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Abstract. The research on which this article is based was motivated by the wish
to find a model of Kreisel’s lawless sequence axioms in which the lawlike and lawless
sequences form disjoint, inhabited, well-defined classes within Brouwer’s continuum.
The original results, reported as they developed in four papers over a period of ten years
from 1986 to 1996, have so far lacked a reader-friendly presentation. Since the question
of absolute definability is related to the subject of these Bristol Workshops, I offer
here a straightforward exposition of the final model and formal system with axioms
for numbers, lawlike sequences, and arbitrary choice sequences. A choice sequence
is defined to be lawless if it satisfies an extensional (un)predictability condition from
which extensional versions of Kreisel’s axioms of open data and strong continuous
choice follow. The law of excluded middle can be assumed for properties of lawlike
and independent lawless sequences only, while Brouwer’s continuity principle applies
to properties of all choice sequences.

Iterating definability, quantifying over numbers and over lawlike and independent
lawless sequences, yields a classical model of the lawlike sequences with a natural
wellordering. Under the (classically consistent and intuitionistically plausible) assump-
tion that the closure ordinal of the iteration is countable, a realizability interpretation
establishes the consistency of a common extension FIRM(≺) of classical analysis R
and Kleene’s intuitionistic analysis FIM. Lawlike sequences behave classically, while
the lawless sequences form a disjoint, Baire comeager collection of choice sequences, of
classical measure zero. Thus Brouwer’s continuum can be understood as a relatively
chaotic expansion of a completely determined, well-ordered classical continuum.

1. Introduction

Gödel argued in [2] that the unprovability, in any consistent recursively enumerable
extension of the arithmetic of addition and multiplication, of the consistency of that
system strongly suggests that “the human mind . . . infinitely surpasses the powers of
any finite machine.” Implicit in this argument is the assumption that arithmetic is in
fact consistent, and that the human mind can recognize this fact.

Brouwer, for whom all mathematics was open-ended, probably would have said that
the consistency of intuitionistic arithmetic is a trivial consequence of its truth. Gödel’s
negative translation showed that “the system of intuitionistic arithmetic and number
theory is only apparently narrower than the classical one, and in truth contains it, albeit
with a somewhat deviant interpretation.”1

This is an expanded version of a talk given on March 31, 2013 at the Second Bristol Workshop on
the Limitations and Scope of Mathematical Knowledge. I thank Leon Horsten and Philip Welch for
organizing the conference, the Templeton Foundation for sponsoring it, and James Appleby for asking
the questions which inspired this exposition.

1From the translation of [1] on p. 295 of Volume I of Gödel’s collected works.
1
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Formally, intuitionistic arithmetic is a proper subsystem of classical arithmetic. But
intuitionistic analysis FIM includes a continuity principle incompatible with classical
predicate logic. Kleene’s function-realizability interpretation, a recursive implementa-
tion of the Brouwer-Heyting-Kolmogorov explanation of the intuitionistic connectives
and quantifiers, proves FIM consistent relative to its classically correct subsystem B;
so intuitionistic and classical analysis are equiconsistent.

The negative interpretation does not extend to analysis because the negative trans-
lation of the axiom of countable choice is not an intuitionistic principle. It is consistent
with FIM by realizability (using a classical argument), and so classical analysis R has
a “somewhat deviant” negative interpretation in a consistent extension of FIM.

Since classical arithmetic is consistent with FIM, one might hope for a different
consistent extension of intuitionistic analysis containing classical analysis (not just its
negative interpretation) as a part. In [4] Kleene defended his choice to formalize FIM
using only variables over numbers and over arbitrary choice sequences, since the general
recursive functions were the only constructive functions he needed and those could be
coded by numbers. For a quasi-intuitionistic system including classical analysis a third
sort of variable is indicated, as even the class of all hyperarithmetical sequences fails
to satisfy the (classically and intutionistically correct) bar theorem, and if every choice
sequence was a classical object the continuity principle would fail.

Brouwer’s notion of “lawlike sequence” (choice sequence all of whose values are de-
termined in advance) provides a solution. The lawlike sequences can play the role of
the classical objects within the intuitionistic continuum, and this role can be formalized
in a three-sorted axiomatic system FIRM containing R and FIM as two-sorted sub-
systems, with extensional versions of Kreisel’s “lawless sequence” axioms for a class of
choice sequences defined in terms of the lawlike sequences. Consistency is established
for a stronger system FIRM(≺) assuming an ordinal-definable, definably well-ordered
collection of lawlike sequences is countable. For an intuitionist, the assumption that
there are at most countably many lawlike sequences needs no justification.

2. Choice sequences

2.1. Brouwer’s continuum. For the intuitionistic theory of the continuum, Brouwer’s
concept of “choice sequence” replaces the classical notion of an arbitrary completed
infinite sequence of natural numbers. Choice sequences are generated by more or less
freely choosing one integer after another. At each stage, the chooser may or may not
specify restrictions (consistent with those already made) on future choices.

Since the first n values of a choice sequence α may be the only information available
at the nth stage of its construction, every function defined on all choice sequences must
be continuous, so for example if A(α) is ∀x(α(x) = 0) then ¬∀α(A(α) ∨ ¬A(α)) holds.

Any choice sequence all of whose values are determined in advance according to some
fixed law is called “lawlike” or a “sharp arrow.” Brouwer did not specify which laws
may determine lawlike sequences, but evidently every lawlike sequence is definable in
some sense.

2.2. The problem of defining “definability”. Considering whether or not it is pos-
sible to define the concept of absolute mathematical definability, Gödel [3] observed that
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constructibility is not a “satisfactory formulation of definability” because “quantifica-
tion is admitted only with respect to constructible sets and not with respect to sets in
general.” Instead he proposed “definability by expressions containing names of ordinal
numbers and logical constants, including quantification referring to sets,” adding

. . . “definability in terms of ordinals” even if it is not an adequate formu-
lation for “comprehensibility by our mind”, is at least an adequate for-
mulation in an absolute sense for a closely related property . . . , namely
the property of “being formed according to a law” as opposed to “being
formed by a random choice of the elements”.

This idea can be adapted to define “lawlike sequence” by iterating definability, with
quantification over numbers and lawlike sequences and (restricted) quantification over
arbitrary choice sequences, to build a classical model of a three-sorted theory. The inte-
gers of the model are the standard integers, the arbitrary choice sequences of the model
are all the classical one-place number-theoretic functions, and the lawlike sequences of
the model form a definably well-ordered subclass of the choice sequences.

2.3. “Lawlike” vs. “lawless” sequences. Kreisel [7] proposed axioms for numbers,
“constructive” functions, and intensionally “lawless” sequences in which “the simplest
kind of restriction on restrictions is made, namely some finite initial segment of values
is prescribed, and, beyond this, no restriction is to be made”. His constructive functions
satisfy countable and dependent choice. Equality of lawless sequences is decidable.
Distinct lawless sequences are independent and satisfy the axiom of open data and a
strong form of continuous choice (“the only problematic axiom”). There are no variables
over arbitrary choice sequences.

Troelstra [13] pointed out that Kreisel’s problematic axiom entailed an “extension
principle”: every continuous number-valued functional defined on the lawless sequences
has a continuous extension to all sequences. To justify his extension principle philosoph-
ically he introduced a conceptual abstraction operator allowing any choice sequence to
be viewed as lawless. He also filled in the details of Kreisel’s proof that every sentence of
his two-sorted language is formally equivalent to one without lawless sequence variables,
so “lawless sequences can be regarded as a figure of speech.” Troelstra used the term
“lawlike” instead of “constructive,” and noted that the lawlike sequence variables may
be interpreted as ranging over “the classical universe of sequences” ([13] p. 4).

Kreisel’s notion of lawless sequence collapsed because he identified independence with
inequality. The collapse can be avoided by taking α, β to be independent lawless se-
quences if and only if their fair merge [α, β] is lawless. Then Kreisel’s axioms can be
forced to hold by defining “lawless” relative to a given wellordered collection of lawlike
sequences whose intended interpretation is countable.

3. The formal systems RLS(≺) and FIRM(≺)

RLS(≺) is the system for which a classical model will be obtained by iterating
definability, and FIRM(≺) is the quasi-intuitionistic extension of RLS(≺) whose con-
sistency follows by realizability.
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3.1. The three-sorted language L(≺). The language, extending the two-sorted lan-
guage of [6] and [5], contains three sorts of variables with or without subscripts, also
used as metavariables:

i, j, k, . . . , p, q, w, x, y, z over natural numbers,
a, b, c, d, e, g, h over lawlike sequences,
α, β, γ, . . . over arbitrary choice sequences;

finitely many constants f0 = 0, f1 = ′ (successor), f2 = +, f3 = ·, f4 = exp, f5, . . . , fp
for primitive recursive functions and functionals; two binary predicate constants =, ≺;
Church’s λ denoting function abstraction; parentheses (,) denoting function application;
and the logical symbols & ,∨,→,¬ and quantifiers ∀, ∃ over each sort of variable.

Terms (of type 0) and functors (of type 1) are defined inductively. Number variables
and 0 are terms. Sequence variables of both sorts, and unary function constants, are
functors. If fi is a ki,mi-ary function constant, u1, . . . , uki are functors and t1, . . . , tmi

are terms, then fi(u1, . . . , uki , t1, . . . , tmi
) is a term. If u is a functor and t is a term then

(u)(t) is a term. If t is a term then λx(t) (also written λx.t) is a functor.
Prime formulas are of the form s = t where s, t are terms, or u ≺ v where u, v

are functors. If u, v are functors then u = v abbreviates ∀xu(x) = v(x). Composite
formulas are formed as usual, with parentheses determining scopes.

Terms and functors with no occurrences of arbitrary choice sequence variables are
R-terms and R-functors respectively. Formulas with no free occurrences of arbitrary
choice sequence variables are R-formulas.

3.2. Axioms and rules for 3-sorted intuitionistic predicate logic. The logical
basis is intuitionistic three-sorted predicate logic, as in [6] but with additional rules and
axiom schemas for the lawlike sequence variables:

9R. C → A(b) / C → ∀bA(b) if b is not free in C.
10R. ∀bA(b)→ A(u) if u is an R-functor free for b in A(b).
11R. A(u)→ ∃bA(b) if u is an R-functor free for b in A(b).
12R. A(b)→ C / ∃bA(b)→ C if b is not free in C.

∀a∃!β(∀x a(x) = β(x)) is a theorem, so every lawlike sequence is a choice sequence.2

3.3. Axioms for 3-sorted intuitionistic number theory: Equality axioms assert
that = is an equivalence relation and x = y → α(x) = α(y) (so x = y → a(x) = a(y)).
For terms r(x), t with t free for x in r(x), the λ-reduction schema is

(λx.r(x))(t) = r(t),

where r(t) is the result of substituting t for all free occurrences of x in r(x) .
The mathematical axioms include the assertions that 0 (= f0) is not a successor and

the successor function (= f1) is one-to-one, the defining equations for the primitive
recursive function and functional constants f2, . . . , fp ([6], [5]) and the mathematical
induction schema extended to L(≺). For the countable axiom of choice

AC01. ∀x∃αA(x, α)→ ∃α∀xA(x, λy.α(2x · 3y))
the x must be free for α in A(x, α).

2The ! expresses uniqueness: ∃!βA(β) abbreviates ∃βA(β) & ∀β∀γ(A(β) & A(γ) → β = γ), and
∃!xA(x) abbreviates ∃xA(x) & ∀x∀y(A(x) & A(y)→ x = y).
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Finite sequences are coded primitive recursively as in [6]. Let 〈x0, . . . , xk〉 = Πk
0p
k
i

where pi is the ith prime with p0 = 2, and (y)i be the exponent of pi in the prime
factorization of y. Let Seq(y) abbreviate ∀i < lh(y) (y)i > 0 where lh(y) is the number
of nonzero exponents in the prime factorization of y. If k ≥ 0 then 〈x0 + 1, . . . , xk + 1〉
codes the finite sequence (x0, . . . , xk), and 〈 〉 = 1 codes the empty sequence. If Seq(y)
and Seq(z) then y ∗ z codes the concatenation of the sequences coded by y and z.

The finite initial segment of length n of a choice sequence α is coded by α(n), where
α(0) = 1 and α(n+ 1) = 〈α(0) + 1, . . . , α(n) + 1〉. Other useful abbreviations are α ∈ w
for α(lh(w)) = w, and w ∈ α for ∃n(w = α(n)). If Seq(w) then w ∗α = β where β ∈ w
and β(lh(w) + n) = α(n).

3.4. Lawless sequences, restricted quantification, and lawlike comprehension.
Intuitively, a lawless sequence should not be predictable by any lawlike process, but this
negative condition is not enough to satisfy Kreisel’s axioms. Instead, call a sequence
β a predictor if ∀w(Seq(w) → Seq(β(w))), and call a choice sequence α lawless if
every lawlike predictor correctly predicts α somewhere. Since each prediction affects
only finitely many values, this positive condition leaves room for (indeed, guarantees)
plenty of chaotic behavior if there are only countably many lawlike predictors. From
the intuitionistic point of view this assumption needs no justification; but there is no
lawlike enumeration of the lawlike sequences.

Formally, let RLS(α) abbreviate

∀b[∀w(Seq(w)→ Seq(b(w)))→ ∃x α ∈ α(x) ∗ b(α(x))].

Note that Troelstra’s extension principle fails, since ∀α(RLS(α)→ ∃nα(n) = 1) but the
function assigning to each lawless α the least n such that α(n) = 1 cannot be extended
continuously to all choice sequences.

Two lawless sequences α, β are independent if their fair merge [α, β] is lawless, and
similarly for α0, . . . , αk, where [α0, . . . , αk]((k + 1)n + i) = αi(n) for 0 ≤ i ≤ k and all
n. A restricted formula E has arbitrary choice sequence quantifiers only in subformulas
of the form ∀α0(RLS([α0, . . . , αk]) → A) and ∃α0(RLS([α0, . . . , αk]) & A) where no
arbitrary choice sequence variables but α0, . . . , αk occur free in A.

There is a lawlike function-comprehension schema

ACR
00!. ∀x∃!yA(x, y)→ ∃b∀xA(x, b(x))

where A(x, y) is any restricted R-formula and b is free for y in A(x, y). By this axiom,
the lawlike sequences are closed under “recursive in.”

3.5. Axioms for lawless sequences. These are Kreisel’s and Troelstra’s axioms from
[7] and [13], adapted to Kleene’s convention for coding continuous functions, with in-
equality of lawless sequences replaced by independence. There are two density axioms:

RLS1. ∀w[Seq(w)→ ∃α(RLS(α) & α ∈ w)].

RLS2. ∀α[RLS(α)→ ∀w[Seq(w)→ ∃β(RLS([α, β]) & β ∈ w)]].

Kreisel’s principle of open data is stated as follows, on condition that A(α) is restricted
and has no other arbitrary choice sequence variables free, and β is free for α in A(α):

RLS3. ∀α[RLS(α)→ (A(α)→ ∃y∀β(RLS(β) & β ∈ α(y)→ A(β)))].
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Effective continuous choice for lawless sequences is the schema

RLS4. ∀α[RLS(α)→ ∃bA(α, b)]→ ∃e∃b∀α[RLS(α)→
∃!ye(α(y)) > 0 & ∀y(e(α(y)) > 0→ A(α, λx. b(〈e(α(y))−̇1, x〉)))]

where A(α, b) is restricted with no arbitrary choice sequence variables but α free, and
e, y, α are free for b in A(α, b).

3.6. Wellordering the lawlike sequences. Axioms W0-4 assert that the lawlike se-
quences are well-ordered by ≺, and W5 weakly specifies the domain of ≺:

W0. α = β & α ≺ γ → β ≺ γ and β = γ & α ≺ β → α ≺ γ.

W1. ∀a∀b[a ≺ b→ ¬b ≺ a].

W2. ∀a∀b∀c[a ≺ b & b ≺ c→ a ≺ c].

W3. ∀a∀b[a ≺ b ∨ a = b ∨ b ≺ a].

W4. ∀a[∀b(b ≺ a→ A(b))→ A(a)]→ ∀aA(a),

where A(a) is any restricted R-formula in which b is free for a.

W5. α ≺ β → ¬∀a∀b¬(α = a & β = b).

The double negation in W5 is essential. Replacing ¬∀a∀b¬ by ∃a∃b would destroy the
realizability model.

3.7. Restricted LEM, the axiom of closed data and lawlike countable choice.
The final axiom schema for RLS(≺) is the restricted law of the excluded middle:

RLEM. ∀α(RLS(α)→ A(α) ∨ ¬A(α))

for A(α) restricted and with no other arbitrary choice sequence variables free. Lawless
sequences exist by RLS1, so A ∨ ¬A follows for A without arbitrary choice sequence
variables. Thus the logic of the two-sorted subsystem with only number and lawlike
sequence variables, omitting W5 and with the α, β, γ in W0 and the axioms for 3-sorted
intuitionistic number theory replaced by a, b, c respectively, is classical.

By an easy argument, RLS3 and the restricted LEM entail the following principle of
closed data with the same restrictions on A(α) as for RLS3:

RLS5. ∀α[RLS(α)→ (∀y∃β(RLS(β) & β ∈ α(y) & A(β))→ A(α))].

In an intuitionistic subsystem obtained by omitting RLEM, RLS5 may be taken as an
additional axiom schema.

For restricted R-formulas A(x, a) the lawlike comprehension schema entails

ACR
01!. ∀x∃!aA(x, a)→ ∃b∀xA(x, λy.b(2x · 3y)),

with the obvious conditions on the variables. By the wellordering axioms, with the same
conditions this schema can be strengthened to lawlike countable choice

ACR
01. ∀x∃aA(x, a)→ ∃b∀xA(x, λy.b(2x · 3y)).

Lawlike classical analysis is the subsystem R of RLS(≺) obtained by restricting the
language to number and lawlike sequence variables as above, omitting ≺ and its axioms,
and replacing RLEM by A ∨ ¬A and ACR

00! by ACR
01.
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3.8. Brouwer’s bar theorem and Troelstra’s generalized continuous choice.
Two axiom schemas, in addition to those already stated (in the two-sorted language
LFIM without ≺ and with number and arbitrary choice sequence variables only), char-
acterize Kleene and Vesley’s full system FIM of intuitionistic two-sorted number theory
in [6] and [5]. These specifically intuitionistic axiom schemas are Brouwer’s “bar theo-
rem” and strong continuous choice, stated now for L(≺).

Kleene gave four versions of the bar theorem which are interderivable using AC00! (a
consequence of AC01). The version adopted here assumes a thin bar:

BI!. ∀α∃!xR(α(x)) & ∀w(Seq(w) & R(w)→ A(w)) &

∀w(Seq(w) & ∀nA(w ∗ 〈n+ 1〉)→ A(w))→ A(〈 〉).

Kleene’s strong version of Brouwer’s principle of continuous choice is

CC11. ∀α∃βA(α, β)→ ∃σ∀α(∀n∃!xσ(〈n+ 1〉 ∗ α(x)) 6= 0 &

∀β(∀n∃xσ(〈n+ 1〉 ∗ α(x)) = β(n) + 1→ A(α, β))),

which can be abbreviated by ∀α∃βA(α, β) → ∃σ∀α({σ}[α] ↓ & A(α, {σ}[α])). The
necessary restrictions on the bound variables are obvious and will not be stated.

Troelstra [12] found a strengthening of Brouwer’s principle which precisely charac-
terizes the function-realizability notion of [6]. Troelstra’s generalized continuous choice
schema can be abbreviated by

GC11. ∀α(A(α)→ ∃βB(α, β))→ ∃σ∀α(A(α)→ {σ}[α] ↓ & B(α, {σ}[α])),

where A(α) must be almost negative (i.e. contain no ∨, and no ∃ except immediately
before an equation between terms). The maximal system considered in this article, with
all schemas extended to the language L(≺), is

FIRM(≺) = RLS(≺) + BI! + GC11.

3.9. Classical and intuitionistic analysis as subsystems of FIRM(≺). Four sub-
systems of the maximal system are of independent interest. The main theorem, that
FIRM(≺) is consistent, depends on the assumption that its subsystem RLS(≺) has
a classical model with just the standard integers and all the classical arbitrary choice
sequences, but only countably many lawlike sequences.

The subsystem FIRM obtained by restricting the language to L (without ≺), drop-
ping the axioms W0-W5, and replacing ACR

00! by ACR
01 has lawlike classical analysis

R (described in §3.7) and Kleene’s intuitionistic analysis FIM and basic analysis B
as two-sorted subsystems in the languages LR and LFIM (= LB) respectively, where
LR is obtained by excluding the arbitrary choice sequence variables from L. For FIM
Troelstra’s GC11 is replaced by its consequence CC11; B is the neutral subsystem of
FIM with BI! but without continuous choice.

A classical version of the bar theorem for LR, obtained from BI! by changing α to a
and dropping the !, is provable in R.3 Except for the choice of Latin rather than Greek
letters for sequence variables, R is Kleene’s B with classical logic.

3See p. 53 of [6]. The ! is essential for the intuitionistic version.
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3.10. Consistency of FIRM(≺). This depends on two theorems and an assumption
whose consistency follows from work of Levy [8]. Proofs of these theorems are outlined
in the next two sections.

Theorem 1. Assuming a certain definably wellordered subset R of ωω (determined
by iterating definability by restricted R-formulas) is countable, RLS(≺) has a classical
model M(≺R) with R as the class of lawlike sequences. The class RLS of lawless
sequences of the model is Baire comeager in ωω, and has classical measure 0.

Theorem 2. Under the same countability assumption, FIRM(≺) is consistent by
a classical realizability interpretation. So the classical sequences can consistently be
viewed as the lawlike elements of Brouwer’s continuum, while the lawless sequences
form a dense collection of choice sequences disjoint from the lawlike part.

4. Construction of the classical model and proof of Theorem 1

4.1. Definability over (A,≺A) by a restricted formula of L(≺). If F (a0, . . . , ak−1)
is a restricted formula of L(≺) of the form ∀x∃!yE(x, y, a0, . . . , ak−1) where x, y are all
the distinct number variables free in E and a0, . . . , ak−1 are all the distinct variables
free in F in order of first free occurrence, and if A ⊆ ωω, ≺A is a binary relation on A,
ϕ ∈ ωω and ψ0, . . . , ψk−1 ∈ A, then E defines ϕ over (A,≺A) from ψ0, . . . , ψk−1 if and
only if, when number variables range over ω, lawlike sequence variables range over A,
choice sequence variables range over ωω, ≺ is interpreted by ≺A, and a0, . . . , ak−1 by
ψ0, . . . , ψk−1:

(i) F is true, and
(ii) for all x, y ∈ ω: ϕ(x) = y if and only if E(x,y) is true.

Let Def(A,≺A) be the class of all ϕ ∈ ωω such that some restricted R-formula E of
L(≺) defines ϕ over (A,≺A) from some ψ0, . . . , ψk−1 in A. Observe that A ⊆ Def(A,≺A),
since a(x) = y defines every ϕ ∈ A over A from itself.

For the intended application, ≺A will be a wellordering of A determined inductively
with the help of a fixed enumeration E0(x, y), E1(x, y), . . . of all restricted R-formulas
of L(≺) containing free no number variables but x, y, where E0(x, y) ≡ a(x) = y. In
the case that A is nonempty, Def(A,≺A) will be well-ordered by an end extension ≺∗A of
≺A, defined as follows. For ϕ, θ ∈ Def(A,≺A), set ϕ ≺∗A θ if and only if ∆A(ϕ) < ∆A(θ)
where ∆A(ϕ) is the smallest tuple (i, ψ0, . . . , ψk−1) in the lexicographic ordering < of⋃
k>o(ω×Ak) determined by < on ω and ≺A on A such that Ei defines ϕ over (A,≺A)

from ψ0, . . . , ψk−1. Then ≺∗A wellorders Def(A,≺A); and if ϕ ∈ A then ∆A(ϕ) = (0, ϕ),
so ≺A is an initial segment of ≺∗A. The case A = φ will be treated separately.

4.2. The classical model M(≺R). The next step is to define a structure M(≺R)
for L(≺) by iterating the process described in the previous section. More accurately,
M(≺R) = (ω,R, ωω, f0, . . . , fp,=,≺R) where f0, . . . , fp are the standard interpretations
of the primitive recursive functional constants f0, . . . , fp respectively, = is equality of
natural numbers, and R and ≺R are defined as follows. The construction will guarantee
that ≺R is a wellordering of R.

As above, let E0(x, y), E1(x, y), . . . be a fixed enumeration of all restricted R-formulas
in the language L(≺) containing free no number variables but x and y, where E0(x, y) ≡
a(x) = y. Begin by defining R0 = φ, ≺0= φ, and R1 = Def(R0 ≺0).
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Since RLS(α) always holds and u ≺ v always fails when the lawlike sequence variables
range over the empty set and ≺ is the empty relation, every restricted R-formula of L(≺)
with only the distinct number variables x, y free is equivalent, by an easy translation,
over the structure (ω, φ, ωω, f0, . . . , fp,=, φ) to a formula of the two-sorted language
LFIM with only x and y free. So R1 consists of all analytic sequences.

If ϕ is analytic, let ∆0(ϕ) be the least i ∈ ω such that Ei(x, y) is a formula of LFIM

with only x, y free, and Ei(x, y) defines ϕ. Then define ϕ ≺1 ψ if and only if ϕ, ψ ∈ R1

and ∆0(ϕ) < ∆0(ψ). Evidently ≺1 wellorders R1.
For ζ > 0 define Rζ+1 = Def(Rζ ,≺ζ) and ≺ζ+1=≺∗ζ . At limit ordinals take unions.

By cardinality considerations there is a least ordinal η0 (with cardinality ≤ 2ℵ0) such
that Rη0 = Rη0+1. Let R = Rη0 and ≺R=≺η0 .

By transfinite induction, ≺ζ wellorders Rζ and is an initial segment of ≺ζ+1 for each
ζ < η0, so ≺R wellorders R. HenceM(≺R), the natural classical model in which lawlike
sequence variables range over the subset R of ωω, satisfies axioms W0-W5.4

SinceM(≺R) is a classical model, it evidently satisfies RLEM. SinceM(≺R) satisfies
axiom schema ACR

00! by construction, the following lemmas hold.5

Lemma 1. IfM(≺R) satisfies the axiom schema RLS3 of open data for a restricted
formula A(α) with only α and a list Ψ of lawlike sequence variables free, then M(≺R)
satisfies RLS3 for ¬A(α).

Proof. Recall that 0 is not a sequence code and 1 is the code of the empty sequence.
Given A(α) with only α and the lawlike variables Ψ free, define restricted R-formulas

J(x, y) ≡ (Seq(x)→ Seq(y)) & (y = 1→ ∀β(RLS(β)→ (β ∈ x→ ¬A(β)))) &

(y > 1→ ∀β(RLS(β)→ (β ∈ x ∗ y → A(β)))),

K(x, y) ≡ J(x, y) & ∀z(z < y → ¬J(x, z)).

Assume M(≺R) satisfies RLS3 for A(α). Then under any assignment Ψ of elements of
R to Ψ: M(≺R) |=Ψ ∀x∃!yK(x, y) and so K(x, y) defines a lawlike predictor π ∈ R with
the property that M(≺R) |=Ψ,π ∀xK(x, b(x)). If α ∈ RLS there is a least n at which
π correctly predicts α, so if x = α(n) then α ∈ x ∗ π(x) and M(≺R) |=Ψ,π K(x, b(x)).
If M(≺R) |=Ψ,α ¬A(α) then π(x) = 1; so M(≺R) satisfies RLS3 for ¬A(α) also.

Lemma 2. If α ∈ RLS, then (i) w ∗ α ∈ RLS for every finite sequence code w, (ii)
α◦ϕ ∈ RLS for every injection ϕ ∈ R the characteristic function of whose range is also
in R, and (iii) if π ∈ R is a predictor and n ∈ ω then π correctly predicts α at some
m ≥ n. Hence any sequence obtained by changing or omitting finitely many values of
any α ∈ RLS is also in RLS; if [α1, . . . , αk] ∈ RLS then αi ∈ RLS for each i ≤ k;
and every predictor π ∈ R correctly predicts every α ∈ RLS infinitely many times.

Proofs. Assume α ∈ RLS.
(i) Since M(≺R) satisfies ACR

00!, for each finite sequence code w and each predictor
π ∈ R there is a predictor ρ ∈ R such that ρ(y) = π(w ∗y) for each finite sequence code
y, and ρ correctly predicts α at some n, so π correctly predicts w ∗ α at lh(w) + n.

4In general, “M(≺R) satisfies the axiom” means that M(≺R) satisfies the universal closure of the
axiom; similarly for axiom schemas such as W4.

5In general, “α ∈ RLS” abbreviates “M(≺R) |=α RLS(α).”
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(ii) Let ϕ, ψ, π ∈ R where ϕ is an injection, ψ is the characteristic function of its
range, and π is a predictor. The problem is to show that π correctly predicts α ◦ ϕ
somewhere. If y codes a finite sequence, let y ◦ ϕ be the sequence code of length n =
max{i : ϕ(i) < lh(y)} + 1 such that for i < n: (y ◦ ϕ)i = (y)ϕ(i) if ϕ(i) < lh(y), and
(y ◦ϕ)i = 1 otherwise. Let z = (y ◦ϕ)∗π(y ◦ϕ) and define ρ(y) to be the sequence code
of length m = max{ϕ(i) : i < lh(z)} + 1−̇lh(y) such that for j < m: (ρ(y))j = (z)k
where ϕ(k) = j+ lh(y) if there is such a k, otherwise (ρ(y))j = 1. If y is not a sequence
code set ρ(y) = 0.

Then ρ is a predictor and ρ ∈ R, so ρ correctly predicts α somewhere, so α ∈ y ∗ ρ(y)
for some finite sequence code y. To show: α ◦ ϕ ∈ (y ◦ ϕ) ∗ π(y ◦ ϕ) = z for this y.
With n,m as above, suppose i < lh(z). Then either ϕ(i) < lh(y), so (α ◦ ϕ)(i) + 1 =
α(ϕ(i)) + 1 = (y)ϕ(i) = (y ◦ϕ)i = (z)i; or else ϕ(i) = lh(y) + j where j < m = lh(ρ(y)),
so lh(y) ≤ ϕ(i) < lh(y ∗ ρ(y)), so (α ◦ ϕ)(i) + 1 = α(ϕ(i)) + 1 = (y ∗ ρ(y))ϕ(i) = (ρ(y))j
= (z)i. So z = α ◦ ϕ(lh(z)), so π correctly predicts α ◦ ϕ at n.

(iii) If π is a lawlike predictor and n ∈ ω, define ρ(y) = π(α(n) ∗ y) for all finite
sequence codes y, and ρ(y) = 0 otherwise. Then ρ is a lawlike predictor, so by (ii) (just
established) ρ correctly predicts λx.α(n+ x) at some k, so α ∈ α(n+ k) ∗ π(α(n+ k)),
so π correctly predicts α at m = n+ k.

4.3. Outline of the proof of Theorem 1. The theorem can be restated as follows:
Assume R is countable. Then

(a) The structure M(≺R) is a classical model of RLS(≺) with R as the class of
lawlike sequences, and otherwise standard.

(b) The collection RLS = {α ∈ ωω | M(≺R) |=α RLS(α)} is disjoint from R and
is Baire comeager in ωω, with classical measure 0.

Part of (a) has already been proved. For (b), the fact that RLS is disjoint from R
is obvious, since if π ∈ R then σ = λx.〈π(lh(x)) + 3〉 ∈ R is a lawlike predictor which
never correctly predicts π. To prove that M(≺R) satisfies RLS1-RLS4, and to finish
the proof of (b), an enumeration of R is needed.

Since R is an ordinal-definable subset of ωω and ≺R is an ordinal-definable wellorder-
ing of R, by [8] we may consistently assume that η0, and hence R, is countable. For
the rest of this section, assume that Γ : ω → R is a bijection and χ : ω × ω → {0, 1}
codes a wellordering of type η0 such that for all n,m ∈ ω:

Γ(n) ≺R Γ(m)⇔ χ(n,m) = 1.

To show that M(≺R) satisfies RLS1, define sequences {wn}n∈ω, {xn}n∈ω as follows:

w0 = 〈 〉 = 1,

wn+1 =

{
wn ∗ ((Γ(n))(wn)) if (Γ(n))(wn) codes a finite sequence,
wn otherwise.

xn = lh(wn).

Since R contains infinitely many predictors, {xn}n is cofinal in ω so there is a unique
α ∈ ωω such that α(xn) = wn for each n. Evidently this α ∈ RLS.

To show that M(≺R) satisfies RLS2, suppose that α ∈ RLS and w codes a finite
sequence, and define β(lh(w)) = w. Given any predictor π ∈ R and any prior choice
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β(n) with n ≥ lh(w), there are predictors ϕ, ψ ∈ R so that for finite sequence codes y:

ϕ(y) = π([y ∗ λx.0, β(n) ∗ λx.0](2 · lh(y))),

ψ(y) = Π2i<lh(ϕ(y))p
(ϕ(y))2i
i .

By Lemma 2 there is a least m > n such that α ∈ α(m)∗ψ(α(m)), and then ϕ(α(m)) =

π([α, β(n) ∗ λx.0](2m)). If β(n) is extended by setting β(i) = 0 for n ≤ i < m and
β(i) = (ϕ(α(m)))2i+1−̇1 for 2i + 1 < lh(ϕ(α(m))), then π will correctly predict [α, β]
at 2m. Treating each of the countably many predictors π ∈ R in turn in this manner
gradually produces a β such that [α, β] ∈ RLS.

The proof thatM(≺R) satisfies RLS3 is by induction on the logical form of A(α). The
cases s(α) = t(α) and u ≺ v (u, v R-functors) are immediate. The case u(α) ≺ v(α) uses
W5, so is treated after the inductive cases for ∀a, ∀x and &. In addition to establishing
the inductive case for ¬, sinceM(≺R) is a classical model Lemma 1 gives the inductive
cases for ∨, → and ∀ from those for & and ∃, simplifying the proof.

The proof thatM(≺R) satisfies RLS4 uses the fact thatM(≺R) satisfies RLS3, ACR
01

and RLEM (cf. [9]). This completes the proof of Theorem 1(a). The remaining parts
of the proof of (b) are straightforward (cf. [9] and [10]).

5. The Γ-realizability interpretation

5.1. Definitions. Assume R is countable, with Γ, χ as in the proof of Theorem 1,
and let Ψ = x1, . . . , xn, α1, . . . , αk, a1, . . . , am be a list of distinct variables. Then a
Γ-interpretation Ψ of Ψ is any choice of n numbers, k elements of ωω and m numbers
r1, . . . , rm; and Γ[Ψ ] is the corresponding list of n numbers, k elements of ωω and m
elements Γ(r1), . . . ,Γ(rm) of R.

With the same assumptions on Γ and χ, the Γ-realizability interpretation of L(≺) is
defined as follows. For π ∈ ωω, E a formula of L(≺) with at most the distinct variables
Ψ free, and Ψ a Γ-interpretation of Ψ, define π Γ-realizes-Ψ E by induction on the logical
form of E using Kleene’s coding of recursive partial functionals:6

(1) π Γ-realizes-Ψ a prime formula P , if M(≺R) |=Γ[Ψ ] P .
(2) π Γ-realizes-Ψ A & B, if (π)0 Γ-realizes-Ψ A and (π)1 Γ-realizes-Ψ B.
(3) π Γ-realizes-Ψ A∨B, if (π(0))0 = 0 and (π)1 Γ-realizes-Ψ A, or (π(0))0 6= 0 and

(π)1 Γ-realizes-Ψ B.
(4) π Γ-realizes-Ψ A→ B, if, if σ Γ-realizes-Ψ A, then {π}[σ] Γ-realizes-Ψ B.
(5) π Γ-realizes-Ψ ¬A, if π Γ-realizes-Ψ A→ 1 = 0.
(6) π Γ-realizes-Ψ ∀xA(x), if for each x ∈ ω, {π}[x] Γ-realizes-Ψ, x A(x).
(7) π Γ-realizes-Ψ ∃xA(x), if (π)1 Γ-realizes-Ψ, (π(0))0 A(x).
(8) π Γ-realizes-Ψ ∀aA(a), if for each r ∈ ω, {π}[r] Γ-realizes-Ψ, r A(a).
(9) π Γ-realizes-Ψ ∃aA(a), if (π)1 Γ-realizes-Ψ, (π(0))0 A(a).

(10) π Γ-realizes-Ψ ∀αA(α), if for each α ∈ ωω, {π}[α] Γ-realizes-Ψ, α A(α).
(11) π Γ-realizes-Ψ ∃αA(α), if (π)1 Γ-realizes-Ψ, {(π)0} A(α).

Here e.g. “{π}[α] Γ-realizes-Ψ, α A(α)” abbreviates “{π}[α] is completely defined and
Γ-realizes-Ψ, α A(α).”

6{π}[α] ' λx. π(〈x+ 1〉 ∗ α(µz π(〈x+ 1〉 ∗ α(z)) > 0))−̇1 and {π}[x] ' {π}[λy. x].
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5.2. Outline of the proof of Theorem 2. The theorem can be restated as follows:
Assume R is countable, with Γ, χ as in the proof of Theorem 1. Then to each

theorem E of FIRM(≺) with at most the distinct variables Ψ = Ψ0,Ψ1,Ψ2 free, there
is a function ϕ[Ψ ] which is continuous in Ψ and Γ-realizes-Ψ E for each Γ-interpretation
Ψ of Ψ. Since 0 = 1 is not Γ-realizable, FIRM(≺) and FIRM are consistent.

The proof is by induction on a derivation of E, using three lemmas. Assume Γ, χ are
as in the proof of Theorem 1, and let “E is true-Γ[Ψ ]” abbreviate “M(≺R) |=Γ[Ψ ] E.”

Lemma 3. To each list Ψ of distinct number and lawlike sequence variables and each
restricted R-formula A(x, y) containing free at most Ψ, x, y where x, y, a 6∈ Ψ, there is
a partial function ξA[Ψ ] so that for each Γ-interpretation Ψ of Ψ: If ∀x∃!yA(x, y) is
true-Γ[Ψ ] then ξA[Ψ ] is defined and ∀xA(x, a(x)) is true-Γ[Ψ, ξA[Ψ ]].

Lemma 4. To each list Ψ = x1, . . . , xn, α1, . . . , αk, a1, . . . , am of distinct variables
and each almost negative formula E of L[≺] containing free only Ψ there is a function
εE[Ψ ] = λt.εE(Ψ, t) partial recursive in Γ so that for each Γ-interpretation Ψ of Ψ:

(i) If E is Γ-realized-Ψ then E is true-Γ[Ψ ], and
(ii) E is true-Γ[Ψ ] if and only if εE[Ψ ] is completely defined and Γ-realizes-Ψ E.

Lemma 5. To each list Ψ = x1, . . . , xn, α1, . . . , αk, a1, . . . , am and each restricted
formula E of L(≺) containing free at most Ψ, there is a continuous partial function
ζE[Ψ ] such that for each Γ-interpretation Ψ of Ψ with [α1, . . . , αk] ∈ RLS:

(i) If E is Γ-realized-Ψ then E is true-Γ[Ψ ], and
(ii) E is true-Γ[Ψ ] if and only if ζE[Ψ ] is completely defined and Γ-realizes-Ψ E.

The proof of Lemma 5 uses a sublemma: For each list Ψ = Ψ0,Ψ1,Ψ2 of distinct
variables where Ψ1 = α0, . . . , αk−1 and Ψ0,Ψ2 are number and lawlike sequence vari-
ables respectively, and each restricted formula E(Ψ) with no other variables free, by
Theorem 1 there is a partial continuous functional {τE[Ψ0, Ψ2]}(α) such that if Ψ is a
Γ-interpretation of Ψ with Ψ1 = α0, . . . , αk−1 where α = [α0, . . . , αk−1] ∈ RLS, then
{τE[Ψ0, Ψ2]}(α) is defined and equal to 0 if E is true-Γ[Ψ ], or 1 if ¬E is true-Γ[Ψ ].

To complete the proof of the theorem, observe that Γ-realizability extends the function-
realizability interpretation of [6] to L(≺), so if E is an axiom of FIM or an axiom schema
of FIM + GC11 extended to L(≺) then E is Γ-realized-Ψ (essentially as in Theorem 10
of [6]) by a ϕ[Ψ ] primitive recursive in Γ. For the additional axioms, schemas and rules
of FIRM(≺) use Theorem 1 with Lemmas 3-5. More details are in [11].

6. Epilogue

The results show that Brouwer’s continuum can consistently contain all the lawlike
and lawless sequences. Considered separately, these classes are distinguished by the
axioms they satisfy:

(a) Brouwer’s arbitrary choice sequences satisfy the bar theorem, countable choice
and continuous choice. Their logic is intuitionistic. Equality of choice sequences
is not decidable.

(b) The lawlike sequences satisfy the bar theorem and countable choice, but not
continuous choice. Their logic is classical. Equality of lawlike sequences is
decidable.
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(c) The lawless sequences satisfy (restricted) open data and restricted continuous
choice, but not the restricted bar theorem. The restricted logic of independent
lawless sequences is classical, but equality of lawless sequences is not decidable.

Kleene observed in [6] that when considered separately, the recursive sequences do
not satisfy the fan theorem, the arithmetical sequences satisfy the fan theorem, but even
the hyperarithmetical sequences do not satisfy the bar theorem. InM(≺R) all analytic
sequences are lawlike, but the three-sorted system FIRM(≺) does not obviously entail
∀x∃!yA(x, y) → ∃b∀xA(a, b(x)) for all formulas A(x, y) of LFIM with only x, y free.
This may be an open question.

Lawless and random are orthogonal concepts. A random sequence of natural num-
bers should possess certain definable regularity properties (e.g. the percentage of even
numbers in its nth initial segment should approach .50 as n increases), while a lawless
sequence should possess none. Any regularity property definable in L by a restricted
formula can be defeated by a suitable lawlike predictor.

The model considered here has an explicit forcing characterization (cf. [10]). Under
the assumption that there are only countably many lawlike sequences, α is lawless if and
only if α = {α(n) : n ∈ ω} is generic with respect to the class of all dense subsets of ω<ω

which are classically definable in L(≺) by restricted formulas with lawlike parameters.
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1. K. Gödel, Zur intuitionistischen arithmetik und zahlentheorie, Ergebnisse eines math. Koll. 4
(1933), 34–38.

2. , Some basic theorems on the foundations of mathematics and their implications, Kurt
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