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Cluster type varieties
The name cluster type is motivated by the following theorem.

Theorem (Corti 23, Enwright-Figueroa-M 24)

Let (X, B) be a cluster type pair. Then, a big open subset of U := X \ B is covered by
images of embedding in codimension ones ;: Gy, --» X. Furthermore, given any two
such birational maps ¢1 and 2, we have (u1 o L2_1)*Qn = c2, where ¢ € K*.
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Smooth surfaces

Theorem (Gross-Hacking-Keel 05)

A smooth projective surface X is cluster type if and only if | — Kx| admits a nodal curve.

Remark

In other words, in the setting of smooth projective surfaces, cluster type pairs are the
same as Looijenga pairs.

Corollary

A smooth del Pezzo surface of degree at least two is cluster type.
A general smooth del Pezzo surface of degree one is cluster type.
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Varieties from Lie theory

The following theorem follows from the work of Knutson-Lam-Speyer and
Brion-Kumar.

Theorem

The following classes of varieties are cluster type: Flag varieties, Schubert varieties,
Bott-Samelson varieties, Richardson varieties, and Brick manifold compactifications
of Richardson varieties.
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Algebraic mutation datum

Algebraic mutation datum

Let N be a free finitely generated abelian group and M its dual. An algebraic mutation
datum is a pair (u, h = g¥), where u € N is a primitive vector, g € K[u* N M]is an
irreducible Laurent polynomial, and k is a positive integer. For a polyhedral cone

o C N, we say that (u, h = g¥) is oc-admissible if u & o.



Algebraic mutation

Algebraic mutation

Let 01,02 C Ng be two rational polyhedral cones and U,;,, U,,, be the corresponding
affine toric varieties. A birational map u: U,, --» U,, is a mutation if the two following
conditions are satisfied:
(i) the induced isomorphism p*: K(M) — K(M) is given on monomials by
p (x™) = xMh=UM for some op-admissible algebraic mutation datum (u, h), and
(ii) strict transform via 1 induce a bijection between the prime torus invariant
divisors of U,,, and U,,,,.
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Let 0 C Ng be a rational polyhedral cone and K — F be a field extension. A K-algebra
homomorphism ¢: K[o¥ N M] — F is an embedded semigroup algebra if it induces an
isomorphism K(M) ~ F.
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Embedded semigroup algebras

Let 0 C Ng be a rational polyhedral cone and K — F be a field extension. A K-algebra
homomorphism ¢: K[o¥ N M] — F is an embedded semigroup algebra if it induces an

isomorphism K(M) ~ F.

Two embedded semigroup algebras ¢;: K[o/ N M] — F withi € {1,2} are said to differ
by a mutation if 17" o 1, is a mutation.



Mutation semigroup algebra

Mutation semigroup algebra

A mutation semigroup algebra is a finitely generated ring R over K which can be

expressed as
R=RoN---NR

where the following conditions hold fori € {1,... k}:
(i) thereis an embedded semigroup algebra ¢;: K[o;’ N M] — Frac(R) with image R;;
(ii) the embedded semigroup algebras (o and ¢; differ by a mutation; and
(iii) for each prime ideal p C R; of height one, the prime ideal p N R; has height one in
R;.
We abbreviate mutation semigroup algebra by MSA. We say that R is just a mutation
algebra if each o; = {0}.



MSA vs cluster type
Theorem (Enwright-Francone-M-Spink 25)

Let R be a finitely generated commutative ring over K. Assume that U = Spec(R) has
klt singularities. Then, the following two conditions are equivalent:
¢ R is a mutation semigroup algebra,
e there exists a normal projective X, a cluster type pair (X, B), an ample divisor
A < B, and an isomorphism
R~ OX\A).
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Let R be a mutation semigroup algebra. Assume U = Spec(R) has kit singularities.
Then U admits a kit Fano compactification.
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Let R be a mutation semigroup algebra. Assume U = Spec(R) has kit singularities.
Then U admits a kit Fano compactification.

Corollary (EFMS25)

Let R be a locally acyclic cluster algebra. Then U = Spec(R) admits a canonical log
Fano compactification.

Theorem (EFMS25)

Let X be a Q-factorial Fano variety. The variety X is cluster type if and only if Cox(X)
is a Cl(X)-graded MSA.
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Thanks for your attention!
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