,1] — [0, 00) be a nonnegative, L' function (with respect to Lebesgue
measure). Prove that the following two statements are equivalent:

(@) There exists a constant 0 < C' < oo such that

1 1/p
</ f(l’)pdx) <Cp vp=>1
0

(b) There exists a constant 0 < ¢ < 0o such that

1
/ eI @ dr < 0o
0

You are free to make use of the following version of Stirling’s approximation:

|
lim ———— =1
n—o0 \/27n(ne=1)"

Proof. Assuming (a), we prove (b). For each choice of c and z: € [0, 1], we have
=D

n=0

| Q)

Since f is nonnegative and measurable, by Tonelli’s theorem we have

1 00 o el
ef@) g, - N~ C / n
e dr = x)"dx

/O ,?:o . f(2)

By the assumption,

and hence

1 nn
/ @ dy < (CC)”—‘
N — n!

Assume now that ¢ is chosen so that ¢C' < e/2. Recall by Stirling’s approximation that

n" < pl/2en
nl
Thus we have the estimate
1 00
/ e @y < Z(cC’e)” 12 < 22 "2 < oo
0 n=0 n=0



as was to be shown.

Now assume (b). Again by Tonelli,

1 © a1
@ dy = C—/ f(x)"dx
/ S @

Recall that Stirling provides

|
m ———
n—o0 \/2mn(ne=1)"

In particular, we may find a constant Cy > 0 such that

1
n! < Con""2e™™ VneN

Thus - . .
c" n — - n, —n—=% n
ZE/ f(z) d:z:ZC’OIZ(ce) n 2/ f(z)"dx
=0 V0 n=0 0
We claim that fo x)dr < ( 2 = )"n" for all n. If this doesn’t hold, then we may find an increasing
sequence k > ny, such that fo x)"dx > ( = )" n,* for all k; but then
/ f(x)"dx ZZce"kn / f(x)™*da
n= 0 k=0
> 1
>3 (@) = oo

k=0

which violates the convergence from (b). Thus fo x)"dxr < C™n" for a suitable C' > 0, for all n.

Finally, if n < p < n + 1, we have by Holder

(/01 f(x)pdx) " < (/01 f(l’)”“dx) " <C(n+1)<2Cp

and we are done.

Necessity of measurable hypothesis in Fubini-Tonelli, part 1. Observe the following easy conse-

quence of Fubini-Tonelli:

Suppose A C IR? is Lebesgue-measurable, and suppose that every intersection A, of A with the

line x = v is null. Then A is null.

Of course, any nullset is Lebesgue measurable, so there’s a sense that the assumption that A is mea-
surable might not be necessary. The point of this problem is to demonstrate that the framed statement
fails if this assumption is removedﬂ

To this end, do the following:

'Method taken from van Douwen, “Fubini’s theorem for null sets” The American Mathematical Monthly 96.8 (1989): 718-

721.



(@) Let 2 be the family of sets K C R? that are compact with positive measure. Write ¢ = |R| for the
cardinality of the continuum. Show that | Z?| = c.

(b) Let K be a compact uncountable subset of R. Show that | K| = «.

(c) Show that, for each P € Z, theset {v € R : P, # (0} also has cardinality c. Here, as before, the
subscript v denotes intersection with the line z = v.

(d) By standard set theory arguments, by (a) it follows that there is a well-order < on & such that every
set of the form {P € & : P < Q} has cardinality < ¢, where () ranges over 2.

Using this, do the following. Let Q € & and write Lo = {P € & : P < Q}. Suppose
{(xp,yp)}pPeL, is a collection of points (x,y) € R* such that (xp,yp) € P,and xp # p: for
P # P’ € Lg. Show then that there is some (2¢, yg) € () such that z¢ is distinct from all zp
with P < Q.

(e) By (d) and transfinite induction, there exists a family {(xp,yp)}pcs of points in R? such that
(xp,yp) € P foreach P € &. Write A = {(zp,yp) : P € £?}. Show that A is not null, and
that each intersection A, is finite.

Proof. (a): Let T be the collection of Euclidean open sets in R?. We show that |7| = ¢. Let 7y be the
collection of open balls of rational radii, whose centers are pairs of rational points. Clearly 7y is a base for
7, and is countable. It follows that
om0 % T, U U U
=7
is a surjection, so | 7| < Il — ¢. Thus the set C of closed sets has |C < caswell. Since & C C, it follows
that | 2] < c.
On the other hand, each box [v, v + 1] belongs to & for v € R, so | #?| > ¢ as well.

(b): Let a < bbe any two real numbers such that Ky = (—o0,a] N K and K; = [b,00) N K are both
uncountable. Then K, K are also compact uncountable subsets of R. Iterating this, we obtain a family
of compact subsets { K, },, indexed by finite words in the alphabet 0, 1 such that K, O K, if w’ extends
w (i.e. is given by adding extra digits onto the end of w). By taking intersections over all truncations wj,
of a given word w, we obtain (by the compact intersection theorem) a nonempty compact set /. Any
two infinite words w, w’ that are distinct have K, N K, = (). Consequently, we may find |2"| = ¢ many
distinct points in K. Since | K| < ¢ trivially, we conclude that | K| = «.

(c): Denote the set in question as C'. Note that C'is the image of P under the (continuous) orthogonal
projection onto the x-axis. In particular, C' is compact. Also, P C C' x R, so (since P is positive measure),
C has positive measure. Thus C'is uncountable, and since C'is a compact metric space we conclude that
|IC| =c.

(d): Note that L) has cardinality < ¢. Thus 7 (Lg), the collection of zp with P < (), has cardinality
< ¢. Since 71 (Q) has cardinality ¢, we may find z¢ € m1(Q) \ m1(Lg), and hence (z¢, yg) € @ with zq
distinct from all x p with P < Q).

(e): First we demonstrate that A is not null. In fact, we demonstrate that any U O A open has full
measure. Indeed, suppose U were a neighborhood of A such that C' = R? \ U has positive measure. In



particular, K = C' N B<r(0) has positive measure for large enough R. But then K is a positive measure
compact set, hence intersects nontrivially with A, violating the fact that K N U = ().
Finally, observe that the {x p} pc » are pairwise distinct, so A, is either empty or a singleton for each
v € R. The result follows.
]

Necessity of measurable hypothesis in Fubini-Tonelli, part ZEI Write A, for the following propo-
sition:

Suppose that:
1. f:R? — Ris nonnegative,

2. for every z € R, the function y — f(z,y) is Borel measurable and the integral | f(z,y)dy
converges to a Borel measurable function,

3. forevery y € R, the function  — f(x,vy) is Borel measurable and the integral [ f(z,y)dx
converges to a Borel measurable function, and

4. the iterated integrals [ [ f(x,y)dzdyand [ [ f(z,y)dydx converge.

Then [ [ f(z,y)dxdy = [ [ f(z,y)dydz.

Ay is called a strong Fubini theorem. The point of this problem is to demonstrate one-half of the state-

»

ment “ZFC does not prove nor disprove As (unless ZFC is inconsistent).” To this end, do the following:

Assume CH, that is, assume that any uncountable cardinal x satisfies k > ¢ := |R| = |[0, 1]|. By
standard set theoretic arguments, this implies that there is a well-order < on [0, 1] such that every half-
line L, := {y € [0,1] : y < x} is countable.

Taking this for granted, f(x,y) = 1g(z,y), where E = {(z,y) : © < y}, violates A,.

Proof. We validate that f satisfies all the hypotheses of A,, but violates the conclusion. Clearly f is non-
negative. For each fixed z € [0, 1], the functiony +— f(x,y)isjust the function 1;,_, which is the indicator
of a countable set, hence is Borel measurable. Additionally, since countable sets have measure zero, we
conclude that [ f(z,y)dy = 0 for all z, and hence [ [ f(z,y)dydz = 0.

On the other hand, for eachy € [0, 1], the function z — f(x,y) is the indicator of a co-countable set
in [0, 1], hence is Borel measurable and satisfies | f(x,y)dz = 1. Since this holds for each y, we conclude
[ [ f(z,y)dzdy = 1, and we are done.

O

2The content of this problem is borrowed from Shipman, “Cardinal Conditions for Strong Fubini Theorems.”



Hints and remarks regarding the preceding problems.

First problem:

Hint (a): consider the power series for exp(z).

Hint (b): Tonelli; to apply Stirling’s in either direction, you need a “uniform” version which applies for all n.
By the limit, there is a large N such that, beyond N, the fraction is within € of 1. On the other hand, we only
ignored finitely many, so at a constant cost you have a uniform statement.

You could view (a) as being a quantitative version of the finiteness statement (b).

Second problem:

Hint for (a): How many open sets are there?

Hint for (b): Try to find a Cantor set in K.

Hint for (c): What can the projection of P onto R be?
Hint for (d): How many points do you need to avoid?

Hint for (e): Use outer regularity. A would need to avoid some sets.

Third problem:

Hint: How oftenis y — f(z,y) equal to 1? What about x + f(x,y)? Remember, this is Lebesgue
measure.

Remark. We have shown that ZFC does not prove As, because then ZFC would refute CH (which it
does not, unless it is inconsistent). The other direction is over my head, so I won’t discuss it here; the point
is that “there are cardinals k1, ko with the property that there is a non-Lebesgue measurable subset of R
with cardinality x1, and there is a subset B of the real numbers of cardinality xo such that B is not the
union of k; measure-0 sets” is consistent with ZFC and implies A,. See the linked paper.



2 : Week?2

Fall 2022 Problem 2: Let f € LP(R), for some 1 < p < 2. Show that the series

f(z+n)

M

converges absolutely for almostall x € R. Foreach2 < p < o0, give an example of a function f € LP(R)
for which the series diverges for every x € R.

Proof. We first demonstrate that the integral

)\
/<Z ﬁ)dw

converges for each ¢ € R. Indeed, applying Holder to the sum, writing 119 + z% =1,

p

(&) = (S er) (S4)

Note that p’ > 2, so the rightmost factor is a convergent series. Thus

c+1 00 |f(:17—|—n)| p 00 _%/ 5 ct+1l 0 ) B 0o )
/c (;T) de(nz:;n ) /C nz::l|f(x+n)| dx_/ |f(2)|Pdz < oo

—00

as was to be shown.
Writenow N = {r e R: Y 7, Lf (f/t")‘ = +00}; one may verify that this set is Lebesgue measur-

n

able. If \(N') > 0, then A\(N N [¢, ¢ + 1]) > 0 for some ¢ € R, and hence

S+ )\ ~
[ (; \/ﬁ ) o= /Nﬂ[c,chl}(—}_OO)dl‘ -

violating the previous finiteness conclusion. Thus /V is null, so the series converges absolutely a.e., as was
to be shown.

Now we consider the second half of the problem. Observe that f = 1 suffices in the case p = 00, so
we assume p € [2, 00). Define then

x_l/p

fz) =

xr>e

log x

We claim that f € LP(R). Indeed, | f(z)|" < 5, and so

(lg)
[e] IE_I
Py < d
Jepas [ g
—/ W
- [




z—1/2

by a change-of-variable. Note that |f(x)| > T
For each a,b € R with |[b| > 1, we have the elementary inequality

for each x > e, so we may consider the p = 2 case.

la+ b < al|b] + [b] = (|a| + 1)[]
from which we evaluate

— | f(z +n)| (x4 n)"1/2

n>max(2,e—x)

> 1 D
= 400
~ (x| + 1)Y2(log(|z] + 1) + 1) nlogn

n>max(2,e—x)

where we have appealed to the divergence calculation

00 1 oo 2k+1_1 1 0o 1
_ b
anogn Z Z nlogn’\“zk: oo
n=2 k=1 p=2k k=1
or, written another way,

=1 | > 1

Z Z / dt = / —du = +00
—~mn logn 5 tlogt log2 U

Spring 2010 Problem 5 (with added scaffolding). Do the following:

(@) Let f be a real-valued continuous compactly-supported function on R. Let {x,,}°° | be a sequence
of real numbers tending to 0. Show that the sequence of functions

fala) = f(zn + )
converges to f in the L? sense.

(b) Using the prior and approximation theorems, show that for any f € L?(R) and any sequence
{z,}°, tending to zero, the sequence of functions

ful@) = f(2n + )
converges to f in the L? sense.
(c) Conclude that, for each f € L? the map 7.f : R — L?*(R) defined by
R>r—7.f€Ll*R), 7.f(z):=f(r+z)
is continuous as a function from R to L?(R).

(d) Suppose £ C R is Lebesgue measurable with positive finite measure. Show that the function

RSt ¢(t) = /RXE(Hy)XE(y)dy

1s continuous.



(e) Finally, show that, for E' Lebesgue measurable with positive measure, the set
E—-E={zeR:3x,ye Est.z=x—y}
contains a neighborhood of the origin (—¢, ).

Proof. (a): Let C' > 0 be a uniform upper bound for the sequence {x,,},, and let / C R be a compact
interval containing (supp f)+[—C, CJ; thussupp f,, C J forevery n. Let§ = J(¢) be a uniform modulus
of continuity for f,ie. |x —y| < () = |f(x) — f(y)| < e foreache > 0.

Fix now e > 0. Let N € Nbe such that n > N implies |z, | < 5(W). Then, for eachn > N,

1@ = st = [ 1+ m) s < [ (o<

so that || f, — f||12®) < €. Thus we have shown that f,, — f in L? as was to be shown.

(b): Let € > 0 be arbitrary. By the density of C,. functions in L?, we may find g € C,(R) such that
lg — fll2 < 5. By (a), we may find N € N such thatn > N implies ||g — gn|2 < 3. Then, for each such
n,

1f = falla < N f = gll2+ 19 = gull2 + lgn — full2

<tHi4i=c (»
3 3 3

where in (%) we noted that by change-of-variable

/ 9(e + ) — fla+ 2,)Pd = / 9(e) — f(2)Pda

Thus we have f, — f in L2
(0): Indeed, if u € R and u,, — u,

1T f = Tuflle = 1T —uf = fll2 =0

since u, — u — 0. Thus 7. f is continuous at u, hence continuous everywhere.

(d): Lety : R — L2(R) be the function ¢(t) = 7(xg). Let ® : L*(R) — R be the function
®(f) = | f(y)xe(y)dy. Note by Cauchy-Schwarz that ® is a well-defined bounded linear map, and by
(c) ¥ is a continuous function. Thus the composition ® o ) is a continuous function R — R. But

(o )(t) = / xely + Dxe()dy = 6(t)

so ¢ is also continuous.

(e): We assume first that £ has finite measure. Then
00) = [ xe(w)dy = NE) > 0
R

so, since ¢ is continuous, there is some € > 0 such that ¢ > 0 on (—¢, ).



Next, observe that
xe(t+y)xely) =1 <= ye€Fand3dze€FEstz—y=t

so that
yst.xe(t+y)xely) =1 <= Jy,z€FEst.z—y=t

ie.ifandonlyift € ' — E.

Finally, foreach —¢ < t < ¢, ¢(t) > 0,soin particular xg(t+y)xr(y) = 1forsomey,sot € E—F.
Thus (—¢,e) C E — E, as was to be shown.

Lastly, we remove the finiteness assumption. Taking £/ C R measurable with positive measure, we
may find F,, = [—n,n] N E of positive finite measure, so for some ¢ > 0 we have (—¢,¢) C E, — E,,.
But of course F,, — F,, C E — E, and we are done.

O

Fall 2022 Problem 6: Let £ = {x = (71, 75) € R? : ; — 2o & Q}. Show that F' does not contain
a set of the form A; x Ay, where A} C R, Ay C R are measurable, both of positive Lebesgue measure.

Proof. Consider A;, Ay C R arbitrary Lebesgue measurable sets with positive measure; we will show
that F does not contain Ay X As. Let 1, I be any two intervals of positive finite length such that

)\(Il N Al) > 099)\(]1), >\<IQ N Ag) > 099)\([2)

Without loss of generality we may assume A(/;) < A(I5). We may also assume that A(I5) < 2XA([;), by
repeatedly dividing I, in half and selecting the denser subinterval. Let ¢ € R be such that /; + ¢ has the
same left endpoint as I5; then I} +t C I, by the size assumption. Write I| = I, +t, A} = A; 4 t. Note
that

XA NAs T XIn(AUA) = XTnA, + XIjnAs

50 upon integrating
AT AT N Ag) + A N (AU Ay)) = NI N A + A7 N Ay)
Note that
AMIT N Ag) + NI\ 1) > A1 N Ag) + Mo N A\ I7) = Mo N Ag) > 0.99A(15)
SO
NI N Ag) > 0.99M(1) — 0.00A (I \ I]) > 0.98X(1})

Thus
MI; N AN Ag) > 1.9TAI) — M N (AL N Ag)) > 0.97A(1)

soinparticular A(/{NA]NAs) > 0. Write B = ;N A} N Ay; thus B is a positive measure, measurable set,
such that B — B C A} — As. By the previous problem, B — B contains a neighborhood of 0, so A; — A
contains a neighborhood of ¢. In particular, A; x A contains a point (21, ¥2) such that x; — x93 € Q, so

A X Ay € FE. Since Ay, Ay were arbitrary, we are done.
H

10



Hints and remarks regarding the preceding problems.

Fall 2022 Problem 2:

Hint: consider suitable integrals of the series, and show that they are finite. You will need Fubini and Holder.
For the second half, you'll need a function that is in L?, but not in any LP with p < 2,

Remark: many problems of this sort have appeared on the qual over the years. They usually proceed
by the method indicated here.

Spring 2010 Problem 5:

Hint for (a): use uniform continuity. Hint for (d): write ¢ as the composition of two continuous functions.
Hint for (e): consider ¢(0).

Remark: This is essentially the “Steinhaus theorem.” Several versions of this problem have appeared
on the analysis qualifying exam over the years, usually without the step-by-step guidance. One version of
interest (Q3 and 4, Fall 2004) uses this to demonstrate that a measurable additive bijection f : R — Ris
necessarily linear. Consequently, in order to find additive bijections R — IR that are nonlinear, one needs
the existence of non-Lebesgue-measurable sets.

Fall 2022 Problem 6:

Hint: use the previous problem. A; — As need not contain a neighborhood of the origin, but it will contain
an open interval somewhere. Translate A, to intersect a lot with As. To justify the latter, use problem 4 from the
final and elementary inclusion/exclusion.

Remark: It is easy to see that £ is a Borel subset of R?, and has positive measure (in fact, it is a dense G's
set of full measure!). On the other hand, this shows that you cannot always extract good approximations
from below using (countable unions of) measurable rectangles.

11



3 : Week3

Recall the following:

+ Measures /i, v on a measurable space (X, XJ) are said to be mutually singular if there is some

A € Y suchthat u(A) =0and v(X \ A) = 0.

+ For any (real) signed measure 1 on a measurable space, there are mutually singular measures

fit, po— such that p(A) = py (A) — p—(A) for all measurable sets A.

« For any complex measure i, there are finite real signed measures yi1, f2 such that pu(A) =
1 (A) + iug(A) for all measurable sets A.

« If 4 = py — p_ is the Hahn/Jordan decomposition of a real signed measure, we write |x| =
f+ + . If the total underlying space is X, we abbreviate ||| = || (X).

Spring 2021 Problem 2: Let ;. and v be two finite positive Borel measures on R?.

(a) Suppose that there exist Borel sets A,, C X, n € N so that
lim u(A,) =0 and lim v(X\A4,)=

n—oo n—oo

Show that 1 and v are mutually singular.

(b) Suppose there are non-negative Borel functions { f,, },>1 so that f,,(z) > 0 for v-a.e. x and

lim [ fu(x)du(x) =0 and hm/f = 0.

n—oo n—oo

Show that 1 and v are mutually singular.

Proof. (a): Using the hypothesis we may find a subsequence n; < ny < ng < ... such that
w(Ay) <278 (VkeN)

Write A = (2, Ui—, An,; we claim that ;i(A) = 0and v(X \ A) = 0. To establish the first claim,
notice that for eachr € N

<l An) € u(A4,,) <27
k=r k=nr

so 1i(A) = 0. On the other hand,

v(X\ A4) SZ ﬂX\Ank))

12



and, for each r,

e’} N

(XN An)) = Jim p()(X\ A)) < Jim (X \ Ay) =0

Thus (X \ A) = 0, as claimed. Since A is obviously measurable, ;1 and v are mutually singular.
(b): Writing A,, = £ 1([1, 00)),

H(A,) = / Lo dp < / Fodin— 0

and

v(X\ A, :/1X\Andug/fidl/—>0

n

so by (a) we are done.

Fall 2020 Problem 5: Suppose f € L'([0, 1]) has the property that

[E F@)ldz < /B, 61)

for every Borel £ C [0, 1].
(@) Show that f € LP([0,1]) forall p < 2.
(b) Give an example of an f satisfying[3.1]that is not in L2([0, 1]).

Proof. (a): Recall the layer-cake decomposition

£ ()]
/ |f(z)[Pdx = / / pt?~tdtdx
[0,1] 0,1] Jo
:p/ tpl/ dxdt
0 z€[0,1]:| f(z)|>t

p / T (e € [0,1] 1 ()] > 1))dt

—» [ A D @) 2 h T

From now on, we abbreviate U; = {z € [0,1] : |f(x)| > t}. For eacht > 0 we have t1y,(x) <
|/ ()1, (x). Thus,

AT} = / Hy, (2)da

< | 1f@)lde
S )\(Ut)l/Q

13



ie.
tAU)Y? <1
If we choose some ¢ € (2p — 2, 2), then the preceding implies the inequality
tINU,)? <1
We now use the preceding to control the L” norm. Indeed,
1 1

> g g g dt
< / 13 .tlfﬁ)\(Ut)lfa_
1 t
q

([ ([t

where we have used the fact that ¢ < 2,s0 1 — % > 0. Note that 2p — 2 — ¢ < 0, so

(/oo 2p—2—gq dt) %
t ¢ — < 00
1 t

. . . . . 1-4
Since the second factor in the preceding display was just || f||; * < 0o, we conclude that

> dt
/ tpA(Ut)— < o0
1 t
But of course the remaining portion of the integral is finite, viz,
/ AU :/ PN, < 1 < 00
0 0
so we conclude by the layer-cake decomposition that [ |f|? < oo, ie. f € LP([0, 1]).
We present as well a dyadic decomposition argument. For n € Z, write L,, = {x € [0, 1]
|f(x)] < 271}, Then we have

2"MLn) < If( )ldz < ML)

so that 2" \(L,,)"/? < 1. Letq € (2p — 2,2); then 29" \(L,,)? < 1 as well. We may also write

£l = 2" ML)

neZ
so that the right-hand side is finite.
Finally, we compute:
| U@pds <2 Y 2vaw,)
[0,1] nes
22p _ 9 q
¥4 n(p n ) 4 qn q
<5 t2 ;2 IN(Lp) 7 - 27N (Ly)?
2% o
=1 n>1 n>1

14
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Observe that the first series in the latter display is a geometric series with common ratio in (0, 1), hence
converges. The second series in the latter display is finite, by the previous comparison to || f||;. Thus,
f € L*([0,1]), as claimed.

(b): Let f(x) = ﬁi. Note that f € L! but not L?, so it remains to show that f satisfies Suppose
E C [0, 1] is Borel. We will write |E| = A\(E). Then

/E 1 (@)lde = / o M /E T

</E| L dz + £
=~ X
o W 4/|E|
1 1
~ V1Bl + 1 VIE < VIE

as claimed. L]

Spring 2017 Problem 5: Let dy be a finite complex Borel measure on [0, 1] such that

1
a(n) = / 2™ du(x) =0 as n— 00
0

Let f € L'(|p|) and dv = fdpu. Show that

v(n) >0 as n— o0

Proof. Tt suffices to assume ||| > 0. Suppose first f(z) = S°n__ axe®™** for some N € N and
complex numbers a_y, ..., ay. Then

N

N
= Z ak/e%i(k%)xd:}: = Z agfi(k+n) —0, as n— oo
k=—N

k=—N

We now weaken the assumption to f € C/([0,1]; C). Fixe > 0 arbitrary and, by Stone—Weierstrass, let

g(z) = SN a,e*™** be a trigonometric polynomial such that || f — gllze=(0,1)) < 77 Then

n—oo n—o0 n—o0

lim sup |7(n \<hmsup/ |f(x) — g(x)|d|p|(x —I—hmsup‘/ 2minz z)dp(z)| <

Since € > () was arbitrary, we see that lim sup,, |#(n)| < 0, i.e. 7 — 0. Thus we are done in this case.
Finally, note that |x| is a Radon measure, so continuous functions of compact support are dense in

L'(|p]). Let f € L'(|p|) be arbitrary and g € C([0, 1]; C) be such that || f — g|1(4) < €. Then

1
limsup |[P(n)| < lim sup/ |f(x z)|d|p|(z) + lim sup / g(x)e*™™ du(z)| < e
n—00 n—00 n—00 0
and since € > () was arbitrary we are done. [

15



Hints and remarks regarding the preceding problems.

Spring 2021 Problem 2.

Hint for (a): you will need suitable “limits” of the sets A,,. You may find it useful to pass to a subsequence A,,,
for which the measures limit to zero sufficiently fast.

Hint for (b): consider suitable superlevel sets of the f,,.

Remark. If 11 is Lebesgue measure on [0, 1] and v is Cantor measure, then you may take A,, to be
the indicators of the intervals remaining in the n-th stage of the construction of the Cantor set. In the
language of the f,,’s, you might take f,, = (2 +¢)"14,,.

Fall 2020 Problem 5.

Hint for (a), part 1: one approach is to decompose f(x) = >, f()1)5(z)|c[2n,2n+1). Another is to use the
classical “layer-cake” decomposition of f; to derive the latter, you'll need to use Fubini in a very clever way.

Hint for (a), part 2: Apply the hypotheses to sets of the form {z € [0,1] : |f(z)| € [2",2"*)}. This will
give you a useful “exponent-lowering” inequality for the measures of such sets.

Hint for (a), part 3: Raise the preceding inequality to a power of the form 2 — € (or 1 — ¢, depending on how
you formulate things) so as to overwhelm the exponent p < 2. You will actually need 2 — € > 2p — 2. You will
need to use Holder, together with an alternate expression for || f||1.

Hint for (b): use the standard example of a function in LP for all p < 2, that is not in L?. For a given E,
break E into the part near the singularity and the part away from it.

Remark. The inequality establishes the statement “f € L*»°°(]0,1])” The latter is the so-called
“weak L2 a special case of the Lorentz spaces LP. The conclusion of the problem is that f € L' N
L?>* = f c LPforalll < p < 2. The latter would also hold with L? in place of L?°, but the former
is a milder condition.

In fact, one major reason for the study of spaces like L% is that they do just as well as classical
Lebesgue spaces for the purpose of “interpolation” (read: statements like the implication in the last para-
graph), while often being easier to establish.

Spring 2017 Problem 5.

Hint: use approximation theorems to bootstrap simple f to complicated f. As your base case, try trigonometric
polynomials.

Remarks. The condition “dv = fdy for some f € L'(|p|)” is just the condition that “v is absolutely
continuous with respect to £,” which is usually defined as the implication “u(N) =0 = v(N) =0
The equivalence of these definition is the content of the Radon-Nikodym theorem.
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Note, by a standard calculation, that the hypothesis holds for pu = )\|[071]. Thus, 7(n) — 0 for all
measure v which are absolutely continuous with respect to ;. The converse does not hold; there are
measures  which are mutually singular with respect to Lebesgue measure for which the stated decay
holds (indeed, this is one of your TA’s research areas); however, there do exist partial converses. Indeed,
note the following:

« If 44 is a “pure-point measure” (i.e. it is a sum of §-masses), then /i never decays.

« If 11 is our Cantor measure, then (up to a constant) |(¢)| = |[T=, cos(2x€)| (in the sense of
pointwise limit). In particular, for ¢ = 3" an integer power of 3, then the first £ < n factors are all
1, and for £ > n the factor is approximately 1 — 2{;%, which when multiplied together results
in a quantity bounded uniformly away from 0.

+ Fourier decay is frequently useful to assert regularity estimates on various approximations f to
[, i.e. thinking of y as a limit of expressions of the form fd); if the f are all sufficiently regular,
then any limit will retain some regularity, which will imply absolute continuity. Indeed, regularity
(say, C'") implies that f varies slowly over small intervals, so f cannot look like (3/2)" 1y 3-n1 (as in
Cantor measure).
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4 : Week4

Some non-qual material:

Zorn’s lemma: Suppose (P, <) is a nonempty partially-ordered set, such that any C' C P with
the property that (C, <) is totally-ordered (i.e. is a chain), has the property that there exists some
p € Pwithc < pforallc € C. Then there is some m € P suchthatp > m =— p = m forall
p € P, (i.e. m is maximal).

The slogan version of Zorn’s lemma is, “in a partially-ordered set, if every chain has an upper-
bound, then there exists a maximal element.”

In ZF, it turns out that Zorn’s lemma is equivalent to the axiom of choice. So, since we take choice
for granted in measure theory, we will also take Zorn’s lemma for granted.

Here is the standard application of Zorn’s lemma:

Theorem 4.1. Every vector space has a basis.

Proof. We will not need any assumptions on the underlying field or the vector space. Let V' be an arbitrary
vector space over an arbitrary field K. Let P be the set of all linearly-independent subsets of V/, ordered
with respect to inclusion. We verify that P satisfies the hypothesis of Zorn’s lemma.

First, observe that () C V' is always linearly-independent, so ) € P. Thus P is nonempty.

Now, let C' be any chain of linearly-independent subsets of V. Take L = | . ¢ to be the union of
elements of C, i.e. the collection of vectors v € V such that v € ¢ for some ¢ € C. Observe that L C V,
and that L is linearly-independent. Indeed, take v;,...,v,, € L to be arbitrary; it will suffice to show
that they are linearly-independent. We may find ¢y, ..., ¢, € C suchthatv; € c¢; for each j. Since C'is
totally ordered and {cy, ..., ¢, } is finite, we may find 1 < k < nsuchthatc; C ¢; foreach1 < j <n.
Consequently, vy, ..., v, € ¢ Thusvy, ..., v, are linearly-independent, as claimed; hence we conclude
that L € P.

Finally, we observe that L is an upper bound for C'; indeed, each ¢ € C has ¢ C L by the definition
of L. Thus we have shown that every chain in P has an upper bound.

Thus Zorn’s lemma implies that there is some m € P such that no other p € P hasp > m. If
span(m) # V, then we may find v € V' \ span(m). But then, by elementary linear algebra, we conclude
that v is linearly-independent of m, i.e. {v} Um € P, contradicting our assumption on m. Thus m spans
V, so m is a linearly-independent spanning set for 1/, i.e. m is a basis. 0
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Bounded linear operators.
Recall that, for (V, || ||1) and (W, || ||2) normed vector spaces, we say thatalinearmap 7" : V- — W
is bounded if there exists some C' > 0 such that

[Txlls < Cllzly, VeV

The least such C'is called the operator norm of T' (with respect to the norms || ||1, || ||2). Recall also that
T : V — W is continuous (in the norm topologies) if and only if it is bounded.

Theorem 4.2.  (a) Let || ||1,]| |2 be two norms on R". Then there exists a constant C' > 0 such that

C Yzl < ||zl < C|z|) Vo eR”

(b) Let T : R™ — R™ be an arbitrary linear map, and equip R", R™ with arbitrary norms. Then 7" is
automatically bounded.

Proof. (a): It suffices to exhibit a particular norm, such that any other norm is equivalent to that norm. So,
we change notation and let || || be the max norm (||(x1, . .., %y )||cc = Mmax;<;<, |2;|) andlet || || be any
other norm. Write ey, . . ., e, be the standard basis of R". Then, for each x € R",

n n
[l <> lzsllesll < Nzl > lles]
i=1 j=1

sothat )7, ||e;|| is a suitable constant for one of the inequalities.

Next, observe that in particular we have shown that || - || : R™ — Ry is a continuous function
(since the topology on R™ induced by the sup-norm is clearly the usual topology). Thus, || - || achieves
a minimum on the compact set {z € R" : ||z|| = 1}, say c. Since each element of the latter set is
nonzero, we conclude that ¢ > 0. Then, for any x € R" nonzero and A = |||,

lzll = XA 2] > ¢]A] = cllzl
so that
n
cllzfloo < lzfl < (Z H%’H) [£4128
j=1
so we are done if we take C' = max(c™", 37" [lej]]).

(b): By (a) and basic topology, it suffices to show the conclusion in the case m = 1, and both spaces
have the standard Euclidean norm. By elementary linear algebra, 7" is necessarily of the form v — v - w
for a fixed w € R". By Cauchy-Schwarz,

[Tl < Jvl| - flwl]

so T'is bounded with constant ||w]||. O
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Remark. One can further show that the Euclidean topology is in fact the unique Hausdorff topology
on R™ (n € N), such that addition 4+ : R® x R® — R" and scalar multiplication - : R x R™ — R" are
continuous.

Spring 2022 Problem 1: Given a finite (positive) Borel measure p on R, its support is the set
spt(pp) ={z € R: p((x —e,x +¢)) > 0 foreverye > 0}

(@) Prove thatspt(u) is closed, that (R \ spt(u)) = 0, and that any other set with these two properties
must contain spt().

(b) Prove that there is a finite Borel measure ;4 on R such that

(i) p has support equal to R;

(i) pand Lebesgue measure are mutually singular.

Proof. (a): Lety € R \ spt(u). Then for some £ > 0, we have u((y — &,y + €)) = 0. But then any other
z€(y—e,y+e)hasz € R\ spt(p),so R\ spt(p) is open, i.e. spt(1) is closed.

Note that y is a Radon measure, so is inner regular. Thus, to show (R \ spt(p)) = 0, it suffices to
show that i(K') = 0 for any compact K C R\ spt(p). So, fix some compact K as indicated. Let {1, }.cx
be a collection of nonempty open intervals such that [, is centered at x and p([,.) = 0, as guaranteed by
the fact that K N spt(x) = (). By compactness, there are x1, ..., x, € K suchthat K C [, U---U I, .
But then

p(K) < 3" () =0

and we are done.

Finally, we show that any closed set S with the property (R \ S) = 0, must contain spt(). It suffices
to fix some x € R such thatalle > 0 have p((z — &,z + ¢)) > 0, and show that x € S. So, fix such an
x. If z ¢ S, then since S is closed we may find ¢ > 0 such that (z — £, x + &) NS = (). But then

0=uR\S)>pu({(zr—c,x+¢)) >0

a contradiction. Thus z € S, and we are done.
(b): Fix an enumeration {¢, }°° ; of Q. Define

H = Z 27"0g,
n=1

Then p(U) > 0 for every nonempty open set U, so spt(u) = R. Note that (R \ Q) = 0 and m(Q) =0
(where m is Lebesgue measure), so m and /1 are mutually singular. Lastly, u(R) = > 27" =1 < o0, so
we are done. ]

Spring 2022 Problem 5 (modified): Let jz be a Borel measure on R?, and assume it has the following
property: for every fixed > 0, the quantity x(B(x,r)) is finite and independent of x, where B(x, ) is
the open ball of radius 7 around x.
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(a) Prove that there is a finite constant ¢ such that y(B(x,7)) < cr? whenever 0 < r < 1.

(b) Prove that p is absolutely continuous with respect to Lebesgue measure.

Proof. (a): We argue by geometric considerations. For each 0 < r < 1, let ¢, be the unique constant
such that y(B(x,r)) = c¢,r* for each z € R% We note that, for A\ > 10, there are > 3—12)\2 disjoint
disks of radius 7/ that fit in any disk of radius r; this may be seen by considering the grid of points with
separation /), centered at the center of the large disk, and considering a square inscribed in the large
disk; by adding a small disk at every other point in the grid in the square, we get 3%)\2 small disks in the
large disk, as claimed.

Consequently,
r 1

1
cr® = pu(B(z,r)) > —32)\ ()" = 3

2
b\ Cr/)\T

SO

1
¢ 2 goeen VO <7 < LAZ10

To finish, note that B(x, 7) can be covered by < 4\? disks B(2/,7/\) forall A > 1, so
2 2 "\2
c,rt < A4\ C,«/)\(X)

and
¢ < 4CT/>\

forall A > 10. Thus, for any 0 < r < 1, since 17“—0 > 10,
e < 401% < 128¢;

so by setting ¢ = 128¢; we get
w(B(z,r)) = c,r* < er?

forall 0 < r <1, as desired.

(b): First, we claim that (4 is absolutely continuous with respect to Lebesgue measure m. To demon-
strate this, suppose N is Borel and has measure 0. By the definition of m, for each ¢ > 0 there is a sequence
of open squares (); such that ), m(Q;) < 5and N C J; Q;. Writing B; for circumscribed ball about
Qs notice that m(B;) = §m(Q;) < 2m(Q;),s0 Y, m(B;) < e. Thus

p(N) < D u(By) < e

where ¢ = % Sending ¢ — 0, we see ;i(N) = 0 as claimed, so indeed y is absolutely continuous with
respect to m.

Thus we may write du = fdm for some nonnegative locally integrable Borel function f. By the
assumption, the average of f on B(x, r) is independent of x. If f is nonconstant, then there is some € > 0
and positive measure sets A, B suchthatsup,. 4 f(x)+e < inf,cp f(z). By Lebesgue differentiation, a.e.
point of A (resp. B)is a Lebesgue point for A (resp. for B). Consequently, we may find somex € A,y € B
and 7 > 0 such that u(B(z,7)) < pu(B(y,r)), contradicting our assumption. Thus f is constant a.e., so
(4 is a constant multiple of Lebesgue measure. U
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Fall 2009 Problem 5 (with added scaffolding): Construct a Borel subset E of the real line R such that
for all intervals [a, b] we have

0<ANENJa,b]) <|b—al
where A\ denotes Lebesgue measure, by the following procedure:

(a) By modifying the construction of the standard Cantor set, show that there exists a compact totally
disconnected subset of R with positive measure.

(b) Let % denote the family of compact totally disconnected subsets of R with positive measure. Show
that, if / is any nonempty open interval, there exist A, B € € suchthat ANB = )and AUB C I.

(c) Let {I,}, be an enumeration of the nonempty open intervals in R with rational endpoints. Show
that there exist sequences { A, },,, { By} in € such that A, U B,, C [,,, (A, U B,) N Uj<n(Aj U
Bj) = 0.

(d) Show that A = | J,, A, has the desired property.

Proof. (a): Repeat the Cantor-set construction, but in the nth stage remove an interval of length (3n)~".
The resulting set C' will be compact and totally disconnected, whereas [0, 1]\ C will have measure at most
>,2"(3n)™ < L

(b): Let I, Is C I be disjoint nonempty open intervals. By rescaling and shifting any element C' € €,
we obtain A, B € € with A C I}, B C I. This clearly suffices.

(c): Suppose we have defined A4, ..., A,, By,..., B, € € suchthat A;UB; C I; and (4; U B;) N
Up<;(Ax U By) = 0 for each j < n. Then I,,41 \ U<, (A; U B;) is nonempty and open, hence contains
a nonempty open interval .J. But then we may apply (b) to J to construct A, 11, By y1.

(d): Ais clearly Borel. If I is any nonempty interval, then we may pick n such that I,, C I. Then

0 < AAy) < AT NA) <A NA) + NBn) < AJ)

and we are done. O]
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[Bonus problem] Spring 2013 Problem 1: Suppose f : R — R is bounded, Lebesgue measurable,

M) = f@)]
hm/ N dr =0

h—0 0

and

Show that f is a.e. constant on the interval [0, 1].

Proof. It suffices to demonstrate that, for alle > 0,

// (x)|dzdy < €
[0,1)2

Let hg be such that the given integral is < ¢ for any 0 < h < hy. Fixany y € [0, 1]. Then, if 0 < x < y,
ifhg > h>0and N = N, = &5 < 4,

Np
1f(y) = f(@)] <D [f(x+nh) = f(z+ (n—1)h)]
so that
Y Nn Y
[ 116 = s@lde < 3 [ 15+ k) = fo+ (0= D)o
When0 <z <y, (n—1)h <x+ (n—1)h < y,so certainly

Aﬂﬂx+mo—ﬂx+m—mmuxgl|ﬂx+m—fQWM<gh

which implies
/ |f(y x)|dr < ehN, < e

Since this holds for each y, we conclude

/)/|f 2)|dz < £
-

Taking ¢ — 0, we're done. O

which is just the estimate
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Hints and remarks about the preceding problems

Spring 2022 Problem 1:
Hint for (a): compactness and covering.

Hint for (b): use Q.

Spring 2022 Problem 5:
Hint for (a): consider coverings of large disks by small disks, and use this to compare the different c.

Remark. Using Lebesgue differentiation, you can further show that 1 is a constant multiple of Lebesgue
measure. If you know the statement of Lebesgue differentiation, try to show this! This is the original
formulation of (b).

Fall 2009 Problem 5:

Hint for part (a): arrange for the middle intervals being removed to go to zero sufficiently fast.

Hint for (c): What are the properties of 1,41 \ U<, (4; U B;)?

Remark. Why doesn’t this violate Lebesgue differentiation?

Spring 2013 Problem 1 [Bonus problem]:
Hint, part 1: no covering lemmas are necessary.
Hint, part 2: how bigis | f(y) — f(x)| on average?

Remark: Our condition implies that, if f is differentiable a.e., then its derivative is 0 a.e. If the limit
could be pushed inside the integral, then our condition would be equivalent to that statement. On the
other hand, there exists a continuous function f which increases monotonically on [0, 1] from f(0) = 0
to f(1) = 1 for which f’ = 0 a.e,, ie. the Cantor function. Conclude that our condition is strictly
stronger than the condition that f’ = 0 a.e.

24



5 : Week5

Fall 2019 Problem 6 Recall that {*(N) = {z = {2 },>1 : sup,>; |7,| < 0o} is a Banach space with
respect to the norm ||z = sup,,>; |Tn|.

(@) Prove that there exists a continuous linear functional ¢ on ¢>°(N) such that

Ha) = . o

whenever the limit exists.
(b) Prove that ¢ is not unique.

Proof. (a): Let L C ¢°°(N) be the subset of /*°(N) consisting of elements x for which lim,, x,, exists.
Observe that L is a linear subspace. Write ¢ for the map L. — R, ¢o(z) = lim,, z,,. One can note that
@p is certainly linear. Then, for any x € L,

|lim z,,| < lim |x,| < limsup |z,| < sup |z,|
n n n n>1

so that ¢ satisfies the bound |¢g(z)| < ||z|| for all z € L. By Hahn-Banach, there exists a linear map
¢ : °(N) — Rsuch that |¢(z)| < ||z]|s forallz € £*°, and such that ¢|; = ¢ Then ¢ is a continuous
linear map such that

¢(r) = lim z,

whenever x € L, i.e. whenever the limit exists.
(b): Write L, for the linear subspace of /*°(N) spanned by L and b = {b, },,>1, with b,, = (—1)™.
Then, for any © € L, there by definition exists a scalar v and y € L such that

r=ab+y
Then observe that, since {y,, }°° ; converges, from the identity
Tnt+1 — Tn = 2(_1)n+1a + (yn-‘rl - yn)

we in particular have

1.
— lim (Zogso — Tops1) = @ (5.1)
2 k—soo
and ]
Yn = Tp — (=1)" - = lim (o120 — Topy1) (5.2)
2 k—oo

Define linear maps ¢, ¢o : L1 — R via
P(ab+y)=a+ lim_y,

Go(ab+y) = —a+ nlggo Yn

By and (5.2), these are well-defined. They are also clearly linear. We wish to prove a bound that allows
us to use Hahn-Banach again. To this end, write y,, = lim,, ¢,,. Then

|| + [Yoo| = limsup [(=1)"a + yu| < [ab + y]loo

n—oo
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so that, for ¢ = 1, 2, we have

|9i(ab +y)| < [af + [yoo| < [lab+ yllo

Thus ¢, ¢2 both extend to bounded linear maps £*°(N) — R that extend the linear functional on L.
Since they disagree on the element b, we conclude that the extension in part (a) is not unique.

]

Spring 2019 Problem 4: Let V be the subspace of L>°([0, 1],m) (where m is Lebesgue measure)
defined by

n—o0

V={feL*(0,1],x) : lim n/ fdm exists}
[0,1/n]

(a) Prove that there exists ¢ € L>(]0, 1], m)* (i.e. a continuous linear functional L>°([0, 1], m) — R)
such that p(f) = lim,, oo 1 f[o L] fdm forevery f € V.

(b) Show that, given any ¢ € L>°([0,1],m)* satisfying the condition in (a), there exists no g €
L([0,1],m) such that p(f) = [ fgdm forall f € L>([0, 1], m).

Proof. (a): Note first that, for each n,

[ gaml < flexn [ dm=ifl
[0,1/n] [0,1/n]
so the linear map ¢y : V — R, ¢o(f) = lim,, oo 1 f[o 1/n] fdm satisfies the bound
[0 ()] < sup [[flloe = II.flloc

By Hahn-Banach, there exists ¢ : L>°([0, 1], m) — Rlinear with norm bounded by 1 such that ¢|,, = ¢y,
as was to be shown.

(b): Suppose to the contrary that g € L'([0, 1], m) is such that, for any f € L>([0, 1], m),

/ fgdm

where ¢ is as in (a). In particular, testing against f =1 € V),

1= (1) Z/gdm

so certainly |[g[|; > 1. On the other hand, forany ¢ > Oand any f € L*>([0, 1], m) such that f|, , =0,

we have
= / fgdm

In particular, g|( ol = O a.e. Since e > () was arbitrary, we conclude that g has essential support contained

in {0}, i.e. ¢ = 0 as an element of L' ([0, 1], m). But this contradicts the estimate ||g||; > 1 from earlier,
and we're done. U
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Spring 2021 Problem 5: Let x € RY be such that the series

o0
E T;Y;
=1

converges for all y € R such that lim,, y,, = 0. Show that the series Y . |2;| converges.

Proof. Write ¢y C ¢*°(N) for the space of y € RY such that lim,, 4, = 0. We show the contrapositive: if
x ¢ (*(N), then there exists a y € ¢o such that ) .., ;y; fails to converge.

Assuming that hypothesis on X, we may find 1 = n; < ny < ... an infinite sequence of indices in N
such that Y41~ "|z;] > 1. Define then y by

y; = sign(z;) - whenng < i < ngiq

1
k )
Then clearly y; € cy, and

oo Mp41—1 ”k+1 1

IEED D DRI IR W AP IS

=1 i=ng =Ny k

—_

and we are done. O]
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[Bonus problem]; taken from mathoverflow: Consider the Hilbert space KZ(N ), and consider a
matrix A = [a;;]; ;, consisting of nonnegative entries, such that, for all y € EQ(N), the entries of the

vector Ay all converge, and the vector Ay also belongs to ¢*(N). Show that A is a bounded linear map
*(N) — ¢*(N).

Important remark: we are not here claiming that every linear map (*(N) — (?(N) is bounded!
The statement is also true when the entries are assumed only to be real numbers.

Proof. Consider the linear maps 7'y defined by the matrix given by the entries (T ); ; = a;;if 1 < 1,5 <
N, 0 otherwise. Then each T'y is clearly a bounded linear map. Furthermore, for each y € €Q(N ),

N
Tn(y) = (Liciey Y aijyy)is1
j=1
which satisfies
N N N N o) 00
1T ()7 = Z | Z%‘%‘!Q < Z | Z%’\%W < Z | Z%’\%HQ
=1 j=1 =1  j=1 =1 j=1

By assumption, writing |y| = {|y,|}n>1, the vector Aly| € ¢*(N), so the terminal expression above
converges to a finite number. Thus, for each v,

sup 1Tn(Y) |l < o0

so by the uniform boundedness principle we see that

sup || Tv[[—e < 00
N

On the other hand, for arbitrary y € 2,

ITn(y) = AW =D 1 D ayyl>+ D 1D ayyl> = (1) + (1)

i=1 j=N+1 i=N+1 j=1

Considering (I), we have the estimate

N 0o 00 [e's)
DD aylP <D 1 D aylyllP
i=1 j=N+1 i=1 j=N+1

Again, the latter series all converge; for each i, the quantity

o0

D alyll
j=N+1
is decreasing in /V, and has limit 0 as N — oo. Thus the full sum
Z | Z aisly;|*
i=1 j=N+1
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is (a) convergent, (b) has summands over ¢ that decrease to 0, hence (c) limits to zero by dominated con-
vergence, i.e.

lim (I) =0

N—oo

Considering (I7), we have assumed
00 > | Ayl =Y 1D aiy;l
=1 j=1
so by looking at the tail of the outside convergent sum we have

lim (IT) =0

N—oo

Thus
lim [T () — A(y)[% = 0
— 00

and thus Ty (y) — A(y) for ally € ¢*(N). Since the Tl are uniformly bounded in operator norm, we
conclude that A is a bounded linear map, as was to be shown.

O
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Hints and remarks about the preceding problems

Fall 2019 Problem 6:
Hint for (a): Hahn-Banach.
Hint for (b): Assign ¢ competing values on some larger space.

Remark. one might describe this as a version of “generalizing the limit functional to all bounded se-
quences.” Notice, however, that such a ¢ need not extend the properties lim,,_, @, = lim,,_,o, @, 41 Or

lim,, oo apby, = (limy, 00 @y ) (limy, o0 by,)-

Spring 2019 Problem 4:

Hint for (a): Hahn-Banach.

Hint for (b): Inspect a putative g on intervals on the form [, 1]. On the other hand, try [ = 1.

Remark. In part (b) we have verified that L°°([0, 1], m)* is not equal to L*(]0, 1], m). In contrast, for
any 1 < p < oo, if we write ¢ = 25 then (L7([0, 1], m))* =~ L%([0, 1}, m).

Spring 2021 Problem 5:

Hint: uniform boundedness.

Remark. The conclusion of the problem is that every element of ¢}, can be regarded as an element of ¢*.
On the other hand, each element of /! clearly induces a bounded linear functional on ¢y, and this mapping
is faithful (i.e. z € ¢! nonzero implies that the functional is nonzero). Consequently, ¢f; =~ ¢! in the sense
that ¢, /' are isomorphic normed vector spaces.

By comparison, it turns out that L' ([0, 1]) is not isomorphic to any dual of a Banach space (using
some facts about convex sets in weak-* topologies, e.g. Krein-Milman). As an immediate consequence,

LY([0,1]) # £1(N).
Bonus problem:
Hint, part one: uniform boundedness.

Hint, part two: consider the various truncations of A given by zeroing out matrix entries outside of finite
sub-matrices.

Remark. Observe for comparison that there do exist discontinuous linear maps between any infinite-
dimensional normed vector spaces. Indeed, between any two vector spaces, there exists a linear trans-
formation sending linearly independent elements to any prescribed values; in particular, if {e,, },>; are
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linearly independent and w is nonzero, then there is a linear map for which 7'(e,,) = nw; this extends to
a linear map on the whole space, and is clearly unbounded.

The reason we can reconcile this fact with the bonus problem is that an arbitrary linear map ¢*(N) —
(*(N) may have a matrix that does not define a bounded linear map ¢?(N) — ¢?(N) (see the last para-
graph).

Finally, we briefly suggest how to extend this to matrices A with signed entries. It would be tempting
to attempt to demonstrate that, if A is a signed matrix defining a linear map ¢?(N) — (?(N), then the
matrix of absolute values does the same. Unfortunately, this fails; examples are a little tricky to write
down, so we won’t do that here. We instead need to adapt our argument directly. The most difficult part
is to arrange for Ay to have uniformly bounded ¢?(N) norm for each fixed y. Almost the same method
as above works, but instead of truncating the rows we instead keep the full rows and consider only finitely
many rows (truncating the columns).
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Appendix: Isomorphism problems for infinite-dimensional vector spaces

In functional analysis, there are a variety of infinite-dimensional vector spaces with metric/topological
structures. In this short summary, we will use the language of category theory to efficiently communicate
a variety of general, and often highly nontrivial, results about these spaces. In particular: we will consider
various strengths of isomorphism between different spaces; roughly speaking, we are interested in the
question “are LP(X ) and L4(Y") the same space?”

To be more precise: one could spend a great deal of time studying Hilbert spaces, Banach spaces,
normed vector spaces, or topological vector spaces (in order of increasing abstraction). Recall that:

+ A Hilbert space is an inner-product vector space that is complete with respect to the norm induced
by the inner product,

+ a Banach space is a complete normed vector space,

+ anormed vector space is a vector space equipped with a (1-homogeneous, faithful) norm, and

« a topological vector space is a vector space V' equipped with a topology 7 such that the maps + :
VxV —=Vand:-:R xV — V are continuous.

At this level of abstraction, we will only be considering maps which are continuous. For the sake of
discussion, we will not only consider linear functions, though those will be the majority of the cases of
interest. A function 7" between normed vector spaces is said to be:

« anisometry if || Tz || = ||z|| for all z;
« bounded if there is a constant C such that || Tz — Ty|| < C||z — y|| for all z, y;

« uniform if, for all ¢ > 0 there exists § > 0 such that, for any z, y satisfying ||z — y|| < J, we have
Tz — Tyl < e

If both the source and target of T" are inner product spaces, then 7' is said to be unitary if 7" is a linear
bijection and (T'z, Ty) = (x,y) forall z, y.
Consider the following categories.

+ Hilb, whose objects are Hilbert spaces and whose maps are unitaries

+ Bang,, whose objects are Banach spaces and whose maps are linear isometries

. Banwkﬂ whose objects are Banach spaces and whose maps are bounded linear maps

. Banuﬂ whose objects are Banach spaces and whose maps are uniformly continuous functions

« TVSg, whose objects are topological vector spaces and whose maps are continuous linear maps

+ TVS,k, whose objects are topological vector spaces and whose maps are continuous functions.

3This is what is usually referred to when one says “isomorphic Banach spaces”

“We could actually extend the adjective “uniform” to talk about arbitrary topological vector spaces, even though they don’t
carry metric information; the idea is that arbitrary open neighborhoods can be translated around to give a universal/uniform
notion of smallness
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Note carefully that the maps in Ban, and TVS,,; need not be linear.
The corresponding notions of isomorphism are frequently called:

* unitary isomorphism, in Hilb,
s isometric isomorphism, in Bang,,
* Banach space isomorphism, or just isomorphism, in Ban,,,

« uniformly homeomorphic, in Ban,,,

linearly homeomorphic, in TV S,
+ homeomorphic, in TVS, .
We now list the following facts:

Theorem 5.1. If By, B, are any two Banach spaces, then they are isomorphic in Ban, iff they are iso-
morphic in TVSg,.

Theorem 5.2. If By, B, are any two Banach spaces with the same density characterﬂ then they are iso-
morphic in TVS,.

Theorem 5.3. If p # ¢ € [1,00]| and (X, p), (Y, ) are two measure spaces for which L”(X, 1) and
L4(Y,v) are infinite-dimensional, then they are not isomorphic in Ban, (hence neither in Ban,;, Bang,.,

nor TVSg,).

The preceding failure of isomorphism for distinct p, ¢ may be realized in the following way. If A, I’
are nonempty sets and 1 < ¢ < p < 00, then any continuous linear map 7" : (?(A) — (9(I") takes the
unit ball to a precompact set (i.e. 7" is a compact operator; this is known as Pitt’s theorem). Observe that
this is a dramatic obstruction to isomorphism in infinite-dimensional topology.

On the subject of sequence spaces, one classical example is the closed subspace ¢y := {x € (*°(N) :
lim,, z,, = 0}. Since it is a closed subspace of a Banach space, it is a Banach space in its own right.

Theorem 5.4. ¢ is not isomorphic in Ban,,, to any #(N),1 < p < 0.
Fixing a single exponent p, we have the following:

Theorem 5.5. If H; and H, are Hilbert spaces, then they are isomorphic in Hilb if and only if they have
the same (Schauder/Hilbert}®| dimension.

Theorem 5.6. LP(0,1) and /’(N) are not isomorphic in Ban,, for any p # 2,1 < p < oo (hence not
isomorphic in Bang, or TVSg,.).

When 1 < p < 2, we can say a little more:

Theorem 5.7. LP(0, 1) and ¢?(N) are not isomorphic in Ban, forany 1 < p < 2.

Sthe minimal cardinality of a dense subset
Sthe cardinality of the minimal generating set, in the sense of linear span and metric closure

33



The analogous statement for p > 2 appears to be a long outstanding open problem.

The importance of the last facts comes from the fact that the spaces (0,1) and N (equipped with
Lebesgue and counting measure, respectively) are the simplest versions of the very few ways that (suf-
ficiently regular) measure spaces can be distinct. More precisely, as a consequence of a deep result known
as Maharam’s theorem, if LP(X) is separable, then it is isomorphic in Bang,, to a space of the form

?(D) @, LP(0,1) or (*(D)

where the p subscript indicates that the norm on the direct sum is given by taking the ¢/ combinations
of the inner norms; here D is understood to be a purely atomic measure space of cardinality < R,. As a
consequence, the isomorphism problem for L” spaces essentially reduces to comparisons between spaces
like (0, 1) and N.

A special version of this arises when X is a non-discrete Polish space and 14 is a 0-finite Borel measure,
in which case the isometry L”(X, y1) — LP([0, 1]) is implemented by a Borel isomorphism/’|between the
underlying measurable spaces.

The conclusion of the prior series of results is that the sort of spaces one normally considers in mea-
sure theory are usually homeomorphic, but usually not linearly homeomorphic. One slight oddity is the
following;:

Theorem 5.8. L>°(0, 1) and ¢*°(N) are isomorphic in Ban,.

This essentially reflects that L°° spaces are unable to witness the measures of subsets, which roughly
reduces the problem of isomorphism to that of distributive lattices. Another way to look at this is that L*>°
spaces have the structure of algebras, in addition to Banach spaces.

We now consider a more delicate situation, that of the function spaces C'(X), C,,(X). In this context,
we will generally be obtaining non-existence results, where we show that function spaces can only be
isomorphic if the underlying spaces are sufficiently similar.

Given a compact Hausdorff topological space X, define the space C'(X) of continuous real-valued
functions with the topology of uniform convergence; similarly, define C,(X) as the space of continuous
functions with pointwise convergence. Note that C'(X') has a finer topology than C),(X), and that C'(X)
is a Banach space.

We begin with the theory of the spaces C'(X ), which is closer to the preceding facts.

Theorem 5.9 (Banach-Stone). Let X, Y be compact Hausdorff spaces. Suppose C'(X) and C(Y) are
isomorphic in Bang,. Then X, Y are homeomorphic.

It is worth remarking that this implies that Theorem|5.8|cannot be improved to Ban,,,. More specifi-
cally, /°(N) is in fact isometric to C'(5N) with SN the Stone-Cech compactification of N (in fact, this iso-
morphism is also an algebra isomorphism); similarly, L>°(0, 1) is isometric to C'(S(0, 1)), where S(0, 1)
is the “Stone space” of (0, 1). However, SN and S(0, 1) are not homeomorphic (indeed, SN is separable
and S(0, 1) is not), so there is no isometry between ¢*°(N) and L>°(0, 1).

The other conclusion of this, of course, is that Banach-Stone can’t be improved to only assuming
isomorphisms in Ban,. In fact, the setting in Ban,,, is as different as can be:

Theorem 5.10 (Miljutin 1966). Suppose X is an uncountable compact metric space. Then C'(X) is iso-
morphic to C([0, 1]) in Ban,.

7see “Kuratowski’s theorem.”
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Thus far our only examples have been normed vector spaces. There are many more topological vector
spaces of interest - e.g. weak topologies, weak-* topologies, etc. One quick way to distinguish these
spaces from our earlier examples is to note that, for some of these weaker topologies, every neighborhood
of 0 contains a line! Indeed, as an exercise you might justify that this holds for C,([0, 1]). For comparison,
in any normed vector space, the unit ball is a neighborhood of the origin that doesn’t contain a line. The
subject of general topological vector spaces is quite vast; we conclude this note by looking at only one type
that goes beyond our normed vector spaces.

Let’s consider the spaces C,(X) with X compact Hausdorff. In this case, we have a much more com-
plicated theory: within a single category, there are nontrivial isomorphisms, but also nontrivial invariants.

We first note an example of the first:

Theorem 5.11. Let X = [0,1] U [2,3] and Y = [0,2] U {3}. Then C,(X), C,,(Y") are isomorphic in
TVSstr.

Proof. Define @ : C\,(X) — C,(Y') by

f(y) 0<y<l1
O(f)(y) = fly+1) —(f(2)—f(1) 1<y<2
f(2) = f(1) y=3

On the other hand, there are “small” spaces which witness a failure of linear isomorphism:

Theorem 5.12. There are countable compact Tychonoff spaces X, Y for which C,(X), C,(Y) are not
isomorphic in TVSg,.. C(X), C(Y) are also not isomorphic in TVSg,..

If we are willing to extend the definition of C,(Y") to non-compact spaces Y (still using pointwise
convergence as the topology), then one sees a variety of interesting examples:

Theorem 5.13. C,([0, 1]) and C,,(R) are not isomorphic in TVS,;,, but they are isomorphic in TVS,,.

We conclude by noting some ways in which the topology of C},(X') witnesses the topology of X, i.e.
considering the isomorphism problem of C,(X) in TVS,,; and TVSg;,:

Theorem 5.14. Suppose X, Y are Tychonoff spaces such that C,(X) is isomorphic to C,,(Y') in TVSg,.
Then the following holds:

(a) X is compact iff Y is compact

(b) X is o-compactiff Y is o-compact

() X and Y have the same (topological) dimensiorﬂ
Theorem 5.15. Suppose X is Tychonoff. TFAE:

(@ Cp,(X) is separable and metrizable

(b) C,(X) is metrizable
(©) Cp(X) is first-countable
(d) X is countable

8the so-called “covering dimension;” it takes the right value on manifolds.
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A few sources:

1. Lacey, “The Isometric Theory of Classical Banach Spaces”

2. Albiac and Kalton, “Topics in Banach Space Theory”

3. van Mill, “The Infinite-Dimensional Topology of Function Spaces”

4. Weston, “On the Uniform Classification of L, (1) Spaces”
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6 : Week6

This discussion will be focused on Hilbert spaces. We briefly detail the basics of the subject here.

« For F one of R, C, an F-inner product space (H, (-, -)) is a vector space over F equipped with
an inner product (-, --). That s, (-, --) is a function # x H — F, which satisfies the following
axioms:

1. (-,--) is F-linear in the second entry and conjugate-linear in the first entry, that is,
(v, a2 +y) = afv,z) + (v,y)

(ax 4+ y,v) = alz,v) + (y,v)

2. (-,-+) is conjugate symmetric, i.e.

3. If z # 0, then (z,z) > 0.
Of course, if F = R, then conjugation is just the identity.

« In any inner product space, one has the Cauchy-Schwarz inequality [(z,y)| <
[z, ) V2] y, )| /2

+ For [F one of R, C, a F-Hilbert space H is a Banach space (i.e. complete normed vector space)
over IF whose norm || - || is of the form z + ||z| = (z, #)'/2, where (-, --) is an inner product.

In any Hilbert space H, we have the parallelogram law

Iz +ylI* + llz — ylI* = 2[l=|* + 2]yl

. If (X, A, u) is any measure space, then L?( X, ;1) is a Hilbert space, with inner product defined
by
M@H/hw
X

If H is a Hilbert space and f € H*, then there is a unique v € H such that f(z) = (v, x) for
every x € H. Thus, H* ~ H canonically. This is the Riesz representation theorem.

Fall 2012 Problem 3. Let H be a Hilbert space and E a closed convex subset of H. Prove that there exists
a unique element x € E such that

= inf
]l = inf [ly]
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Proof. Consider a sequence {x,,}7°; C E with the property that ||z, || — inf,cg ||y||. By the parallelo-
gram law, applied to %xn and %zm,

1 2

1 1 n— Tm
Zlen =@l = Sl + 5 laml? - || =25

2

It follows immediately that {x,, }> ; is a Cauchy sequence. The result follows.

Fall 2009 Problem 1 (modified). Find a non-empty closed set in the Hilbert space /?(N) that does not
contain an element of smallest norm. Prove your assertion.

Proof. Let ¢, be the element of £*(N) which is 1 in entry n and 0 otherwise. We claim that £ = {(1 +
L)e,, : n € N} does the job.

Clearly F is nonempty, and ||(1+ %)en | =1+ %, so I/ does not contain an element of smallest norm.
It remains to establish that F is closed. Indeed, for n # m,

1/2
0+ Den = (14 henll = (L4 22+ (14 207) > V2

so I/ has no limit points other than elements of F itself. It follows that F is closed, and we are done.

O

Spring 2014 Problem 6. Given a (complex) Hilbert space H, let {a, }5>, C H be a sequence with
|a,|| = 1foralln > 1. Recall that the closed convex hull of {a,, }> ; is the closure of the set of all convex
combinations of elements of {a,, }52 ;.

(@) Show thatif {a, }>° , spans H linearly (i.e. any z € H is of the form Y ;" | ¢xay,, for some m € N
and ¢, € C), then H is finite dimensional.

(b) Show that if (a,, () — 0forall { € H, then 0 is in the closed convex hull of {a,, },.

Proof. (a): We first observe that there exists a maximal subset S C N such that {a, : s € S} is linearly
independent; this is completely straightforward from Zorn’s lemma, repeating the argument that estab-
lishes the existence of a basis for every vector space. Since the full sequence spans, we quickly see that
{as : s € S} is also spanning. Thus {a, : s € S} is a basis.

It suffices to consider the case that S is infinite; relabeling, we will take S = N and simply refer to
ay,. Since H is an inner product space and and each initial segment {ay, ..., a,} is linearly independent,
we may run the Gram-Schmidt procedure and assume that the {a,, }° | are orthonormal (i.e. (ay,, a,) =
Onm). Take now
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Since the a,, are orthonormal and H is complete, this sum converges; indeed, if M < N,

H (é %“> - (é %a) H B <n$ﬂ%>m

which is uniformly small when M is large. Thus the partial sums are Cauchy, so the series converges to
r € H.

Since {a, }, is spanning, we have z = > )" | cxa,, for some m € Nand ¢, € C. In particular,
(x, amy1) = 0. By continuity of the inner product (from Cauchy-Schwarz),

N
( E —Qpy Q) —> (T, Q) =0
n
n=1

as N — oco. However, the LHS is eventually 1/m, a contradiction.
Recalling our assumption, we see that instead S has to be finite, so indeed H is finite dimensional, as
was to be shown.

(b): Let C' = conv({ay,},) be the norm-closure of the convex hull of the members of {a,},. It
is easy to see that (' is still convex. Assume for the sake of contradiction that 0 ¢ C. By Fall 2012
Problem 3 (above), there is some z € (' of minimal norm, which under our assumption is nonzero.
Choose € = 1|z||? > 0.

Write U = {y € H : Re(x,y) > e}. We first claim that C' C U. Let z € C be arbitrary, and for
t € (0,1) observe that ||z|| < ||z + t(z — x)||. Expanding, we have

l2]* < llz + (= — 2)]*
= ||z|* + 3|z — z|]* + 2tRe (x, z — )
so that ;
2e — §Hz —z||* < Re(z, 2)

Sending t — 0, we conclude that Re (z, z) > 2¢ > ¢,s0 z € U. We have shown that C' C U, as claimed.
Thus x € H is a vector such that |(z,y)| > ¢ forall y € C, so in particular |(z, a,,)| > € for each n. But
this contradicts the assumption on the {a,, },, and we are done.

O
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Bonus problem: Show that there exists a continuous function f : [0, 1] — L?([0, 1]) satisfying the
following. Foralla < b < ¢ < d, f(b) — f(a) is orthogonal to f(d) — f(c). Such a curve is called
crinkled.

Proof. Choose f(t) = 1jo4. Then || f(t) — f(s)]|2 = |t — s|'/? so f is continuous. If a < b < ¢ < d,
then

| TO=F@lr@ - f@lir= [ anlieadr =0
[0,1] [0,1]

as was to be shown.
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Hints and remarks about the preceding problems.

Fall 2012 Problem 3
Hint: use the parallelogram law to control an infimizing sequence.

Remark. Applying this to sets of the form {z — y : y € U} with U a closed subspace of H, we recover
a vector w such that x — w is the orthogonal projection of x onto U.

Fall 2009 Problem 1

Hint: you should leverage the infinite dimensions and try to avoid 0.

Spring 2014 Problem 6

Hint for (a), part I: as a warm-up, figure out why the standard vectors {e,, },, are not linearly spanning.

Hint for (a), part 2: use Zorn’s lemma and a contradiction assumption to suppose that {a, }, is actually a
basis. Gram-Schmidt will also be helpful.

Hint for (a), part 3: use the inner product to reach a contradiction. Cauchy-Schwarz is your friend.

Hint for (b), part I: assuming the result is false, show that the closed convex hull is contained in a half-space of
the form {y € H : Re(x,y) > €} for a suitable ¢ > 0. You will find the result of Fall 2012 Problem 3 helpful
in more than one way.

Hint for (b), part 2: a useful manipulation in inner product spaces is ||a + b||> = ||a||? + ||0||* + 2Re {a, ).

Remark. Part (a) shows that an infinite-dimensional Hilbert space must have uncountable Hamel di-
mension. Part (b) is part of a general phenomenology in functional analysis, whereby several different
topologies can look very similar when restricted to convex sets.

Bonus problem

Hint: this is possible in any infinite-dimensional Hilbert spaces, but L*([0, 1]) is the best model for this
problem.

Remark. Try to draw this in finite dimensions. Conclude that infinite dimensional Hilbert spaces are
weird. Also, note the resemblance to Brownian motion.
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Appendix: conditional expectation

The midterm contained a special case of the “conditional expectation” construction. The general
version of it is as follows: given a probability measure z on the measurable space (X, >]) and a sub-o-
algebra N C %, we write v = p,,. Foreach f € L'(X, ), there is a Radon-Nikodym derivative
g = d(f- ply)/dv and denote E[f|N] := g. Thus, E[f|N] is the (a.e. class of the) A/-measurable

function satisfying the relation
/ fdu = / [fIN]dv
forall A € V.

The purpose of this appendix is to record some of the critical properties of this operator from the
perspective of analysis. For the entirety of this appendix, we will take y to be a probability measure.

Theorem 1: LP(N) is a closed linear subspace of L?(X), forall 1 < p < co. If p = oo, then it is also
a subalgebra.

Proof. 1t is a familiar fact from last quarter that the sum and product of A/ -measurable functions is N -
measurable. Thus it remains to demonstrate norm-closure. But notice that L” (1, /) is a Banach space in
its own right, hence is complete, so is certainly closed in LP(p, X2). [

Lemma 1: E[ - | V] is a positive operator, i.e. if 0 < f € L'(u; ), then E[f| N] > 0 v-ae.

J BN = [ g0

so we conclude E[f| N] > 0 v-a.e. O

Proof. Forany A € N,

Theorem 2: E[- | N] : LP(p, X) — LP(v, N) is a bounded linear map with operator norm 1, for all
1<p< oo

Proof. Regarding it first as a map L*(p, ) — L*(v, N) (using LP(u, ) C L' (u, ) since ||u]| = 1), it
is clear that this map is linear.

We focus on the case p < 00; p = 00 is left as an exercise. In our case, we claim that E[ - | V] satisfies
a version of Jensen’s inequality:

[ELf[ NP < E[[f["| V]

It clearly suffices to consider f positive, so we'll disregard absolute value bars. Note that, for x > 0,

2P = sup p 'z + (1 — p)c?
c>0

(this comes from considering all supporting hyperplanes under the function x — zP). For any such c,
(" DE[fIN] + (1 = p)® = E[(pe" ' f + (1 = p)c)| V]
For each x, (pc?~ 1) f(x) + (1 — p)c? < f(x)P, so by Lemma 1

E[(pc f + (1 = p))|N] < E[f(2)"| V]
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Thus we have shown

JE[fINT+ (1 —p)® <E[f(z)’| V]

for all ¢ > 0. Taking a supremum, we get

EFINIP < E[IfPIN]

as desired.
It immediately follows that (1 < p < o)

ELS TN o wary (/ (/1P| N]dv)'? = (/\f\pdu)”p = [1F ez

and, since conditional expectation fixes constants, we see that the operator norms are all 1. O
Theorem 3: If g € L>(v,N') and f € L”(u, X), then E[fg| N| = E[f| N]g.
Proof. Suppose g = 14 for some A € N. Then

/Efgduz AmEfduz/EmAE[le]dvz/EE[flfV?gdv

so E[fg| N] = E[f| N]g in this case. By the linearity of expectation, we have the result for all simple
functions g. Finally, for arbitrary g, if g. is simple and has ||g — g:||c < &,

E[fg| N]=E[f|N]g +E[f(g — g-)IN] + E[f| N](g- — g)

which implies

IE[fg| N1 = E[f| Ngll, < 1E[f (g — g )I N[l + IE[fN](ge — 9)lp
< [£(g = g)llp + 1 £llollg= = glloc
< 2[| fllpe

Sending ¢ — 0, we get
E[fg| Nl = E[f| Mg
for any g € L (v, ), as claimed. O

Theorem 4: E[ - | \/] restricts to a mapping L?(1;3) — L?*(v, N). Regarded as such, it is the or-
thogonal projection onto that subspace.

Proof. The first part of this statement is enclosed in Theorem 2. We need to demonstrate that, for any
fel*(uy),
—E[f|N] L L*(v,N)

Ifg € L*(v,N),
/ Fgdu = / gl Ndv = / E[f| Vgdv

SO

/ (f — E[f| N]) gdp = 0
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Now, if g € L*(v, '), we may find g. € L>(v, ) such that ||g — g.||2 < €. Then

|/U—Emwmmm=y/u—Evmmg—%W|bwmwwe

<|f =E[fINll2llg — g-[l= by Holder
< 2|/ f|l2e by Theorem 2

Since € > 0 was arbitrary, we get that f — E[f| N] L L?*(v, ), as claimed. O

One special case of this comes from the setting N' = o(Y") for a suitable X-measurable R-valued
function Y. In this case, one can show that:

Proposition 5 [The “Doob-Dynkin lemma”]: g is o(Y")-measurable if and only if there exists h :
R — R Borel such that g = A(Y).

Proof. Clearly any function of the form A(Y") with h Borel is 0(Y")-measurable, so we consider the con-
verse. Suppose g is (Y )-measurable. In particular, 0(g) C o(Y'). Fix n € N and consider the mesh
{m27"},.cz. Then, for each (m, n), g~ [m2™", (m + 1)27") € o(g), so belongs to o(Y'), i.e. there is a
Borel set B,, ,, C R such that

Y (Bpy) =g [m27", (m+1)27")

Define hy,(x) = >, ., m2 "1p, .. Then ||h,0Y — gl < 27" Onthe other hand, By, ,, = Bay, 41U
Bom41n+1 50 on By, ;, we have

0 HAS BZm,n—l—l

—n—1
27" S B2m+1,n+1

(Pns1 — hn)(2) = {

so the sequence h,, is monotone increasing. It is also clearly bounded above, so converges pointwise to
some Borel h. Finally, notice that for each n

ho(Y) < g < ho(Y) +27"

so by taking limits we obtain h(Y") = g, as claimed.

Remark I: one frequently writes E[ f| Y] as shorthand for E[f| o(Y")].
Remark 2: as an immediate consequence, there exists a Borel function e such that E[f| Y] = e;(Y).

Corollary 1: for any Borel function A,

[17=EflomIP < [ 1f - )P
15 =Ello@ P = it [17 - by

Proof. The first statement is an immediate consequence of Theorem 4 and Proposition 5. The second

statement follows from noticing that E[f| o(Y")] is 0(Y")-measurable, so we can again use Proposition
5. U

and, moreover,
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Remark: one can find situations where there exists non-Lebesgue measurable i : R — R such that
[ 1f = h(Y)|? is defined, and is strictly smaller than [ |f — E[f] o(Y)]|*. We will not explore this here.

We conclude our discussion by considering the subspace L (v, o(Y')) C L*(u, ) for Y abounded
Y.-measurable function. Itis a vector subspace, but it s clearly not the subspace spanned by Y; L= (v, 0(Y"))
contains all linear combinations of indicators of preimages of Y, for example. If p is any polynomial, then
p(Y) € L>®(v,0(Y)). In fact, that’s almost everything:

Theorem 6: L>(v,0(Y")) is the “weak-*" closure of the set {p(Y)},epory in L°(p, X); here the
“weak-* topology” is the topology generated by the prebase

Us, = {he L®(u) : | / £(g — hydp < €}

This is wildly outside the scope of things provable in an appendix, so I don’t prove this here.
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7 :+ Week?7

For the purposes of this document, we will assume the following covering theorem.

Besicovitch covering theorem. For every dimension d, there is a constant c; € N satisfying the
following. Suppose V is a set of open balls in R? and A is the set of centers of the balls in V. Then
there exist subsets Vi, ..., V., C V such that, for each ¢, the elements of V; are pairwise disjoint, and

AQGUB

i=1 BeV;

Spring 2018 Problem 3: Suppose f € L'(R) satisfies

lim su // — 2 dxdy < 00
. |:1:—y|2+2 Y

Show that f = 0 almost everywhere.

Proof. The proof is via Lebesgue differentiation. The moral version is this. Suppose [a, ] is an interval
(of positive length) such that f > ¢ on [a, ], for a suitable constant ¢ > 0. Then the integral diverges:

C2 C2
dxd ————dzxdy — dxdy =
//|a:—y|2+e2 ! y_/[a,bp |z —y|? + &2 o p 1T = y[? vy = ee

We will assume that f is nontrivial, and use Lebesgue differentiation to find a Lebesgue point z € R such
that f(x) = ¢ > 0 (replacing f with — f, if necessary), hence find small intervals on which f is mostly
large (e.g. > ¢/2). With some arbitrage, this will be strong enough to recover divergence.

We proceed to the argument. For simplicity, we take f to be real-valued; note from the complex
inequalities |z| > |Re(z)|, |Im(z)| that this case suffices. Let z € R be a Lebesgue point for f. It suffices
to show that f(z) = 0. For the sake of contradiction, we assume f () # 0; by symmetry, we may assume
f(x) = ¢ > 0. For arbitrary * > & > 0, we may find ¢ = £(J) > 0 be such that

1 dc

% ’f()—c\d3/<§

ly—z|<e

In particular, if U = {y € R : f(y) > 5}, we see by Markov’s inequality (using the implication f(y) <

S = |fly) —c| =%

2
AUN(x—eg,x+¢)) > 25——/ |f(y) — c|dy > 2e — 26 = (1 — 0)2¢
(z—e,x+e)\U

If we directly apply these estimates to the iterated integral, we obtain a lower bound of the form 2>
(1 — §)?, with some absolute constants. This does not suffice to show divergence; similarly, if we try to
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“zoom” in to the diagonal z = y, i.e. constrain the integral to an interval of the form (z — ne, x + ne) with
7 < 1, then we quickly lose density estimates on U in the set. It transpires that no single scale suffices to
show blowup. Instead, we will consider many (~ log & ~1) scales, each of which will give ~ c? as a lower
bound, and sum.

Foreachn € N, write L, = {y € R : |y — x| € [e2"71§,£2"5)}; when n < log,(6~'), we have
L, C (x — e,z + ). By the union bound, we compute

MUNL,) >2e(1 =5 —(1—62"71)) =2e6(2" 1 — 1)

Observe then that the L,, are pairwise disjoint, contained in (x — €, + ¢), and U N L,, has nontrivial
density in L,,.
Then we have, for each p > 0,

//|z—y|2+pdd >//Zy€m“z+€ %dd

2)f ()l
= Z //zyeUan |Z—y|2‘|‘,0dd

1<n<logy(6—1

v

> AU N L,)?
28292n
1<n<logy(6—1) 44e% 2 )
Z 626252(2n—1 _ 1)2
285292n 2
1<n<logy(6~1) detom2n 4 P
2

v

c 1
>
=16 Z | 4+ £-2§-22-2np2

2<n<log, (61
Note that §, € were unrelated to p. Sending p to 0, we conclude

02 1 c?
lim inf dzdy S log(6~!
iy //|z—y|2+p % 2 3 6110z2 20 )

2<n<logy(6-1)

We have demonstrated this bound for arbitrarily small 6 > 0, so we conclude that the lim inf is 00, as
was to be shown. ]

Fall 2016 Problem 2: Let 1 be a finite positive Borel measure on R that is singular to Lebesgue mea-

sure. Show that
i M=) oo
r—0+ 2r

for p-a.e. v € R.

Proof. Let A be a Borel subset of R such that m(A) = 0, u(R\ A) = 0. Foreache > 0, let A* O Abe
open such that m(A®) < . For each o > 0, define A,, to be the subset

Agi={z € A: 3} 1 L0, p((z — 1oy 2+ 1)) < 20, )}
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We leave it to the reader to verify that A, is Borel as well. For each x € A,, we may in particular find
some sequence {7, }>° ;| as above for which [z — 7, x + r,,] C A°. Let V be the (fine!) covering defined
by these intervals. By the Besicovitch covering theorem, there is some universal constant Nﬂsuch that VV
posses N subfamilies V7, ..., Vi for which

Cz

A, C U I
i=11eV;
and
VI£JeV,INnJ=1{
Then

(AQ)SZLL(U <ozz ) < aNe

i=1 I1eV; 1eV;

Since A, was independent of &, we may take ¢ — 0 to get (A ) = O foralla > 0.
Lastly, the set of points = for which

w(lz —ryx+7])
2r

7 +o0

is contained in the union of the A, which is equal to UZOZI A,,. Since each A,, is p-null, the set of problem
points is p-null, and we're done.

O

Fall 2023 Problem 5: Let w : R — [0, 00) be a locally integrable function to which we associate a
Borel measure via

Let M denote the (centered) Hardy-Littlewood maximal function:

(Mf)(x) = supi )y

r>0 QT —r

Assume that the functlon is locally integrable and that there exists C' > 0 so that

w({z €R: [(Mf)(x)] > A}) < /|f P

uniformly in A > 0 and functions f : R — R for which the right-hand side above is finite. Prove that

Su — w — — oo
$€R77P>0 2r T—r v 2r T—7r w(y) Y

Hint: Apply the hypothesis to a well-chosen function f and constant \.

°I believe N = 2 here.
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Proof. Fixx € Randr > 0. Write f(y) = Ljz—r 04 (y)m and A = o IxiT @dy, which we may
assume is positive. Then, by the hypothesis,

CL sty 3200
1 prr

2
T+r —_—
(# fxfr ﬁdy> 2r Jz—r w(y) dy

w({y eR:|(Mf)(y)] > A}) <

Ifly—z| <,

Mf( )>i/widt—2A
4 T Ar J,_, w(t) -

so we reach the conclusion that {y € R : |(M f)(y)| > A} contains all of [z — 7,z + 7]. Thus
T+
oy € R MNWI> D) 2 [ wldy

r—r

and we conclude by rearranging the first inequality that

(& [ o) (5 [ sttn) =00
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Bonus problem

Spring 2022 Problem 5: Let . be a Borel measure on R?, and assume it has the following property:
for every fixed r > 0, the quantity p(B(z, 7)) is finite and independent of x, where B(z, r) is the open
ball of radius r around .

(a) Prove that there is a finite constant ¢ such that p(B(z, 7)) < cr? whenever 0 < r < 1.

[We did this one in a previous week, so we'll skip it for today.]

(b) Prove that p is a constant multiple of Lebesgue measure.

Proof. (b): When this problem came up previously we established that y is absolutely continuous with
respect to Lebesgue measure, so we'll take that for granted now.

Thus we may write du = fd\ for some nonnegative locally integrable Borel function f. By the
assumption, the average of f on B(x, r) is independent of x. If f is nonconstant, then there is some ¢ > 0
and positive measure sets A, B suchthatsup,. 4 f(x)+¢ < inf,cp f(z). By Lebesgue differentiation, a.e.
point of A (resp. B)is a Lebesgue point for A (resp. for B). Consequently, we may findsomex € A,y € B
and 7 > 0 such that u(B(z,7)) < pu(B(y,r)), contradicting our assumption. Thus f is constant a.e., so
(4 is a constant multiple of Lebesgue measure. [
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Hints and remarks about the preceding problems.

Spring 2018 Problem 3.

Hint, part 1: Lebesgue differentiation.
Hint, part 2: if f(y) ~ ¢ > 0 for most y ~ x, the double integral should be large as ¢ — 0.

Hint, part 3: assume f(x) = ¢ > 0 and x is a Lebesgue point. Write U for the “good” set where f(y) > 3,
and conclude that it has arbitrarily high density near x. Decompose the integral into many scales |y — z| ~ 27",
over which the integral is always large. You will need to estimate the concentration of U x U on small sets; for
this, use the union bound on the complement.

Remark. The upshot of this problem is that, for nontrivial f, the double integral diverges ase — 0. In
contrast to other singular integral qual problems, where the goal is to show convergence, we cannot use
approximation. Indeed, it is easy to see that one expects any error term to also diverge, and we cannot
subtract oo — oo.

In general, Lebesgue differentiation is a good thing to try when the goal is to show that a singular
integral operator is badly behaved.

Fall 2016 Problem 2.

Hint, part I: for each constant o« > 0, show that the set of x for which the quotient is bounded by v infinitely
often, is pi-null.

Hint, part 2: It will be helpful to consider a set A C R such that \(A) = 0, u(R\ A) = 0, and consider an
open neighborhood U which has small A-mass. Use Besicovitch to bound the “bad” sets from the previous hint by
something like o times A(U).

Remark. Compare with Fall 2009 Problem 4, where the goal is to show that for A-a.e. * € R, the
quotient limits to 0.

Fall 2023 Problem 5.

Hint, part I: try to arrange for w({x € R : |(M f)(z)| > \}) > fxxirw(y)dy and \72 [ | f(x)Pdx <

2r
1 rz+r _1 .
2r Jz—r w(y) dy

Hint, part 2: Suppose f is supported on [x — 1, x + r|. Then, whenever |y — x| < r, one has M f(y) >
= L) dr.

Hint, part 3: Take f(y) = Lip—p o] (y)m

Remark. The celebrated Muckenhoupt theorem says that the following are equivalent, for each w :
R"™ — [0,00) and each 1 < p < o0
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(@) The centered Hardy-Littlewood maximal function M is bounded on L”(w(x)dx), i.e. there is a
constant C' > 0 such that for which

/|M ) P()dz < O/|f VPw(z)dz, Ve LP(w(z)dz)

(b) w islocally integrable, and w satisfies the A, condition: there is some C' > 0 such that, for any ball

BinR", -
(An(lB) /B""’(‘”)d‘C> (AngB) /Bw(B)‘pild:c) <0<

In this problem, we have verified that, when p = 2, the A, condition is necessary for M to be bounded in
LP(w(zx)dx).

A component of the A, condition is that w satisfies “reverse Holder inequalities,” which should morally
be thought of as w being nonzero and slowly varying.

Spring 2022 Problem 5.

Hint: we previously showed that pu is absolutely continuous with respect to A\, so we may write dy = fd\ for
a suitable f. It remains to show that f is nonconstant; use Lebesgue differentiation.
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Appendix: the algebraic (Hamel) dimension of Banach spaces

Recall that a Banach space is a complete normed vector space (for us, over R). Such a space V is in
particular a vector space, so we can ask about its dimension (the axiom of choice implies, and is equivalent
to, the statement that every vector space has a basis). This notion of dimension is called the Hamel, linear, or
algebraic dimension. In most functional-analytic contexts, this is not the notion of dimension that people
usually refer to, as what is often more important is to consider sets whose closed linear span is the full
space; we won't discuss the latter here, as in the Banach context this becomes extremely delicate. We'll
write dim,y, for the algebraic dimension. In this note, we will give intuition for the following result:

Theorem 7.1. If V is an infinite-dimensional Banach space, then dim,, (V') > ¢, where ¢ = |R| = 2%,

To compare, if V' is an infinite-dimensional separable Banach space, then a simple argument implies
|V | = ¢, so certainly the algebraic dimension of V' is at most ¢. We will discuss this directly, namely:

Theorem 7.2. Let B be an infinite-dimensional separable Banach space. Then the algebraic dimension
of Bisc.

Observe that Theorem 1 is straightforward to prove from Theorem 2. Indeed, given V, from the in-
finite dimensions we may find a countably infinite linearly independent set {v,, }2° |, and apply Theorem
2 to span{v, }>2 ;.

We first establish a lemma:

Lemma 7.3. There exists a family &/ C Z(N) such that |&/| = cand, if A # B € o/, then AN Bis

finite.

Proof of lemma. We follow Gillman and Jerison’s proof in Rings of Continuous Functions.

Let ¢ : N — Q be a bijection. For each irrational number 7, fix an increasing sequence of rational
numbers s; < Sp < ...such thatlim, s, = 7, and define A, = {¢"'(s,,) : n € N}. Let & = {A, :
re R\ Q}.

We verify that <7 has the right properties. For each r € R\ Q, r = sup A,, so the sets A, are all
distinct, and hence |.27| = ¢. On the other hand, if 71 # ro € R\ Q, say 11 < 7y, then there is some n
such that, if A,, = {s1 < s9 < ...}, thens,, > 11,50 A, N A,, is contained in the set {s1,..., 5,1}
(hence is finite).

]
We now proceed to Lacey’s proof of Theorem 2.

Proof of Theorem 2. By induction, we find a sequence of elements x,, € B and f,, € B’ such that

falzn) 0, fulzn) =0Vm #£n

Indeed, pick first x; # 0 and f; such that fi(z1) # 0. Once {x1, f1,. .., Xy, f»} have been selected with
{z1,...,x,}linearly independent, take x,,; € ker(f;)N---Nker(f,)\{0} tobearbitrary; then certainly
{z1,..., 2,11} is linearly independent.. Define g,,.; to be the functional on {xy, ..., 2z, } defined by
Gn+1(Zns1) = land g,(z;) = Oforall 1 < j < n, and extend by Hahn-Banach to f,,11 € B’. Thus we
have the full countably infinite family.

For 0 < t < 1 irrational, define x; = Zne A, T2 with A; as in the preceding lemma. We claim
that the family {xt}t€(071)\(@ is linearly independent. Indeed, for any 1, ..., ¢; distinct, the intersection

53



Ay, N---N Ay, is finite, hence (since Ay, is infinite) there is some n € Ay, \ (A, U--- U Ay, ), so given
any linear relation
Ty, + ..o+ oz, =0

after applying f,, we obtain
127" fu(z,) =0

so a1 = 0. Running the same argument for the other ¢;, we see that all linear relations are trivial, hence
the z; are linearly independent, as claimed.
Lastly, B itself has cardinality ¢, so we conclude that B has algebraic dimension c.

]

We briefly remark as well that, if A\ > ¢, then a Banach space has cardinality A if and only if it has
algebraic dimension \. Not every \ can be the cardinality/dimension of a Banach space; there is at least
one constraint in the “cofinality” of . On the other hand, if A\ = £ for some &, then ¢£?()) (suitably
interpreted) has cardinality AX0 = kX6 = ), so there at least exist “large” Banach spaces in some sense.

We have now established that the separable Banach spaces have continuum algebraic dimension, though
this involved a somewhat difficult argument. We would like to offer evidence in support of Theorem 1,
which does not rely on clever combinatorial constructions. In particular, we’ll give a short argument that
the algebraic dimension of an infinite dimensional Banach space must be uncountable.

Lemma 7.4. Suppose W C V is a finite-dimensional algebraic subspace of a Banach space V. Then W
is closed in V.

Proof. You did this on your homework 5. [
Corollary 7.5. Any infinite-dimensional Banach space has uncountable algebraic dimension.
Remark. We showed this in discussion, in the special case of Hilbert spaces.

Proof. Each linearly-independent set {vy, vg, . ..} defines an increasing sequence V,, = span(vy, ..., v,)
of finite-dimensional vector subspaces. By the previous lemma, each V,, is closed. Since V' is infinite-
dimensional and V/, is finite-dimensional, each V}, has empty interior in V. By the Baire category theorem
(since V' is a complete metric space), | J,,~, Vi, hasempty interiorin V. On the other hand, span({v;}32,) =
U,,>1 Va- In particular, V' is not the span of the v, so any basis must be uncountable. [

So goes the usual formulation of the uncountability reult. Note carefully that, unless we assume the
continuum hypothesis, this doesn’t quite prove Theorem 1.
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8 : Week8

Spring 2022 Problem 4. Let f : [0,00) — [0, 00). Assume that f(0) = 0 and that f is convex, meaning
that
Fltr+(1—t)y) < tF(@) + (1= Df(y), VYoy>0,0<t<1.

Prove that

for some increasing function g : [0, 00) — [0, 00). [Hint: the question does not tell you that f is differ-
entiable, or even continuous.]

Proof. We start by picking 7' > 0 and showing that f is absolutely continuous on [0, T]. Observe the
following facts about f:

1. fis monotone increasing on [0, 00).

2. f0<a<b<c< oo then

fle) = fla) _ f(b) = fla)

c—a - b—a
3. f0<a<b<c< oo, then
fle) = f(b) _ fb) — f(a)
c—b = b—a

We justify each fact in turn. For (1): if 0 < x < y, then

F0)+ =21 () < f(w)

s
f(x)ﬂg »

so indeed f is monotone increasing.
For (2): the claim is equivalent to the inequality

b—a
F(0) < fla) + == [f(e) - f(a)]
But note that the right-hand side may be written as
b—a c—>b
() + S f ()

so the inequality follows directly from the definition of convexity.
For (3): the claim is equivalent to the inequality

c=hi-a) [0, 0]

f(b) <

c—a c—b b—a

But the right-hand side is just
b—a c—b
fle)+

cC—a cC—a

f(a)

which we considered previously.

55



We apply these facts to the problem. Let L = f(T'+1) — f(T). Let0 < ay < by < ag <by <--- <
ay < by, < T be asequence of intervals in [0, 7']. Then, by repeated application of the above facts,

b — fla
FO) = @) o powioq g
bj — CLj
Thus, if we take € > 0 arbitrary and write 0 = 7, if a1, b1, ..., ax, by is a sequence of intervals with
Z§:1 b; —a; < 0, we have
k k
STIFb) — Fla) <DLl —ay| < €
Jj=1 j=1

and we conclude that f is absolutely continuous on [0, T'].

In particular, we may find a Radon-Nikodym derivative g € L{ (0, c0) such that

loc

o) = 1(00.) = [ glw)dy
0
Since f is nonnegative and increasing, g takes values in [0, 0c]. If x < y are Lebesgue points for g, we

have
o) o) = Jig P IR P

For each particular n > ?ﬁ, we may appeal to to the facts about f to conclude that g(y) — g(z) >

0. Thus g is increasing on the set of Lebesgue points, so we may replace g with an almost everywhere
equivalent function that is increasing (say, §(2) = SUD, < Lebesgue 9(¥))- Since f is finite everywhere and
g is increasing, we must have ¢ is finite. Thus we have shown all claimed facts about g. 0

Spring 2018 Problem 4:

(@) Fix 1 < p < oco. Show that

f= Mfl(z,y) = sup /__fx+hy+€)dhd€

r>0,0 4rp
is bounded on LP(IR?).
(b) Show that 2
[Arf](z,y) = 4%3 / / f(z+ h,y + )dhdl
converges to f a.e. in the plane as r — 0.

Proof. (a): Since M is subadditive, it suffices to exhibit a bound for the dense subset C°(R?). Let f €
C2°(R?) be arbitrary. Let My, M, be the maximal functions defined by

[M; f)(x, y)—jgg;/ f(z,y) + hej)dh (5 =1,2)
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where e, e are the standard unit vectors in R?. Note that

[M f](z,y) < [Ma[ M f]](2,y)

so that
| M fllre < [|[Ma[ M f]|| e r2)

We wish to appeal to boundedness of the usual Hardy-Littlewood maximal function. Expanding the right-
hand side,

VLMW, = [ [ VBV G )dyda

Let g = M; f. Then g is nonnegative and measurable, and by boundedness of the Hardy-Littlewood
maximal function, we have the estimate

/IMzg!” z,y)dy Sp / lg|”(x,y)d
R

for each z € R. It follows that

/R/R’MZ[M1JCHP($,Z/)CZZUCZJJ <p//|M1f| x y)dydx_//‘Mlﬂpx y)dzdy

where we may appeal to boundedness again to see

MLy S5 [ 171y
so that M is bounded, as was to be shown.

(b): Observe that A, f — f uniformly when f € C°(R?). Consider now f € LP(R?) arbitrary,
e > 0,and g € C>°(R?) so that || f — g||z» < . Write T for the (subadditive) operator

Tu(x) = limsup A, [u — u(x)](z)

r—0+

We clearly have Tg = O and T'f < T'[f — g]. Additionally, we have the pointwise bound
Alf =g — f(x) +g(2)] < M[f — gl(x) + | f(z) — g(x)|

so that
Tif =gl <M[f =gl +|f — 9|
and hence
ITf = glller ey Sp €
It follows that, for each o > 0,

1 eP
Nl Tf(@) > a) < Ml TUF —glla) > a)) < o) [ 1217 =P 5 55
This holds for every choice of o, €. Sending ¢ — 0, we conclude

No(fa: Tf(x) > a}) =0

Since this holds for each o > 0, we conclude that T'f = 0 a.e., as was to be shown. OJ
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Fall 2013 Problem 12: Let f : [0, 1] — R be a continuous function that is absolutely continuous on
each interval [¢,1] with0 < e < 1.

(@) Show that f is not necessarily absolutely continuous on [0, 1].
(b) Show that if f is of bounded variation on [0, 1], then f is absolutely continuous on [0, 1].

Proof. (a): Let f(x) = wsin(l/z) forz # 0and f(0) = 0. Clearly f : [0,1] — R is continuous. If
0 < & < 1, then from the derivative estimate

@ = (1) " eos(1/a)] S 147

we see that, for any collection of disjoint intervals (a1, b1), ..., (ag, bx) in [, 1] with total length at most

H%’ we have

—1+et

Sl - @) £ 3 [ 1relde < e <o

from which absolute continuity on [g, 1] follows.
It remains to establish that f is not absolutely continuous on [0, 1]. To this end, observe that for 7, = T
(n > 3), we have for any n > 3

N

Z |f(xni1) = fl@n)] =2(N —n—1)

k=n

In particular, choosing € := 1, we see that for any § > 0 we may choosen > 7§~ >+ land N = 2n + 1

to obtain
N

Z |f(2n1) — flzn)| >m0 +1>¢

k=n

whereas
N

s
Z|xn+1—xn| < =<9
k=n "

violating the condition for absolute continuity, if we choose a; = x; and b; = x ;1.
(b): We first note the following lemma.

Lemma. Suppose f is continuous and of finite variation on [0, 1. Then, for eache > 0, thereisd > 0
such that the total variation of f on [0, d] is at most ¢.

Proof of lemma. Suppose not. Let £ > 0 be such that the total variations of f on any [0, d] is greater than
e > 0. Let d be such that 0 < y < § implies |f(y) — f(0)| < /4. Let M' < +0o0 be the total variation
of fon[0,1],andlet0 = 29 < 27 < ... < ,, = 1 be such that

D 1F(ex) = flaxan)l > M~ /4
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We may freely assume that 1 < ¢’, since adjoining additional points only increases variation. By assump-
tion, we may find 0 = yy < y; < ... < yny = 0 such that

Z f(y;) — flys)| > €

Then the new sequence {z; };V:JB” defined by

Yj 0<j<N
2z =
! zin N+1<j<N+n

satisfies

N+n

Z |f(25) = f(zj-1)| = Z |f(y;) — flys—)| + Z |f(x;) = flzj-1)] = [f(z1) — f(z0)]
> (M —¢e/4)+ec—e/4>M

which violates that M < 00 was the total variation.
O]

We now use the lemma. Let ¢ > 0 be arbitrary. Let §; > 0 be such that the variation of f on [0, 01] is
less than £ /2; this is possible, since f is continuous and bounded variation. By assumption, f is absolutely
continuous on [0y, 1], so thereisa do > 0 such that, for any tuple of disjoint intervals (ay, by), . . ., (ax, bx.),

we have
k

k
Z |b] — CLj| < 0y — Z |f(bj) — f(a])| < 5/2
P =1

We claim that § := min(dy, d2) suffices. Let (a1, by), ..., (ax, bg) be an increasing sequence of pair-

wise disjoint intervals with Z?:l |b; —a;| < 0. Suppose j, is the first index such that b;, > ;. Then the
intervals (a;,, b, ) N [01,1], ..., (ag, by) N [d1, 1] are pairwise disjoint of total length < s, so we have

£ (bs.) = F(00)] + Z |F(b;) = flag)| <e/2
J=jx+1

Similarly, since f has total variation less than £/2 on [0, |, we have

D 1My = Flapl +1f(5) = f(ay.)

1<5<J«

1aj* <& < 5/2

so in total we have i
Z flaj)| <e/24+¢e/2=¢

as claimed.
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Bonus problem

Fall 2018 Problem 4. Let T be the unit circle in the complex plane C and for each a € T define the

rotation map R, : T — T by R,(z) = «az. A Borel probability measure ;2 on T is called a-invariant if
(R (FE)) = u(E) for all Borel sets £ C T.

(@) Let m be Lebesgue measure on T (defined, for instance, by identifying T with [0, 1) through the
exponential function). Show that for every a € T, m is a-invariant.

(b) Prove that if «v is not a root of unity, then the set of powers {a” : n € Z} is dense in T.

(c) Prove that if «v is not a root of unity, then m is the only a-invariant Borel probability measure on

T.

Proof. (a): We omit this, other than noticing that it is an obvious consequence of translation invariance of
Lebesgue measure on R and an easy mod 1 rearrangment.

(b): Since T is compact, there is some 3 € T and k — n;, subsequence such that o™ — [as k — oc.
If ¢ > 0 is arbitrary and K is large enough so that £ > K implies |/ — /| < £/2, then we also have

k>K = |o" " — 1| =|a™ —a"F| <€

Since « is not a root of unity and ny — nx # 0, we have that o+~ "X is a nontrivial element of T. Thus,
0 is an accumulation point of {a" },,c7.

Lastly, if 5 € T is arbitrary and € > 0, we may find n € Z such that | — 1| < &. Then the sequence
", a®, ..., a* with k > 71, has the property that any v € T is within ¢ > 0 of some a/". But in
particular (3 is within € > 0 of a power of a. Thus the sequence of powers is dense in T.

(c): Let 1 be an a-invariant Borel probability measure. Note that the orbit n — «" is infinite, so u
has no pure points.

It is convenient to identify T with [0, 1) by a complex logarithm. Write 6 for the element of [0, 1) such
that €27 = . We claim that, for every interval I in [0, 1), we have the inequality

u(I) < 3m(I)

1
’ 2n

We first demonstrate this for intervals of the form [0, -~ ) with a constant of 2. By part (b), we may find

ki,...,k,_1 € Z such that

_1/9 )
j=l <kb<Z j=1,...n-1
n n
It follows that
1<k9k6+1<1k6+1<k9‘2 1
— . — , . — , =2,...,n—
on 1 ! 2n -1 2n iV

so that the intervals [y, . .., [,,_1 defined by

| 1.
lo=[032), Li=[kfkif+5) j=1,..n—1
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are pairwise disjoint and contained in [0, 1). Since they all have the same length, their pi-value is the same,

(0.5 = (O Ij) <1

=0
ie. 11([0,5-)) < 2 5, as claimed.

7 2n
The result follows for arbitrary intervals; indeed, if I C [0, 1) has length p, then for each N > p*1
we may find [y, . .., I pairwise disjoint intervals covering I of length ﬁ and K < 2Np + 2, so that
(1) <2 <2(p+ ! ) <3
I =255y S 2P T oy P
as claimed.

Finally, observe that this immediately implies that y << A, so du = fd for a suitable nonnegative
L' function f of total mass 1. It remains to establish that f = 1 Lebesgue a.e. But notice that, for any
Lebesgue point z,
(€ )
=1
o=l =

Let x, y be any pair of Lebesgue points and € > 0 be arbitrary. Let 6 > 0 be such that, for any r < 4,

M((l’_;ﬂ;ﬂx—'—r)) —f($)‘ : ’M((y_;;y+r>> _f(y) < e

Letn, k € Z be such that [nf + x — y — k| < /6. We have
(x4+nl =6, x+nl+6)C(y+k—90—0c/6,y+k+0+de/6)

so that, appealing to the upper bound on y from earlier,

plle =02 +90))  plly =06,y +0))| _ 40 _

25 2 =T

Thus |f(x) — f(y)| < 2e. Since ¢ > 0, we conclude that all Lebesgue points have the same f-value.
Since the Lebesgue points are a full-measure set, we conclude that f = 1 almost everywhere, so 1 = ) as
claimed.

]
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Hints and remarks about the preceding problems

Spring 2022 Problem 4.
Hint, part 1: as a warm-up, show that convex functions R — R are necessarily continuous.

Hint, part 2: show that f is absolutely continuous on each [0, T'|. Then, analyze the Radon-Nikodym deriva-
tive.

Hint, part 3: to show that f is absolutely continuous on each [0, T, control the slopes of secant lines. Find
inequalities to relate the sizes of secant lines between points (a, f(a)), (b, f()), (¢, f(¢)) witha < b < ¢. To
find the inequalities that should be true, draw pictures of typical convex functions.

Remark. This implies in particular that convex functions have well-behaved distributional derivatives
(e.g. FTC holds). It turns out that they also have well-behaved second-order derivatives as well, which
arises from studying the Lebesgue-Stieltjes measure arising from monotone increasing functions g.

Spring 2018 Problem 4.

Hint, part (a): control M by two applications of the one-dimensional HL maximal function, one for each
dimension.

Hint, part (b): follow the proof of the Lebesgue differentiation theorem.

Remark. On the homework, you're tasked with showing that you can perform Lebesgue differentiation
with “balls” replaced with sets B, satisfying B, C B(z,7)and A\, (B,) 2 A\.(B(z,r)). In particular, that
problem does not apply here.

Thus we have justified that you can do Lebesgue differentiation for sets that are comparable to metric
balls, and with axis-parallel rectangles of arbitrary eccentricity. It turns out that things break down when
you permit (a) arbitrary eccentricity and (b) arbitrary rotations, simultaneously! This is related to the
so-called Kakeya problem.

Fall 2013 Problem 12.
Hint for (a): try something with unbounded variation near 0.

Hint for (b), part 1: break f into a “small variation” part near 0, and an “absolutely continuous” part away
from Q.

Hint for (b), part 2: try showing the following lemma: “If f is continuous and of finite variation on [0, 1], then
for each € > 0 there is § > 0 such that the total variation of f on [0, d] is at most € > (.” Observe carefully that
the assumption of continuity is necessary!

Fall 2018 Problem 4.
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Hint for (a): appeal to translation-invariance of usual Lebesgue measure, together with a simple cut-and-
rearrange procedure on [0, 1) mod 1.

Hint for (b): use compactness of T to find an accumulation point. Rotate to 1 to find a dense mesh.

Hint for (c): remember, we don’t have arbitrary translation invariance. Instead, show that (i is necessarily
absolutely continuous with respect to A\, and then use Lebesgue differentiation. As a warm-up, convince yourself
that . has no pure point component.

Remark. Although we don't have arbitrary translation invariance, this problem is still a bit easier than
when we showed that Lebesgue measure was uniquely specified by special values and translation invari-
ance. This is because of Lebesgue differentiation, which allows us to skip a lot of technical manipulations.

By the “Krein-Milman theorem,” you can in fact show that Lebesgue measure is automatically “er-
godic” for irrational rotations . The argument goes as follows: invariant measures are convex combi-
nations of ergodic measures. But, the space of invariant measures is just {\}, and ergodic measures are
necessarily invariant, so \ itself has to be ergodic.
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9 : Week9

Fall 2021 Problem 1: Let f : [0, 27r] — C belong to L' and assume that

21 (92(,0 8490

whenever ¢ : R — C is smooth and (27)-periodic. Prove that
fx)=a+be" +ce™ ae.
for some complex scalars a, b, c.

Proof. We first consider the warm-up. Suppose f € L'([0, 2]) is such that [ f¢'dx = 0 whenever ¢ is
smooth and (2 )-periodic. Extend f periodically to all of R. Let 77 be a mollifier; then, for each ¢ > 0,

/o%(f *e)ld = /R /0 7 fo = .09 @)
- /Rns(t) /_%tf(fﬁ)sf)’(ﬂt)d:cdt

t

If p(z) = @(x +t), then @' (z) = ¢'(x + t) and ¢ is smooth and (27)-periodic. We conclude that

/O%(f 1) p'dr =0

for all choices of . Integrating by parts,

0= /02w<f x ) de = — /Ozw(f 1) pda

Since ¢ can be taken to be an approximate identity near any point, we conclude that (f * 7.)" is a.e. zero.
Since f * 1. is smooth, we conclude that f * 7. = c. for a suitable constant c..
Finally, if z is any Lebesgue point for f,

flx) = Jim f (o) = lim c.

e—0t

In particular, the c. are convergent as ¢ — 0; it follows immediately that f is a.e. constant.

We now consider the current case. Towards the end of the argument, we will need a lemma:
Lemma. Suppose ¢ is a mollifier in R™. Then, for any f € L'(R™), we have

I f*oi— flli =0 ast— 0"

Proof of lemma. Let e > 0 be arbitrary. Let ¢ € C2°(R™) be such that ||f — ¢||; < /3. By elementary
considerations, g * ¢; — ¢ uniformly as ¢ — 0, so we may find & > 0 such that 0 < ¢ < ¢ implies
lg * vr — gll1 < £/3. Consequently,

[froe=flli < fxor—gx@li+lg*xee =gl +1lg— flli <e

where we have used the operator norm bound ||h * ¢||1 < ||A]]1. O
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We now proceed to the argument. Extend f periodically to all of R. Letp : R — R be smooth,
nonnegative, = 1on[—3, 1], supportedin [—1, 1], such that [ = 1. Fore > 0, writen.(t) = ! (¢7'¢),
sothat [n. = land (f *n.)(z) = f(z)ase — 0, whenever  is a Lebesgue point of f.

Then f * 7). is smooth; further,

(f #n) (& + 2m) = / f(x + 27 — )y (t)dt = / fx — tyne(t)dt = (f #1.)(x)

so that f % 7). is (27)-periodic. Lastly, if ¢ : R — C is smooth and (27)-periodic, then by Fubini-Tonelli

/02W<f «12) () [37@ + 37@} dr = / / fle = () [¢2 (@) + ¢ ()] dida

_ / oy " fe— 1) [ (2) + o (2)] dudt

- /ﬂwe(t) | a1 [0~ t) + ¢ (e 1) dads

where we write ¢ for the function ¢(x) = ¢(x 4 t); note that ¢ is still smooth and (27)-periodic. By the
assumption on f, together with periodicity,

/0 " fa— 1) [6O( — 1)+ ¢ — 1)) d = / " @) [62 () + ¢9(a)] dx = 0

so that ) 52 o
" © © B
[ |55+ 52 a0

as well, for all e > 0 and all smooth (27)-periodic ¢ .
Abbreviate g. = f * 1. Then g. is smooth and (27)-periodic. Integrating by parts twice, we obtain

27
| 2@ [ + @) do =0
0
for all ¢ smooth (27)-periodic. Thus, for such ¢,

/0 " 4O (@)p(x)dr = - / " 4 (@) (2)dx

and, integrating the second expression by parts twice,
2 27
| @i = - [ g @ela)ds,
0 0

ie. the function 7 + ¢ (x) + g (x) is orthogonal to all smooth (27)-periodic functions . Thus
g§2)(a:) + g§4)(a:) = Oforallz € R.
Write h, = g§2), so that h, = —n®. By standard ODE theory, it follows that

he(z) = a.e™ + be™ ™
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for suitable complex constants a., b. € C. By FTC, it follows that
9:(z) = —a.e™ —b.e ™ + cox + d.

for suitable complex constants c, d; since ¢, is periodic, c. = 0.
We have concluded that, for every € > 0, there are complex constants a., b., d. so that

(f *n.)(z) = a.e™ + be ™ +c,
For any = € [0, 27| Lebesgue point for f, we have

lim a.e™ +b.e™™ +c. = f(x)

e—0t

We claim that the coefficients a., b., ¢, are Cauchy as ¢ — 0T. Since
1 e
o /. (f *xn.)(z)dx = c.
and (f *xn.) — fin L'([—m, 37]) (say), we see that

1 [ 2
27 Jo

Thus c. is Cauchy. Similarly,
1 [ o
o ], e f(x)dx + _/o e (f *ne)(x)dx = a.

so a. is Cauchy; the same holds for b.. Thus the coefficients a., b., c. are Cauchy, so converge to some
a, b, c, and hence ' '
(fxn:)(z) = ae™ +be™™ + ¢

pointwise everywhere as ¢ — 0. Since the left-hand side converges a.e. to f, we conclude that f agrees
with the right-hand side a.e. U

Fall 2011 Problem 3: Let 1 < p, ¢ < oo satisfy 1—1) + % = 1.Fix f € L?(R?)and g € LI(R?).
(@) Show that
[f * gl(x) := . f(z —y)g(y)dy
defines a continuous function on R3.
(b) Moreover, show that [f * g](z) — Oas |z| — oc.

Proof. (a): We first claim that, for each g € L9(R3?), the function v + 7,9, where 7,g9(x) = g(z + v),
is continuous. Indeed, if g € C.(R?) and v,, — v, then 7,,,g — T,g uniformly, hence in L9(R3). If
g € LY(R3),v € R3 and € > 0 arbitrary, then we may find ¢’ € C.(R3) with ||g — ¢'||z« < &/4. Let
d > 0 be such that ||[v" — v|| < § implies |7, g — 7,¢'||Le < €/2. Then

|70 g — Tv9||Lq(R3) <|ltwg — Tv'g/||Lq(R3) + |l7wrg’ — 7'vg/||Lq(R3) + lmg’ — Tv9||Lq(R3) <e€
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since T, T,s are linear and preserve L. Thus v + T,g is continuous for each choice of g € L(IR3).
By LP-L? duality, for each choice of f, g, the function

e | F(=y)Tg(y)dy = . f(=y)g(y + z)dy

is a composition of two continuous functions, hence is continuous. Changing variables, we conclude that

r— | fy)glz —y)dy = [f * g](x)

R3

is continuous, as was to be shown.

(b): We may assume ||f||z» = 1 = ||g||za. Let & > 0 be arbitrary. Since the sequence of functions
{10 (@)|f(x)[P}oL, is uniformly dominated by the integrable function | f|?, we see by DCT that

n—oo

im [ ispae= [ s

In particular, we may find an N; € N such that

/ @)z < (e/2)7
R3\B(0,N1)

Similarly, we may find Vo € N such that

[ lgta)ide < (e/2y
R3\ B(0,N2)
Suppose ||z|| > Ny + Ns. Then

|f(x —y)g(y)|dy + / |f(z —y)g(y)|dy

R3\ B(0,N2)

r sl < [

B(0,N2)

By Holder, we have

1/p
/ um—ymwwwsnwm(/ |ﬂmmw) <o)
B(0,N2) B(z,N2)

since B(z, Ns) is disjoint from B(0, N;). Similarly,

1/q
Lo =gl < Wl ([, ) <22
RJ\B(OvNQ) Rs\B(O,Nz)

by the assumption on Ny. Thus |[f * g](z)| < € for large ||z||, as was to be demonstrated. N

Winter 2007 Problem 3: Let f * g(z) = [; f(z — y)g(y)dy denote the convolution of f and g. Fix
g € LY(R). Do the following:

(@) Show that A,(f) := f * gis a bounded operator L'(R) — L*(R).

67



(b) Suppose in addition that g > 0. Find the corresponding norm || A,/ 11 11

Proof. (a): By Tonelli,

|u*mumn;//umﬁwmwwMsz/w@ﬂ/uu»wmeZWﬂw@mmym

so that A, is bounded, and || A,|| .11 < ||g]| L1
(b): Let f > 0 be any measurable function with || f|| 1) = 1. Then

4Dl = | [ fla =g = 1 fluelsle

so that || Ay||L1 21 = ||g||z1, using the fact mentioned in (a) above.

We omit (c) here.
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Hints and remarks about the preceding problems

Fall 2021 Problem 1.

Hint, part 1: as a warm-up, show that [ fo'dz = 0 for all p smooth and periodic implies that f is a.e.
constant.

Hint, part 2: mollify f.

Hint, part 3: consider mollifications f * 1, as considered on the homework. The mollified f satisfies the same
identity by Fubini-Tonelli. So we may assume [ is smooth; then, integrate by parts and solve an ODE.

Remark. It’s also possible to handle this directly by Fourier analysis techniques.

Fall 2011 Problem 3.
Hint for (a): Holder + uniform integrability.

Hint for (b): Holder + dominated convergence.

Winter 2007 Problem 3.
Hint for (a): Fubini-Tonelli.
Hint for (b): for one inequality, use Fubini-Tonelli. For the other, sample g == .

Remark. Part (c) asks you to demonstrate that the only f € L'(R) with f x f = fis f = 0. This
is best handled with Fourier analysis techniques. Another approach is to consider the g > 0 case, and
consider the function n(t) = —tlog, together with Jensen.
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10 : Week10

The following is a collection of problems that I might have used if the quarter ran several weeks
longer. Some of them are directly relevant to what we have done so far (e.g. the Banach-Alaoglu and
weak-* topology), and some would have been relevant later (uniform boundedness, open mapping).

I suggest the document be used as such:

« For this week, [ will consider the following problems: Fall 2021 Problem 4, Spring 2018 Prob-
lem 6, and Spring 2017 Problem 4.

« Istrongly suggest that you think about Fall 2019 Problem 9 (in the uniform boundedness prin-
ciple section), and the non-qual open mapping theorem problem, once you have learned those
two results.

+ The remaining problems I will leave as options if you want to further build on your familiarity
with the techniques.

10.1 Weak and weak-x topologies, and Banach-Alaoglu

Non-qual problem: Let X be a compact metric space and 7' : X — X a homeomorphism. Show that
there exists an invariant Radon probability measure for 7, i.e. a Radon probability measure x such that
T,y = po T is equal to ju.

Fall 2021 Problem 4: Let r; > ry > - -- > 0. For each positive integer n, let C,, be a pairwise disjoint
collection of 2" closed disks of radius r,, in [0, 1]?, and assume that every member of C,, contains exactly
two members of C,, 1. Let K, = Jpee D,andlet K = (77| K.

(a) Prove that there is a Borel probability measure y such that u(K) = 1 and u(D) = 27" for every
D e C,.

(b) Prove that K is the support of y; that is, the smallest closed set whose measure equals 1.

Proof. (a): For eachn and D € C,, let cp be the center of D, and we write

fy = 27" Z depy

DeCn

where as usual d..,, denotes the point mass at c¢pp. We claim that {11, }°° ; is weak-* convergent. To do this,
let f € C(]0, 1)?) be arbitrary; we will show that the pairings ([, j,,) converge in R.

Let ¢ > 0 be arbitrary and 6 > 0 be such that ||z — y|| < § implies |f(x) — f(y)| < ¢ for any
z,y € [0,1]% here || - || is the usual Euclidean distance. Let N € N be such that ry < §/2.
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Then, for any n, m > N, where we assume m > n without loss of generality,

<faun> - <faum> =2 Z f(cD) -2 Z f(CD)

DeC, DeCy,
=273 | flep) =27 > flen)
DecCy, D'eCp,
D'CD

because each D’ € C,, is a subset of a unique D € C,; furthermore, for each D € C,,, there are 2™ "-
many D’ € C,, such that D’ C D. Thus,

[(Fon) = (o)) <2773 | flep) =277 Y flep)

DeC, Dlecm
D'CD
<27 Z 2nm Z |f(ep) — flep)
DeC, D'eCp,
D'CD
< 27" Z nTm g=¢
DecC, D'eCn,
D'CD

Thus we have shown that (f, y,,) is Cauchy, hence convergent.

Finally, since {1, }°°, is a sequence in the (norm-closed) unit ball (M ([0, 1]?));, and the latter is a
compact metrizable space in the weak-* topology, it follows that there is some p € M ([0, 1]?) for which
fn, — (i in the weak-* topology for a suitable subsequence k +— ny. Thus (f, pn, ) — (f, 1) ask — o0
for each f € C([0,1]?), so we further have (f, 11,) — (f, ) asn — oo. Thus in fact y1,, — g in the
weak-* topology.

We claim that this i does the job. Testing against f = 1, we see that ([0, 1]?) = 1. Foreachn € N
and D € C,, we may find a sequence { f}7, in [0, 1]*> such that f | 1p, fx = 1lon D,0 < f; < 1,
frx = 0oneach D’ € C,, other than D. Then

since the value is 27" for all j > n. By dominated convergence,

p(D) = lim / fedp=27"

as claimed.
In particular, u(K,,) = 1 for all n. Since the K, are nested, continuity from above implies
p(K) = lim p(K,) =1
as was to be shown.
(b): Since j is positive and ([0, 1]?) = u(K), we see that supp(u) C K. Pickany z € K and e > 0.

In particular, z € K, for every n, so for each n we may find D,, , € C, suchthatx € D, ,. Letn € N
be such that r,, < £/2. Then B(x,¢) 2 D,, 4, so

W(B(,€)) = (D) = 27 > 0.
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Since £ > ( was arbitrary, we see that x € supp(u). Since + € K was arbitrary, we conclude that
supp(p) = K, as was to be shown. N

Spring 2018 Problem 6 [slightly modified]: Let ([0, 1]) denote the space of Borel probability
measures on [0, 1] and P([0, 1]?) denote the space of Borel probability measures on [0, 1]%. Fix u,v €
P([0,1]) and define

M={rer@ip): [[ ot = [ e [ g

forall f, g € C(|0, 1])}

Show that /' : M — R defined by

Py = [ snl(a0 = 9)in(0.0

achieves its infimum on M.

Proof. We claim that, if M is equipped with the weak-* topology, then M is compact and F'is continuous.
First, we demonstrate that M is precompact, i.e. for any sequence {,,}>°; in M there is some 7 €
P([0,1]?) such that 7, — 7. Note that [0, 1]* is compact and every v € P([0, 1]?) has total mass 1, so
by Banach-Alaoglu, P([0, 1]?) is compact. Thus the closure of M in P ([0, 1]?) is compact, hence M is
precompact, as claimed.
Next, we demonstrate that in fact M is closed. Suppose y,, — . Then, for eache > Oand f,g €
C(]0,1]), there is n € N such that

[[[ i =[] s@ewinen +oe
= | [(@)dp(z) / 9(y)dv(y) + O(¢)
[0,1] [0,1]

Thus, for each f, g € C(][0, 1]) and each e > 0,

x dvy(x,y) — x)du(x dv €
[ @i [ @ [ st <

0,1
so in particular

/[0 » f(@)g(y)dy(z,y) =

and hence v € M, i.e. M is closed.
Lastly, we demonstrate that F' is continuous. If ,, — -, then in particular for

h(z,y) = sin®(7(z —y)) € C([0,1])

f (@) du(z) / 9(y)dvy)

[0,1] [0,1]

we get

//[0,1]2 h(z,y)dyn(z,y) — /[07”2 h(z, y)dy(z,y)
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which is the statement

F(m) = F(7)

i.e. F'is continuous (since M is metrizable, sequences are all that is needed!). Thus, F' is a continuous
function on a compact space, so achieves its minimum. [

Fall 2020 Problem 2: Show that there is a constant ¢ € R such that

lim f( ) cos(sin(nrx))dr = c/0 f(z)dz

n—o0

for every f € L'([0,1]).

Spring 2022 Problem 3: Let X be a real Banach space and let X'’ be its dual. If Y C X, then let
t={leX Uy =0y eY}
On the other hand, if Z7 C X', then let
L7 ={reX Ux)=0Vc Z}
(a) Prove that l(YL) is the closed linear span of Y in X forany Y C X.

(b) Provide an example of a real Banach space X and a subset Z C X' for which (LZ )L is not the
closed linear span of Z in X’. [Hint: try something involving the spaces L*(m), C([0,1]), and
L>(m), where m is Lebesgue measure on [0, 1].]

For the next problem, you may find it convenient to quote the following result of Baire:

Theorem (Baire). If X is a compact metric space and ¢ : X — R U {oo} is lower semi-
continuous, then there is a sequence of functions f, : X — Rsuch that f,, < f,41 and ¢ = lim,, f,
pointwise.

Fall 2016 Problem 3: If X is a compact metric space, we denote by P(.X) the set of positive Borel
measures /1 on X with (X) = 1. By a theorem of Baire, one can prove the following:

(@) Let® : X — [0, 0] be a lower semi-continuous function on a compact metric space X. If 1 and
iy, forn € Nare in P(X) and p,, — p with respect to the weak topology on P(.X), then

/(;Sd,u < liminf/(bd,un (10.1)
n—oo

(b) Let K C R?be a compact set. For i1 € P(K), we define

= / PR

Here ||2|| denotes the Euclidean norm of z € R

Show that the function F : P(K') — [0, 0o attains its minimum on P (K) (possibly co).
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Reminder: a function f is said to be lower semi-continuous if liminf,_,, f(y) > f(x) for all x.

Spring 2017 Problem 4: For n > 1,leta, : [0,1) — {0,1} denote the n'" digit in the binary
expansion of z, so that

r= Z a,(z)2™" forallz € [0,1)

n>1

where we remove digit expansion ambiguity by requiring that lim inf,, a,(z) = 0 forallz € [0, 1). Let
M([0,1)) denote the space of finite signed Borel measures on [0, 1) and define linear functionals L,, on

M([0,1)) via
1
L) = [ an(wdu(o)
0
Show that no subsequence of the L,, converge in the weak-* topology on M ([0, 1))*.

Solution taken from here, It suffices, for any subsequence ny, to identify u € M ([0, 1)) such that the se-
quence Ly, (1) does not converge as k — 00. Notice that, if 4 = §;, for some b € [0, 1), then L,,, (u) is
the entry in position ny, in the binary expansion of b. Thus, if we take

b= ) (kmod2)2™"*

M8

e
Il

1

then L, (0,) = (k mod 2), which does not converge as k — 0. O

Fall 2017 Problem 4: Consider the Banach space V' = C(]0, 1]) of all real-valued continuous func-
tions on [0, 1] equipped with the supremum norm. Let B = {f € V' : || f|| < 1} be the closed unit ball
inV.

Show that there exists a bounded linear functional A : V' — R such that A(B) is an open subset of
R.

Proof. Let A be defined by

M= e+ £(1) - £(0)

It is easy to see that A is a bounded linear functional. We claim that A(B) = (—3,3). Since A(B) is
clearly connected and symmetric, for the O containment it suffices to find f,, such that A(f,) > 3 — %
To this end, define

2nr—1 <2
n\T) = "
fnle) {1 s<r<1
Clearly f,, € B for each n. Also,
1 1 1 1
ANfy)=—+1-—)4+1-(-1)=3——>3——
(=gt (=) 41— (1) =3 >3-~

so (—3,3) C A(B).
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We consider the reverse inclusion. Note that

A(B)| < / F(@)ldz + |£(1) = F(0)] < 3,

and equality can only hold if |f(z)| = 1 ae. and |f(0)] = |f(1)] = 1 while f(0), f(1) have opposite
signs. We claim this cannot happen; indeed, we may assume f(1) = 1 = —f(0), and then we will find
x € (0,1)and e € (0,1) such that |f(y)| < e for |y — x| < ¢, so that |f(z)] is not a.e. 1. Thus
A(B) C [-3,3]and 3 ¢ A(B), so by symmetry —3 ¢ A(B) as well. Thus A(B) = (—3, 3), as was to be
shown. [

10.2 Uniform boundedness principle

Fall 2019 Problem 5: Let  be a Hilbert space with the scalar product of x, y denoted by (z, ), and let
A, B : H — H be (everywhere-defined) linear operators with

Ve,ye H: (Bz,y) = (z,Ay)

Then A and B are both bounded (and thus continuous).

Problem from mathoverflow: Consider the Hilbert space £*(N), and consider a matrix A = [a;;]; ;,

consisting of nonnegative entries, such that, for all y € ¢*(N), the entries of the vector Ay all converge,
and the vector Ay also belongs to £%(N). Show that A is a bounded linear map ¢*(N) — ¢*(N).

Important remark: we are not here claiming that every linear map (*(N) — (?(N) is bounded!

The statement is also true when the entries are assumed only to be real numbers.

10.3 Open mapping theorem
Non-qual problemm The following display is a false statement:

If V is a vector space and || - ||1, || - ||2 are two norms on V such that (V|| - ||1) and (V|| - ||2) are
complete, then || - |1, || - ||2 are equivalent.

What follows is a “proof” of this statement. Identify the mistake in the argument!

Denote || - ||3 = || - [[1 + ||  ||2- Then || - ||5 is another norm on V: indeed,
1z +ylls = llz +ylh + llz + ylla < [zl + lyll + 2l + llyllz = lzlls + [lylls

and the other axioms are obvious.

19Taken from an old mathoverflow post that I cannot find.
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We claim that (V|| - ||3) is complete as well. Indeed, if {z,, }> | is Cauchy in || - || 3, then it is clearly
Cauchyin || - [|1, || - ||2, so by completeness we may find y € V such thatz,, — yin || - |1, || - ||2. But
then

l2n = ylls = llzn =yl + [lzn —yll2 = 0
sox, — yin|| - ||s. Thus (V|| - ||3) is complete.
LetT : (V.| -|ls) = (V.|| - ||1) be the identity map on V. Then T is clearly linear. Furthermore,

T is bounded:
[Tolly = [lolly < [Jvlls + [[vll2 = (vl

Additionally, 7" is bijective. In particular, 7" is surjective, so by the open mapping theorem we see that
T is open. Thus 7' is an open continuous bijection, so 7" is a homeomorphism. Since 7 is a linear

homeomorphism, we in particular have that || - ||; and || - ||5 are equivalent.
By the same argument, || - |2 and || - ||3 are equivalent. But, as we have seen, equivalence of norms
is transitive, so || - ||; and || - || are equivalent, as was to be shown.

Remark. As an example to demonstrate that the statement itself cannot be true: one can demonstrate
without too much difficulty that £*(N) and ¢?(N) are isomorphic as vector spaces, but it turns out that
they are not isomorphic as normed vector spaces (here, “isomorphism” means a linear bijection that is
open and bounded); this can be shown with a little more difficulty by considering adjoints. Consequently,
we can regard ¢! (N), £2(N) as the same vector space with two incomparable complete norms.
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Hints and remarks about the preceding problems

Fall 2021 Problem 4.

Hint: approximate i by models fi,, at level n. Use compactness to find limit points.

Remark. Recall that our construction of the Cantor measure last quarter was very involved. With
Banach-Alaoglu, we can instead find Cantor measure by a simple approximation procedure.

Spring 2018 Problem 6.

Hint: compactness and continuity.

Remark. Many optimization problems can be characterized by attempting to find suitable topologies
such that the functional (in our case, F) is continuous (or semi-continuous), and the domain is compact.
Depending on the subject, this might be the weak-* topology on measures, L? topology, C* topology, etc.

Spring 2017 Problem 4.

Hint: it suffices to consider arbitrary subsequence k +— ny. and find p such that L, () does not converge.
Try something of the form p. = 6, for suitably-defined b € [0, 1).

Remark. Why doesn’t this contradict Banach-Alaoglu?
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