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1. Introduction

In [45] and again in [46] Georg Kreisel reflected at length on Church’s Thesis
CT, the principle formulated in 1936 by Alonzo Church ([10]) as a definition: “We
now define the notion . . . of an effectively calculable function of positive integers
by identifying it with the notion of a recursive function of positive integers.”1

Yiannis Moschovakis ([62]) observes that CT “refers essentially to the natural
numbers, and so its truth or falsity depends on what they are.”

Of course its truth or falsity also depends on what it means for a calculation
to be effective, and on whether the definition of recursive function is understood
classically or constructively. The latter question leads to Markov’s Principle MP,
which asserts (in its original version) that if an effective algorithm cannot fail to
converge then it converges. In its capacity as a principle of unbounded search,
MP depends essentially on the natural numbers and implicitly on their order type
ω. In classical and constructive mathematical practice, all integers are standard.

Markov’s Principle is not generally accepted by constructive mathematicians.
Beeson ([2], p. 47) notes that “. . . even [Markov and the Russian constructivists]
keep careful track of which theorems depend on it and which are proved without
it.” Bishop constructivists accept neither CT nor MP, although their work is
consistent with both. Kreisel [38] proved that MP is not a theorem of intuitionistic
arithmetic. Brouwer and traditional intuitionists reject an analytical version of
MP, but their reasoning (cf. Kreisel [43]) has more to do with the nature of the
intuitionistic continuum than with what the natural numbers are.

Markov’s Rule MR, in contrast, is admissible for most formal systems T based
on intuitionistic logic.2 In its simplest form the rule states that if T proves that
a particular effective algorithm cannot fail to converge, then T proves that it
converges. Whether or not appropriate versions of the rule are always admissible
for constructive theories evidently depends on what a constructive proof is.

Constructive mathematics is often described simply as “mathematics done with
intuitionistic logic.” While this oversimplification ignores the difference between
constructive and classical answers to the question of what constitutes a legitimate
mathematical object, it does express a fundamental aspect of constructive proof.

I am grateful to Wim Veldman, Mark Mandelkern, Daniel Leivant, Takako Nemoto, George
Dyson, Martin Hyland, Göran Sundholm, Dana Scott and Annika Kanckos for references and
helpful comments, and to M. A. Marfori and M. Petrolo for the Kreisel conference (Paris, 2016).
Special thanks are due to an anonymous referee for illuminating comments on an earlier version.

1In 1936 Alan Turing independently proposed that every effectively calculable function can be
computed mechanically. It turns out that every general recursive function is Turing computable
and vice versa, so CT is also referred to as “the Church-Turing Thesis.”

2H. Friedman [15] and Dragalin [13] independently discovered a simple method for proving the
admissibility of Markov’s Rule which applies uniformly to pure and applied intuitionistic systems.
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In [21] Arend Heyting quotes Kreisel ([37]) as saying “. . . the notion of construc-
tive proof is vague.” Heyting objects that

. . . the notion of vagueness is vague in itself, what we need, is a
precise notion of precision. As far as I know, the only notion of
this sort is based on a formal system.

But even for a formal system with a recursive proof predicate, “. . . the difficulty
reappears if we ask what it means that a given formula A is provable.” Is it
enough to derive a contradiction from the assumption that A is unprovable? This
question leads back to Markov’s Principle, which Heyting did not accept.

More than twenty years after Brouwer rejected the law of excluded middle,
Heyting formalized intuitionistic propositional logic and intuitionistic arithmetic.
Pure intuitionistic predicate logic was isolated as a proper subsystem of classical
predicate logic; cf. Kleene [29] where several equivalent formalizations are studied.
Here we follow Kreisel [41] in adopting the acronym HPC (for “Heyting predicate
calculus”) for a formal system of intuitionistic first-order predicate logic.3 The
question of what constitutes a constructive proof depends essentially on whether
HPC is sound and complete for its intended intuitionistic interpretation, and this
question also involves Markov’s Principle, as Gödel and Kreisel observed.

Thus Markov’s Principle, Markov’s Rule and the common notion of constructive
proof are interrelated concepts which matter, at least to constructive mathemati-
cians and logicians, and about which a wide difference of opinion exists. As such
they appear to be legitimate candidates for investigation in the spirit of Kreisel’s
ideal of informal rigour (cf. [46]). Our main aim is to clarify all three concepts by
presenting and relating a wide variety of examples from the literature. Following
Heyting’s implicit advice, in this essay we consider only precise versions of MP
and MR, and principles weaker than MP, in the context of recursively enumerable
formal systems for intuitionistic logic, arithmetic and analysis.

One interesting intermediate principle is known to be equivalent to the weak
completeness of HPC for Beth semantics, as shown in detail by Dyson and Kreisel
([14]).4 In 1962 Kreisel [41] suggested that this principle “may be provable on the
basis of as yet undiscovered axioms which hold for the intended interpretation
. . . So the problem whether HPC is weakly complete is still open.”

We show that this “Gödel-Dyson-Kreisel principle” entails the equivalence of
the double negations of the binary fan theorem and weak König’s Lemma. It
follows immediately in a weak common subsystem of intuitionistic and classical
analysis from a stronger intermediate principle (“Σ0

1 double negation shift” for
sequences), which refutes weak Church’s Thesis and is consistent with Kleene’s
and Vesley’s full system I of intuitionistic analysis as presented in [33].5 Thus
if Σ0

1 double negation shift for sequences holds for the intuitionistic theory of
numbers and infinitely proceeding sequences, then HPC is weakly complete for
Beth semantics.

3Troelstra and van Dalen [75] prefer IQC, abbreviating “intuitionistic quantificational calcu-
lus,” and reserve IPC for its propositional subsystem.

4A theory is weakly complete if and only if it is impossible for an unprovable formula to be
valid under the interpretation; cf. Kreisel [36] and §4.2 below.

5While “Every sequence is recursive” contradicts Brouwer’s fan theorem, weak Church’s Thesis
(expressing “There can be no nonrecursive sequences”) is consistent with I; cf. [33], [55].
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2. A little history

In the mid twentieth century, first Kleene and then Kreisel developed research
programs to axiomatize Brouwer’s intuitionistic analysis and establish its consis-
tency. As early as 1941 Kleene recognized a strong affinity between Brouwer’s
intuitionistic mathematics and classical recursive function theory. In 1950, at
the first International Congress of Mathematicians in Cambridge, Massachusetts,
Kleene presented his counterexample to Brouwer’s fan theorem for the ω-model
of analysis in which all infinite sequences of natural numbers are recursive.

At the Summer Institute for Mathematical Logic sponsored by the American
Mathematical Society and held at Cornell University, July 1 to August 2, 1957,
Kleene spoke on recursive functionals of higher finite types and sketched a new
recursive realizability interpretation for a formal system for part of intuitionistic
analysis including Brouwer’s fan theorem. At the same summer institute Kreisel
presented the Kreisel-Lacombe-Shoenfield-Ceitin Theorem (cf. [20]), lectured on
continuous functionals, and contrasted Gödel’s Dialectica interpretation with his
own no-counterexample interpretation of Heyting arithmetic (discussed in other
chapters in this volume). Later that August, at the International Colloquium
“Constructivity in Mathematics” in Amsterdam, Kleene and Kreisel each pro-
posed an interpretation of intuitionistic analysis using “countable” (Kleene, [30])
or continuous (Kreisel [40]) functionals of finite type.

By then Kreisel had proved the independence of the recursive form of Markov’s
Principle from intuitionistic arithmetic. Markov’s Principle for analysis MP1 says
roughly that for every infinite sequence α of natural numbers, if it is impossible to
prevent α from containing a 0 then α(n) = 0 for some natural number n. Kreisel
observed in [39] that MP1 must fail for absolutely free or “lawless” sequences
whose values are chosen one by one without restriction, since all properties of
lawless sequences are determined by finite initial segments; but Kreisel’s theory
of lawless sequences was not yet complete, and Brouwer had consciously avoided
considering higher order restrictions on choice sequences. The questions whether
MP1 was consistent with, and independent of, intuitionistic analysis remained.

In 1965 Kleene and Vesley [33] provided a formal system I for most of Brouwer’s
theory of natural numbers and arbitrary choice sequences, featuring the axiomatic
character of the bar theorem and strengthening Brouwer’s assertion that “all full
functions are continuous” to an axiom of continuous choice. Using a recursive
function-realizability interpretation, Kleene established the consistency of I with
or without MP1 relative to a classically correct subsystem. A relativized version
proved e.g. that I is consistent with classical first-order Peano arithmetic (cf. [31]).
Inspired by Kreisel’s [38], Kleene defined a typed, modified function-realizability
interpretation (“special realizability”) in order to prove MP1 independent of I.

That same year Kreisel’s wide-ranging thoughts on intuitionistic mathematics,
emphasizing generalized inductive definitions, “lawlike” sequences, and the possi-
bility of treating choice sequences as a figure of speech, were gathered together in
[42]. In 1966 Howard and Kreisel [22] demonstrated the equivalence, over a formal
system H of “elementary intuitionistic mathematics,” of Kleene’s formulation of
monotone bar induction with a principle of transfinite induction. Their exposition
repeated significant parts of the formal development in [33]; details of the overlap
are acknowledged in the text and in a footnote provided by Kleene. They also
showed that Spector’s extension of bar induction to type 1 in [69] could be justified
using continuous choice and monotone bar induction at type 0.
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A seminal Conference on Intuitionism and Proof Theory was held in August
1968 at the State University of New York in Buffalo. The resulting volume [27]
included important contributions by Kreisel (cf. [45]), Bishop, Heyting, Myhill,
Dana Scott, Feferman, and logicians of the next generation: Vesley, Dick de Jongh,
Martin-Löf, William Howard, Dirk van Dalen, Anne Troelstra and others. Kleene’s
paper on formalized recursive functionals grew into the technical monograph [32].
Takeuti’s course on proof theory and Troelstra’s introduction to intuitionism also
led to books: [70] and [71], respectively.

Kreisel’s axioms for “lawless” sequence (cf. [44]) were improved by Heyting’s
student Troelstra, who spent most of a year with Kreisel after completing his
doctoral dissertation in Amsterdam. They collaborated on [47] (cf. Troelstra’s
[72]), an extended study of alternative formal systems for intuitionistic analysis
emphasizing the roles of lawlike and lawless sequences.

After returning to Amsterdam Troelstra edited, and mostly wrote, a very influ-
ential, comprehensive volume [73] on the metamathematics of intuitionistic arith-
metic and analysis. Fifteen years later, with van Dalen in Utrecht, he coauthored
the indispensable [75]. Troelstra, van Dalen, and Kleene’s student de Jongh have
taught intuitionism to generations of students from a mostly neutral or classical
viewpoint. Wim Veldman, whose own mentor was J. J. de Iongh, still adheres to
Brouwer’s program of developing mathematics from an intuitionistic perspective.

Most of Kleene’s students worked in other areas, although many were influenced
by his preference for constructive arguments.6 Clifford Spector, probably his most
brilliant student, died prematurely after extending Brouwer’s bar theorem to prove
the consistency of classical analysis ([69], edited and prepared for publication by
Kreisel). After formalizing his function-realizability interpretations in [32] in order
to establish that his formal systems satisfied a precise analogue of Church’s Rule,7

Kleene wrote relatively little on intuitionism.
In 1967 Errett Bishop began his remarkable [6] with a “constructivist mani-

festo.” He acknowledged that Brouwer was correct in his objections to classical
logic, but rejected Brouwer’s view of the continuum. For Bishop the positive
integers were the foundation of mathematics, which must therefore have numeri-
cal meaning. He aimed to constructivize mathematical analysis by making every
concept affirmative, avoiding abstraction as much as possible, and using only intu-
itionistic logic, while remaining consistent separately with classical, intuitionistic,
and even recursive analysis. His notion of constructive proof was strictly realistic.
Like Brouwer, he worked informally and avoided using Markov’s Principle, but
neoconstructivists working axiomatically may be interested in Markov’s Rule.

3. MP and MR in the context of formal systems

In 1958 Kreisel ([38]) developed a modification of Kleene’s number-realizability
interpretation to show that the primitive recursive form of Markov’s Principle,
which is (classically) consistent with Heyting arithmetic HA by Kleene’s number-
realizability, is independent of HA. Since then logicians have analyzed versions of

6Anyone who has studied logic from [29] must have noticed Kleene’s use of the superscript ◦

to distinguish theorems whose proofs require classical reasoning from those, such as Gödel’s first
and second incompleteness theorems, which hold both classically and constructively.

7In particular, every closed existential theorem of I with or without Markov’s Principle can
be improved to provide a specific natural number or general recursive sequence as a witness.
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MP and MR over intuitionistic predicate calculus and over constructive and intu-
itionistic theories of natural numbers, real numbers, infinite sequences of natural
numbers, and primitive recursive functions of all finite types. While a complete
annotated bibliography of these investigations is beyond the scope of this arti-
cle, in this and following sections we survey the folklore and discuss contributions
by many researchers over the past sixty years. Much more information is in the
references and their bibliographies.

3.1. Formal versions of MP. Over intuitionistic arithmetic HA Markov’s Prin-
ciple can be rendered by a formula:

MP0 : ∀e∀x[¬∀y¬T(e, x, y)→ ∃yT(e, x, y)]

where T(e, x, y) is a formula expressing Kleene’s primitive recursive T-predicate
(“y is a gödel number of a successful computation of {e}(x)”). Alternatively, it
can be expressed by a schema:

MPQF : ¬∀x¬A(x)→ ∃xA(x),

where A(x) may contain additional free variables but must be “quantifier-free”
(bounded quantifiers are allowed), or

MPPR : ¬∀n¬A(n)→ ∃nA(n)

where A(n) must express a primitive recursive relation of n and its other free
variables. Over HA all three of MP0, MPQF and MPPR are equivalent.

The most general schematic version of Markov’s Principle is

MPD : ∀x(A(x) ∨ ¬A(x)) & ¬∀x¬A(x)→ ∃xA(x),

(cf. [2], p. 47). Evidently HA + MPD ` MPQF since if A(x) has only bounded
quantifiers then HA ` ∀x(A(x) ∨ ¬A(x)). However, Smorynski ([68], p. 365)
proved that HA + MPQF 6` MPD.8 A fortiori MPD is not provable in HPC
from instances of (¬∀x¬P(x)→ ∃xP(x)) with P(x) prime. We leave the proof
that HPC + MPD 6` (¬∀x¬P(x)→ ∃xP(x)) as an exercise for the reader.

As principles of pure predicate logic, MPD and variants can have no convincing
constructive justification because the connection with the natural numbers is lost.
Closed instances are persistently consistent with HPC in the sense that their
double negations are provable, but the schemas are not persistently consistent
because HPC 6` ¬¬∀y[∀x(P(x, y) ∨ ¬P(x, y)) & ¬∀x¬P(x, y)→ ∃xP(x, y)].9

Over a two-sorted theory such as Kleene’s I ([33]) and subsystems, Troelstra’s
EL ([73]) or Veldman’s BIM ([79]), Markov’s Principle can be strengthened to

MP1 : ∀α(¬∀x¬α(x) = 0→ ∃xα(x) = 0).

As long as the characteristic function of Kleene’s T predicate is adequately rep-
resented in the system, MP1 entails MP0, and if the axiom schema of countable
(unique) choice for quantifier-free relations is present then MP1 entails MPQF.
Whether or not MP1 entails MPD depends on whether or not the system proves
that every decidable relation has a characteristic function; cf. [77], [76], [61]. The
type-0 variable x is always intended to range over the natural numbers, but the

8In the presence of Church’s Thesis, MPQF and MPD are arithmetically equivalent. If CT!
is the recursive comprehension principle ∀x∃!yA(x, y)→ ∃e∀x∃y[T(e, x, y) & A(x,U(y))] (where
∃!yB(y) abbreviates ∃yB(y) & ∀z(B(y) & B(z)→ y = z)), then HA + CT! + MPQF ` MPD.

9For a counterexample, consider a linear Kripke model with root 0, nodes n ∈ ω with n < n+1,
D(n) = {0, . . . ,n} and P(n + 1,n) true at all k ≥ n+ 1.
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type-1 variable α may be interpreted as ranging over all infinite sequences of nat-
ural numbers or over a proper subset (or subspecies) of them; when α ranges over
the recursive sequences, MP1 expresses Markov’s original intention.

3.2. Markov’s Rule and constructive arithmetical truth. By the (uniform,
syntactic) Friedman-Dragalin translation, every formal system mentioned so far
has the property that if ∀x(A(x) ∨ ¬A(x)) & ¬∀x¬A(x) is provable so is ∃xA(x);
so Markov’s Rule MRD is admissible for these (and most other) formal systems
based on intuitionistic logic. In [48] Leivant proved that MRD holds for a system
HA∗ (HA extended with transfinite induction over all recursive well-orderings)
which he suggests may capture the notion of constructive arithmetical truth.

Any attempt to identify constructive arithmetical truth with provability in a
consistent recursively enumerable extension of HA will of course be frustrated by
Gödel’s incompleteness theorem. However, over HA or I the conclusion of MRQF

for a closed formula ∃xA(x) can be strengthened to “A(n) is provable for some
numeral n” because these systems satisfy numerical existential instantiation: If a
closed formula ∃xE(x) is provable in the system, then E(n) is provable for some
numeral n ([28], [65], [32]). In particular, the (standard) natural numbers suffice
as witnesses for true existential statements of intuitionistic arithmetic.

Adding MPQF to intuitionistic arithmetic or analysis preserves numerical exis-
tential instantiation for Σ0

1 formulas and does not increase the stock of provably
recursive functions. Peano arithmetic is Π0

2-conservative over HA by the Gödel-
Gentzen negative translation with MRQF, and I + MPQF is Π0

2-conservative over
B and I by [60]. These facts argue for the constructive truth of the arithmetical
forms of Markov’s Principle.

3.3. A note on metamathematical methods. In his case study on informal
rigour [46], Kreisel considers the possibility that there may be “simple conditions,
easily verified for current intuitionistic systems, that imply easily the consistency
of CT and closure under Church’s rule.” If so, the need for “detailed studies like
ingenious realizability interpretations” would be eliminated.

The Friedman-Dragalin translation is a simple tool to prove intuitionistic formal
systems are closed under Markov’s rule. Coquand and Hoffmann [11] showed how
the method can be extended to prove that MPQF is Π0

2-conservative over many
intuitionistic systems. Kripke models of HPC and HA, and topological and Beth
models of theories of choice sequences, help to establish the relative consistency
and independence of MP and related principles.

But for delicate questions about the strength of variants and weakenings of
Markov’s principle over subsystems of intuitionistic analysis, realizability inter-
pretations (Kleene and Nelson’s number-realizability, Kreisel’s modified number-
realizability, Kleene’s function-realizability, Srealizability [33] and realizability-
plus-truth, the author’s Grealizability [55], Lifschitz realizability . . . ) are among
the best tools available. Some of these methods can be replaced by categorical
ones (cf. [78]), which we do not use here.

4. Markov’s principle and completeness properties of HPC

4.1. Markov’s principle and (strong) completeness of HPC. An analytical
consequence of MPPR is intuitionistically equivalent to the completeness of HPC
for the topological and Beth interpretations of intuitionistic logic. This fact is due
to Gödel and Kreisel ([36]). In order to state it precisely, let β range over infinite
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(free choice) sequences of natural numbers and let B(β) abbreviate ∀n(β(n) ≤ 1).
Then the following statements are equivalent:10

(1) ∀βB(β)¬∀n¬A(n, β)→ ∀βB(β)∃nA(n, β) holds for all primitive recursive re-
lations A(n, β) between natural numbers and free choice sequences.

(2) HPC is complete for its topological interpretation and for Beth’s seman-
tic construction of intuitionistic logic [5]. Every formula of the predicate
language which is valid under either interpretation is provable in HPC.

Evidently MPPR (with a choice sequence variable β free) entails (1), and (1) (with
a choice sequence variable α free) entails MP1 by the following argument. Let

A(α,n, β) abbreviate ∃m < β(n)(α(m) = 0), where β(n) abbreviates Πm<np
β(m)+1
m

and pm represents the mth prime number, with p0 = 2. Assume (a) ¬∀x¬α(x) = 0.
Then also (b) ∀βB(β)¬∀n¬A(α,n, β) so ∀βB(β)∃nA(α,n, β) by (1), and therefore
(c) ∃xα(x) = 0.

4.2. The Gödel-Dyson-Kreisel principle and weak completeness of HPC.
Verena Huber-Dyson and Kreisel verified in [14] that the double negation of (1)
entails the weak completeness of HPC (in the sense that unprovable formulas
cannot be valid) for Beth’s semantics, and Kreisel [41] proved the converse. The
name “Gödel-Dyson-Kreisel Principle” seems appropriate for the schema

∀βB(β)¬∀n¬A(n, β)→ ¬¬∀βB(β)∃nA(n, β)

where A(n, β) expresses a primitive recursive relation of n, β. Primitive recursive
relations depend only on finite initial segments of their choice sequence variables,
so the principle can be expressed by the schema

GDKPR : ∀βB(β)¬¬∃n u(β(n)) = 0→ ¬¬∀βB(β)∃n u(β(n)) = 0

where the u may represent any primitive recursive function.
From the point of view on intuitionistic analysis taken by Kleene and Vesley in

[33] it seems unnecessary to restrict the function represented by u to be primitive
recursive, so consider also the principle

GDK : ∀βB(β)¬¬∃n ρ(β(n)) = 0→ ¬¬∀βB(β)∃n ρ(β(n)) = 0.

Theorem 1. Assuming the double negation ¬¬FT1 of the following form of the
classically and intuitionistically correct binary fan theorem11

FT1 : ∀βB(β)∃x ρ(β(x)) = 0→ ∃n∀βB(β)∃x ≤ n ρ(β(x)) = 0,

the double negation ¬¬WKL of weak König’s Lemma

WKL : ∀n∃βB(β)∀x ≤ n ρ(β(x)) 6= 0→ ∃βB(β)∀xρ(β(x)) 6= 0

is equivalent to GDK over two-sorted intuitionistic arithmetic.

Proof. We can actually prove ¬¬FT1(ρ) & GDK(ρ) ↔ ¬¬WKL(ρ) in two-sorted
intuitionistic arithmetic IA1, a weak subsystem of intuitionistic recursive analysis
obtained from Kleene’s I by omitting the axiom schemas of countable choice, bar

10The proof requires the fan theorem, defined in the next subsection, but does not use classi-
cally false continuity principles.

11While FT1 is false for recursive sequences β, it is true under the intended intuitionistic
interpretation when β ranges over all binary choice sequences. By “the double negation of the
fan theorem” we mean ¬¬FT1(ρ) rather than ¬¬∀ρFT1(ρ), and similarly for ¬¬WKL.
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induction and continuous choice.12 (By a similar proof, WKL is equivalent over
IA1 to the conjunction of FT1 and MP1.)

First consider ¬¬FT1(ρ) & GDK(ρ)→ ¬¬WKL(ρ). Since ¬¬WKL(ρ) is equiv-
alent in IA1 to ¬¬∀n∃βB(β)∀x ≤ n ρ(β(x)) 6= 0→ ¬¬∃βB(β)∀xρ(β(x)) 6= 0 it will

be enough to prove ¬∃βB(β)∀xρ(β(x)) 6= 0→ ¬∀n∃βB(β)∀x ≤ n ρ(β(x)) 6= 0.

Assume (a) ¬∃βB(β)∀x ρ(β(x)) 6= 0. Then (b) ∀βB(β)¬¬∃x ρ(β(x)) = 0, so by

GDK(ρ): (c) ¬¬∀βB(β)∃x ρ(β(x)) = 0. Then (d) ¬¬∃n∀βB(β)∃x ≤ n ρ(β(x)) = 0

by ¬¬FT1(ρ), so (e) ¬∀n¬∀βB(β)∃x ≤ n ρ(β(x)) = 0. Because there are only finitely

many binary sequences of length ≤ n, IA1 proves that ¬∀βB(β)∃x ≤ n ρ(β(x)) = 0

is equivalent to ∃βB(β)∀x ≤ n ρ(β(x)) 6= 0, which together with (e) gives the desired
conclusion.

For the converse, assume (f) ∀βB(β)¬¬∃x ρ(β(x)) = 0, so (equivalently in IA1)

(g) ¬∃βB(β)∀x ρ(β(x)) 6= 0. Then (h) ¬∀n∃βB(β)∀x ≤ nρ(β(x)) 6= 0 by ¬¬WKL(ρ),

and this is equivalent in IA1 to (i) ¬∀n¬∀βB(β)∃x ≤ n ρ(β(x)) = 0 and hence to

(j) ¬¬∃n∀βB(β)∃x ≤ n ρ(β(x)) = 0. Then a fortiori (k) ¬¬∀βB(β)∃x ρ(β(x)) = 0,
completing the proof of ¬¬WKL(ρ)→ GDK(ρ) in IA1. The proof in IA1 of
¬¬WKL(ρ)→ ¬¬FT1(ρ) is similar. �

This equivalence is implicit in [14]. As a consequence, if HPC is weakly com-
plete for its intended interpretation then weak König’s Lemma is persistently con-
sistent with the fan theorem in the sense that any counterexample to either would
generate a counterexample to the other.13 Kleene’s counterexample for recursive
sequences (Lemma 9.8 of [33]) applies equally to both.

Finally, it is worth mentioning that GDK is equivalent over F = IA1 + FT1 to
the Gödel-Gentzen negative interpretation of FT1, so F + GDK is the minimum
classical extension of F.

5. Consistency and independence results

Because it is provable in I + MP1, GDK is evidently consistent with I. In fact
I + GDK lies strictly between I and I + MP1, but we can say more. Consider
Vesley’s Schema:

VS : ∀α∀x∃β(β(x) = α(x) & ¬A(β)) & ∀α(¬A(α)→ ∃βB(α, β))

→ ∀α∃β(¬A(α)→ B(α, β)).

In [80] Vesley proposed VS as a “palatable substitute” for Kripke’s Schema KS,
which proves Brouwer’s “creating subject” counterexamples but conflicts with the
∀α∃β-continuity axiom schema of I.14 Vesley proved that I + VS is consistent (by
special-realizability) and refutes a large number of classical principles objected to
by Brouwer, including Markov’s Principle.

Because it is special-realizable, GDK is consistent with I + VS. Assuming HPC
is weakly complete for Beth semantics, GDK is a palatable substitute for Markov’s
Principle MP1 and the formal system I + VS + GDK has real advantages over I
as an axiomatization of intuitionistic mathematical practice.

12See [61] for a precise definition of IA1. As it only proves the existence of primitive recursive
functions, IA1 is weaker than Troelstra’s EL.

13The useful compound adjective “persistently consistent” may be due to Artemov.
14KS is consistent with ∀α∃x-continuity and with ∀α∃!β-continuity, but KS and MP1 together

entail the law of excluded middle; cf. [63, 64], [56].
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Theorem 2. GDK is consistent with I and with Vesley’s Schema VS, which proves
Brouwer’s “creating subject” counterexamples. Hence GDK does not entail MP1.

Proof. GDK is both Kleene function-realizable and Srealizable. Vesley’s Schema is

Srealizable so I + VS + GDK is consistent. MP1 is realizable but not Srealizable,
so is not provable in I + VS + GDK. (In fact, I + VS + MP1 is inconsistent.) �

Theorem 3. GDK is independent of I + VS.

Proof. Every theorem of I + VS is Grealizable in the sense of the author’s [55],
but GDK is not. �

By Grealizability, I + VS is consistent with “weak Church’s thesis” ∀α¬¬GR(α),
where GR(α) is ∃e∀x∃y(T(e, x, y) & U(y) = α(x)). Thus GDK is not provable in
I + VS + ∀α¬¬GR(α).

6. Markov’s principle and order in the continuum

6.1. MP and the intuitionistic continuum. Brouwer’s theory of the contin-
uum is closely related to his treatment of Baire and Cantor space, and MP1 can be
expressed in terms of real numbers. Relying on sources by Brouwer and Heyting,
in Chapter 3 of [33] Vesley gave a precise formal development of the nonnegative
intuitionistic reals as equivalence classes, under coincidence, of real number gener-
ators. An r.n.g. is a Cauchy sequence α(0), α(1)/21, α(2)/22, α(3)/23, . . . of dual
fractions, determined completely by the sequence α of numerators satisfying the
Cauchy condition ∀k∃x∀p2k|2pα(x)− α(x+ p)| < 2x+p.

A canonical real number generator (c.r.n.g.) is an r.n.g. satisfying the uniform
Cauchy condition ∀x|2α(x) − α(x + 1)| ≤ 1, which is much easier to work with
formally. The fact that every r.n.g. coincides with a c.r.n.g. is provable using
countable choice, but Vesley formalized a significant part of intuitionistic real
analysis in terms of r.n.g. We follow his treatment, based on Brouwer [8], for
the definitions and a few basic properties of four intuitionistic relations between

real number generators: coincidence
◦
=, apartness #, virtual ordering <̇ and the

measurable natural ordering <◦.15
Each of the following formulas defines the relation on the left side of the ↔.

• α ∈ R↔ ∀k∃x∀p2k|2pα(x)− α(x + p)| < 2x+p

• α ◦= β ↔ ∀k∃x∀p2k|α(x + p)− β(x + p)| < 2x+p.
• α#β ↔ ∃k∃x∀p2k|α(x + p)− β(x + p)| > 2x+p.
• α <◦β ↔ ∃k∃x∀p2k(β(x + p)−̇α(x + p)) ≥ 2x+p.

• α <̇ β ↔ ¬β <◦α & ¬α ◦= β.
• α ∈ R′ ↔ ∀x|2α(x)− α(x + 1)| ≤ 1.

Vesley derived hundreds of equivalences in IA1 plus countable choice, including

(1) ∀αα∈R∀ββ∈R(α <̇ β ↔ ¬¬α <◦β).

(2) ∀αα∈R∀ββ∈R(α
◦
= β ↔ ¬α <̇ β & ¬α >̇ β).

15Heyting (cf. [19], page 107) called the measurable natural ordering the “pseudo-ordering”
and symbolized it by “<” instead of Brouwer’s “<◦.” Bishop retained Heyting’s symbol for the
measurable natural order, which agrees with its classical use, but Mandelkern [52] introduced
the term “pseudo-positive” for a (constructively) weaker relation he symbolized by “0 <◦,” and
changed Heyting’s “<̇” for the virtual ordering to “<·.” The resulting notational disconnect with
the careful treatment in [33] has probably resulted in much duplication of Vesley’s and Kleene’s
work by modern constructivists.
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(3) ∀αα∈R∀ββ∈R(α <̇ β ↔ ¬α >̇ β & ¬α ◦= β).

(4) ∀αα∈R∃ββ∈R′(α
◦
= β).

Kleene ([33] Chapter 4) analyzed the logical relationships among various order
properties of real numbers considered by Brouwer in [9].16 He proved in particular
that MP1 is interderivable over IA1 with each of the following statements:17

(a) ∀z∀α[¬∀y¬T1
0(
∼
α (y), z, y)→ ∃yT1

0(
∼
α (y), z, y)]

(b) ∀αα∈R∀ββ∈R(¬α ◦= β ↔ α#β)
(c) ∀αα∈R∀ββ∈R(α <̇ β ↔ α <◦β)

Kleene also showed that ∀αα∈R∀ββ∈R(¬α ◦= β → α#β) is equivalent over IA1 to
∀αα∈R∀ββ∈R(α <̇ β → α <◦β), and that neither is derivable in I.

6.2. MP and the constructive continuum. Working informally and avoiding
the use of negation, Bishop [6] represented constructive real numbers by regular
Cauchy sequences {xn} of rational numbers satisfying |xn−xm| < 1/n+ 1/m. He
did not accept Markov’s principle so the distinctions described above are mean-
ingful for his constructive reals. Let R′′ be the class of regular Cauchy sequences
x = {xn}. It is straightforward to prove (using countable choice, which Bishop
accepted) that every Cauchy sequence coincides with a regular one, so R, R′ and
R′′ represent the same constructive reals.18

Mandelkern [52] studied order properties of the constructive reals, deriving
equivalences between them and properties of the decision sequences (monotone
nondecreasing binary sequences) involved in Brouwer’s creating subject counterex-
amples. He formulated a “limited continuity principle” LCP for functions and an
equivalent “almost separating principle” ASP for real numbers, which follows from
the “limited principle of existence” LPE, a version of Markov’s principle.19

In [53] Mandelkern showed that LPE is equivalent to the conjunction of the
“weak limited principle of existence” WLPE (which is ASP) and the “lesser limited
principle of existence” LLPE. He stated these principles using “<” instead of “<◦”
and “<·” instead of “<̇”, but in Vesley’s notation LPE (equivalent to MP1 by [33])
is ∀αα∈R′′(0 <̇ α→ 0 <◦α); WLPE is ∀ββ∈R′′(∀αα∈R′′(0<̇ α ∨ α<̇ β)→ 0 <◦β);
and LLPE is ∀ββ∈R′′(¬¬0 <◦β → ∀αα∈R′′(0<̇ α ∨ α<̇ β)).

Then in [24] Ishihara decomposed MP1 into “weak Markov’s principle”

WMP : ∀α[∀β(¬¬∃n(β(n) 6= 0) ∨ ¬¬∃n(α(n) 6= 0 & β(n) = 0))→ ∃n(α(n) 6= 0)]

and “disjunctive Markov’s principle”

MP∨ : ∀α∀β[¬¬∃n(α(n) = 0 ∨ β(n) = 0)→ ¬¬∃nα(n) = 0 ∨ ¬¬∃nβ(n) 6= 0]

equivalent respectively to Mandelkern’s WLPE and LLPE. Their main interest
was to discover which theorems of classical real analysis could (only) be proved
in their original form by assuming these and other principles considered to be
nonconstructive. Much more has been done along these lines (cf. [7] and [25]).

16The diagram on page 177 gives five equivalents of ∀αα∈R∀ββ∈R(¬α ◦= β → α#β) over I.
17(a) extends M0 from recursive functions to recursive functionals, while (b) and (c) confirm

that acceptance of MP1 would greatly simplify the intuitionistic theory of the continuum.
18Vesley’s treatment can easily be extended informally to all intuitionistic real numbers, so 0

loses its special status as a boundary point.
19The limited continuity principle says that every real-valued nondecreasing function on the

closed unit interval which approximates intermediate values is continuous.
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7. The descriptive power of MP and MR in the context of analysis

Many studies of the consequences and relative independence of variants and
weakenings of Markov’s principle in the context of systems with intuitionistic logic
have appeared since Kreisel’s [38]. Among these, in rough chronological order, are
Myhill [63] and [64]; Vesley [81]; Troelstra [74]; Luckhardt [50] and [51]; Beeson [3];
Mandelkern [52] and [53]; Bridges and Richman [7]; Ishihara [24] and [25]; Scedrov
and Vesley [66]; Coquand and Hoffman [11]; Ishihara and Mines [26]; Kohlenbach
[34] and [35]; Akama, Berardi, Hayashi and Kohlenbach [1]; Moschovakis [58];
Loeb [49]; Herbelin [18]; Ilik and Nakata [23]; Fujiwara, Ishihara and Nemoto [16];
Hendtlass and Lubarsky [17]; Coquand and Mannaa [12].

Even when obtained by classical methods, technical results of this kind can be
interpreted in terms of the models permitted or eliminated by versions of MP, as
already observed for MPQF in the context of arithmetic and GDK in the context
of predicate logic. This section considers some consequences of adding MP1, or a
weak version of MP1 such as MP∨ or WMP or GDK, to two-sorted intuitionistic
systems between IA1 and I which already obey Markov’s rule.

7.1. Constructive existence and the Church-Kleene Rule. ∀αGR(α) is
false in I by ∀α∃x-continuous choice, and is inconsistent with the classically correct
subsystem F = IA1 + FT1 of I by Lemma 9.8 of [33]. Even without continuity
principles Brouwer’s choice sequences cannot all be recursive.

Nevertheless, as Kleene proved in [32], if ∃αA(α) is closed and I ` ∃αA(α) then
I ` ∃α[GR(α) & A(α)].20 This Church-Kleene Rule extends to I + MP1; so every
infinite sequence I or I + MP1 can prove exists must be recursive.

The Church-Kleene Rule holds also for B and B + MP1 where B is the clas-
sically correct subsystem of I which omits continuous choice. All these systems
satisfy numerical instantiation. By [32] with [60], every closed theorem of the form
∃αA(α) can be improved to A({e}) for some numeral e for which B proves that e
is the gödel number of a total recursive function. In this sense the natural numbers
suffice to determine witnesses for existential assertions, not only in intuitionistic
arithmetic but also in constructive and intuitionistic analysis.

7.2. Unavoidability of arithmetical sequences. The situation is different for
unavoidable existence.21 On the one hand, Grealizability (cf. [55]) establishes that
∀α¬¬GR(α) (hence ¬∃α¬GR(α)) is consistent with I extended by

Σ0
1-DNS0 : ∀α[∀x¬¬∃yα(〈x, y〉) = 0→ ¬¬∀x∃yα(〈x, y〉) = 0],

a version of the consequence of MP studied in [66].
On the other hand, Solovay showed that S + MP1 proves that characteristic

functions for all arithmetical relations cannot fail to exist (so in particular S +
MP1 ` ¬¬∃α¬GR(α)), where S is a classically correct subsystem of I including
the bar induction schema BI1 and countable choice for arithmetical relations.22

20In fact, under the same assumption there is a numeral e such that I proves a sentence which
could be abbreviated by ∀x{e}(x) ↓ & A({e}), cf. page 101 of [32].

21“Unavoidable existence” is represented formally by the doubly negated existential quantifier.
If ¬¬∃xA(x) is a closed theorem of e.g. HA, then no consistent extension of HA can prove
¬∃xA(x) so ∃xA(x) is persistently consistent with HA.

22His proof is described in [57], and extended to show that all classically ∆1
1 sequences are

unavoidable in S + MP1.
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Part of Solovay’s argument goes through when MP1 is replaced by the principle

Σ0
1-DNS1 : ∀ρ[∀α¬¬∃xρ(α(x)) = 0→ ¬¬∀α∃xρ(α(x)) = 0]

which entails GDK but not MP1. In S + Σ0
1-DNS1 and a fortiori in I + Σ0

1-DNS1,
which is consistent by Kleene’s function-realizability, characteristic functions for
all negative arithmetical relations (not involving ∨ or ∃) are unavoidable. In
particular, S + Σ0

1-DNS1 ` ¬¬∃β∀x(β(x) = 0↔ ∀y¬T(x, x, y)), so S + Σ0
1-DNS1

proves ¬¬∃α¬GR(α) (equivalent by intuitionistic logic to ¬∀α¬¬GR(α)).
The fan theorem, which fails classically if only recursive sequences are allowed,

holds for the arithmetical sequences. Every arithmetical relation has a classically
equivalent negative translation. One might be tempted to propose Σ0

1-DNS1 as
an “as yet undiscovered” axiom for intuitionistic analysis, guaranteeing the weak
completeness of HPC for Beth semantics. Certainly I + Σ0

1-DNS1 proves that
nonrecursive sequences are unavoidable, and that the principle of testability for
Σ0
1 number-theoretic relations cannot be refuted.

7.3. WMP, MP∨, GDK and WKL with uniqueness. WMP is provable in
any subsystem of I extending IA1 and including ∀α∃x-continuous choice (cf. [25]),
so MP1 is equivalent to MP∨ over I.23 It turns out that adding this bit of classical
logic to I is equivalent to accepting a mathematical principle WKL!! which is
stronger than the fan theorem but weaker constructively than WKL.

Berger and Ishihara [4] realized that adding the strong uniqueness hypothesis
∀αB(α)∀βB(β)[∃xα(x) 6= β(x)→ ∃xρ(α(x)) 6= 0 ∨ ∃xρ(β(x)) 6= 0] to WKL results in
a principle they called WKL!, which is interderivable with FT1 over a weak con-
structive system; cf. Schwichtenberg [67]. Using instead the constructively weaker
uniqueness hypothesis ∀αB(α)∀βB(β)[∀xρ(α(x)) 6= 0 & ∀xρ(β(x)) 6= 0→ α = β], we
obtain a stronger principle WKL!! which was introduced and analyzed in [59]. Part
of the analysis involved arithmetical comprehension (arithmetical “unique choice”
ACAr

00 !), which holds in S.

Theorem 4. WKL!! has the following properties:

(a) IA1 + WKL!! proves MP∨, GDK, and ¬¬FT1.
(b) WKL!! is interderivable with MP∨ over F augmented by arithmetical com-

prehension, and therefore also over S.
(c) WKL!! is interderivable with MP1 over I, and over every subsystem of I

which extends F and includes ∀α∃x-continuous choice.

Proof. By the proofs of Theorems 3 and 4 in [59], IA1 + WKL!! entails MP∨ and
¬¬WKL. The proof of Theorem 5 in [59] derived WKL!! from MP∨ and ¬¬WKL
in IA1 augmented by countable comprehension (“unique choice”) for arithmetical
relations. (a) and (b) follow by Theorem 1 in §4.2 above. Over IA1, continuous
choice entails countable choice and countable comprehension, so (c) follows from
(b) by Ishihara [24], [25]. �

From these results with the careful work in [14] it follows that the weak com-
pleteness of HPC for Beth semantics can be proved in S + WKL!! or S + GDK,
or even in F + GDK augmented by arithmetical comprehension, using mathemat-
ical induction only over arithmetical relations. For strong completeness of HPC
for Beth semantics, I + WKL!! would suffice.

23In [16] MP∨ is identified as a restricted version of deMorgan’s law and is renamed “Π0
1-dML.”
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8. Epilogue

We began this essay with the conviction that Markov’s Principle, Markov’s
Rule and the common notion of constructive proof are legitimate candidates for
investigation in the spirit of Kreisel’s ideal of informal rigour. Following Heyting’s
implicit advice, our preliminary investigation was limited to the context of formal
systems for intuitionistic predicate logic, arithmetic and analysis.

However, informal rigour does not apply only to arguments formalizable in par-
ticular formal systems (cf. [54]). Brouwer stressed that to the extent formalization
is justified at all, it must be preceded by the appropriate (informal intuitionistic)
mathematics. We must remember that a literal translation of “metamathematics”
is “after mathematics.”

Intuitionistic (as opposed to classical) formal systems have nonderivable admis-
sible rules, such as Church’s Rule for HA and the Church-Kleene Rule for I. For
corresponding closed instances of Markov’s Rule and Markov’s Principle, the first
may hold for an intuitionistic system which does not prove the second. We could
call a formal system with intuitionistic logic Markovian if it satisfies an appro-
priate version of Markov’s Rule, and agree to use only arguments which can in
principle be formalized in Markovian systems. Then we could confidently assert
that every provably ∆0

1 relation is recursive, without accepting MP0 as an axiom
(cf. [57]). In effect we would be substituting a broader, but equally precise, notion
of constructive proof for the unimaginative “proof using intuitionistic logic.”

Alternatively, MPQF could be added to intuitionistic arithmetic, guaranteeing
that ∆0

1 relations are recursive. MP1 could be added to intuitionistic analysis or
its neutral subsystem, without increasing the stock of provably recursive functions;
then it would be possible to prove that the constructive arithmetical hierarchy does
not collapse. GDK could be added to intuitionistic analysis as a way of asserting
the adequacy of intuitionistic predicate logic for the intended interpretation, with
possibly interesting mathematical consequences.

Intuitionistic mathematics is intended to evolve as new insights are attained.
Kleene’s decision to axiomatize I using only one classically false axiom which goes
beyond Brouwer’s published writings, Kripke’s and Myhill’s and Vesley’s work
inspired by Brouwer’s creating subject arguments, Kreisel and Troelstra’s work
on lawless sequences and their projections, and the elaboration of Brouwer’s ideas
by Wim Veldman and others support this view. Surely Brouwer and Kreisel would
have agreed that the notion of constructive proof is dynamic, evolving in time.
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