

Cluster type varieties

Joaquín Moraga

January 7th, 2026 — Joint Mathematical Meetings 2026

Embeddings in codimension one

We work over an algebraically closed field \mathbb{K} of characteristic zero.
Varieties are normal unless otherwise stated.

Embeddings in codimension one

We work over an algebraically closed field \mathbb{K} of characteristic zero.
Varieties are normal unless otherwise stated.

Definition

A birational map $\phi: X \dashrightarrow Y$ is said to be a *embedding in codimension one* if there exists a closed subset $Z \subset X$ of codimension at least two for which ϕ restricted to $X \setminus Z$ is an embedding.

Embeddings in codimension one

We work over an algebraically closed field \mathbb{K} of characteristic zero. Varieties are normal unless otherwise stated.

Definition

A birational map $\phi: X \dashrightarrow Y$ is said to be a *embedding in codimension one* if there exists a closed subset $Z \subset X$ of codimension at least two for which ϕ restricted to $X \setminus Z$ is an embedding.

Cluster type varieties

Given an algebraic torus \mathbb{G}_m^n with variables x_1, \dots, x_n we denote by Ω_n its volume form

$$\frac{dx_1 \wedge \cdots \wedge dx_n}{x_1 \cdots x_n}.$$

Cluster type varieties

Given an algebraic torus \mathbb{G}_m^n with variables x_1, \dots, x_n we denote by Ω_n its volume form

$$\frac{dx_1 \wedge \cdots \wedge dx_n}{x_1 \cdots x_n}.$$

Definition

A variety X is said to be *cluster type* if there is a embedding in codimension one $\mathbb{G}_m^n \dashrightarrow X$ and Ω_n has no zeros on X . The divisor B given by the poles of Ω_n is called a *cluster type boundary*. We say that (X, B) is a *cluster type pair*.

Cluster type varieties

Given an algebraic torus \mathbb{G}_m^n with variables x_1, \dots, x_n we denote by Ω_n its volume form

$$\frac{dx_1 \wedge \cdots \wedge dx_n}{x_1 \cdots x_n}.$$

Definition

A variety X is said to be *cluster type* if there is a embedding in codimension one $\mathbb{G}_m^n \dashrightarrow X$ and Ω_n has no zeros on X . The divisor B given by the poles of Ω_n is called a *cluster type boundary*. We say that (X, B) is a *cluster type pair*.

Cluster type varieties

The name cluster type is motivated by the following theorem.

Cluster type varieties

The name cluster type is motivated by the following theorem.

Theorem (Corti 23, Enwright-Figueroa-M 24)

Let (X, B) be a cluster type pair. Then, a big open subset of $U := X \setminus B$ is covered by images of embedding in codimension ones $\iota_j: \mathbb{G}_m^n \dashrightarrow X$. Furthermore, given any two such birational maps ι_1 and ι_2 , we have $(\iota_1 \circ \iota_2^{-1})^* \Omega_n = c \Omega_n$ where $c \in \mathbb{K}^*$.

First examples

Example: Toric varieties

A toric variety is cluster type. Indeed, toric pairs can be characterized as cluster type pairs for which there is a unique embedding in codimension one $\mathbb{G}_m^n \dashrightarrow X \setminus B$.

First examples

Example: Toric varieties

A toric variety is cluster type. Indeed, toric pairs can be characterized as cluster type pairs for which there is a unique embedding in codimension one $\mathbb{G}_m^n \dashrightarrow X \setminus B$.

Example: Spectra of cluster algebras

Let R be a finitely generated cluster algebra. Then $U := \text{Spec}(R)$ is an affine cluster type variety. In this case, Ω_n has no poles or zeros on U .

First examples

Example: Toric varieties

A toric variety is cluster type. Indeed, toric pairs can be characterized as cluster type pairs for which there is a unique embedding in codimension one $\mathbb{G}_m^n \dashrightarrow X \setminus B$.

Example: Spectra of cluster algebras

Let R be a finitely generated cluster algebra. Then $U := \text{Spec}(R)$ is an affine cluster type variety. In this case, Ω_n has no poles or zeros on U .

Smooth surfaces

Theorem (Gross-Hacking-Keel 05)

A smooth projective surface X is cluster type if and only if $|-K_X|$ admits a nodal curve.

Smooth surfaces

Theorem (Gross-Hacking-Keel 05)

A smooth projective surface X is cluster type if and only if $|-K_X|$ admits a nodal curve.

Remark

In other words, in the setting of smooth projective surfaces, cluster type pairs are the same as Looijenga pairs.

Smooth surfaces

Theorem (Gross-Hacking-Keel 05)

A smooth projective surface X is cluster type if and only if $|-K_X|$ admits a nodal curve.

Remark

In other words, in the setting of smooth projective surfaces, cluster type pairs are the same as Looijenga pairs.

Corollary

A smooth del Pezzo surface of degree at least two is cluster type.

A general smooth del Pezzo surface of degree one is cluster type.

Singular surfaces

Theorem (EFM25)

Let X be a klt surface and (X, B) be a cluster type pair. Then X has toric singularities and $X \setminus B$ has A_n singularities.

Singular surfaces

Theorem (EFM25)

Let X be a klt surface and (X, B) be a cluster type pair. Then X has toric singularities and $X \setminus B$ has A_n singularities.

Theorem (M-Yáñez 25)

Let X be a Gorenstein del Pezzo surface of rank one. Then X is cluster type if and only if the following two conditions hold:

1. X only has A_n singularities, and
2. either $\text{vol}(X) \geq 2$ or $|X^{\text{sing}}| < 4$.

Singular surfaces

Theorem (EFM25)

Let X be a klt surface and (X, B) be a cluster type pair. Then X has toric singularities and $X \setminus B$ has A_n singularities.

Theorem (M-Yáñez 25)

Let X be a Gorenstein del Pezzo surface of rank one. Then X is cluster type if and only if the following two conditions hold:

1. X only has A_n singularities, and
2. either $\text{vol}(X) \geq 2$ or $|X^{\text{sing}}| < 4$.

Varieties from Lie theory

The following theorem follows from the work of Knutson-Lam-Speyer and Brion-Kumar.

Theorem

The following classes of varieties are cluster type: Flag varieties, Schubert varieties, Bott-Samelson varieties, Richardson varieties, and Brick manifold compactifications of Richardson varieties.

Cluster type condition in families

Example

A Segre cubic is cluster type. So the cluster type condition is not open.

Cluster type condition in families

Example

A Segre cubic is cluster type. So the cluster type condition is not open.

Example

A Gorenstein del Pezzo surface of rank one and a single D_5 singularity is not cluster type. These admit smoothings which are del Pezzos of degree 4. Thus, the cluster type condition is not closed.

Cluster type condition in families

Example

A Segre cubic is cluster type. So the cluster type condition is not open.

Example

A Gorenstein del Pezzo surface of rank one and a single D_5 singularity is not cluster type. These admit smoothings which are del Pezzos of degree 4. Thus, the cluster type condition is not closed.

Ji and the speaker proved that the cluster type condition is constructible in families of smooth Fano varieties.

Cluster type condition in families

Example

A Segre cubic is cluster type. So the cluster type condition is not open.

Example

A Gorenstein del Pezzo surface of rank one and a single D_5 singularity is not cluster type. These admit smoothings which are del Pezzos of degree 4. Thus, the cluster type condition is not closed.

Ji and the speaker proved that the cluster type condition is constructible in families of smooth Fano varieties.

Algebraic mutation datum

Algebraic mutation datum

Let N be a free finitely generated abelian group and M its dual. An *algebraic mutation datum* is a pair $(u, h = g^k)$, where $u \in N$ is a primitive vector, $g \in \mathbb{K}[u^\perp \cap M]$ is an irreducible Laurent polynomial, and k is a positive integer. For a polyhedral cone $\sigma \subset N$, we say that $(u, h = g^k)$ is σ -admissible if $u \notin \sigma$.

Algebraic mutation

Algebraic mutation

Let $\sigma_1, \sigma_2 \subset N_{\mathbb{Q}}$ be two rational polyhedral cones and $U_{\sigma_1}, U_{\sigma_2}$ be the corresponding affine toric varieties. A birational map $\mu: U_{\sigma_1} \dashrightarrow U_{\sigma_2}$ is a *mutation* if the two following conditions are satisfied:

- (i) the induced isomorphism $\mu^*: \mathbb{K}(M) \rightarrow \mathbb{K}(M)$ is given on monomials by $\mu^*(x^m) = x^m h^{-\langle u, m \rangle}$ for some σ_2 -admissible algebraic mutation datum (u, h) , and
- (ii) strict transform via μ induce a bijection between the prime torus invariant divisors of U_{σ_1} and U_{σ_2} .

Embedded semigroup algebras

Embedded semigroup algebras

Let $\sigma \subset N_{\mathbb{Q}}$ be a rational polyhedral cone and $\mathbb{K} \hookrightarrow F$ be a field extension. A \mathbb{K} -algebra homomorphism $\iota: \mathbb{K}[\sigma^\vee \cap M] \hookrightarrow F$ is an *embedded semigroup algebra* if it induces an isomorphism $\mathbb{K}(M) \simeq F$.

Embedded semigroup algebras

Embedded semigroup algebras

Let $\sigma \subset N_{\mathbb{Q}}$ be a rational polyhedral cone and $\mathbb{K} \hookrightarrow F$ be a field extension. A \mathbb{K} -algebra homomorphism $\iota: \mathbb{K}[\sigma^\vee \cap M] \hookrightarrow F$ is an *embedded semigroup algebra* if it induces an isomorphism $\mathbb{K}(M) \simeq F$.

Two embedded semigroup algebras $\iota_i: \mathbb{K}[\sigma_i^\vee \cap M] \hookrightarrow F$ with $i \in \{1, 2\}$ are said to *differ by a mutation* if $\iota_1^{-1} \circ \iota_2$ is a mutation.

Mutation semigroup algebra

Mutation semigroup algebra

A *mutation semigroup algebra* is a finitely generated ring R over \mathbb{K} which can be expressed as

$$R = R_0 \cap \cdots \cap R_k$$

where the following conditions hold for $i \in \{1, \dots, k\}$:

- (i) there is an embedded semigroup algebra $\iota_i: \mathbb{K}[\sigma_i^\vee \cap M] \hookrightarrow \text{Frac}(R)$ with image R_i ;
- (ii) the embedded semigroup algebras ι_0 and ι_i differ by a mutation; and
- (iii) for each prime ideal $\mathfrak{p} \subset R_i$ of height one, the prime ideal $\mathfrak{p} \cap R_i$ has height one in R_i .

We abbreviate mutation semigroup algebra by MSA. We say that R is just a *mutation algebra* if each $\sigma_i = \{0\}$.

MSA vs cluster type

Theorem (Enwright-Francone-M-Spink 25)

Let R be a finitely generated commutative ring over \mathbb{K} . Assume that $U = \text{Spec}(R)$ has klt singularities. Then, the following two conditions are equivalent:

- R is a mutation semigroup algebra,
- there exists a normal projective X , a cluster type pair (X, B) , an ample divisor $A \leq B$, and an isomorphism

$$R \simeq \mathcal{O}(X \setminus A).$$

Applications

Theorem (EFMS25)

Let R be a mutation semigroup algebra. Assume $U = \text{Spec}(R)$ has klt singularities. Then U admits a klt Fano compactification.

Applications

Theorem (EFMS25)

Let R be a mutation semigroup algebra. Assume $U = \text{Spec}(R)$ has klt singularities. Then U admits a klt Fano compactification.

Corollary (EFMS25)

Let R be a locally acyclic cluster algebra. Then $U = \text{Spec}(R)$ admits a canonical log Fano compactification.

Applications

Theorem (EFMS25)

Let R be a mutation semigroup algebra. Assume $U = \text{Spec}(R)$ has klt singularities. Then U admits a klt Fano compactification.

Corollary (EFMS25)

Let R be a locally acyclic cluster algebra. Then $U = \text{Spec}(R)$ admits a canonical log Fano compactification.

Theorem (EFMS25)

Let X be a \mathbb{Q} -factorial Fano variety. The variety X is cluster type if and only if $\text{Cox}(X)$ is a $\text{Cl}(X)$ -graded MSA.

Smooth Fano threefolds

The previous theorem hints that *many* rational smooth Fano threefolds are cluster type. Derenthal, Hausen, Heim, Keicher, and Laface has described the Cox rings of smooth Fano threefold. One example is the following.

Smooth Fano threefolds

The previous theorem hints that *many* rational smooth Fano threefolds are cluster type. Derenthal, Hausen, Heim, Keicher, and Laface has described the Cox rings of smooth Fano threefold. One example is the following.

(12) † The smooth Fano threefold X_{12} has the \mathbb{Z}^2 -graded Cox ring $\mathbb{K}[T_1, \dots, T_{10}]/I$ with generators for I and the degree matrix given by

$$\begin{aligned} & T_1 T_7 - T_2 T_8 + T_4 T_6, & -T_2 T_9 + T_5^2 T_6 - T_5 T_6 T_8 - T_5 T_7 T_8 - \\ & -T_1 T_6 + T_2 T_7 + T_3 T_5 - T_3 T_8, & T_6^2 T_7 + T_7 T_8^2, \\ & T_1 T_5 - T_2 T_6 - T_3 T_7 + T_4 T_8, & T_1^2 T_8^2 - T_1 T_2 T_6 T_7 - T_1 T_2 T_6 T_8 + T_1 T_3 T_6 T_8 + \\ & T_4 T_9 - T_5^2 T_8 + T_5 T_6 T_7 + T_5 T_8^2 - T_7^3, & T_1 T_3 T_7^2 - 2T_1 T_3 T_7 T_8 + T_1 T_4 T_8^2 + T_2^2 T_5 T_6 \\ & T_1^3 - T_1 T_2 T_3 + T_1 T_2 T_4 + T_3^2 T_4 - T_8 T_{10}, & -T_2^2 T_6 T_8 + T_2 T_3 T_6 T_7 - T_2 T_3 T_7 T_8 - T_2 T_4 T_5 T_8 \\ & T_1 T_9 - T_5 T_6^2 + T_5 T_8^2 + T_6^2 T_8 + T_6 T_7^2 - T_8^3, & +T_2 T_4 T_8^2 - T_3^2 T_6 T_7 + T_3^2 T_7^2 + T_3 T_4 T_7^2 - \\ & -T_1^2 T_4 + T_2^3 - T_2 T_4^2 + T_3^2 T_4 - T_5 T_{10}, & T_3 T_4 T_7 T_8 - T_9 T_{10}, \\ & -T_1^2 T_3 + T_1 T_2^2 - T_1 T_3 T_4 + T_2 T_3^2 - T_6 T_{10}, & -T_3 T_9 + T_4 T_9 - T_5^2 T_8 + T_5 T_8^2 + T_6^3 - T_6 T_8^2 \\ & T_1^2 T_2 + T_1 T_3 T_4 - T_2^2 T_3 + T_3 T_4^2 - T_7 T_{10}, & -T_7^3 + T_7^2 T_8 \end{aligned}$$

$$\left[\begin{array}{cccccccccc} 1 & 1 & 1 & 1 & 3 & 3 & 3 & 3 & 8 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 3 & 1 \end{array} \right]$$

Smooth Fano threefolds

The previous theorem hints that *many* rational smooth Fano threefolds are cluster type. Derenthal, Hausen, Heim, Keicher, and Laface has described the Cox rings of smooth Fano threefold. One example is the following.

(12) † The smooth Fano threefold X_{12} has the \mathbb{Z}^2 -graded Cox ring $\mathbb{K}[T_1, \dots, T_{10}]/I$ with generators for I and the degree matrix given by

$$\begin{aligned} & T_1 T_7 - T_2 T_8 + T_4 T_6, & -T_2 T_9 + T_5^2 T_6 - T_5 T_6 T_8 - T_5 T_7 T_8 - \\ & -T_1 T_6 + T_2 T_7 + T_3 T_5 - T_3 T_8, & T_6^2 T_7 + T_7 T_8^2, \\ & T_1 T_5 - T_2 T_6 - T_3 T_7 + T_4 T_8, & T_1^2 T_8^2 - T_1 T_2 T_6 T_7 - T_1 T_2 T_6 T_8 + T_1 T_3 T_6 T_8 + \\ & T_4 T_9 - T_5^2 T_8 + T_5 T_6 T_7 + T_5 T_8^2 - T_7^3, & T_1 T_3 T_7^2 - 2T_1 T_3 T_7 T_8 + T_1 T_4 T_8^2 + T_2^2 T_5 T_6 \\ & T_1^3 - T_1 T_2 T_3 + T_1 T_2 T_4 + T_3^2 T_4 - T_8 T_{10}, & -T_2^2 T_6 T_8 + T_2 T_3 T_6 T_7 - T_2 T_3 T_7 T_8 - T_2 T_4 T_5 T_8 \\ & T_1 T_9 - T_5 T_6^2 + T_5 T_8^2 + T_6^2 T_8 + T_6 T_7^2 - T_8^3, & +T_2 T_4 T_8^2 - T_3^2 T_6 T_7 + T_3^2 T_7^2 + T_3 T_4 T_7^2 - \\ & -T_1^2 T_4 + T_2^3 - T_2 T_4^2 + T_3^2 T_4 - T_5 T_{10}, & T_3 T_4 T_7 T_8 - T_9 T_{10}, \\ & -T_1^2 T_3 + T_1 T_2^2 - T_1 T_3 T_4 + T_2 T_3^2 - T_6 T_{10}, & -T_3 T_9 + T_4 T_9 - T_5^2 T_8 + T_5 T_8^2 + T_6^3 - T_6 T_8^2 \\ & T_1^2 T_2 + T_1 T_3 T_4 - T_2^2 T_3 + T_3 T_4^2 - T_7 T_{10}, & -T_7^3 + T_7^2 T_8 \end{aligned}$$

$$\left[\begin{array}{cccccccccc} 1 & 1 & 1 & 1 & 3 & 3 & 3 & 3 & 8 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 3 & 1 \end{array} \right]$$

Thanks for your attention!