
INTUITIONISTIC ANALYSIS AT THE END OF TIME

JOAN RAND MOSCHOVAKIS

Abstract. Kleene and Vesley’s formal system I of intuitionistic analysis, with count-
able choice and a classically false continuity principle, is consistent by [3]. “There are
no non-recursive sequences” is consistent with I by [4]. Kreisel’s “lawless” sequences
inspired a model of intuitionistic Baire space as a forcing expansion of a countable
ω-model of classical Baire space ([5]). Now Kripke has suggested, as a way of under-
standing Brouwer’s creating subject arguments, that the intuitionistic continuum may
be viewed as an expansion in time of the classical continuum.

Let C◦ be the negative interpretation of classical analysis with the axiom of count-
able choice. Using a classical ω-model of C◦ we prove that a three-sorted common
extension of I and C◦, with an “end of time” axiom asserting that there are no non-
classical sequences, is consistent.

1. Introduction

L. E. J. Brouwer accepted Kant’s dictum that the intuition of time is a priori and lies
at the base of all mathematical reasoning. The intuitionistic continuum is composed of
point cores or equivalence classes of convergent sequences of rational segments or ratio-
nal numbers. The reduced continuum consists of finished (“fundamental” or “lawlike”)
sequences, all of whose values are determined in advance. The full continuum includes
point cores determined by unfinished convergent sequences whose rational values are
generated by successive, more or less free, choices.

Abstracting from the continuum to the “universal spread,” an intuitionistic version
of Baire space, an arbitrary choice sequence α of natural numbers is potentially infi-
nite; at any given time, only a finite initial segment of α may have been determined.
This intuition justifies (monotone) bar induction and Brouwer’s controversial continuity
principles. In contrast, as Troelstra observed in [6], the completely determined lawlike
sequences could be assumed to obey classical logic.

By [4] Kleene and Vesley’s formal system I of intuitionistic analysis is consistent with
“there are no non-recursive sequences” (but not with “every sequence is recursive”). In
[5] we represented the intuitionistic continuum classically as a forcing expansion of a
countable ω-model of Brouwer’s reduced continuum.

Classical analysis C, including the countable axiom of choice, is classically equivalent
to its negative translation C◦. Negative formulas (without ∃ or ∨) are stable under
double negation even with intuitionistic logic. Let M = (ω, C) be an ω-model of C◦.
We show by (modified) Crealizability that I and C◦ are consistent with “there are no
non-classical sequences,” and with “not every sequence is classical” provided C 6= ωω.

On December 9, 2016, in Amsterdam, Saul Kripke gave a lecture in which he suggested that the
intuitionistic continuum could be understood as an expansion, in time, of the classical continuum,
depending on the actions of a creating subject. I thank him warmly for the inspiration. I also thank
Yiannis Moschovakis for many helpful comments on style.
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2. Just the basics

For Brouwer a statement A was in general stronger than its double negation ¬¬A,
since intuitionistic negation expresses inconsistency. Thus (A→ ¬¬A) holds in general,
as does (¬¬¬A → ¬A), but not always (¬¬A → A). Even ¬¬(A ∨ B)→ ¬¬A ∨ ¬¬B
fails under the constructive interpretation of disjunction; and while ∃xA(x) asserts that
a witness can be designated, ¬¬∃xA(x) says only that ∀x¬A(x) is inconsistent.

Classical logic, on the other hand, can be formulated in a negative language with
only &,¬,→ and ∀, since A ∨ B and ∃xA(x) are classically equivalent to ¬(¬A &¬B)
and ¬∀x¬A(x) respectively. The language of classical analysis C◦ has two sorts of
variables: i, j, . . . , p, q,w, x, y, z, i1, . . . intended to range over natural numbers, and
a, b, c, d, e, a1, b1, c1, . . . intended to range over sequences of natural numbers; constants
for primitive recursive functions; Church’s λ; parentheses, used both to denote function
application and also to indicate the scopes of &,¬,→, ∀x and ∀b in formulas; and
equality = between number terms. For ease of reading we sometimes abbreviate

¬(¬A &¬B) by A
◦
∨ B, ¬∀x¬A(x) by ∃◦xA(x), and ¬∀b¬A(b) by ∃◦bA(b).

The Peano axioms are negative in form when the schema of mathematical induction is
restricted to formulas of the negative language. The equality axiom x = y→ b(x) = b(y)
is negative. Primitive recursive functions have negative definitions. The axiom of count-
able choice can be represented by its negative translation. Even with intuitionistic logic
the classical law of double negation ¬¬E→ E holds for formulas E of this language.

The three-sorted axiomatic system IC combines Kleene and Vesley’s intuitionistic
formal system I, which has variables α, β, γ, . . . ranging over arbitrary choice sequences,
with the intuitionistic system resulting from C◦ by extending its language and (intu-
itionistic) logic to include ∨ and ∃. The only new axiom explicitly connecting the two
sorts of sequence variables is ∀α¬∀b¬∀x α(x) = b(x), or equivalently

∀α¬¬∃b∀x α(x) = b(x).

The idea is that when mathematical activity has ended and all values of an arbitrary
choice sequence α have been specified, it will turn out that α coincides with some
classical “lawlike” (completely determined) sequence.1 This correlation cannot be made
in advance, as IC does not prove ∀α∃b∀x α(x) = b(x). However, IC does prove

∀b∃α∀x α(x) = b(x).

Thus every classical lawlike sequence is extensionally equal to a choice sequence, and
“at the end of time” intuitionistic and classical Baire space will be indistinguishable.

In order to establish the consistency of IC we assume a classical ω-modelM = (ω, C)
of C◦ exists. For our modified realizability the Crealizing objects will belong to the
recursively closed set C. Lawlike sequence variables are interpreted by elements of C.
All theorems of IC are Crealizable but 0 = 1 is not, so IC is consistent.

Kleene observed (Lemma 8.4a of [3]) that true negative sentences of the language of
I have primitive recursive realizers. All sentences of the language of C◦ which are true
in M are Crealized by primitive recursive functions, and thus are consistent with IC.

1This addresses an objection, from a member of the audience after Kripke’s talk in Amsterdam, to
the effect that the classical continuum is already complete.
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3. The formal systems C◦, B, I and IC

3.1. A negative formal system C◦ for classical analysis with countable choice.
The two-sorted language L(C◦) was described briefly in the preceding section. Now
we adopt Kleene’s finite list f0, . . . , fp of constants representing selected primitive re-
cursive functions, with f0 = 0, f1 = ′, f2 = +, f3 = · and f4(x, y) = xy. The list, including
bounded sum and bounded product, may be expanded by definition as needed.

C◦-terms (type-0 terms) and C◦-functors (type-1 terms) are defined inductively. The
number variables and the constant 0 are C◦-terms. The lawlike sequence variables, the
successor symbol ′ and constants representing primitive recursive functions of one type-0
argument are C◦-functors. If fi is a constant representing a primitive recursive function
of ki type-0 and mi type-1 variables, and if t1, . . . , tki are C◦-terms and u1, . . . , umi

are
C◦-functors, then fi(t1, . . . , tki , u1, . . . , umi

) is a C◦-term. If u is a C◦-functor and t is a
C◦-term then (u)(t) (sometimes written u(t)) is a C◦-term. If x is a number variable
and s is a C◦-term then λx(s) (sometimes written λx.s) is a C◦-functor. This completes
the definition.

The prime formulas are the expressions of the form s = t where s, t are C◦-terms.
Equality at type 1 is defined extensionally, with a = b abbreviating ∀x(a(x) = b(x)).
Compound formulas are built from prime formulas and both sorts of variables using
&,¬,→,∀ and parentheses as usual. (A↔ B) abbreviates (A→ B) & (B→ A). All
formulas of L(C◦) are negative (they contain neither ∨ nor ∃).

The logical axioms and rules are Kleene’s ([1], [3]) adapted to L(C◦), so A,B,C,A(x)
and A(b) are negative formulas. We retain Kleene’s numbers for comparison.

1a. A→ (B→ A).
1b. (A→ B)→ ((A→ (B→ C))→ (A→ C)).
2. (Modus Ponens) A, A→ B / B.
3. A→ (B→ A & B).

4a. A & B→ A.
4b. A & B→ B.
7. (A→ B)→ ((A→ ¬B)→ ¬A).

8I. ¬A→ (A→ B).
9N. B→ A(x) / B→ ∀xA(x), where x is not free in B.

10N. ∀xA(x)→ A(t), where t is a C◦-term free for x in A(x).
9C◦. B→ A(b) / B→ ∀bA(b), where b is not free in B.

10C◦. ∀bA(b)→ A(u), where u is a C◦-functor free for b in A(b).

Mathematical axioms assert that = is an equivalence relation, 0 is not a successor, ′

is one-to-one, and x = y→ a(x) = a(y). The primitive recursive defining equations for
+, · and f4, . . . , fp (Postulate Group D of [3], [2]) are axioms, as is the mathematical
induction schema A(0) & ∀x(A(x)→ A(x′))→ A(x). for formulas A(x) of L(C◦). For
C◦-terms r(x), t the λ-reduction schema is

(λx.r(x))(t) = r(t),

where r(t) results by substituting t for all free occurrences of x in r(x). The axiom
schema of countable choice, for formulas A(x, b) of L(C◦) with a, x free for b, is

ACC◦

01 . ∀x¬∀b¬A(x, b)→ ¬∀a¬∀xA(x, λy.a(2x · 3y)).
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3.2. Properties of C◦. To avoid unnecessary formal reasoning, first observe that the
Deduction Theorem (Theorem 1 on p. 97 of [1]) holds for C◦ (using the same arguments
for the relevant cases), so the Hilbert-style logical axioms and rules can be replaced by
natural deduction rules for →, & ,¬ and ∀ (as in Theorem 2 on pp. 98-99 of [1]).

3.2.1. Lemma. For all C◦-terms s, t and all formulas A,B of L(C◦), C◦ proves

(a) ¬¬s = t→ s = t.
(b) A→ A.
(c) A→ ¬¬A.
(d) (A→ B)→ (¬B→ ¬A).
(e) ¬¬A→ A.

Proofs. (a) follows (by ∀-introduction and then ∀-elimination) from ¬¬x = y→ x = y
which is provable by double mathematical induction. (b) - (d) are exercises in negative
propositional logic. (e) is by formula induction from the axioms and (a), (c) and (d).

Note that (e) is Kleene’s classical negation-elimination axiom schema 8◦, restricted
in this case to negative formulas. All the logical postulates which were omitted because
they contain ∨ or ∃ have negative versions provable in C◦.

3.2.2. Lemma. For all formulas A,B,C,A(x),A(b) of L(C◦), C◦ proves

5a◦. A→ A
◦
∨ B.

5b◦. B→ A
◦
∨ B.

6◦. (A→ C)→ ((B→ C)→ (A
◦
∨ B→ C)).

11N◦. A(t)→ ∃◦xA(x) if t is a C◦-term free for x in A(x).
11C◦. A(u)→ ∃◦bA(b) if u is a C◦-functor free for b in A(b).

Moreover, for all formulas A(x),A(b),B of L(C◦), C◦ obeys the rules

12N◦. A(x)→ B / ∃◦xA(x)→ B, where x is not free in B and x is held constant in
the deduction of A(x)→ B.

12C◦. A(b)→ B / ∃◦bA(b)→ B, where b is not free in B and b is held constant in
the deduction of A(b)→ B.

Proofs. 5a◦ follows from an instance ¬A &¬B→ ¬A of axiom 4a by Lemma 3.2.1(c,d)
and 5b◦ follows from an instance of axiom 4b. For 6◦, assume A→ C and B→ C; then
¬C→ ¬A and ¬C→ ¬B, so ¬C→ ¬A &¬B using axiom 3, so ¬(¬A &¬B)→ C by
Lemma 3.2.1(d,e). Similarly, 12N◦ follows from 9N, and 12C◦ follows from 9C◦.

3.3. Kleene’s intuitionistic formal systems B and I. The neutral basic system B
has axioms for two-sorted intuitionistic logic and arithmetic, countable choice and bar
induction. Intuitionistic analysis I is B together with Brouwer’s classically false principle
of continuous choice, which is consistent relative to B by function-realizability.

The language resembles a richer version of L(C◦). Instead of variables a, b, c, d, e, a1, . . .
over classical sequences, L(B) (≡ L(I)) has variables α, β, γ, δ, α1, . . . intended to range
over arbitrary choice sequences. In addition to =, λ, parentheses and the logical sym-
bols &,¬,→ and universal quantifiers ∀x,∀α, L(B) has disjunction ∨ and existential
quantifiers ∃x,∃α of both sorts. With the same constants f0, . . . , fp representing the
same primitive recursive functions, the inductive definition of term and functor is like
that of C◦-term and C◦-functor but with α, β, . . . in place of a, b, . . ..
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Prime formulas are expressions of the form s = t where s, t are terms. Compound
formulas are built from prime formulas and both sorts of variables using &,¬,→,∨,∀,∃
and parentheses as needed. α = β abbreviates the negative formula ∀x(α(x) = β(x)).

The logical rules and axioms include 1a - 8I and 9N - 12N, as for C◦ except that
now A,B,C and A(x) may be any formulas of L(B); t is a term free for x in A(x); ∨
and ∃ replace

◦
∨ and ∃◦ respectively; and 5a, 5b, 6, 11N and 12N are postulates rather

than theorems. In the following replacements for 9C◦ - 12C◦, A(β) and B may be any
formulas of L(B):

9F. B→ A(β) / B→ ∀βA(β) if β is not free in B.
10F. ∀βA(β)→ A(u) if u is a functor free for β in A(β).
11F. A(u)→ ∃βA(β) if u is a functor free for β in A(β).
12F. A(β)→ B / ∃βA(β)→ B if β is not free in B.

The mathematical axioms of B include those of C◦, but with α, β, . . . instead of
a, b, . . . and with the following adaptations. For the mathematical induction schema,
A(x) may be any formula of L(B). For the λ-reduction schema (λx.r(x))(t) = r(t) both
r(x) and t are terms of L(B). The axiom schema of countable choice for B is

AC01. ∀x∃αA(x, α)→ ∃β∀xA(x, λy.β(2x · 3y))

where A(x, α) is any formula of L(B) with β, x free for α.
Brouwer’s most important contributions to the foundations of intuitionistic mathe-

matics were his “bar theorem,” which is classically valid, and his continuity principle,
which is not. An axiom schema of bar induction completes Kleene’s neutral system B,
and the full intuitionistic system I comes from B by adding a principle of continuous
choice. These are more complicated to state.

Finite sequences of natural numbers are coded formally using the function constants
of L(B). In [3] f19(i) = pi denotes the ith prime, with p0 = 2; f20(y, i) = (y)i denotes
the exponent of pi in the prime factorization of y; and 〈x0, . . . , xk〉 abbreviates Πi<kp

xi
i .

Let Seq(y) abbreviate ∀i < lh(y) (y)i > 0, where lh(y) is a term denoting the number
of nonzero exponents in the prime factorization of y. Then 〈 〉 = 1 codes the empty
sequence; 〈x0 + 1, . . . , xk + 1〉 codes the sequence (x0, . . . , xk); the concatenation of the
finite sequences coded by w and z (assuming Seq(w) & Seq(z)) is coded by w ∗ z; and
w ∗ α codes the sequence defined by prefixing the finite sequence coded by w to α.

Let α(n) abbreviate the code Πi<np
α(i)+1
i of the initial segment of α of length n (so

α(0) = 1). The last axiom schema of B is the principle of bar induction (with a thin
bar, essentially x26.3c on p. 55 of [3]), where ! expresses uniqueness:

BI!. ∀α∃!xR(α(x)) & ∀w[Seq(w) & (R(w) ∨ ∀nA(w ∗ 〈n + 1〉))→ A(w)]→ A(〈 〉).

This description of Kleene’s neutral basic system B of intuitionistic analysis summarizes
Postulate Groups A-D, §§1-6 of [3].

The full intuitionistic system I comes from B by adding a principle of continuous
choice (“Brouwer’s principle for a function,” cf. x27.1 on p. 73 of [3]):

CC11. ∀α∃βA(α, β)→ ∃σ∀α(∀x∃!yσ(〈x + 1〉 ∗ α(y)) > 0 &

∀β(∀x∃yσ(〈x + 1〉 ∗ α(y)) = β(x) + 1→ A(α, β))).
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3.3.1. The classical version C of B. A formal system C of classical analysis, with the
axiom of countable choice, results from B by omitting BI! and replacing 8I (ex falso
sequitur quodlibet) by 8◦. ¬¬E→ E for all formulas E of L(B). Because BI! follows
from AC01 by classical logic (∗26.1◦ on p. 53 of [3]), B is a subsystem of C.

Clearly C is inconsistent with I. The negative translation of AC01 is not a theorem
schema of B so C cannot be interpreted negatively in its subsystem B.

3.3.2. Proposition. There is a faithful negative translation A 7→ Atr of C to C◦.

Proof. In each formula A of L(C) (≡ L(B)) first replace ∨,∃x,∃β by
◦
∨,∃◦x, ∃◦β to

obtain A′, then replace α, β, . . . by a, b, . . . to obtain Atr. Clearly C proves A′ ↔ A.
The translation Etr of each axiom E of C is an axiom of C◦, or a theorem of C◦ by

Lemma 3.2.1(e) or Lemma 3.2.2. Since the translation of every logical rule of C is an
admissible rule of C◦, deductions in C can be replaced by corresponding deductions in
C◦. It follows that Atr is a theorem of C◦ if and only if A is a theorem of C.

3.4. The formal system IC. The common extension IC of C◦ and I has both lawlike
and choice sequence variables, since I essentially involves constructive existence and C◦

does not. One sort of number variables suffices, but in IC arithmetical formulas will
not always be provably equivalent to their negative translations.2

The three-sorted language L(IC) extending both L(C◦) and L(I) has three sorts of
variables with or without subscripts, also used as metavariables:

i, j, k, . . . , p, q,w, x, y, z over natural numbers,
a, b, c, d, e over classical lawlike sequences,
α, β, γ, . . . over arbitrary choice sequences;

finitely many constants f0 = 0, f1 = ′ (successor), f2 = +, f3 = ·, f4 = exp, f5, . . . , fp for
primitive recursive functions and functionals; the binary predicate constant =; Church’s
λ denoting function abstraction; parentheses (,) denoting function application; and the
logical symbols & ,∨,→,¬ and quantifiers ∀ and ∃ over each sort of variable.

Terms and functors are defined inductively just as for B except that now all classical
lawlike sequence variables and all arbitrary choice sequence variables are functors. Prime
formulas are of the form s = t where s, t are terms. If u, v are functors then u = v
abbreviates ∀x u(x) = v(x). Composite formulas are formed as usual.

Terms, functors and formulas with no occurrences of arbitrary choice sequence vari-
ables are C-terms, C-functors and C-formulas, respectively.

The logical axioms and rules of I carry over to IC, where the A,B,C,A(x),A(β) may
now be any formulas of L(IC). In addition, IC has logical rules 9C and 12C, and axiom
schemas 10C and 11C, for all formulas B,A(b) of L(IC):

9C. B→ A(b) / B→ ∀bA(b) where b is not free in B.
10C. ∀bA(b)→ A(u) where u is a C-functor free for b in A(b).
11C. A(u)→ ∃bA(b) where u is a C-functor free for b in A(b).
12C. A(b)→ B / ∃bA(b)→ B where b is not free in B.

2Under the assumption that a classical ω-model of C exists, the modified realizability interpretation
introduced in the next section can show that IC is consistent with ¬¬E→ E for all formulas E of the
language L(IC) containing no lawlike or choice sequence variables, but there is no need to add full
first-order classical arithmetic to the formal system as we already have its negative translation.
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The mathematical axioms of I, and ACC◦
01 for negative C-formulas A(x, b), become

axioms of IC. For the λ-reduction schema, r(x) and t may be any terms of L(IC). A(x)
in the mathematical induction schema, A(x, α) in AC01, R(w) and A(w) in BI!, and
A(α, β) in CC11 may be any formulas of L(IC) satisfying the conditions of the schemas.

3.4.1. Lemma. For terms s, t and formulas A,B of L(IC), parts (a)-(d) of Lemma 3.2.1
also hold for IC. In addition, IC proves

(e) ¬¬A→ A if A is negative (no ∃ or ∨).
(f) A ∨ ¬A if A is quantifier-free.

3.4.2. Lemma. IC proves ∀b∃α∀x[b(x) = α(x)].

Proof. An easy consequence of AC01 is

AC00. ∀x∃yA(x, y)→ ∃α∀xA(x, α(x)).

From b(x) = b(x) conclude ∃y[b(x) = y], then use ∀x-introduction, AC00, Modus Ponens
and ∀b-introduction.

Brouwer’s arbitrary choice sequences included his lawlike sequences. In IC each
classical sequence, all of whose values are fixed in advance, can be imitated by a choice
sequence under construction.

3.4.3. The end of time axiom. The only completely new axiom of IC is

ET. ∀α¬∀b¬∀x[α(x) = b(x)],

which is equivalent in IC to ∀α¬¬∃b∀x α(x) = b(x). The intuitionistic double negation
expresses persistent consistency; as the values of an arbitrary choice sequence α are
chosen one by one, the possibility that α may coincide with a lawlike sequence can
never be excluded.

If ET were strengthened to ∀α∃b∀x α(x) = b(x) and ¬¬E→ E was assumed for all
C-formulas E, the result would be inconsistent by the following result.

3.4.4. Proposition. IC proves

(a) ∀b¬¬(∀xb(x) = 0 ∨ ¬∀xb(x) = 0).
(b) ¬∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0).

Proofs. (a) holds because ¬¬(A ∨ ¬A) is a theorem of intuitionistic logic. (b) holds
because because IC proves A ∨ ¬A→ ∃y(y = 0↔ A) and “Brouwer’s principle for a
number” (∗27.2 of [3]):

CC10. ∀α∃xA(α, x)→ ∃σ∀α(∃!yσ(α(y)) 6= 0 & ∀x∀z(∃yσ(α(y)) = z + 1→ A(α, z))).

4. Crealizability and the consistency of IC

4.1. From now on, assume that M = (ω, C) is a classical ω-model of C◦. Then
M is also an ω-model of B and C (cf. §3.3.1 above) under the classical interpretation
of ∨ and ∃. Observe that C is closed under “recursive in,” i.e. if γ is recursive in finitely
many elements of C then γ ∈ C, so C-functors represent elements of C.

For the proof that IC is consistent it is not necessary to assume C is countable, or
even that C 6= ωω. The proof that IC is consistent with ¬∀α∃b∀x α(x) = b(x), on the
other hand, will depend on the additional assumption C 6= ωω.
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Kleene’s curly bracket and Λ notations are described in Section 8 of [3]. Briefly,
{α}[β](x) is defined and equal to y ({α}[β](x) ' y) if for some z: α(〈x+1〉∗β(z)) = y+1
and α(〈x+ 1〉 ∗ β(j)) = 0 for all j < z. Thus {α}[β] is a recursive partial functional of
α and β. In general, {α}[x] will abbreviate {α}[λt.x], and {α} will abbreviate {α}[0].

If Φ[α, β, x, y] is a partial functional of the indicated variables which is recursive in
functions ∆, by Kleene’s enumeration theorem there are index functions ΛαΦ[α, β, x, y],
ΛxΦ[α, β, x, y], Λ Φ[α, β, x, y] primitive recursive in ∆ such that for all α, β, x, y, z:

({ΛαΦ[α, β, x, y]}[α])(z) ' (Φ[α, β, x, y])(z) ' ({ΛxΦ[α, β, x, y]}[x])(z)

and {Λ Φ[α, β, x, y]} ' Φ[α, β, x, y]. Similarly for Φ[α1, . . . , αj, x1, . . . , xk, y1, . . . , ym].

4.2. Definition. By induction on the logical form of a formula E of L(IC) we define
when ε ∈ ωω agrees with E, as follows, where (ε)i abbreviates λy.(ε(y))i.

(1) ε agrees with a prime formula s = t, for each ε.
(2) ε agrees with A & B, if (ε)0 agrees with A and (ε)1 agrees with B.
(3) ε agrees with A ∨ B, if (ε(0))0 = 0 implies that (ε)1 agrees with A, while (ε(0))0 6=

0 implies that (ε)1 agrees with B.
(4) ε agrees with A→ B, if, whenever α agrees with A, {ε}[α] is completely defined

and agrees with B.
(5) ε agrees with ¬A, if ε agrees with A→ 1 = 0 by the preceding clause.
(6) ε agrees with ∃xA(x), if (ε)1 agrees with A(x).
(7) ε agrees with ∀xA(x), if, for each x, {ε}[x] is completely defined and agrees with

A(x).
(8) ε agrees with ∃bA(b), if {(ε)0} is completely defined and belongs to C, and (ε)1

agrees with A(b).
(9) ε agrees with ∀bA(b), if, for each β ∈ C, {ε}[β] is completely defined and agrees

with A(b).
(10) ε agrees with ∃αA(α), if {(ε)0} is completely defined and (ε)1 agrees with A(α).
(11) ε agrees with ∀αA(α), if, for each sequence α, {ε}[α] is completely defined and

agrees with A(α).

4.2.1. Lemma.

(a) If s is a term free for y in A(y), then ε agrees with A(y) if and only if ε agrees
with A(s). Similarly if v is a functor free for β in A(β), or u is a C-functor free
for b in A(b).

(b) ε agrees with E if and only if ε agrees with the result of replacing each part of
E of the form ¬A by (A→ 1 = 0).

(c) For each formula E of L(IC) there is a primitive recursive function εE which
agrees with E.

Proofs. By induction on the logical form of E. Only (c) is nontrivial. If E is prime then
εE is λt.0. Given εA and εB agreeing with A and B respectively, let εA&B = 〈εA, εB〉,
εA∨B = 〈λt.0, εA〉, εA→B = Λα εB and ε¬A = Λπλt.0. Given εA(x) agreeing with A(x),
let ε∃xA(x) = 〈λt.0, εA(x)〉 and ε∀xA(x) = Λx εA(x). Given εA(b), let ε∃bA(b) = 〈Λ λt.0, εA(b)〉
and ε∀bA(b) = Λβ εA(b). Given εA(α), let ε∃αA(α) = 〈Λ λt.0, εA(α)〉 and ε∀αA(α) = Λα εA(α).
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4.3. Definition. By induction on the logical form of a formula E of L(IC) containing
free at most the distinct variables Ψ we define when a sequence ε, belonging to C,
Crealizes-Ψ E, where Ψ are elements of ω, C and C corresponding respectively to the
number, lawlike sequence, and choice sequence variables in the list Ψ, as follows.

(1) ε Crealizes-Ψ a prime formula P, if P is true-Ψ in M.
(2) ε Crealizes-Ψ A & B, if (ε)0

Crealizes-Ψ A and (ε)1
Crealizes-Ψ B.

(3) ε Crealizes-Ψ A ∨ B, if either (ε(0))0 = 0 and (ε)1
Crealizes-Ψ A, or (ε(0))0 6= 0

and (ε)1
Crealizes-Ψ B.

(4) ε Crealizes-Ψ A→ B, if ε agrees with A→ B and, whenever α ∈ C and α
Crealizes-Ψ A, {ε}[α] is completely defined and Crealizes-Ψ B.

(5) ε Crealizes-Ψ ¬A, if ε Crealizes-Ψ A→ 1 = 0 by the preceding clause.
(6) ε Crealizes-Ψ ∃xA(x), if (ε)1

Crealizes-Ψ, (ε(0))0 A(x).
(7) ε Crealizes-Ψ ∀xA(x), if, for each natural number n, {ε}[n] is completely defined

and Crealizes-Ψ, n A(x).
(8) ε Crealizes ∃bA(b), if {(ε)0} is completely defined (hence belongs to C) and (ε)1

Crealizes-Ψ, {(ε)0} A(b).
(9) ε Crealizes-Ψ ∀bA(b), if, for each sequence β ∈ C, {ε}[β] is completely defined

and Crealizes-Ψ, β A(b).
(10) ε Crealizes ∃αA(α), if {(ε)0} ∈ C and (ε)1

Crealizes-Ψ, {(ε)0} A(α).
(11) ε Crealizes-Ψ ∀αA(α), if ε agrees with ∀αA(α) and, for each β ∈ C, {ε}[β] (is

completely defined and) Crealizes-Ψ, β A(α).

A sentence E of L(IC) is Crealizable if and only if E is Crealized by some general recursive
sequence ε, and a formula is Crealizable if and only if its universal closure is Crealizable.

4.3.1. Lemma. Let Ψ be a list of numbers and elements of C.
(a) If ε Crealizes-Ψ a formula E of L(IC), then ε agrees with E and ε ∈ C.
(b) ε Crealizes-Ψ a formula E of L(IC) if and only if ε Crealizes-Ψ the result of

replacing each part of E of the form ¬A by (A→ 1 = 0).
(c) For no formula E of L(IC) and no sequences ε1, ε2 ∈ C is it the case that ε1

Crealizes-Ψ E and ε2
Crealizes-Ψ ¬E.

4.3.2. Lemma.

(a) Let A(y) be a formula of L(IC) containing free at most the distinct variables
Ψ, y, let s be a term containing free at most Ψ, y and free for y in A(y), and let
s(Ψ, y) be the number expressed by s when Ψ, y take the values Ψ, y in C and ω.
Let ε ∈ C. Then ε Crealizes-Ψ, y A(s) if and only if ε Crealizes-Ψ, s(Ψ, y) A(y).

(b) Let A(β) be a formula of L(IC) containing free at most the distinct variables
Ψ, β, let u be a functor containing free at most Ψ, β and free for β in A(β), and
let u[Ψ, β] be the element of C expressed by u when Ψ, β take the values Ψ, β in C
and ω. Let ε ∈ C. Then ε Crealizes-Ψ, β A(u) if and only if ε Crealizes-Ψ, u[Ψ, β]
A(β). Similarly for A(b) where u is a C-functor free for b.

4.3.3. Lemma. Let E ≡ E(α1, . . . , αj, b1, . . . , bk, y1, . . . , ym) be a formula of L(IC) with
only the indicated distinct variables free. Then E is Crealizable if and only if there
is a recursive partial functional Φ[α1, . . . , αj, β1, . . . , βk, y1, . . . , ym] such that, for all
α1, . . . , αj ∈ ωω, all β1, . . . , βk ∈ C and all y1, . . . , ym ∈ ω:
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(a) Φ[α1, . . . , αj, β1, . . . , βk, y1, . . . , ym] is defined (so belongs to ωω) and agrees with
E(α1, . . . , αj, b1, . . . , bk, y1, . . . , ym).

(b) If also α1, . . . , αj ∈ C then Φ[α1, . . . , αj, β1, . . . , βk, y1, . . . , ym] belongs to C and
Crealizes-α1, . . . , αj, β1, . . . , βk, y1, . . . , ym E.

4.3.4. Lemma. For every negative C-formula E of L(IC) (so for every formula of L(C◦))
with only the distinct variables Ψ free there is a primitive recursive function τE such
that τE agrees with E, and for each interpretation Ψ of Ψ by elements of C and ω:

(a) If E is Crealized-Ψ by some ε ∈ C then E is true-Ψ in M.
(b) If E is true-Ψ in M then τE

Crealizes-Ψ E.

Proof. For each negative C-formula E let τE be the primitive recursive function εE

defined in proving Lemma 4.2.1(c). τE agrees with E by the lemma, and satisfies (a)
and (b) by formula induction. We give the case for E ≡ ¬A. Assume τA satisfies (a)
and (b) for A. If (ε ∈ C and) ε Crealizes-Ψ ¬A, then (since 0 = 1 is false inM) no δ ∈ C
can Crealize-Ψ A, so A is false-Ψ inM by (b) for τA, so ¬A is true-Ψ inM, so (a) holds
for ¬A. If ¬A is true-Ψ in M then A is false-Ψ in M, so no ε ∈ C can Crealize-Ψ A by
(a) for τA, so τ¬A = Λπ λt.0 Crealizes-Ψ ¬A, so (b) holds for ¬A.

4.4. Theorem. If F1, . . . ,Fn,E are formulas of L(IC) such that F1, . . . ,Fn `IC E and
F1, . . . ,Fn are all C realizable, then E is Crealizable. Therefore, IC is consistent.

Proof. For each axiom or axiom schema of IC containing free at most the distinct
variables in the list Ψ = α1, . . . , αj, b1, . . . , bk, y1, . . . , ym we give a Crealizing functional
Φ[Ψ ] = Φ[α1, . . . , αj, β1, . . . , βk, y1, . . . , ym], as in Lemma 4.3.3; and assuming that such a
Φ′[Ψ ′] exists for each premise of a rule of inference, we provide a Φ[Ψ ] for the conclusion.

Logical Axioms 1a, 1b, 3-7, 10N, 11N, 10F, 11F (exactly as in [3]) and 10C, 11C:

1a. A→ (B→ A). ΛαΛβ α.
1b. (A→ B)→ ((A→ (B→ C))→ (A→ C)). ΛπΛρΛα{{ρ}[α]}[{π}[α]].
3. A→ (B→ A & B). ΛαΛβ 〈α, β〉.

4a. A & B→ A. Λα(α)0.
4b. A & B→ B. Λα(α)1.
5a. A→ A ∨ B. Λα 〈λt.0, α〉.
5b. B→ A ∨ B. Λα 〈λt.1, α〉.
6. (A→ C)→ ((B→ C)→ (A ∨ B→ C)).
ΛπΛρΛδ λt.(1−̇(δ(0))0){π}[(δ)1](t) + (δ(0)0){ρ}[(δ)1](t).

7. (A→ B)→ ((A→ ¬B)→ ¬A). Same as for 1b.
8. ¬A→ (A→ B). ΛδΛα εB.

10N. ∀xA(x)→ A(t) where t(Ψ) is a term free for x in A(x). Λδ {δ}[t(Ψ)].
11N. A(t)→ ∃xA(x) where t(Ψ) is a term free for x in A(x). Λδ 〈λy.t(Ψ), δ〉.
10C. ∀bA(b)→ A(u) where u[Ψ] = u[b1, . . . , bk, y1, . . . , ym] is a C-functor free for b

in A(b). Λδ {δ}[u(β1, . . . , βk, y1, . . . , ym)].
11C. A(u)→ ∃bA(b) where u[Ψ] = u[b1, . . . , bk, y1, . . . , ym] is a C-functor free for b

in A(b). Λδ〈Λu[β1, . . . , βk, y1, . . . , ym], δ〉.
10F. ∀αA(α)→ A(u) where u[Ψ] is a functor free for α in A(α). Λδ {δ}[u[Ψ ]].
11F. A(u)→ ∃αA(α) where u[Ψ] is a functor free for α in A(α). Λδ 〈Λu[Ψ ], δ〉.
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Axioms for 3-sorted intuitionistic number theory: As in [3], λt.0, Λπλt.0 and ΛπΛσλt.0
take care of the prime axioms, including (λx.r(x))(t) = r(t)); x = y→ α(x) = α(y) and
axioms 14, 15, 17 from [1]; and axiom 16 from [1], respectively.

The mathematical induction schema (13 in [1]) is A(0) & ∀x(A(x)→ A(x′))→ A(x).
A Crealizing functional is Λπρ[x, π] where ρ is defined by the functional recursion
ρ[0, π] = (π)0 and ρ[x′, π] = {{(π)1}[x]}[ρ[x, π]] (cf. [3], page 106).

Axiom of countable choice: AC01. ∀x∃αA(x, α)→ ∃β∀xA(x, λy.β(2x · 3y)). Exactly
as in [3], Λπ〈Λλz.{({π}[(z)0])0}((z)1), Λx ({π}[x])1〉. Agreement is obvious. Assume
π ∈ C and π Crealizes-Ψ ∀x∃αA(x, α). Then 〈Λλz.{({π}[(z)0])0}((z)1), Λx ({π}[x])1〉 is
in C and Crealizes-Ψ ∃β∀xA(x, λy.β(2x · 3y)).

Countable choice for C◦: ACC◦
01 . ∀x¬∀b¬A(x, b)→ ¬∀a¬∀xA(x, λy.a(2x · 3y)) where

A(x, b) is a (negative) formula of L(C◦). Use Lemma 4.3.4.
End of time axiom: ET. ∀α¬∀b¬∀x[α(x) = b(x)]. ε∀α¬∀b¬∀x[α(x)=b(x)] = ΛαΛπ λt.0

agrees with the axiom by Lemma 4.2.1(b,c) and Crealizes the axiom because if α ∈ C
then Λπ λt.0 is in C and Crealizes-α ¬∀b¬∀x[α(x) = b(x)], since no π ∈ C Crealizes-α, α
¬∀x[α(x) = b(x)] so no π ∈ C Crealizes-α ∀b¬∀x[α(x) = b(x)].

Bar induction BI!: Λπζ[π, 1] where ζ[π,w] is a recursive partial function defined using

the recursion theorem. Let G(π,w) abbreviate “w = (w ∗ λt.0)(({(π)0}[w ∗λt.0](0))0),”
H(π,w) abbreviate “Seq(w) & lh(w) ≥ ({(π)0}[w ∗ λt.0](0))0,” and J(π,w) abbreviate
“G(π,w) &∀u, v < w(u ∗ v = w → ¬G(π, u)).” If π Crealizes-Ψ the hypothesis of BI!
then ∀α∃!xαJ(π, α(xα)) (because yα ≡ ({(π)0}[α](0))0 is determined by a finite initial
segment of α); and ({(π)0}[α])1

Crealizes-Ψ, α(xα) R(w) (since C is dense in ωω). Let

ζ[π,w] =

 εA(〈 〉) if H(π,w) &¬G(π,w)
{{(π)1}[w]}[〈λt.0, 〈λt.0, ({(π)0}[w ∗ λt.0])1〉〉] if G(π,w)
{{(π)1}[w]}[〈λt.0, 〈λt.1, Λnζ[π,w ∗ 〈n+ 1〉]〉〉] otherwise, if Seq(w)

If π Crealizes-Ψ the hypothesis of BI! then ζ[π, 1] Crealizes-Ψ A(〈 〉) by an informal bar
induction with J(π,w) determining the thin bar and K(π,w) (abbreviating “(ζ[π,w]
Crealizes-Ψ,w A(w)) &∀u, v < w(u ∗ v = w → ¬G(π, u))”) as the inductive predicate.

Continuous choice CC11: As in [3], [4]: Λπ〈Λ σ,Λα〈ρ, τ〉〉 where σ = Λα{({π}[α])0},
ρ = Λx〈µy(σ(2x+1 ∗ α(y)) > 0), 〈λt.0, ΛzΛδλt.0〉〉 and τ = ΛβΛδ({π}[α])1.

Rules of inference: Modus ponens and 9N, 12N, 9F, 12F (as in [3]) and 9C, 12C:

2. If Φ′[Ψ ′] is a Crealizing functional for A, Φ′′[Ψ ] is a Crealizing functional for A→ B
and Ψ ′ ⊆ Ψ , then Φ[Ψ ] = {Φ′′[Ψ ]}[Φ′[Ψ ′]] is a Crealizing functional for B.

9N. If Φ′[Ψ ′] is a Crealizing functional for B→ A(x), where Ψ ′ = Ψ, x and x is not free
in B, then Φ[Ψ ] = ΛδΛx {Φ′[Ψ, x]}[δ] is a Crealizing functional for B→ ∀xA(x).

12N. If Φ′[Ψ ′] is a Crealizing functional for A(x)→ B, where Ψ ′ = Ψ, x and x is not
free in B, then Φ[Ψ ] = Λπ {Φ′[Ψ, (π(0))0]}[(π)1] is a Crealizing functional for
∃xA(x)→ B.

9C. If Φ′[Ψ ′] is a Crealizing functional for B→ A(b), where Ψ ′ = Ψ, β and b is not free
in B, then Φ[Ψ ] = ΛδΛβ {Φ′[Ψ, β]}[δ] is a Crealizing functional for B→ ∀bA(b).

12C. If Φ′[Ψ ′] is a Crealizing functional for A(b)→ B, where Ψ ′ = Ψ, β and b is not
free in B, then Λπ{Φ′[Ψ, {(π)0}]}[(π)1] is a Crealizing functional for ∃bA(b)→ B.

9F. If Φ′[Ψ ′] is a Crealizing functional for B→ A(α), where Ψ ′ = Ψ, α and α is not free
in B, then Φ[Ψ ] = ΛδΛα {Φ′[Ψ, α]}[δ] is a Crealizing functional for B→ ∀αA(α).
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12F. If Φ′[Ψ ′] is a Crealizing functional for A(α)→ B, where Ψ ′ = Ψ, α and α is not free
in B, then Λπ {Φ′[Ψ, {(π)0}]}[(π)1] is a Crealizing functional for ∃αA(α)→ B.

This completes the proof that every theorem of IC is Crealizable. By assumptionM is
a classical model of C◦ so 0 = 1 is not true in M, and therefore not Crealizable.

4.4.1. Corollary. IC is consistent with all sentences of L(C◦) which are true in M.
Proof. By the theorem with Lemma 4.3.4, every formula of L(IC) which is provable

in IC from sentences of L(C◦) true in M is Crealizable.

4.4.2. Corollary. If C 6= ωω then IC + ¬∀α∃b∀xα(x) = b(x) is consistent (and consis-
tent with all sentences of L(C◦) which are true in M).

Proof. It will be enough to show that if C 6= ωω then ¬¬∀α∃b∀xα(x) = b(x) is not
Crealizable. Since C is dense in ωω, if {ε}[α] is defined for all α ∈ ωω and {ε}[β] = β for
all β ∈ C then {ε}[α] = α for all α ∈ ωω, so no ε ∈ C can Crealize ∀α∃b∀xα(x) = b(x),
so Λπ λt.0 Crealizes ¬∀α∃b∀xα(x) = b(x), so ¬¬∀α∃b∀xα(x) = b(x) is not Crealizable.

4.4.3. Definition. A formula E of L(IC) is Crealizable/C if and only if its universal
closure is Crealized by some element of C.

4.4.4. Lemma. If the truth function κ for classical arithmetic is an element of C, then
to each arithmetical formula E of L(IC) with at most the distinct variables y1, . . . , yk

free there is a partial functional ΓE[y1, . . . , yk] recursive in κ which agrees with E and
satisfies, for all y1, . . . , yk ∈ ω and corresponding numerals y1, . . . ,yk:

(a) If E(y1, . . . ,yk) is Crealizable/C then E(y1, . . . ,yk) is true in M.
(b) If E(y1, . . . ,yk) is true in M then ΓE[y1, . . . , yk]

Crealizes E(y1, . . . ,yk).

Proof. Since M is a classical ω-model of C◦ and hence of C, an arithmetical sentence
A is classically true if and only if it is true inM, if and only if κ(pAq) = 1. By Lemma
4.3.2(a), ε Crealizes E(y1, . . . ,yk) if and only if ε Crealizes-y1, . . . , yk E.

We use induction on the logical form of E. Prime formulas, &,∨,→,¬ and ∀x follow
the proof of Lemma 4.3.4; e.g. if E(y) ≡ ∀xA(x, y) has only y free and (a), (b) hold for
A with ΓA[x, y] recursive in κ, then (a) and (b) hold for E with ΓE[y] = ΛxΓA[x, y].

Suppose E(x, y) ≡ A(x, y) ∨ B(x, y) where (a), (b) hold for A,B with ΓA, ΓB recursive
in κ. Let ΓE[x, y] = 〈0, ΓA[x, y]〉 if κ(pA(x,y)q) = 1, otherwise ΓE[x, y] = 〈1, ΓB[x, y]〉.
If E(x,y) is Crealizable/C, then A(x,y) or B(x,y) is Crealizable/C so true in M. If
E(x,y) is true in M then A(x,y) or B(x,y) is true in M so ΓE[x, y] Crealizes E(x,y).

Suppose E(y) is ∃xA(x, y) where (a) and (b) hold for A(x, y) with ΓA recursive in κ.
Let ΓE[y] = 〈z, ΓA[z, y]〉 where z ' µxκ(pA(x,y)q) = 1. If E(y) is Crealizable/C then
A(n,y) is Crealizable/C and so true inM for some n ∈ ω, so E(y) is true inM. If E(y)
is true in M then A(n,y) is true in M for some least n, so ΓE[n, y] Crealizes E(n).

4.4.5. Corollary. IC is consistent with all classically true arithmetical sentences.
Proof. Lemma 4.3.3 and Theorem 4.4 relativize to Crealizability/C. Every Crealizable

formula is Crealizable/C. Consequences in IC of Crealizable/C formulas are Crealizable/C.
Classically true arithmetical sentences are Crealizable/C by Lemma 4.4.4; 0 = 1 is not.
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4.5. Markov’s Principle, Weak Kripke’s Schema and a weaker alternative.
Late in his life Brouwer introduced “creating subject” arguments to refute e.g.

MP1. ¬¬∃xα(x) = 0→ ∃xα(x) = 0

(“Markov’s Principle”), which is consistent with I but not Crealizable or Crealizable/C.
Efforts to formalize Brouwer’s creating subject arguments led to Weak Kripke’s Schema

WKS. ∃β[(∃xβ(x) 6= 0→ A) & (∀xβ(x) = 0→ ¬A)]

where β is not free in A. If choice sequence variables are allowed to occur free in A
then WKS (with ∀xα(x) = 0 as the A) conflicts with CC11, so I + WKS is inconsistent.
A fortiori, so is IC + WKS. For arbitrary A without β free, a classically (but not
intuitionistically) equivalent version of WKS is Weaker Weak Kripke’s Schema:

WWKS. ∃β[∀xβ(x) = 0↔ ¬A]

which conflicts with CC11 by the same argument.

4.5.1. Proposition. ¬¬WWKS is Crealizable for formulas A of L(IC) with no free β.
Proof. If A is a formula of L(IC) with only the distinct variables α, c, z free, let

E(β) be [(∀xβ(x) = 0→ ¬A) & (¬A→ ∀xβ(x) = 0)]. Then ΛαΛγΛzΛπ λt.0 Crealizes
∀α∀c∀z¬¬∃βE(β). Agreement is obvious. If α, γ, π ∈ C, z ∈ ω, and π Crealizes-α, γ, z
¬∃βE(β), then no ρ ∈ C Crealizes-α, γ, z E(λt.0); so no σ ∈ C Crealizes-α, γ, z ¬A; so
〈ΛρΛτλt.0, ΛτΛxλt.0〉 Crealizes-α, γ, z E(λt.1), contradicting the hypothesis on π.

4.5.2. Corollary. For all sentences A of L(IC), WWKS is classically Crealizable.

4.5.3. Vesley’s Schema. Richard Vesley (cf. [4]) proved that the axiom schema

VS. ∀w[Seq(w)→ ∃α(α(lh(w)) = w & ¬A(α))] & ∀α[¬A(α)→ ∃βB(α, β)]→
∀α∃β[¬A(α)→ B(α, β)]

(with β not free in A(α)) is consistent with I and suffices for the refutation of MP1 and
other “creating subject” counterexamples. VS is evidently derivable by intuitionistic
logic from the “independence of premise” schema (with β not free in A)

IP. (¬A→ ∃βB(β))→ ∃β(¬A→ B(β)).

4.5.4. Proposition. IP (and therefore VS) is Crealizable.
Proof. Λσ〈({σ}[Λπ λt.0])0, Λδ ({σ}[Λπ λt.0])1〉 is a Crealizing functional for IP.

4.5.5. Corollary. IC + ¬¬WWKS + IP is consistent.
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