On cubic surface bundles

Alena Pirutka

Courant Institute, New York University

April 19, 2024
Birational Geometry Seminar
Online seminar
General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_k^n? (or stably rational, or retract rational...)

Methods:
- X is rational: come up with a geometric construction;
- X is not rational: find invariants of X; find invariants of a (maybe singular) specialization X_0 of X.

This motivates: what is the available pool of X_0 with invariants?

Goal: add to the pool $X_0 \to \mathbb{P}^2_C$ with fibers cubic surfaces: invariants: use Galois cohomology and geometry of cubics; example: X: $x z^2 u^3 + y^2 z v^3 + x y^2 w^3 + f t^3 = 0 \subset \mathbb{P}^2[x:y:z] \times \mathbb{P}^3[u:v:w:t]$ $f = x^3 + y^3 + z^3 + 3 x^2 y + 3 x y^2 + 3 y^2 z + 3 y z^2 + 3 x z^2 + 3 x^2 z$.

Summary/plan

1. General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}^n_k? (or stably rational, or retract rational...)

2. Methods:
 - X is rational: come up with a geometric construction;
Summary/plan

1. General question of interest: determine which smooth projective varieties X are **rational**: is X birational to \mathbb{P}^n_k? (or stably rational, or retract rational...)

2. Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) **specialization** X_0 of X.

\[xz^2u^3 + y^2z^3v^3 + xy^2w^3 + ft^3 = 0 \subset \mathbb{P}^2 \times \mathbb{P}^3 \]
\[f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2. \]
Summary/plan

1. General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}^n_k? (or stably rational, or retract rational...)

2. Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

3. this motivates: what is the available pool of X_0 with invariants?

Example: $X: xz^2u^3 + y^2z^3 + xy^2w^3 + ft^3 = 0 \subset \mathbb{P}^2 \times \mathbb{P}^3$ with $f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3yz^2 + 3xz^2 + 3x^2z$.

Summary/plan

1. General question of interest: determine which smooth projective varieties X are **rational**: is X birational to \mathbb{P}^n_k? (or stably rational, or retract rational...)

2. Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

3. this motivates: **what is the available pool of X_0 with invariants**?

4. goal: add to the pool $X_0 \to \mathbb{P}^2_\mathbb{C}$ with fibers cubic surfaces:
Summary/plan

1. General question of interest: determine which smooth projective varieties X are **rational**: is X birational to \mathbb{P}^n_k? (or stably rational, or retract rational...)

2. Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

3. this motivates: **what is the available pool of X_0 with invariants?**

4. goal: add to the pool $X_0 \rightarrow \mathbb{P}^2_\mathbb{C}$ with fibers cubic surfaces:
 - invariants: use Galois cohomology and geometry of cubics;
Summary/plan

1. General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}^n_k? (or stably rational, or retract rational...)

2. Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

3. this motivates: what is the available pool of X_0 with invariants?

4. goal: add to the pool $X_0 \to \mathbb{P}^2_C$ with fibers cubic surfaces:
 - invariants: use Galois cohomology and geometry of cubics;
 - example:
 \[X : xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0 \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[u:v:w:t]} \]
 \[f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z. \]
INTRODUCTION
Properties of rationality

Let k be a field, X/k a projective integral variety.

- **X is rational**: X is birational to $\mathbb{P}^n_k \iff k(X)/k$ is a purely transcendental extension;
- **X is stably rational**: $X \times \mathbb{P}^m_k$ is rational, for some m;
- **X is unirational**: there is a dominant rational map $\mathbb{P}^n_k \dasharrow X$;

We have implications \implies.

All notions are equivalent for X/C smooth, of dimension 1 ($X \cong \mathbb{P}^1_C$) or 2 (birational class of \mathbb{P}^2_C).
Properties of rationality

k a field, X/k projective integral variety

- X is **rational**: X is birational to $\mathbb{P}^n_k \Leftrightarrow k(X)/k$ is a purely transcendental extension;
- X is **stably rational**: $X \times \mathbb{P}^m_k$ is rational, for some m;
- X is **unirational**: there is a dominant rational map $\mathbb{P}^n_k \dashrightarrow X$;

We have implications \downarrow.

All notions are equivalent for X/\mathbb{C} smooth, of dimension 1 ($X \simeq \mathbb{P}^1_\mathbb{C}$) or 2 (birational class of $\mathbb{P}^2_\mathbb{C}$).

Next: typical examples and counterexamples.
Rationality proofs

Notation:

\[X_d \subset \mathbb{P}^n_k : f(x_0, \ldots x_n) = 0, \deg f = d \text{ a smooth hypersurface.} \]
Rationality proofs

Notation:

\[X_d \subset \mathbb{P}^n_k : f(x_0, \ldots x_n) = 0, \deg f = d \text{ a smooth hypersurface.} \]

- smooth quadrics \(X_2 \) with \(X_2(k) \neq \emptyset \) are **rational**:

Rational parametrization:

\textit{nontangent} lines through \(A \leftrightarrow \) second intersection point with the quadric.
Irrationality proofs over \mathbb{C}: classical

Classical methods:

- compute some invariant $i(X)$;
- $i(X) \neq 0 \Rightarrow X$ is not rational.
Irrationality proofs over \mathbb{C}: classical

Classical methods:
- compute some invariant $i(X)$;
- $i(X) \neq 0 \Rightarrow X$ is not rational.

Examples of not rational smooth threefolds:
1. $X_3 \subset \mathbb{P}_\mathbb{C}^4$ (Clemens-Griffiths, using intermediate Jacobian);
2. $X_4 \subset \mathbb{P}_\mathbb{C}^4$ (Iskovskikh-Manin, using rigidity);
3. Z a resolution of

$$Y : z_4^2 - f_4(x_0, x_1, x_2, x_3) = 0$$

a double cover of $\mathbb{P}_\mathbb{C}^3$ ramified along some quartic (Artin-Mumford, $H^3(Z, \mathbb{Z})_{tors} = Br Z \neq 0$).

These varieties provide examples of unirational not rational complex threefolds.
Irrationality proofs over \mathbb{C}: specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):

- consider a family of varieties:

$$
\begin{array}{c}
\mathcal{X} \leftarrow X_0 \leftarrow \text{reference variety} \\
\downarrow \downarrow \\
B \leftarrow 0
\end{array}
$$

- compute a suitable invariant $i(X_0)$;
Irrationality proofs over \mathbb{C}: specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):

- consider a family of varieties:

\[
\begin{array}{c}
\mathcal{X} \\
\downarrow \\
B
\end{array}
\quad \quad \quad \quad \begin{array}{c}
\leftarrow X_0 \\
\leftarrow \text{reference variety}
\end{array}
\quad \quad \quad \quad \begin{array}{c}
\downarrow \\
\leftarrow 0
\end{array}
\]

- compute a suitable invariant $i(X_0)$;

- $i(X_0) \neq 0 + \text{EPSILON} \Rightarrow \text{a very general } X = \mathcal{X}_b \text{ is not (stably) rational};$

- (in some cases, all previously computable $i(X)$ vanish);
Irrationality proofs over \(\mathbb{C} \): specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):

- consider a family of varieties:
 \[
 \begin{array}{ccc}
 \chi & \leftarrow & X_0 \leftarrow \text{reference variety} \\
 \downarrow & & \downarrow \\
 B & \leftarrow & 0
 \end{array}
 \]

- compute a suitable invariant \(i(X_0) \);

\[i(X_0) \neq 0 + \text{EPSILON} \Rightarrow \text{a very general } X = \chi_b \text{ is not (stably) rational}; \]

(in some cases, all previously computable \(i(X) \) vanish);

\(\chi_b \text{ very general}: b \notin \bigcup_{i \in \mathbb{N}} B_i(\mathbb{C}), B_i \subset B \text{ closed.} \)

EPSILON:

- restriction on singularities of \(X_0 \);
- "restriction to subvarieties" for \(i \) (Schreieder).
X not stably rational by specialization

1. $\dim X_d = 3$: (Colliot-Thélène–Pirutka), $d = 4$;
X not stably rational by specialization

1. \(\dim X_d = 3 \): (Colliot-Thélène–Pirutka), \(d = 4 \);

2. \(\dim X_d = 4 \): (Totaro) \(d = 4 \), (Kollár) \(d = 5 \);
X not stably rational by specialization

1. $\dim X_d = 3$: (Colliot-Thélène–Pirutka), $d = 4$;
2. $\dim X_d = 4$: (Totaro) $d = 4$, (Kollár) $d = 5$;
3. $\dim X_d = 5$: (Nicaise-Ottem) $d = 4$, (Schreieder) $d = 5$, (Kollár) $d = 6$;
$\dim X_d = 3$: (Colliot-Thélène–Pirutka), $d = 4$;

$\dim X_d = 4$: (Totaro) $d = 4$, (Kollár) $d = 5$;

$\dim X_d = 5$: (Nicaise-Ottem) $d = 4$, (Schreieder) $d = 5$, (Kollár) $d = 6$;

(Schreieder) $X_d \subset \mathbb{P}^{n+1}$ with

$$d \geq \log_2 n + 2,$$

this generalizes previous bounds by Kollár, and Totaro, of order $d \sim \geq 2/3n$.

...
X not stably rational by specialization

1. \(\dim X_d = 3 \): (Colliot-Thélène–Pirutka), \(d = 4 \);
2. \(\dim X_d = 4 \): (Totaro) \(d = 4 \), (Kollár) \(d = 5 \);
3. \(\dim X_d = 5 \): (Nicaise-Ottem) \(d = 4 \), (Schreieder) \(d = 5 \),
 (Kollár) \(d = 6 \);
4. (Schreieder) \(X_d \subset \mathbb{P}^{n+1} \) with
 \[
 d \geq \log_2 n + 2,
 \]

 this generalizes previous bounds by Kollár, and Totaro, of order
 \(d \sim \geq 2/3n \).

Other examples:
- cyclic covers,
- complete intersections,
- hypersurfaces in \(\mathbb{P}^m \times \mathbb{P}^n \), and more.
Available reference varieties X_0

- X_0: a conic of quadric surface bundle over \mathbb{P}^2,

\[i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2) \]

here $X'_0 \to X_0$ is a resolution of singularities.
Available reference varieties X_0

- X_0: a conic of quadric surface bundle over \mathbb{P}^2,

$$i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)$$

here $X'_0 \rightarrow X_0$ is a resolution of singularities.

- X_0: cyclic cover of \mathbb{P}^n, $i = H^0(X'_0, \Omega^m)$
Available reference varieties X_0

- X_0 : a conic of quadric surface bundle over \mathbb{P}^2,
 \[
i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)\]
 here $X'_0 \to X_0$ is a resolution of singularities.
- X_0 : cyclic cover of \mathbb{P}^n, $i = H^0(X'_0, \Omega^m)$
- more generally, X_0 : a quadric bundle over \mathbb{P}^n,
 \[
i = H^m_{nr}(X_0) \subset H^m(\mathbb{C}(X_0));\]
Available reference varieties X_0

- X_0 : a conic of quadric surface bundle over \mathbb{P}^2,

$$i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)$$

here $X'_0 \to X_0$ is a resolution of singularities.

- X_0 : cyclic cover of \mathbb{P}^n, $i = H^0(X'_0, \Omega^m)$

- more generally, X_0 : a quadric bundle over \mathbb{P}^n,

$$i = H^m_{nr}(X_0) \subset H^m(\mathbb{C}(X_0));$$

- X_0 : a fibration over \mathbb{P}^n in Fermat-Pfister forms, $i = H^m_{nr}(X_0)$.
Galois cohomology
Assume: $K \supset \mu_n$.

- $H^0(K, \mathbb{Z}/n) \simeq \mathbb{Z}/n$;
- $H^1(K, \mathbb{Z}/n) \simeq K^*/K^{*n}$ (Kummer), for $a \in K^*$, we will still denote by a its class in $H^1(K, \mathbb{Z}/n)$.
- $Br(K)[n] = H^2(K, \mathbb{Z}/n)$ (Kummer);
 symbols: $(a, b) := a \cup b \in H^2(K, \mathbb{Z}/n), a, b \in K^*$.
Assume: $K \supset \mu_n$.

- $H^0(K, \mathbb{Z}/n) \simeq \mathbb{Z}/n$;
- $H^1(K, \mathbb{Z}/n) \simeq K^*/K^{*n}$ (Kummer), for $a \in K^*$, we will still denote by a its class in $H^1(K, \mathbb{Z}/n)$.
- $Br(K)[n] = H^2(K, \mathbb{Z}/n)$ (Kummer);
symbols: $(a, b) := a \cup b \in H^2(K, \mathbb{Z}/n)$, $a, b \in K^*$.

- $\nu: K \to \mathbb{Z} \cup \{\infty\}$ a discrete valuation of rank 1:
 Recall: $\nu(x) = \infty \iff x = 0$
 $\nu(xy) = \nu(x) + \nu(y)$
 $\nu(x + y) \geq \min(\nu(x), \nu(y))$
- A be the valuation ring: $A = \{x, \nu(x) \geq 0\}$,
- $\kappa(\nu)$ the residue field: $\kappa(\nu) = A/m$,
 $m = \{x, \nu(x) > 0\} = (\pi_A)$, π_A is a uniformizer
Assume: $K \supset \mu_n$.

1. $H^0(K, \mathbb{Z}/n) \cong \mathbb{Z}/n$;
2. $H^1(K, \mathbb{Z}/n) \cong K^*/K^{*n}$ (Kummer),
 for $a \in K^*$, we will still denote by a its class in $H^1(K, \mathbb{Z}/n)$.
3. $Br(K)[n] = H^2(K, \mathbb{Z}/n)$ (Kummer);
 symbols: $(a, b) := a \cup b \in H^2(K, \mathbb{Z}/n)$, $a, b \in K^*$.

2. $v : K \to \mathbb{Z} \cup \infty$ a discrete valuation of rank 1:
 Recall: $v(x) = \infty \iff x = 0$
 $v(xy) = v(x) + v(y)$
 $v(x + y) \geq \min(v(x), v(y))$

4. $\kappa(v)$ the residue field: $\kappa(v) = A/m$,
5. $m = \{x, v(x) > 0\} = (\pi_A)$, π_A is a uniformizer
6. this gives $\partial^i_v : H^i(K, \mathbb{Z}/n) \to H^{i-1}(\kappa(v), \mathbb{Z}/n)$.
7. ∂^i_v factors through the completion $H^i(K_v, \mathbb{Z}/n)$.
Formulas for residus

\[a, b \in H^1(K, \mathbb{Z}/n) \cong K^*/K^{*n} \]

\[\partial_1^1(a) = \nu(a) \mod n \in H^0(\kappa(\nu), \mathbb{Z}/n) \cong \mathbb{Z}/n, \]
Formulas for residus

\(a, b \in H^1(K, \mathbb{Z}/n) \simeq K^*/K^{*n} \)

1. \(\partial_1^1(a) = \nu(a) \mod n \in H^0(\kappa(\nu), \mathbb{Z}/n) \simeq \mathbb{Z}/n, \)

2. \(\partial_2^2(a, b) = (-1)^{\nu(a)\nu(b)} \frac{a^\nu(b)}{b^\nu(a)} \)

where \(\frac{a^\nu(b)}{b^\nu(a)} \) is the image of the unit \(\frac{a^\nu(b)}{b^\nu(a)} \) in \(\kappa(\nu)^*/\kappa(\nu)^*n \).
Formulas for residus

\[a, b \in H^1(K, \mathbb{Z}/n) \cong K^*/K^{*n} \]

1. \(\partial^1_v(a) = v(a) \mod n \in H^0(\kappa(v), \mathbb{Z}/n) \cong \mathbb{Z}/n, \)

2. \(\partial^2_v(a, b) = (-1)^{v(a)v(b)} \frac{a^{v(b)}}{b^{v(a)}} \)

where \(\frac{a^{v(b)}}{b^{v(a)}} \) is the image of the unit \(\frac{a^{v(b)}}{b^{v(a)}} \) in \(\kappa(v)^*/\kappa(v)^{*n} \).

3. In particular, \(\partial^2_v(a, b) = 0 \) if \(v(a) = v(b) = 0. \)
Example

- $S = \mathbb{P}^2_\mathbb{C}$, $K = \mathbb{C}(x, y)$, $\alpha = (x, y) \in H^2(K, \mathbb{Z}/2)$;
- $\nu_D : K^* \to \mathbb{Z}$ is the order of vanishing at $D = \{x = 0\}$;
- recall: $\partial^2_v(a, b) = (-1)^{\nu(a)\nu(b)} \frac{a^{\nu(b)}}{b^{\nu(a)}}$;
- then $\partial^2_{\nu_D}(\alpha) = \partial^2_{\nu_D}(x, y) =$
Example

- $S = \mathbb{P}_\mathbb{C}^2$, $K = \mathbb{C}(x, y)$, $\alpha = (x, y) \in H^2(K, \mathbb{Z}/2)$;
- $\nu_D : K^* \to \mathbb{Z}$ is the order of vanishing at $D = \{x = 0\}$;
- recall: $\partial^2_{v(a, b)} = (-1)^{\nu(a)\nu(b)} \frac{a^{\nu(b)}}{b^{\nu(a)}}$;
- then $\partial^2_{v_D}(\alpha) = \partial^2_{v_D}(x, y) = y \in \mathbb{C}(y)^*/\mathbb{C}(y)^*^2$.
H^i_{nr}: definition

- X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \bigcap_v \ker \partial^2_v$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).

If X/k is stably rational, then

$$H^i(k) \cong H^i_{nr}(k(X)/k).$$

Advantage: No need to compute a smooth model of X/k.

Fact: if X is smooth and projective, $H^2_{nr}(X, \mathbb{Z}/n) \cong Br(X)[n]$.
H^i_{nr}: definition

- X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \text{Ker} \partial^2_v$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

- One has

$$H^2(k) \to H^2_{nr}(k(X)/k)$$

(recall: if $v(a) = v(b) = 0$, then $\partial(a, b) = 0$.)

Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).

X/k is a stably rational, then

$$H^i(k) \cong H^i_{nr}(k(X)/k).$$

Advantage: No need to compute a smooth model of X.

Fact: if X is smooth and projective, $H^2_{nr}(X, \mathbb{Z}/n) \cong \text{Br}(X)[n]$.
$H^i_{nr}: \text{ definition}$

- X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \bigcap_v \text{Ker} \partial^2_v$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

- One has

$$H^2(k) \to H^2_{nr}(k(X)/k)$$

(recall: if $v(a) = v(b) = 0$, then $\partial(a, b) = 0$.

- Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).

- X/k is a **stably rational**, then $H^i(k) \simeq H^i_{nr}(k(X)/k)$.

- Advantage: No need to compute a smooth model of X
H^i_{nr}: definition

- X/k an integral variety, then

\[H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \text{Ker} \partial^2_v \]

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

- One has

\[H^2(k) \to H^2_{nr}(k(X)/k) \]

(recall: if $v(a) = v(b) = 0$, then $\partial(a, b) = 0$.

- Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).

- X/k is a stably rational, then $H^i(k) \simeq H^i_{nr}(k(X)/k)$.

- Advantage: No need to compute a smooth model of X.

- Fact: if X is smooth and projective, $H^2_{nr}(X, \mathbb{Z}/n) \simeq Br(X)[n]$.

Strategy for fibrations (Colliot-Thélène - Ojanguren)

Set up:

\[\begin{array}{c}
X_K \\ \downarrow \\
K \\
\end{array} \quad \begin{array}{c}
\longrightarrow \\
\downarrow \\
\longrightarrow \\
\end{array} \quad \begin{array}{c}
X \\ \downarrow \pi \\
S = \mathbb{P}^2_{\mathbb{C}} \\
\end{array} \quad \text{fibration in geometrically rational varieties}

where \(K = \mathbb{C}(x, y) \) is the field of functions of \(S \),
Strategy for fibrations (Colliot-Thélène - Ojanguren)

Set up:

\[
\begin{array}{ccc}
X_K & \rightarrow & X \\
\downarrow & & \downarrow \pi \\
K & \rightarrow & S = \mathbb{P}^2_C
\end{array}
\]

fibration in geometrically rational varieties

where \(K = \mathbb{C}(x, y) \) is the field of functions of \(S \),

note: \(K(X_K) = \mathbb{C}(X) \).
Set up:

\[
\begin{align*}
X_K & \to X \\
\downarrow & \downarrow \pi \\
K & \to S = \mathbb{P}^2_{\mathbb{C}}
\end{align*}
\]

where \(K = \mathbb{C}(x, y) \) is the field of functions of \(S \),

note: \(K(X_K) = \mathbb{C}(X) \).

\[
H^2_{nr}(\mathbb{C}(X)/\mathbb{C}) \leftarrow H^2_{nr}(K(X_K)/K) \leftarrow H^2(\mathbb{C}(X))
\]

\[H^2(K)\]
Strategy for fibrations (Colliot-Thélène - Ojanguren)

- Set up:
 \[X_K \rightarrow X \xleftarrow{\text{fibration in geometrically rational varieties}} \]
 \[K \rightarrow S = \mathbb{P}^2_{\mathbb{C}} \]

where \(K = \mathbb{C}(x, y) \) is the field of functions of \(S \),
note: \(K(X_K) = \mathbb{C}(X) \).

- \(H^2_{nr}(\mathbb{C}(X)/\mathbb{C}) \leftarrow H^2_{nr}(K(X_K)/K) \rightarrow H^2(\mathbb{C}(X)) \)

\[H^2(K) \]

- \(\alpha \in H^2(K) \) is ramified on \(S \) as \(H^2_{nr}(\mathbb{C}(S)/\mathbb{C}) = H^2(\mathbb{C}) = 0 \).
Set up:

\[\begin{align*}
X_K & \longrightarrow X \leftarrow \text{fibration in geometrically rational varieties} \\
\downarrow & \quad \downarrow \\
K & \longrightarrow S = \mathbb{P}^2_{\mathbb{C}}
\end{align*} \]

where \(K = \mathbb{C}(x, y) \) is the field of functions of \(S \),
note: \(K(X_K) = \mathbb{C}(X) \).

\[H^2_{nr}(\mathbb{C}(X)/\mathbb{C}) \hookrightarrow H^2_{nr}(K(X_K)/K) \hookrightarrow H^2(\mathbb{C}(X)) \]

\[H^2(K) \]

\(\alpha \in H^2(K) \) is ramified on \(S \) as \(H^2_{nr}(\mathbb{C}(S)/\mathbb{C}) = H^2(\mathbb{C}) = 0 \).

idea: if \(\partial^2_{v_D}(\alpha) \neq 0 \), then \(\pi \) degenerates along \(D \).
Relative unramified cohomology \(H^i_{nr, \pi}(k(X)/k) \subset H^i(k(X)) \)

Set up: \(X_{K_x} \xrightarrow{\pi} X \xleftarrow{\text{integral}} X_K \xrightarrow{\text{smooth, } k \text{ alg. closed}} S/k \)

Here \(K(X_K) = k(X) \).
Relative unramified cohomology $H_{nr,\pi}^i(k(X)/k) \subset H^i(k(X))$

Set up:

\[
\begin{array}{ccccccccc}
X_{K_x} & X_K & X & \leftarrow & \text{integral} \\
\downarrow & \downarrow & \downarrow \pi & & \\
K_x & K & S/k & \leftarrow & \text{smooth, } k \text{ alg.closed} \\
\end{array}
\]

here $K(X_K) = k(X)$.

Definition

\[
H_{nr,\pi}^i(k(X)/k) = \text{Im}[H^i(K) \to H^i(K(X_K))] \bigcap \bigcap_P \text{Ker}[H^i(K) \to H^i(K_P) \to H^i(K_P(X_{K_P}))],
\]

where

- P runs over all scheme points of S of positive codimension:

 $P \in S^{(i)}$ for $i > 0$

- K_P is the field of fractions of the completed local ring $\hat{O}_{S,P}$.
Properties

- $H^i_{nr, \pi}(k(X)/k) \subset H^i_{nr}(k(X)/k)$. if $\alpha \in H^i_{nr, \pi}(k(X)/k)$ is nonzero, then X is a reference variety (Schreieder).
• $H^i_{nr,\pi}(k(X)/k) \subset H^i_{nr}(k(X)/k)$.

• if $\alpha \in H^i_{nr,\pi}(k(X)/k)$ nonzero, then X is a *reference variety* (Schreieder).
Cubic surface bundles
Computing $H^2_{nr,\pi}$

$$H^2_{nr,\pi}(k(X)/k) = \text{Im}[H^2(K) \to H^2(K(X_K))] \cap$$
$$\cap_P \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))].$$

Let $Y = X_K$.

Question: when $H^2(F) \to H^2(F(Y))$ is injective ($F = K$) not injective, and what is the kernel ($F = K_P$)?

Known answers for:
- Y a quadric (Arason, Pfister, Kahn-Rost-Sujatha)
- Y a geometrically rational surface (Colliot-Thélène - Karpenko - Merkurjev).
Computing $H^2_{nr, \pi}$

\[H^2_{nr, \pi}(k(X)/k) = \text{Im}[H^2(K) \to H^2(K(X_K))] \bigcap \]
\[\cap_P \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))]. \]

Let $Y = X_K$.

Question: when $H^2(F) \to H^2(F(Y))$ is:

- injective ($F = K$)
- not injective, and what is the kernel ($F = K_P$)?
Computing $H_{nr,\pi}^2$

\[H_{nr,\pi}^2(k(X)/k) = \text{Im}[H^2(K) \to H^2(K(X_K))] \bigcap \]
\[\cap_P \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))]. \]

Let $Y = X_K$.

Question: when $H^2(F) \to H^2(F(Y))$ is:
- injective ($F = K$)
- not injective, and what is the kernel ($F = K_P$)?

Known answers for:
- Y a quadric (Arason, Pfister, Kahn-Rost-Sujatha)
- Y a geometrically rational surface (Colliot-Thélène - Karpenko - Merkurjev).
Rational surfaces and kernels for $H^2(\cdot, \mathbb{Z}/3)$

(Colliot-Thélène - Karpenko - Merkurjev)

F a field, Y/F geometrically rational surface. Then

- $\text{Ker}[H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)] \neq 0$ iff
- Y is F-birational to Y' a non-split Severi-Brauer (SB) surface.
(Colliot-Thélène - Karpenko - Merkurjev)

F a field, Y/F geometrically rational surface. Then

- $\text{Ker} [H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)] \neq 0$ iff Y is F-birational to Y' a non-split Severi-Brauer (SB) surface.
- Then

$$\text{Ker} [H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)] \cong \mathbb{Z}/3,$$

generated by the class of Y'.
Example: minimal cubic

\[Y : au^3 + bv^3 + abw^3 + ft^3 = 0, \ a, b, f \in F \]

- Assume: none of the elements \(a, b, ab, f, af, bf \) is a cube in \(F \).
- (Segre) then the surface is minimal, and

\[H^2(F, \mathbb{Z}/3\mathbb{Z}) \to H^2(F(Y), \mathbb{Z}/3\mathbb{Z}) \]

is injective.
Example: nonminimal cubic

\[Y : au^3 + bv^3 + abw^3 + t^3 = 0, \ a, b \in F \]
then \((a, b) \in \text{Ker}[H^2(F, \mathbb{Z}/3) \rightarrow H^2(F(Y), \mathbb{Z}/3)] : \)
Example: nonminimal cubic

\[Y : au^3 + bv^3 + abw^3 + t^3 = 0, a, b \in F \]

then \((a, b) \in \text{Ker}[H^2(F, \mathbb{Z}/3) \rightarrow H^2(F(Y), \mathbb{Z}/3)]\):

- if \(a\) is a cube in \(F(Y)\), then \((a, b) = 0\).
Example: nonminimal cubic

\[Y : au^3 + bv^3 + abw^3 + t^3 = 0, \quad a, b \in F \]

then \((a, b) \in \ker[H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)]\):

- if \(a\) is a cube in \(F(Y)\), then \((a, b) = 0\).
- Otherwise, let \(L = F(Y)(\sqrt[3]{a})\). In \(F(Y)\) we have a relation

\[
 b = -\frac{t^3 + au^3}{v^3 + aw^3},
\]

so

\[
 b = N_{L/F(Y)}(\beta)
\]

where

\[
 \beta = -\frac{t + \sqrt[3]{au}}{v + \sqrt[3]{aw}}.
\]
Example: nonminimal cubic

\[Y : au^3 + bv^3 + abw^3 + t^3 = 0, \ a, b \in F \]

then \((a, b) \in \text{Ker}[H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)]:\)

- if \(a\) is a cube in \(F(Y)\), then \((a, b) = 0\).
- Otherwise, let \(L = F(Y)(\sqrt[3]{a})\). In \(F(Y)\) we have a relation

\[b = -\frac{t^3 + au^3}{v^3 + aw^3}, \]

so

\[b = N_{L/F(Y)}(\beta) \]

where

\[\beta = -\frac{t + \sqrt[3]{au}}{v + \sqrt[3]{aw}}. \]

Hence in \(H^2(F(Y), \mathbb{Z}/3\mathbb{Z})\):

\[(a, b) = (a, N_{L/F(Y)}(\beta)) = N_{L/F(Y)}(a, \beta) = 0.\]
Example

- $k = \mathbb{C}$
 (or k an algebraically closed field of $\text{char } (k) \neq 3$)
- $X \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[u:v:w:t]}$ is a cubic surface bundle over k:
 \[xz^2 u^3 + y^2 z v^3 + xy^2 w^3 + ft^3 = 0, \]
 where
 \[f = x^3 + y^3 + z^3 + 3x^2 y + 3xy^2 + 3y^2 z + 3yz^2 + 3xz^2 + 3x^2 z, \]
Example

- \(k = \mathbb{C} \)
 (or \(k \) an algebraically closed field of \(\text{char} \,(k) \neq 3 \))
- \(X \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[u:v:w:t]} \) is a cubic surface bundle over \(k \):
 \[
 xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0,
 \]
 where
 \[
 f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z,
 \]
- Let \(K = \mathbb{C}(\mathbb{P}^2) = \mathbb{C}(x/z, y/z) \), let
 \(\alpha = (x/z, y/z) \in H^2(K, \mathbb{Z}/3) \). Then
 \[
 \alpha \in H^2_{nr, \pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3).
 \]
Sketch of proof: α nonzero in $C(X) = K(X_K)$

the generic fibre $Y = X_K$ of π is a minimal cubic surface:

$$xz^2 u^3 + y^2 zv^3 + xy^2 w^3 + ft^3 = 0,$$

where $f = x^3 + y^3 + z^3 + 3x^2 y + 3xy^2 + 3y^2 z + 3yz^2 + 3xz^2 + 3x^2 z.$
Sketch of proof: α nonzero in $C(X) = K(X_K)$

the generic fibre $Y = X_K$ of π is a minimal cubic surface:

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0,$$

where

$$f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z.$$

Recall:

$$au^3 + bv^3 + abw^3 + ft^3 = 0, \ a, b, f \in K$$

if none of the elements a, b, ab, f, af, bf is a cube then

$H^2(K, \mathbb{Z}/3) \to H^2(K(Y), \mathbb{Z}/3)$ is injective.
Sketch of proof: ramification of α

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$
Sketch of proof: ramification of α

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$

Question: For which divisors $D \subset \mathbb{P}^2_C$ one has $\partial_D(\alpha) \neq 0$?
Sketch of proof: ramification of α

$$xz^2 u^3 + y^2 z v^3 + xy^2 w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$

Question: For which divisors $D \subset \mathbb{P}^2_C$ one has $\partial_D(\alpha) \neq 0$?

Answer: $x = 0$ or $y = 0$ or $z = 0$.
Sketch of proof: α zero in $K_P(Y)$

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$
Sketch of proof: α zero in $K_P(Y)$

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$

Let $P \in \mathbb{P}_k^2$ be a point of positive codimension. We have three cases:

1. P is the generic point of one of three lines $x = 0$, $y = 0$, or $z = 0$, or an intersection point of two of these lines.
2. P is a closed point lying on only one of the lines $x = 0$, $y = 0$, or $z = 0$.
3. All other cases.
Blackboard
Sketch of proof: α zero in $K_P(Y)$, case 1

$ux^2u^3 + vy^2zv^3 + xxyw^3 + ft^3 = 0$, $\alpha = (x/z, y/z)$, where

$f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z$.

P is the generic point of one of three lines $x = 0$, $y = 0$, or $z = 0$, or an intersection point of two of these lines.
Sketch of proof: α zero in $K_P(Y)$, case 1

$\alpha = (x/z, y/z)$, where

$$f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z.$$

P is the generic point of one of three lines $x = 0$, $y = 0$, or $z = 0$, or an intersection point of two of these lines. Then

- f is a nonzero cube in $\kappa(P)$, so that f is a cube in K_P (Hensel)
Sketch of proof: α zero in $K_P(Y)$, case 1

$$xz^2 u^3 + y^2 z v^3 + xy^2 w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z),$$
where

$$f = x^3 + y^3 + z^3 + 3x^2 y + 3xy^2 + 3y^2 z + 3yz^2 + 3xz^2 + 3x^2 z.$$

P is the generic point of one of three lines $x = 0$, $y = 0$, or $z = 0$, or an intersection point of two of these lines. Then

- f is a nonzero cube in $\kappa(P)$, so that f is a cube in K_P (Hensel)
- Y_{K_P} is

$$\frac{x}{z} u^3 + \frac{y^2}{z^2} v^3 + \frac{x}{z} \frac{y^2}{z^2} w^3 + t^3 = 0$$

so that the element $(x/z, y^2/z^2) = 2\alpha$ is in the kernel of the map

$$H^2(K_P, \mathbb{Z}/3) \to H^2(K_P(Y), \mathbb{Z}/3\mathbb{Z}).$$
Sketch of proof: α zero in $K_P(Y)$, case 2

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$

P is a closed point lying on only one of the lines $x = 0$, $y = 0$, or $z = 0$.
Sketch of proof: \(\alpha \) zero in \(K_P(Y) \), case 2

\[
{xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z)}.
\]

\(P \) is a closed point lying on only one of the lines \(x = 0, y = 0, \) or \(z = 0 \).

- enough: \(\alpha = 0 \) over \(K_P \).
Sketch of proof: α zero in $K_P(Y)$, case 2

\[xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z). \]

P is a closed point lying on only one of the lines $x = 0$, $y = 0$, or $z = 0$.

- enough: $\alpha = 0$ over K_P.
- assume: P is on the line $x = 0$:
 - then y/z is a nonzero element in the residue field $\kappa(P) = \mathbb{C}$, hence a cube
 - Hence y/z is a cube in K_P.
Sketch of proof: α zero in $K_P(Y)$, case 3

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).$$

P is not on the lines $x = 0$, $y = 0$, or $z = 0$.

- x/z and y/z are units in the local ring of P, so that the image of α in K_P comes from the cohomology group $H^2_{\text{ét}}(\hat{O}_{\mathbb{P}^2,P}, \mathbb{Z}/3)$.
Sketch of proof: \(\alpha \) zero in \(K_P(Y) \), case 3

\[
{xz}^2 u^3 + y^2 z v^3 + xy^2 w^3 + ft^3 = 0, \quad \alpha = (x/z, y/z).
\]

\(P \) is not on the lines \(x = 0, y = 0, \) or \(z = 0 \).

- \(x/z \) and \(y/z \) are units in the local ring of \(P \), so that the image of \(\alpha \) in \(K_P \) comes from the cohomology group
 \[
 H^2_{\text{ét}}(\hat{O}_{\mathbb{P}^2, P}, \mathbb{Z}/3).
 \]

- \(H^2_{\text{ét}}(\hat{O}_{\mathbb{P}^2, P}, \mathbb{Z}/3) = H^2(\kappa(P), \mathbb{Z}/3) = 0 \) by cohomological dimension.
Corollary

We obtained:

$$xz^2 u^3 + y^2 zv^3 + xy^2 w^3 + ft^3 = 0 \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[u:v:w:t]}$$

where

$$f = x^3 + y^3 + z^3 + 3x^2 y + 3xy^2 + 3y^2 z + 3yz^2 + 3xz^2 + 3x^2 z$$

is a reference variety.
Corollary

We obtained:

\[xz^2 u^3 + y^2 zv^3 + xy^2 w^3 + ft^3 = 0 \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[u:v:w:t]} \]

where

\[f = x^3 + y^3 + z^3 + 3x^2 y + 3xy^2 + 3y^2 z + 3yz^2 + 3xz^2 + 3x^2 z \]

is a reference variety.

Then:

Theorem (Krylov-Okada, Nicaise-Ottem)

Let \(k \) be an algebraically closed field of char \((k) \neq 3 \). A very general hypersurface of bidegree \((3, 3)\) in \(\mathbb{P}^2_k \times \mathbb{P}^3_k \) is not stably rational.
\[\pi : X \to S = \mathbb{P}^2_C \text{ cubic surface bundle, } K = \mathbb{C}(x, y). \]

\[H^2_{nr, \pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \text{Im}[H^2(K, \mathbb{Z}/3) \to H^2(K(X_K), \mathbb{Z}/3)] \bigcap \]

\[\cap_{P \in S(1) \cup S(2)} \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \]
\[\pi : X \to S = \mathbb{P}^2_C \text{ cubic surface bundle, } K = \mathbb{C}(x, y). \]

\[H^2_{nr, \pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \text{Im}[H^2(K, \mathbb{Z}/3) \to H^2(K(X_K), \mathbb{Z}/3)] \cap \]
\[\cap_{P \in S(1) \cup S(2)} \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \]

- \(\alpha \in H^2(K) \) is determined by residues at \(P \in S \) of codimension 1, by Bloch-Ogus:

\[0 \to H^2(K, \mathbb{Z}/3) \oplus \partial^2 \oplus_{P \in S(1)} H^1(\kappa(P), \mathbb{Z}/3) \to \]
\[\oplus \partial^1 \oplus_{p \in S(2)} H^0(\kappa(p), \mathbb{Z}/3) \]

- we need to specify which residues are allowed:
\[\pi : X \to S = \mathbb{P}^2_C \text{ cubic surface bundle, } K = \mathbb{C}(x, y). \]

\[H^2_{nr, \pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \text{Im}[H^2(K, \mathbb{Z}/3) \to H^2(K(X_K), \mathbb{Z}/3)] \bigcap \]

\[\bigcap_{P \in S(1) \cup S(2)} \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \]

\[\alpha \in H^2(K) \text{ is determined by residues at } P \in S \text{ of codimension 1, by Bloch-Ogus:} \]

\[0 \to H^2(K, \mathbb{Z}/3) \bigoplus_{P \in S(1)} H^1(\kappa(P), \mathbb{Z}/3) \to \bigoplus_{P \in S(2)} H^0(\kappa(p), \mathbb{Z}/3) \]

we need to specify which residues are allowed:

\(X_{K_P} \text{ is birational to a SB surface } \Rightarrow \text{ the fiber} \)

\(X_P = \cup 3 \text{ conjugated planes} \)
General formula

\[\pi : X \to S = \mathbb{P}_\mathbb{C}^2 \] cubic surface bundle, \(K = \mathbb{C}(x, y) \).

\[H^2_{nr, \pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \text{Im}[H^2(K, \mathbb{Z}/3) \to H^2(K(X_K), \mathbb{Z}/3)] \cap \]
\[\cap_{P \in S(1) \cup S(2)} \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \]

- \(\alpha \in H^2(K) \) is determined by residues at \(P \in S \) of codimension 1, by Bloch-Ogus:

\[0 \to H^2(K, \mathbb{Z}/3) \xrightarrow{\oplus \partial^2} \oplus_{P \in S(1)} H^1(\kappa(P), \mathbb{Z}/3) \to \]
\[\oplus \partial^1 \oplus_{p \in S(2)} H^0(\kappa(p), \mathbb{Z}/3) \]

- we need to specify which residues are allowed:
\(X_{K_P} \) is birational to a SB surface \(\Rightarrow \) the fiber
\(X_P = \cup 3 \) conjugated planes (condition appeared in a joint work with A. Auel and C. Böhning).
Set up: $\pi : X \to S = \mathbb{P}^2_C$ cubic surface bundle, $K = \mathbb{C}(x, y)$. Assume:

- X_K is a smooth minimal cubic surface (so $H^2(K, \mathbb{Z}/3) \hookrightarrow H^2(K(X_K), \mathbb{Z}/3)$);
- fibres of π over codimension 1 points of S are reduced.
Set up: $\pi : X \to S = \mathbb{P}^2_C$ cubic surface bundle, $K = \mathbb{C}(x, y)$.

Assume:
- X_K is a smooth minimal cubic surface (so $H^2(K, \mathbb{Z}/3) \hookrightarrow H^2(K(X_K), \mathbb{Z}/3)$);
- fibres of π over codimension 1 points of S are reduced.

Determine:
- $C = \bigcup_{i=1}^n C_i \subset S$ a divisor corresponding to the set of codimension 1 points of S over which the fibre of π is geometrically a union of three planes permuted by Galois.
- $\gamma_i \in \kappa(C_i)^*/(\kappa(C_i)^*)^3$ the class corresponding to the cyclic extension.

Assume C is snc.
General formula

Set up: $\pi : X \to S = \mathbb{P}^2_C$ cubic surface bundle, $K = \mathbb{C} \langle x, y \rangle$.

Assume:

- X_K is a smooth minimal cubic surface
 (so $H^2(K, \mathbb{Z}/3) \hookrightarrow H^2(K(X_K), \mathbb{Z}/3)$);
- fibres of π over codimension 1 points of S are reduced.

Determine:

- $C = \bigcup_{i=1}^n C_i \subset S$ a divisor corresponding to the set of codimension 1 points of S over which the fibre of π is geometrically a union of three planes permuted by Galois.
- $\gamma_i \in \kappa(C_i)^*/(\kappa(C_i)^*)^3$ the class corresponding to the cyclic extension.

Assume C is snc. Then (briefly):

- $\alpha \in H^2_{nr, \pi}$ is only allowed to have residues γ_i at C_i + condition on K_P.
- glue by Bloch-Ogus.
Set up: \(\pi : X \to S = \mathbb{P}^2_C, \ C = \bigcup_{i=1}^n C_i, \ \gamma_i \in \kappa(C_i)^*/(\kappa(C_i)^*)^3. \)

\[
H^2_{nr, \pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \text{Im}[H^2(K, \mathbb{Z}/3) \to H^2(K(X_K), \mathbb{Z}/3)] \bigcap \\
\bigcap_{P \in S(1) \cup S(2)} \text{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))],
\]
Set up: $\pi: X \to S = \mathbb{P}^2_\mathbb{C}$, $C = \bigcup_{i=1}^n C_i$, $\gamma_i \in \kappa(C_i)^*/(\kappa(C_i)^*)^3$.

\[
H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \text{Im}[H^2(K, \mathbb{Z}/3) \to H^2(K(X_K), \mathbb{Z}/3)] \cap \bigcap_{P \in S_1 \cup S_2} \ker[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))],
\]

Then

\[
H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3) = \{a = \{a_i\}_{i=1}^n, a_i \in \{-1, 0, 1\}\} \subset (\mathbb{Z}/3)^n
\]

(i) $a_i \neq 0 \Rightarrow X_{K_{C_i}}$ is birational to SB;

(ii) (Bloch-Ogus)

\[
\sum_{i=1}^n \sum_{P \in S_2} \partial_P(\gamma_i^{a_i}) = 0
\]

(iii) if $P \in C_i \cap C_j$ and if $\partial_P(\gamma_i^{a_i}) = -\partial_P(\gamma_j^{a_j}) \neq 0$, one has that the base change X_{K_P} is birational to SB.
THANK YOU!!!