Birational geometry of Calabi-Yau pairs

Carolina Araujo (IMPA)

Birational Geometry Seminar
August 11, 2023
Birational geometry of Calabi-Yau pairs

Joint with Alessio Corti and Alex Massarenti

(We always work over \(\mathbb{C}\))
Motivation: Automorphisms of Smooth Hypersurfaces

\[X = X_d \subset \mathbb{P}^{n+1} \text{ smooth hypersurface of degree } d \]

Theorem (Matsumura-Monsky 1964)

If \((n, d) \neq (1, 3), (2, 4)\), then

\[\text{Aut}(\mathbb{P}^{n+1}, X) \twoheadrightarrow \text{Aut}(X). \]

- \(C = X_3 \subset \mathbb{P}^2 \) genus 1 curve (\(\text{Aut}(C) \cong C \rtimes \mathbb{Z}/d\mathbb{Z} \))
- \(S = X_4 \subset \mathbb{P}^3 \) K3 surface (\(\text{Aut}(S) \) discrete and possibly infinite)

In both cases, the image of \(\text{Aut}(\mathbb{P}^{n+1}, X) \rightarrow \text{Aut}(X) \) is finite.
Theorem

- Every automorphism of C is induced by a Cremona transformation of the ambient \mathbb{P}^2.

$$1 \rightarrow \text{Ine}(\mathbb{P}^2, C) \rightarrow \text{Dec}(\mathbb{P}^2, C) \rightarrow \text{Aut}(C) \rightarrow 1$$

- (Pan 2007) Generators for decomposition group $\text{Dec}(\mathbb{P}^2, C)$
- (Blanc 2008) Generators for inertia group $\text{Ine}(\mathbb{P}^2, C)$
$S = X_4 \subset \mathbb{P}^3$ K3 surface

Question (Gizatullin)

Is every automorphism of S induced by a Cremona transformation of the ambient space \mathbb{P}^3?

Examples (Oguiso 2012)

- $\text{Aut}(S) \cong \mathbb{Z}$, and no nontrivial automorphism of S is induced by a Cremona transformation of \mathbb{P}^3.
- $\text{Aut}(S) \cong (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/2\mathbb{Z})$, and every automorphism of S is induced by a Cremona transformation of \mathbb{P}^3.

Example (Paiva-Quedo 2022)

$\text{Aut}(S) \cong (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/2\mathbb{Z})$, and no nontrivial automorphism of S is induced by a Cremona transformation of \mathbb{P}^3.
$S = X_4 \subset \mathbb{P}^3$ K3 surface

Problem

To describe the decomposition group of $S \subset \mathbb{P}^3$

$$\text{Dec}(\mathbb{P}^3, S) = \left\{ \varphi \in \text{Bir}(\mathbb{P}^3) \mid \varphi_* S = S \right\}$$

and its image in $\text{Aut}(S)$

(\mathbb{P}^3, S) is a Calabi-Yau pair
Calabi-Yau pairs

Definition (Calabi-Yau pair \((X, D)\))

- \(X\) terminal projective variety
- \(D\) is a hypersurface \(\sim -K_X\)
- \((X, D)\) is log canonical

Example

\((\mathbb{P}^n, D)\) where \(D \subset \mathbb{P}^n\) is a smooth hypersurface of degree \(n + 1\)
Calabi-Yau pairs

Definition (Calabi-Yau pair \((X, D)\))

- \(X\) terminal projective variety
- \(D\) is a hypersurface \(\sim -K_X\)
- \((X, D)\) is log canonical

Remark

\((X, D)\) Calabi-Yau pair \(\leadsto \exists\ \omega_D\) (unique up to scaling)

\[\text{div}(\omega_D) = -D\]
Calabi-Yau pairs

Definition (Calabi-Yau pair \((X, D)\))
- \(X\) terminal projective variety
- \(D\) is a hypersurface \(\sim -K_X\) \(\quad (D = -\text{div}(\omega_D))\)
- \((X, D)\) is log canonical

Definition (volume preserving map \((X, D_X) \to (Y, D_Y)\))

\[f : X \to Y \text{ birational map} \implies f_* : \Omega^n_{\mathbb{C}(X)/\mathbb{C}} \to \Omega^n_{\mathbb{C}(Y)/\mathbb{C}} \]

If \(f_*\omega_{D_X} = \omega_{D_Y}\) (up to scaling) then we say that

\[f : (X, D_X) \to (Y, D_Y) \text{ is volume preserving} \]
CALABI-YAU PAIRS

Remark (Valuative interpretation)

\[W \]

\[X \xrightarrow{f} Y \]

\[\forall E \subset W, \quad a(E, K_X + D_X) = a(E, K_Y + D_Y) \]

Example

If \(D \subset \mathbb{P}^n \) is a smooth hypersurface of degree \(n + 1 \), and \(f : X \to \mathbb{P}^n \) is a volume preserving blowup along a smooth center \(Z \), then

\[Z \subset D \quad \text{and} \quad \text{codim}_{\mathbb{P}^n} (Z) = 2. \]
Problem

Given a Calabi-Yau pair \((X, D) \), to determine

\[
\text{Bir}(X, D) := \left\{ \varphi \in \text{Bir}(X) \mid \varphi : (X, D) \to (X, D) \text{ is volume preserving} \right\}
\]

Example

\(D = D_4 \subset \mathbb{P}^3 \) smooth K3 surface

\[
\text{Dec}(\mathbb{P}^3, D) = \left\{ \varphi \in \text{Bir}(\mathbb{P}^3) \mid \varphi_* D = D \right\} = \text{Bir}(\mathbb{P}^3, D)
\]
Remark

If \((X, D)\) is a Calabi-Yau pair with **canonical** singularities, then

\[
\text{Dec}(X, D) = \left\{ \varphi \in \text{Bir}(X) \mid \varphi_* D = D \right\} = \text{Bir}(X, D)
\]

Example (Canonicity is necessary)

\[(X, D) = \left(\mathbb{P}^2, \sum_{i=0}^{2} H_i \right) \quad \left(\omega_D = \frac{dx}{x} \wedge \frac{dy}{y} \right)\]
Remark
If \((X, D)\) is a Calabi-Yau pair with \textit{canonical} singularities, then
\[
\text{Dec}(X, D) = \left\{ \varphi \in \text{Bir}(X) \mid \varphi_* D = D \right\} = \text{Bir}(X, D)
\]

Theorem (Blanc 2013)
\[
\text{Bir} \left(\mathbb{P}^2, \sum_{i=0}^{2} H_i \right) = \left\langle \begin{pmatrix} 1 & 1 + y \\ x & x \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle
\]

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} : (x, y) \mapsto (x^a y^b, x^c y^d)
\]

\[
\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \text{ preserve the torus } (\mathbb{C}^*)^2
\]
Problem

Given a Calabi-Yau pair (X, D), to determine $\text{Bir}(X, D)$.

Theorem A

If (X, D) is terminal with $\text{Pic}(X) = \mathbb{Z} \cdot H$ and $\text{Pic}(D) = \mathbb{Z} \cdot (H|_D)$, then

$$\text{Bir}(X, D) = \text{Aut}(X, D).$$

Corollary

If $D \subset \mathbb{P}^n$ is a general hypersurface of degree $n + 1$ ($n \geq 3$), then

$$\text{Bir}(\mathbb{P}^n, D) = \text{Aut}(\mathbb{P}^n, D).$$
Theorem B

If $D \subset \mathbb{P}^3$ is a general quartic surface with one singular point, then

\[
\text{Bir}(\mathbb{P}^3, D) \cong G \times \mathbb{Z}/2\mathbb{Z}
\]

G is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$

\[
x_0^2 A_2(x_1, x_2, x_3) + x_0 B_3(x_1, x_2, x_3) + C_4(x_1, x_2, x_3) = 0
\]

$G = \left\{ \left[(AG - BF)x_0 - CF : A(Fx_0 + G)x_1 : A(Fx_0 + G)x_2 : A(Fx_0 + G)x_3 \right] \mid F, G \in \mathbb{C}[x_1, x_2, x_3] \text{ homogeneous with } \deg(G) = \deg(F) + 1 \right\}$
$D \subset \mathbb{P}^3$ general quartic hypersurface with one singular point P

$$x_0^2 A_2(x_1, x_2, x_3) + x_0 B_3(x_1, x_2, x_3) + C_4(x_1, x_2, x_3) = 0$$

Bir(\mathbb{P}^3, D) \xrightarrow{r} Bir(D) \cong Aut(\tilde{D}) $= \langle \tau \rangle \cong \mathbb{Z}/2\mathbb{Z}$

Example

$\varphi : (x_0 : x_1 : x_2 : x_3) \mapsto (-Ax_0 - B : Ax_1 : Ax_2 : Ax_3) \sim \tau$

$$1 \rightarrow G \rightarrow \text{Bir}(\mathbb{P}^3, D) \overset{\sim}{\rightarrow} \mathbb{Z}/2\mathbb{Z} \rightarrow 1$$
$D \subset \mathbb{P}^3$ general quartic hypersurface with 1 singular point P

$$1 \rightarrow G \rightarrow \text{Bir}(\mathbb{P}^3, D) \xrightarrow{\sim} \mathbb{Z}/2\mathbb{Z} \rightarrow 1$$

Key point: Given $\psi \in \text{Bir}(\mathbb{P}^3, D)$ there is a commutative diagram:

\[\begin{array}{ccc}
\mathbb{P}^3 & \xrightarrow{\psi} & \mathbb{P}^3 \\
\mathbb{P}^2 & \xrightarrow{\tilde{\psi}} & \mathbb{P}^2 \\
\end{array}\]

G is the group of birational self-maps of X over \mathbb{P}^2 fixing \tilde{D} pointwise

View X as a model of \mathbb{P}^1 over $\mathbb{C}(x, y)$

G is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$
The Cremona Group

\[\text{Bir}(\mathbb{P}^n) := \{ \varphi : \mathbb{P}^n \to \mathbb{P}^n \text{ birational self-map} \} \]

Example (The standard quadratic transformation)

\[\tau : \mathbb{P}^2 \to \mathbb{P}^2 \]
\[(x : y : z) \mapsto \left(\frac{1}{x} : \frac{1}{y} : \frac{1}{z} \right) = (yz : xz : xy) \]

Theorem (Noether-Castelnuovo 1870-1901)

\[\text{Bir}(\mathbb{P}^2) = \langle \text{Aut}(\mathbb{P}^2), \tau \rangle \]

Theorem (Hilda Hudson 1927)

For \(n \geq 3 \), \(\text{Bir}(\mathbb{P}^n) \) cannot be generated by elements of bounded degree.
The Sarkisov program (Corti 1995, Hacon-McKernan 2013)

\[\mathbb{P}^n = X_0 \xrightarrow{\psi_1} X_1 \xrightarrow{\psi_2} \cdots \xrightarrow{\psi_{k-1}} X_{k-1} \xrightarrow{\psi_k} X_k = \mathbb{P}^n \]
The Sarkisov program (Corti 1995, Hacon-McKernan 2013)

\[\mathbb{P}^n = X_0 \longrightarrow_{\psi_1} X_1 \longrightarrow_{\psi_2} \cdots \longrightarrow_{\psi_{k-1}} X_{k-1} \longrightarrow_{\psi_k} X_k = \mathbb{P}^n \]

The \(X_i \rightarrow Y_i \)'s are Mori fiber spaces

- \(X_i \) has terminal singularities
- \(\rho(X_i/Y_i) = 1 \)
- \(-K_{X_i}\) is relatively ample

The \(\psi_i \)'s are elementary links
The surface case

The Mori fiber spaces are:

- $\mathbb{P}^2 \to \text{pt}$
- $F_m \to \mathbb{P}^1$ (\(\mathbb{P}^1\)-bundle)

\((F_0 \cong \mathbb{P}^1 \times \mathbb{P}^1\) and \(F_1 \cong Bl_P \mathbb{P}^2\))

The elementary links are

![Diagram](image-url)
Elementary links in higher dimensions

Type 1

Surfaces

$\mathbb{P}^2 \leftarrow \text{Bl}_P \mathbb{F}_1 \rightarrow \mathbb{P}^1$

pt $\dashrightarrow \mathbb{P}^1$

Higher dimensions

$Z \rightarrow^{\varphi} X'$

$\downarrow f$

$X \rightarrow S' \leftarrow S$

\downarrow

\downarrow
ELEMENTARY LINKS IN HIGHER DIMENSIONS

Type 2

Surfaces

\[F_m \quad \rightarrow \quad F_{m\pm 1} \]

\[\mathbb{P}^1 \quad \rightarrow \quad \mathbb{P}^1 \]

Higher dimensions

\[Z \rightarrow Z' \]

\[X \quad \rightarrow \quad X' \]

\[S \quad \rightarrow \quad S \]
Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links.
Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links.

\[Z \rightarrow X' \]
\[X \rightarrow S' \]
\[(X, D) \rightarrow S' \]

\[(Z, D_Z) \rightarrow (X', D') \]
\[X \rightarrow S' \]
\[(X, D) \rightarrow S \]
Theorem A

If \(n \geq 3 \) and \(D \) is a general hypersurface of degree \(n + 1 \), then

\[
\operatorname{Bir}(\mathbb{P}^n, D) = \operatorname{Aut}(\mathbb{P}^n, D).
\]

(\(D \) is smooth and \(\operatorname{Pic}(D) = \mathbb{Z} \cdot (H|_D) \))
Theorem A

If $n \geq 3$ and D is a general hypersurface of degree $n + 1$, then

$$\text{Bir}(\mathbb{P}^n, D) = \text{Aut}(\mathbb{P}^n, D).$$

(D is smooth and $\text{Pic}(D) = \mathbb{Z} \cdot (H|_D)$)

\[\begin{array}{cccccc}
(\mathbb{P}^n, D) & \xrightarrow{\psi_1} & (X_1, D_1) & \xrightarrow{\psi_2} & \cdots & \xrightarrow{\psi_{k-1}} (X_{k-1}, D_{k-1}) & \xrightarrow{\psi_k} (\mathbb{P}^n, D) \\
\downarrow & & \downarrow & & & \downarrow & \\
\text{pt} & & Y_1 & & \cdots & & \text{pt} \\
\end{array}\]

\[\psi\]

X_1 has worst than terminal singularities
Theorem B

If $D \subset \mathbb{P}^3$ is a general quartic hypersurface with 1 singular point P, then

$$\text{Bir}(\mathbb{P}^3, D) \cong G \rtimes \mathbb{Z}/2\mathbb{Z},$$

where G is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$.
Theorem B

If $D \subset \mathbb{P}^3$ is a general quartic hypersurface with 1 singular point P, then

$$\text{Bir}(\mathbb{P}^3, D) \cong G \rtimes \mathbb{Z}/2\mathbb{Z},$$

where G is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$.
Theorem B

If $D \subset \mathbb{P}^3$ is a general quartic hypersurface with 1 singular point P, then

$$\text{Bir}(\mathbb{P}^3, D) \cong G \rtimes \mathbb{Z}/2\mathbb{Z},$$

where G is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$.

\[\begin{array}{c}
(\mathbb{P}^3, D) \xleftarrow{Bl_P} (X, \tilde{D}) \xrightarrow{\psi_2} \cdots \xrightarrow{\psi_{k-1}} (X_{k-1}, D_{k-1}) \xrightarrow{\psi_k^*} (\mathbb{P}^3, D) \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{pt} \quad \mathbb{P}^2 \quad Y_{k-1} \quad \text{pt}
\end{array} \]
Theorem B

If \(D \subset \mathbb{P}^3 \) is a general quartic hypersurface with 1 singular point \(P \), then

\[
\text{Bir}(\mathbb{P}^3, D) \cong G \rtimes \mathbb{Z}/2\mathbb{Z},
\]

where \(G \) is a form of \(\mathbb{G}_m \) over \(\mathbb{C}(x, y) \).
Theorem B

If $D \subset \mathbb{P}^3$ is a general quartic hypersurface with 1 singular point P, then

$$\text{Bir}(\mathbb{P}^3, D) \cong \mathbb{G} \rtimes \mathbb{Z}/2\mathbb{Z},$$

where \mathbb{G} is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$.
Theorem B

If $D \subset \mathbb{P}^3$ is a general quartic hypersurface with 1 singular point P, then

$$\text{Bir}(\mathbb{P}^3, D) \cong G \rtimes \mathbb{Z}/2\mathbb{Z},$$

where G is a form of \mathbb{G}_m over $\mathbb{C}(x, y)$.

![Diagram](image-url)
Theorem B

If $D \subset P^3$ is a general quartic hypersurface with 1 singular point P, then

$$\text{Bir}(P^3, D) \cong G \rtimes \mathbb{Z}/2\mathbb{Z},$$

where G is a form of G_m over $\mathbb{C}(x, y)$.

\[\begin{array}{c}
(\mathbb{P}^3, D) \\
\text{pt}
\end{array} \quad \xymatrix{ \mathbb{P}^2 & \cdots & \mathbb{P}^2 \\
\text{pt} & \cdots & \text{pt} } \quad \xymatrix{ \mathbb{P}^2 & \cdots & \mathbb{P}^2 \\
\text{pt} & \cdots & \text{pt} } \]
Definition (Pliability)

(X, D) Mori fibered Calabi-Yau pair

\[\mathcal{P}(X, D) \coloneqq \left\{ (X', D') \text{ Mf CY pair} \mid \exists (X, D) \xrightarrow{\text{vol preserving}} (X', D') \right\} / \sim \]

Example (Square equivalence)

\[(\mathbb{P}^3, D) \xrightarrow{Bl_P} (X, \tilde{D}) \xrightarrow{\psi_2} (X', D') \xrightarrow{\psi_3} \cdots \xrightarrow{Bl_P} (\mathbb{P}^3, D)\]

\[(\mathbb{P}^2, \mathbb{P}^2) \xrightarrow{\psi} \mathbb{P}^3\]
Definition (Pliability)

(X, D) Mori fibered Calabi-Yau pair

$$
\mathcal{P}(X, D) \:= \left\{ (X', D') \text{ Mf CY pair} \mid \exists (X, D) \xrightarrow{\text{vol preserving}} (X', D') \right\} / \sim
$$

Theorem C

If $D \subset \mathbb{P}^3$ general quartic hypersurface with one A_2 singularity P, then we determine the pliability of (\mathbb{P}^3, D):

- (\mathbb{P}^3, D)
- $(\text{Bl}_P \mathbb{P}^3, \tilde{D}) \rightarrow \mathbb{P}^2$
- $(\mathbb{P}(1^3, 2), D_5)$
- $(\mathbb{P}(1^3, 2), D'_5)$
- 3-parameter family $(X_4, D_{3,4})$, with $X_4 \subset \mathbb{P}(1^3, 2^2)$
- 6-parameter family $(X_4, D_{2,4})$, with $X_4 \subset \mathbb{P}(1^4, 2)$
Thank you!