Ultrapatching

Jeffrey Manning

December 15, 2019
Contents

I Ultraproducts
 I.1 General theory .. 5
 I.2 A ring theoretic interpretation 9

II Ultrapatching
 II.1 Patching systems ... 13
 II.2 Unframed patching systems 15
 II.3 A module theoretic interpretation 17
 II.4 Basic properties of patching 18
 II.5 Covers of Patching Algebras 21
 II.6 Generically smooth covers 24
 II.7 Quasi-Patching Algebras 26
 II.8 $R = T$ theorems .. 32
 II.9 Duality .. 33

In these notes we will develop the commutative algebra results needed for the Taylor–Wiles–Kisin patching method, as reformulated by Scholze in [Sch18].

Acknowledgments

These notes are an expanded version of the appendix to my thesis. Various portions of these notes appeared in my papers [Man19] and [MS19] (although some and definitions that appear in the current version of these notes are different from what was used in the these papers).
I would like to thank Matt Emerton, Florian Herzig and Jack Shotton for their helpful comments on these notes or the patching sections of the above papers.
Chapter I

Ultraproducts

I.1 General theory

Let $N := \{1, 2, \ldots\}$ denote the natural numbers. Recall that a nonprincipal ultrafilter on N is a collection, \mathcal{F}, of subsets of N satisfying the following conditions:

1. \mathcal{F} does not contain any finite sets.
2. If $I, J \in \mathcal{F}$ then $I \cap J \in \mathcal{F}$
3. If $I \in \mathcal{F}$ and $I \subseteq J \subseteq N$, then $J \in \mathcal{F}$ as well.
4. If $I \sqcup J = N$ is a partition of N, then either $I \in \mathcal{F}$ or $J \in \mathcal{F}$.

It is well known that such an \mathcal{F} must exist, if one assumes the axiom of choice.

Note that these conditions imply the following: If $I_1 \sqcup I_2 \sqcup \cdots \sqcup I_a = N$ is a partition of N, then $I_i \in \mathcal{F}$ for exactly one i.

For the remainder of this appendix, we will fix a nonprincipal ultrafilter \mathcal{F} on N.

For convenience, we will say that a property $P(i)$ holds for \mathcal{F}-many i if there is some $I \in \mathcal{F}$ such that $P(i)$ is true for all $i \in I$. The four conditions above imply the following:

1. If $P(i)$ holds for \mathcal{F}-many i, then it holds for infinitely many i.
2. If $P(i)$ and $Q(i)$ each hold for \mathcal{F}-many i, then $P(i)$ and $Q(i)$ are simultaneously true for \mathcal{F}-many i.
3. $P(i)$ holds for \mathcal{F}-many i if and only if the set $\{i | P(i) \text{ is true}\}$ is in \mathcal{F}.
4. For any property P, either $P(i)$ is true for \mathcal{F}-many i, or it is false for \mathcal{F}-many i.

If $\mathcal{M} = \{M_n\}_{n \geq 1}$ is any sequence of sets, we define an equivalence relation \sim on the set $\prod_{n \geq 1} M_n$ by $(m_1, m_2, \ldots) \sim (m'_1, m'_2, \ldots)$ if $m_i = m'_i$ for \mathcal{F}-many i (the above properties of ultrafilters imply...
that this is an equivalence relation). We then define the ultraproduct of \(\mathcal{M} \) to be

\[
U(\mathcal{M}) := \left(\prod_{n \geq 1} M_n \right) / \sim
\]

For any \(m = (m_1, m_2, \ldots) \in \prod_{n \geq 1} M_n \) we will denote the equivalence class of \(m \) in \(U(\mathcal{M}) \) by \([m_i]_i = [m_1, m_2, \ldots] \). We will frequently define elements \(m = [m_i]_i \) by only specifying \(m_i \) for \(\mathfrak{F} \)-many \(i \). Doing so is unambiguous, as if \(m_i \) is specified for all \(i \in I \) (\(I \in \mathfrak{F} \)) the choices of \(m_j \) for \(j \in \mathbb{N} \setminus I \) do not affect the equivalence class \([m_i]_i \).

If \(M \) is any set we will write \(M := \{M\}_{n \geq 1} \) for the constant sequence of sets, and define the ultrapower of \(M \) to be \(M^\mathfrak{U} := U(M) \). Notice that we have a diagonal map \(\Delta : M \to M^\mathfrak{U} \) defined by \(m \mapsto [m, m, \ldots] \). This map is clearly injective.

In our applications, we will generally consider the case where each \(M_n \) has a certain algebraic structure. Thus for the rest of this subsection we will fix a category, \(\mathcal{C} \) of sets with algebraic structure, taken to be one of the following:

- The category of abelian groups;
- The category of (commutative) rings;
- The category of (continuous) \(\mathbb{R} \)-modules;
- The category of (continuous) \(\mathbb{R} \)-algebras,

for some fixed ring topological \(\mathbb{R} \) (which we will often take to have the discrete topology, however the continuous version will be used in Lemma II.5.2). Using the language of universal algebra (or more generally, of model theory) it is possible phrase the results of this section for significantly more general categories of “sets with structure,” however the specific cases we discuss here will be sufficient for our purposes.

We first show that if each \(M_n \) is in \(\mathcal{C} \), then \(U(\mathcal{M}) \) inherits a natural \(\mathcal{C} \)-object structure.

Proposition I.1.1. Let \(\mathcal{M} = \{M_n\}_{n \geq 1} \), and assume that each \(M_n \) is in \(\mathcal{C} \). Then \(U(\mathcal{M}) \) may be given the structure of object in \(\mathcal{C} \) with the operations additions, multiplication and scalar multiplication (when appropriate) defined by:

\[
[a_1, a_2, \ldots] + [b_1, b_2, \ldots] = [a_1 + b_1, a_2 + b_2, \ldots]
\]
\[
[a_1, a_2, \ldots] \cdot [b_1, b_2, \ldots] = [a_1 \cdot b_1, a_2 \cdot b_2, \ldots]
\]
\[
r[a_1, a_2, \ldots] = [ra_1, ra_2, \ldots]
\]

for \(\alpha = [a_1, a_2, \ldots], \beta = [b_1, b_2, \ldots] \in U(\mathcal{M}) \), the elements \(0, 1 \in U(\mathcal{M}) \) (again when appropriate) defined by:

\[
0 = [0, 0, \ldots] \in U(\mathcal{M}), \quad 1 = [1, 1, \ldots] \in U(\mathcal{M}),
\]

and topology defined by the quotient map \(\pi : \prod_{n \geq 1} M_n \to U(\mathcal{M}) \). Moreover:
1. The natural surjection \(\pi: \prod_{n \geq 1} M_n \to \mathcal{U}(\mathcal{M}) \), \((m_i)i \mapsto [m_i]:i \) is a \(\mathcal{C} \)-morphism.

2. For \(M \in \mathcal{C} \), the diagonal map \(\Delta: M \to M^{\mathcal{I}} \) is a \(\mathcal{C} \)-morphism.

Proof. We will prove this only in the case when \(\mathcal{C} \) is taken to by the category of continuous \(\mathcal{R} \)-algebras. The other cases are analogous.

First we check that the operations are well-defined. Take \(\alpha = [a_i], \alpha' = [a'_i], \beta = [b_i], \beta' = [b'_i] \in \mathcal{U}(\mathcal{M}) \) with \(\alpha = \alpha' \) and \(\beta = \beta' \). Then for \(\mathfrak{F} \)-many \(i \) we simultaneously have that \(a_i = a'_i \) and \(b_i = b'_i \). It follows that \(a_i + b_i = a'_i + b'_i \), \(a_i \cdot b_i = a'_i \cdot b'_i \) and \(ra_i = ra'_i \) for \(\mathfrak{F} \)-many \(i \), and so \(\alpha + \beta = \alpha' + \beta' \), \(\alpha \cdot \beta = \alpha' \cdot \beta' \) and \(r\alpha = r\alpha' \).

Now as the operations are defined pointwise, they are clearly preserved by \(\pi: \prod_{n \geq 1} M_n \to \mathcal{U}(\mathcal{M}) \). Thus as \(\prod_{n \geq 1} M_n \) is a continuous \(\mathcal{R} \)-algebra, and \(\pi \) is continuous by definition, (1) will follow if we show that the operations make \(\mathcal{U}(\mathcal{M}) \) into a \(\mathcal{R} \)-algebra (the operations will automatically be continuous as \(\mathcal{U}(\mathcal{M}) \) has the quotient topology).

Now let
\[
K = \left\{ (a_1, a_2, \ldots) \in \prod_{n \geq 1} M_n \mid (a_1, a_2, \ldots) \sim (0, 0, \ldots) \right\}
\]
\[
= \left\{ (a_1, a_2, \ldots) \in \prod_{n \geq 1} M_n \mid a_i = 0 \text{ for } \mathfrak{F}\text{-many } i \right\} \subseteq \prod_{n \geq 1} M_n
\]

Now as the operations are well-defined, for any \(a = (a_n), b = (b_n) \in K \), any \(m = (m_n) \in \prod_{n \geq 1} M_n \) and any \(r \in \mathcal{R} \) we get that:
\[
(a_n + b_n)n = (a_n)n + (b_n)n \sim (0)n + (0)n = (0)n
\]
\[
(m_n \cdot a_n)n = (m_n)n \cdot (a_n)n \sim (m_n)n \cdot (0)n = (0)n
\]
\[
(ra_n)n = r(a_n)n \sim r(0)n = (0)n,
\]
and so \(a + b, ma, ra \in K \). It follows that \(K \subseteq \prod_{n \geq 1} M_n \) is an ideal.

Also by definition, for \(a = (a_n), b = (b_n) \in \prod_{n \geq 1} M_n \), \(a \sim b \) if and only if \(a - b \in K \). It follows that \(\pi: \prod_{n \geq 1} M_n \to \mathcal{U}(\mathcal{M}) \) gives an identification \(\pi: \left(\prod_{n \geq 1} M_n \right)/K \to \mathcal{U}(\mathcal{M}) \). As \(\pi \), and thus \(\pi \), preserves the operations and \(\left(\prod_{n \geq 1} M_n \right)/K \) is an \(\mathcal{R} \)-algebra, it follows that \(\mathcal{U}(\mathcal{M}) \) is indeed an \(\mathcal{R} \)-algebra, and \(\pi \) is an \(\mathcal{R} \)-algebra homomorphism. This proves (1).
For (2), we simply note that $\Delta : M \to M^U$ is the composition of the C-morphisms $M \hookrightarrow \prod_{n \geq 1} M$, $m \mapsto (m, m, \ldots)$ and $\pi : \prod_{n \geq 1} M \to U(M) = M^U$.

Given two sequences $\mathcal{M} = \{M_n\}_{n \geq 1}$ and $\mathcal{M}' = \{M'_n\}_{n \geq 1}$ in \mathcal{C}, we define an \mathfrak{F}-morphism $\varphi : \mathcal{M} \to \mathcal{M}'$ to be a collection of C-morphisms $\varphi = \{\varphi_i : M_i \to M'_i\}_{i \in I}$ indexed by some $I \in \mathfrak{F}$. Then we have

Proposition I.1.2. If $\varphi : \mathcal{M} \to \mathcal{M}'$ is an \mathfrak{F}-morphism, then the map $\varphi^U : U(\mathcal{M}) \to U(\mathcal{M}')$ given by $\varphi^U[a_i]_i = [\varphi_i(a_i)]_i$, is a well-defined C-morphism. Moreover,

1. If $\varphi, \psi : \mathcal{M} \to \mathcal{M}'$ are two \mathfrak{F}-morphisms, and $\varphi_i = \psi_i$ for \mathfrak{F}-many i, then $\varphi^U = \psi^U$. In particular, if $\varphi : \mathcal{M} \to \mathcal{M}$ satisfies $\varphi_i = \text{id}_{M_i} : M_i \to M_i$ for \mathfrak{F}-many i, then $\varphi^U = \text{id}_{U(\mathcal{M})} : U(\mathcal{M}) \to U(\mathcal{M})$.

2. For two \mathfrak{F}-morphisms, $\varphi : \mathcal{M} \to \mathcal{M}'$ and $\psi : \mathcal{M}' \to \mathcal{M}''$, we have $\psi^U \circ \varphi^U = (\psi \circ \varphi)^U$.

Hence $U(-)$ is a functor.

Proof. As in Proposition I.1.1, we will prove this only in the case where \mathcal{C} is the category of continuous R-algebras.

Let $\varphi : \mathcal{M} \to \mathcal{M}'$ be an \mathfrak{F}-morphism. If we have $[a_i]_i = [a'_i]_i$ in $U(\mathcal{M})$, then for \mathfrak{F}-many i we simultaneously have that φ_i exists and $a_i = a'_i$. Thus $\varphi^U[a_i]_i = [\varphi_i(a_i)]_i = [\varphi(a'_i)]_i = \varphi^U[a'_i]_i$, and so φ^U is well-defined. As each φ_i is continuous, it follows that φ^U is induced by a continuous map $\prod_{n \geq 1} M_n \to \prod_{n \geq 1} M'_n$, and thus is continuous.

Now for $\alpha = [a_i]_i, \beta = [b_i]_i \in U(\mathcal{M})$ and $r \in R$, as φ_i is an R-algebra homomorphism for \mathfrak{F}-many i, we get

$$
\varphi^U(\alpha + \beta) = \varphi^U[a_i + b_i]_i = [\varphi_i(a_i + b_i)]_i = [\varphi_i(a_i)]_i + [\varphi_i(b_i)]_i = \varphi^U(\alpha) + \varphi^U(\beta)
$$
$$
\varphi^U(\alpha \cdot \beta) = \varphi^U[a_i \cdot b_i]_i = [\varphi_i(a_i) \cdot b_i]_i = [\varphi_i(a_i)]_i \cdot [\varphi_i(b_i)]_i = \varphi^U(\alpha) \cdot \varphi^U(\beta)
$$
$$
\varphi^U(r \cdot \alpha) = \varphi^U[r a_i]_i = [\varphi_i(r a_i)]_i = [r \varphi_i(a_i)]_i = r \varphi^U(\alpha)
$$
$$
\varphi^U(1) = \varphi^U[1]_i = [\varphi_i(1)]_i = [1]_i = 1,
$$
so indeed φ^U is an R-algebra homomorphism.

If $\varphi_i = \psi_i$ for \mathfrak{F}-many i, then by definition we have $\varphi^U[a_i]_i = [\varphi_i(a_i)]_i = [\psi_i(a_i)]_i = \psi^U[a_i]_i$, and if $\varphi_i = \text{id}_{M_i}$ for \mathfrak{F}-many i, then $\varphi^U[a_i]_i = [\varphi_i(a_i)]_i = [a_i]_i$. So (1) holds.

For (2), simply note that for \mathfrak{F}-many i, φ_i and ψ_i simultaneously exist, and so

$$
(\psi^U \circ \varphi^U)[a_i]_i = \psi^U \left(\varphi^U[a_i]_i \right) = \psi^U \left([\varphi_i(a_i)]_i \right) = [\psi_i(\varphi_i(a_i))]_i = (\psi \circ \varphi)^U[a_i]_i.
$$
I.2. A RING THEORETIC INTERPRETATION

In general, $U(M)$ can be a quite complicated object. However in our setup, the M_n’s will always be taken to be finite, of uniformly bounded cardinalities. In that case, we have the following:

Proposition I.1.3. If $M \in C$ has finite cardinality, the diagonal map $\Delta : M \to M^U$ is an isomorphism.

Now assume that C is the category of abelian groups or rings, or that the ring R is topologically finitely generated (in particular, if it is finite). If $\mathcal{M} = \{M_n\}_{n \geq 1}$ where each $M_n \in C$ is a finite set, and the cardinalities $\#M_n$ are bounded, then $U(\mathcal{M})$ is also finite and we have $U(\mathcal{M}) \cong M_i$ in C for \mathfrak{F}-many i.

Proof. As $\Delta : M \to M^U$ is already an injective C-morphism, it suffices to show that it is surjective. Take any $\alpha = [a_i]_i \in M^U$. As M is finite, $\bigcup_{a \in M} \{i | a_i = a\}$ is a finite partition of \mathbb{N}, and so for some $a \in M$, $a_i = a$ for \mathfrak{F}-many i. But then $\alpha = [a_i]_i = [a]_i = \Delta(a)$, so indeed Δ is surjective, and hence an isomorphism.

For the second statement, the assumption on C implies that there are only finitely many isomorphism classes of C-objects of any fixed cardinality d. As the $\#M_n$’s are bounded, there are only finitely many distinct cardinalities $\{\#M_n\}_{n \geq 1}$. It thus follows that there are only finitely many isomorphism classes of C-objects in \mathcal{M}.

Thus we may pick some $M \in C$ (which is necessarily finite) for which $M \cong M_i$ for \mathfrak{F}-many i. Fix isomorphisms $\varphi_i : M \cong M_i$ for \mathfrak{F}-many i, and define \mathfrak{F}-morphisms $\psi : \mathcal{M} \to \mathcal{M}$ by $\psi = \{\varphi_i\}$ and $\psi = \{\varphi_i^{-1}\}$. It follows from Proposition I.1.2 that $\psi^U = (\psi^U)^{-1}$ and so $\psi^U : M^U = U(M) \to U(\mathcal{M})$ is an isomorphism.

Combining this with the first claim, we indeed get $U(\mathcal{M}) \cong M^U \cong M \cong M_i$ for \mathfrak{F}-many i. \qed

I.2 A ring theoretic interpretation

In the case when C is taken to be the category of R-modules (or R-algebras), the construction of $U(\mathcal{M})$ can be reformulated as a localization of modules, and is thus quite well behaved. We finish this section by discussing this situation.

For the reminder of this section, R will denote a finite local ring with maximal ideal m_R and residue field $\mathbb{F} = R/m_R$.

We will let $\mathcal{R} := \prod_{n \geq 1} R$, treated as an R-algebra via the diagonal embedding $r \mapsto (r, r, \ldots)$. Proposition I.1.1 implies that the natural map $\pi : \mathcal{R} \to R^d = R$ is a surjective ring homomorphism.

Also for any $I \subseteq \mathbb{N}$, we will let $\mathcal{R}_I := \prod_{i \in I} R$, viewed as a quotient of \mathcal{R} via the map $\pi_I : (r_n)_{n \geq 1} \mapsto (r_i)_{i \in I}$. Note that $\pi : \mathcal{R} \to R$ factors through π_I for each $I \in \mathfrak{F}$.
The key observation is that π may be viewed as a localization map:

Proposition I.2.1. View R as a \mathcal{R}-algebra via the map $\pi : \mathcal{R} \to R$. There is a unique prime ideal $\mathfrak{Z}_R \in \text{Spec } \mathcal{R}$ for which the \mathcal{R}-algebra localization map $R \to R_{\mathfrak{Z}_R}$ is an isomorphism. For this \mathfrak{Z}_R we have:

- The map $\pi_{\mathfrak{Z}_R} : \mathcal{R}_{\mathfrak{Z}_R} \to R$ is an isomorphism.
- For all $I \in \mathfrak{F}$ the map $\pi_{I, \mathfrak{Z}_R} : \mathcal{R}_{\mathfrak{Z}_R} \to \mathcal{R}_{I, \mathfrak{Z}_R}$, induced by $\pi_I : \mathcal{R} \to \mathcal{R}_I$ is an isomorphism.

We will call \mathfrak{Z}_R the prime (of R) associated to \mathfrak{F}.

Finally, if $\psi : R \to R'$ is a surjection of local rings, inducing the surjection $\Psi : \mathcal{R} \to \mathcal{R}' := \prod_{n \geq 1} R'$, and $\mathfrak{Z}_{R'} \in \text{Spec } \mathcal{R}'$ is the prime associated to \mathfrak{F}, then $\mathfrak{Z}_R = \Psi^{-1}(\mathfrak{Z}_{R'})$.

Proof. Assume that there is some $\mathfrak{Z}_R \in \text{Spec } \mathcal{R}$ which makes $R \to R_{\mathfrak{Z}_R}$ into an isomorphism. Clearly we must have $\ker(\pi : \mathcal{R} \to R) \subseteq \mathfrak{Z}_R$, or we would have $R_{\mathfrak{Z}_R} = 0$. Thus $\mathfrak{Z}_R = \pi^{-1}(P)$ for some $P \in \text{Spec } R$ and $R_P \cong R_{\mathfrak{Z}_R}$. But now as R is a local ring, $R \to R_P$ is an isomorphism if and only if $P = m_P^U$. Thus the unique prime \mathfrak{Z}_R satisfying the condition is $\mathfrak{Z}_R = \pi^{-1}(m_P^U)$.

We now show that the map $\pi_{\mathfrak{Z}_R} : \mathcal{R}_{\mathfrak{Z}_R} \to R$ is an isomorphism. As localization is exact, it is surjective.

Take any $\frac{r}{s} \in \ker(\pi_{\mathfrak{Z}_R})$ where $r = (r_1, r_2, \ldots) \in \mathcal{R}$. Then $r \in \ker(\pi)$ so that $[r_i]_i = 0$ in R, and hence $r_i = 0$ for \mathfrak{F}-many i. Define $e = (e_1, e_2, \ldots) \in \mathcal{R}$ by $e_i = 1$ if $r_i = 0$ and $e_i = 0$ if $r_i \neq 0$, and note that $er = 0$. But by definition $e_i = 1$ for \mathfrak{F}-many i, and so $\pi(e) = 1 \notin m_P^U$. Hence $e \notin \mathfrak{Z}_R$, and so $\frac{r}{s}$ is a unit in $\mathcal{R}_{\mathfrak{Z}_R}$. As $\frac{r}{s} \cdot \frac{a}{1} = 0$, this implies that $\frac{a}{s} = 0$. Therefore $\ker(\pi_{\mathfrak{Z}_R}) = 0$ and so indeed, $\pi_{\mathfrak{Z}_R}$ is an isomorphism.

Now for any $I \in \mathfrak{F}$, $\pi : \mathcal{R} \to R$ is a composition of surjections $\pi_I : \mathcal{R} \to \mathcal{R}_I$ and $\mathcal{R}_I \to R$, and so $\pi_{\mathfrak{Z}_R} : \mathcal{R}_{\mathfrak{Z}_R} \to R$ is a composition of the surjections $\pi_{I, \mathfrak{Z}_R} : \mathcal{R}_{\mathfrak{Z}_R} \to \mathcal{R}_{I, \mathfrak{Z}_R}$ and $\mathcal{R}_{I, \mathfrak{Z}_R} \to R$. So as $\pi_{\mathfrak{Z}_R}$ is an isomorphism, the latter two maps are isomorphisms as well.

The last statement follows from the commutative diagram

\[
\begin{array}{ccc}
\mathcal{R} & \xrightarrow{\pi} & R \\
\Psi \downarrow & & \downarrow \psi^U \\
\mathcal{R}' & \xrightarrow{\pi'} & R'
\end{array}
\]

From now on we will always use \mathfrak{Z}_R to denote the prime of \mathcal{R} associated to \mathfrak{F}, or just \mathfrak{F} if R is clear from context.
We will now investigate ultraproducts of R-modules (and R-algebras). Let $\mathcal{M} = \{M_n\}_{n \geq 1}$ be any sequence of R-modules, and write $\mathcal{M} = \prod_{n \geq 1} M_n$ with its natural R-module structure. We claim that the natural surjection $\pi^\mathcal{M} : \mathcal{M} \to \mathcal{U}(\mathcal{M})$ is an R-module homomorphism, where the R-action on $\mathcal{U}(\mathcal{M})$ is given by $\pi : R \to R$.

Indeed for any $r = (r_1, r_2, \ldots) \in R$ and $m = (m_1, m_2, \ldots) \in \mathcal{M}$ we have $r_i = \pi(r)$ for \mathfrak{F}-many i, and so

$$\pi^\mathcal{M}(rm) = [r_i m_i]_i = [\pi(r)m_i]_i = \pi(r)[m_i]_i = \pi(r)\pi^\mathcal{M}(m).$$

If additionally the M_n's are A-algebras, then $\mathcal{U}(\mathcal{M})$ is an R-algebra, and the above morphism is of R-algebras.

Proposition I.2.1 now allows us to re-interpret $\pi^\mathcal{M}$ as a localization map of R-modules:

Proposition I.2.2. Let $\mathcal{M} = \{M_n\}_{n \geq 1}$ be a collection of R-modules and let \mathcal{M} and $\pi^\mathcal{M} : \mathcal{M} \to \mathcal{U}(\mathcal{M})$ be as above. We have the following:

1. The map $\pi^\mathcal{M}_3 : \mathcal{M}_3 \to \mathcal{U}(\mathcal{M})_3 = \mathcal{U}(\mathcal{M})$ is an isomorphism of $R_3 = R$-modules. If each M_n is an R-algebra then $\pi^\mathcal{M}_3$ is an isomorphism of R-algebras.

2. If $\varphi = \{\varphi_i\}_{i \in I} : \mathcal{M} \to \mathcal{M}'$ (for $I \in \mathfrak{F}$) is a \mathfrak{F}-morphism of sequences of R-modules, then the map $\varphi^\mathcal{M}_I : \mathcal{U}(\mathcal{M}) \to \mathcal{U}(\mathcal{M}')$ from Proposition I.1.1 is the localization of the map

$$\Phi_I := \prod_{i \in I} \varphi_i : \prod_{i \in I} M_i \to \prod_{i \in I} M'_i$$

at \mathfrak{F}.

3. The functor $\mathcal{M} \mapsto \mathcal{U}(\mathcal{M})$ (from the category of sequences of R-modules, to the category of R-modules) is exact.

Proof. As localization is exact, $\pi^\mathcal{M}_3$ is surjective. Now arguing as in Proposition I.2.1, if $\frac{m_i}{m_i} \in \ker(\pi^\mathcal{M}_3)$ where $m = (m_1, m_2, \ldots) \in \mathcal{M}$, then $[m_i]_i = 0$ in $\mathcal{U}(\mathcal{M})$ and hence $m_i = 0$ for all $i \in I$ for some $I \in \mathfrak{F}$. But then $m \in \ker(\mathcal{M} \to \mathcal{M} \otimes R \mathcal{R}_I)$ and so $\frac{m_i}{m_i} \in \ker(\mathcal{M}_3 \to \mathcal{M} \otimes R \mathcal{R}_I,3 = \mathcal{M}_3) = 0$. So indeed, $\ker(\pi^\mathcal{M}_3) = 0$, and so $\pi^\mathcal{M}_3$ is an isomorphism of R-modules. If each M_n is an R-algebra then $\pi^\mathcal{M}_3$ is also a homomorphism of R-algebras, and thus is an isomorphism of R-algebras. This proves (1).

For (2), note that $\mathcal{M}_I := \prod_{i \in I} \varphi_i : \prod_{i \in I} M_i = \mathcal{M} \otimes R \mathcal{R}_I$, and so $\mathcal{M}_{I,3} = \mathcal{M} \otimes R \mathcal{R}_{I,3} = \mathcal{M}_3$, and similarly for $\mathcal{M}'_I := \prod_{i \in I} M'_i$. (2) then follows from localizing the commutative diagram:
Finally, (3) follows by noting that the functors $\{M_n\}_{n \geq 1} \mapsto \prod_{n \geq 1} M_n$ and $\mathcal{M} \mapsto \mathcal{M}_3$ are both exact.
Chapter II

Ultrapatching

II.1 Patching systems

We are now ready to give the main patching construction. Fix a complete DVR \mathcal{O} (which in practice will usually be the ring of integers in a finite extension of \mathbb{Q}_ℓ) with uniformizer ϖ and finite residue field $\mathbb{F} = \mathcal{O}/\varpi$ of characteristic ℓ. Also fix some $d \geq 1$, and consider the ring:

$$S_\infty := \mathcal{O}[[t_1, \ldots, t_d]].$$

And let $\mathfrak{n} = (t_1, \ldots, t_d) \subseteq S_\infty$. Note that S_∞ is a compact topological ring, so that S_∞/\mathfrak{a} is finite for all open ideals $\mathfrak{a} \subseteq S_\infty$.

Fix a collection of ideals $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots \subseteq S_\infty$ with the following property:

For all \mathfrak{n}, $\mathcal{I}_n \subseteq \mathfrak{n}$, and for any open ideal $\mathfrak{a} \subseteq S_\infty$, $\mathcal{I}_n \subseteq \mathfrak{a}$ for all but finitely many n. \hspace{1cm} (⋆)

It will often be important to work mod ϖ, so we will let $\mathcal{S}_\infty = S_\infty/\varpi = \mathbb{F}[[t_1, \ldots, t_d]]$, and for each $n \geq 1$, let $\mathcal{I}_n \subseteq \mathcal{S}_\infty$ be the image of \mathcal{I}_n.

In essentially all cases that arise in practice, the ideals \mathcal{I}_n will have the following form:

Lemma II.1.1. Pick a positive integer $d^\circ \leq d$ be an integer and assume that for each integer $n \geq 1$ and each $1 \leq j \leq d^\circ$ we are given an integer $e(n, j)$ with $e(n, j) \geq n$. Define ideals $\mathcal{I}_n \subseteq S_\infty$ by

$$\mathcal{I}_n := \left((1 + t_1)^{e(n, 1)} - 1, (1 + t_2)^{e(n, 2)} - 1, \ldots, (1 + t_{d^\circ})^{e(n, d^\circ)} - 1\right)$$

Then the collection of ideals $\{\mathcal{I}_n\}$ satisfies (⋆).

Proof. Clearly $(1 + t_j)^{e(n, j)} - 1 \subseteq (t_j)$ for all n and j, so it follows that $\mathcal{I}_n \subseteq \mathfrak{n}$ for all n.

13
Let \(a \subseteq S_\infty \) be any open ideal. As \(S_\infty/a \) is finite, and the group \(1 + m_{S_\infty} \) is pro-\(\ell \), the group \((1 + m_{S_\infty})/a = \text{im}(1 + m_{S_\infty} \hookrightarrow S_\infty \twoheadrightarrow S_\infty/a)\) is a finite \(\ell \)-group. Since \(1 + t_i \in 1 + m_{S_\infty} \) for all \(i \), there is an integer \(n_a \geq 0 \) such that \((1 + t_i)^e_{n_a} \equiv 1 \pmod{a}\) for all \(i = 1, \ldots, r \). Then for any \(n \geq n_a \), \(e(n, j) \geq n \geq k \) for all \(j \), and so indeed \(I_n \subseteq a \).

The patching construction will take a sequence \(\mathcal{M} = \{M_n\}_{n \geq 1} \) of finite type \(S_\infty \)-modules satisfying certain properties, and produce a reasonably well behaved module \(\mathcal{P}(\mathcal{M}) \), which can be roughly thought of as a “limit” of the \(M_n \)'s.

We first make a precise definition of the sequences of \(S_\infty \)-modules we will consider:

Definition II.1.2. Let \(\mathcal{M} = \{M_n\}_{n \geq 1} \) be a sequence of finitely generated \(S_\infty \)-modules.

- We say that \(\mathcal{M} \) is a weak patching system if \(I_n \subseteq \text{Ann}_{S_\infty} M_n \) for all \(n \) and the \(S_\infty \)-ranks of the \(M_n \)'s are uniformly bounded. If we further have \(\varpi M_n = 0 \) for all \(n \), we say that \(\mathcal{M} \) is a residual weak patching system.

- We say that \(\mathcal{M} \) is MCM (resp. MCM residual) if \(\mathcal{M} \) is a nonzero weak patching system (resp. residual weak patching system) and \(M_n \) is free over \(S_\infty/I_n \) (resp. \(S_\infty/I_n \)) for all \(n \).

- We say that a patching system is a triple \((\mathcal{M}, M_0, \{\alpha_n\}_{n \geq 1}) \) consisting of a weak patching system \(\mathcal{M} \), a finite \(O \)-module \(M_0 \) and a family of \(O \)-module isomorphisms \(\alpha_n : M_n/n \to M_0 \).

- By slight abuse of notation, if \(\mathcal{M} \) is a weak patching system (resp. residual weak patching system) we say that \(\mathcal{M} \) is a patching system (resp. residual patching system) if there is a finite type \(O \)-module \(M_0 \) and isomorphisms \(\alpha_n : M_n/n \cong M_0 \) making \((\mathcal{M}, M_0, \{\alpha_n\}_{n \geq 1}) \) into a patching system. In this case, we say \(\mathcal{M} \) is a patching system over \(M_0 \).

Furthermore, assume that \(\mathcal{R} = \{R_n\}_{n \geq 1} \) is a sequence of finite local \(S_\infty \)-algebras.

- We say that \(\mathcal{R} = \{R_n\}_{n \geq 1} \) is a weak (residual) patching algebra, if it is a weak (residual) patching system.

- We say that a patching algebra is a triple \((\mathcal{R}, R_0, \{\alpha_n\}_{n \geq 1}) \) consisting of a weak patching algebra \(\mathcal{R} \), a finite \(O \)-algebra \(R_0 \) and a family of \(O \)-algebra isomorphisms \(\alpha_n : R_n/n \to R_0 \).

- If \(M_n \) is an \(R_n \)-module (viewed as an \(S_\infty \)-module via the \(S_\infty \)-algebra structure on \(R_n \)) for all \(n \) we say that \(\mathcal{M} = \{M_n\}_{n \geq 1} \) is a (weak, residual) patching \(\mathcal{R} \)-module if it is a (weak, residual) patching system.

- If \(\mathcal{R} \) is a patching algebra over \(R_0 \) and \(M_0 \) is a finitely generated \(R_0 \)-module, we say that \(\mathcal{M} \) is a patching \(\mathcal{R} \)-module over \(M_0 \) if it is a patching system over \(M_0 \) and for each \(n \geq 1 \) the \(R_n \)-module structure on \(M_n \) is induced by the \(R_n \)-module structure on \(M_0 \) and the isomorphisms \(R_n/n \cong R_0 \) and \(M_n/n \cong M_0 \).

Let \(\mathbf{wP} \) be the category of weak patching systems, with the obvious notion of morphism. Similarly, let \(\mathbf{wP}_R \) be the category of residual weak patching systems. Note that these are both abelian categories.

Also let \(\mathbf{Alg}_{\mathbf{wP}} \) be the category of weak patching algebras, and for any \(\mathcal{R} \in \mathbf{Alg}_{\mathbf{wP}} \), define \(\mathbf{wP}_{/\mathcal{R}} \).
to be the (abelian) category of weak patching \mathcal{R}-modules. Define $\textbf{Alg}_{\mathfrak{wP}}$ and $\mathfrak{wP}_\mathcal{R}$ similarly.

From now on, for any weak patching system \mathcal{M} and any ideal $J \subseteq S_\infty$, we will write $\mathcal{M}/J := \{M_n/J\}_{n \geq 1}$.

If $a \subseteq S_\infty$ is open, note that each M_n/a is a finite type S_∞/a-module and the ranks of the M_n/a's are bounded. As S_∞/a is finite, it follows that each M_n/a is finite, and the cardinalities of the M_n/a's are bounded. Proposition I.1.3 then implies that $\mathcal{U}(\mathcal{M}/a) \cong M_i/a$ as S_∞/a-modules (and hence as S_∞-modules) for F-many i.

Now for any $a' \subseteq a$, the surjections $M_n/a' \rightarrow M_n/a$ induce a surjection $\mathcal{U}(\mathcal{M}/a') \twoheadrightarrow \mathcal{U}(\mathcal{M}/a)$. In fact, by the exactness of $\mathcal{U}(\mathcal{N})$, this surjection induces an isomorphism $\mathcal{U}(\mathcal{M}/a')/a \cong \mathcal{U}(\mathcal{M}/a)$ of S_∞-modules (or S_∞-algebras if \mathcal{M} is a weak patching algebra).

Thus the $\mathcal{U}(\mathcal{M}/a)$'s form an inverse system, and so we may make the following definition:

Definition II.1.3. For any weak patching system \mathcal{M} define:

$$\mathcal{P}(\mathcal{M}) := \lim_{\leftarrow \atop a} \mathcal{U}(\mathcal{M}/a).$$

As $\mathcal{U}(\mathcal{N})$ is functorial, it follows that \mathcal{P} defines an additive functor $\mathcal{P} : \mathfrak{wP} \rightarrow \text{Mod}_{S_\infty}$. For a morphism $f : \mathcal{M} \rightarrow \mathcal{N}$ of weak patching systems, let $f^\mathcal{P} : \mathcal{P}(\mathcal{M}) \rightarrow \mathcal{P}(\mathcal{N})$ denote the induced map.

Note that if \mathcal{R} is a weak patching algebra then $\mathcal{P}(\mathcal{R})$ is an S_∞-algebra, and if \mathcal{M} is a weak patching \mathcal{R}-module then $\mathcal{P}(\mathcal{M})$ is a $\mathcal{P}(\mathcal{R})$-module (with its S_∞-module structure induced from the S_∞-algebra structure on $\mathcal{P}(\mathcal{R})$). It follows that \mathcal{P} induces functors $\textbf{Alg}_{\mathfrak{wP}} \rightarrow \textbf{Alg}_{S_\infty}$ and $\mathfrak{wP}_\mathcal{R} \rightarrow \text{Mod}_{\mathcal{P}(\mathcal{R})}$, which we will also denote by \mathcal{P}.

II.2 Unframed patching systems

In Kisin’s formulation of the patching method, the rings R_n and modules M_n must be modified with the addition of “framing variables” in order to make the patching argument work properly.\(^1\) In this section, we briefly describe this modification.

Remark. As a small point about notation, typically the notation R_n and M_n are used for the unframed versions of these objects, and the notations R_n^{\square} and M_n^{\square} are used for the framed versions. Outside of this section, the unframed versions of these objects will rarely if ever appear explicitly, and so it makes more sense to allow R_n and M_n to represent the. For lack of a better notation, we will sometimes use a superscript of $^{\circ}$ to denote the unframed version of a framed object. If we

\(^1\)The primary reason for this is that while the global Galois deformation functors are usually representable by the rings R_n, the local deformation functors usually are not representable, and so if local deformation rings are to be used explicitly in the patching argument, the local deformation functors must be modified, and hence the global deformation functors must be modified to account for this.
start with a unframed object, we will still use a superscript of $□$ to represent the framed version of that object. We apologize for not being able to think of a better choice of notation.

Fix an integer $d^0 \leq d$ and let $S^0_∞ = \mathcal{O}[[t_1, \ldots, t_{d^0}]]$, treated as a subring of $S_∞$. Assume that the ideals $I_n \subseteq S_∞$ all have the form $I_n = I_n^0 S_∞$ for some ideals $I_n^0 \subseteq S^0_∞$. Let $n^0 = (t_1^0, \ldots, t_{d^0}^0)$.

We will define an unframed weak patching system $\mathcal{M}^0 = \{M^0_n\}_{n \geq 1}$ to be a sequence of finitely generated $S^0_∞$-modules for which $I_n^0 \subseteq \text{Ann}_{S^0_∞} M^0_n$ and the $S^0_∞$-ranks of the M^0_n’s are uniformly bounded. We will define the obvious unframed analogues of all of the concepts listed in Definition II.1.2. Let wP^0 and Alg_{wP^0} be the categories of unframed weak patching systems, and unframed weak patching algebras, respectively.

We will again use the notation \mathcal{P} to denote the functor $\mathcal{P} : wP^0 \to \text{Mod}_{S_∞}$ given by

$$\mathcal{P}(\mathcal{M}^0) = \lim_{\to} \mathcal{U}(\mathcal{M}^0 / a).$$

Now treat $S_∞$ as an $S^0_∞$-algebra via the inclusion $S^0_∞ \hookrightarrow S_∞$, and treat $S^0_∞$ as an $S_∞$-algebra via the quotient map $S_∞ \twoheadrightarrow S_∞/(t_{d^0 + 1}, \ldots, t_d) = S^0_∞$. We can then define functors $(-)^\square : wP^0 \to wP$ and $(-)^\circ : wP \to wP^0$ via:

$$(\mathcal{M}^0)^\square = \{M^0_n \otimes_{S^0_∞} S_∞\}_{n \geq 1} = \{M^0_n \otimes_{\mathcal{O}} \mathcal{O}[[t_{d^0 + 1}, \ldots, t_d]]\}_{n \geq 1}$$

$$(\mathcal{M})^\circ = \{M_n \otimes_{S_∞} S^0_∞\}_{n \geq 1} = \{M_n/(t_{d^0 + 1}, \ldots, t_d)\}_{n \geq 1}.$$

And note that the following basic properties are automatic from the definitions:

Proposition II.2.1. Take any $\mathcal{M}^0 = \{M^0_n\}_{n \geq 1} \in wP^0$ and write $\mathcal{M}^\square := (\mathcal{M}^0)^\square \in wP$. Also let $\mathcal{R}^0 = \{R^0_n\} \in \text{Alg}_{wP^0}$ and $\mathcal{R}^\square = (\mathcal{R}^0)^\square \in \text{Alg}_{wP}$. Then we have

1. If \mathcal{M}^0 is a unframed patching system over M_0, then \mathcal{M}^\square is a patching system over M_0. The analogous statement holds for \mathcal{R}^0.
2. If \mathcal{M}^0 satisfies (the unframed version of) one of the additional properties listed in Definition II.1.2 (e.g. MCM, residual, patching algebra, etc.) then \mathcal{M}^\square satisfies the corresponding property. The analogous statements holds for \mathcal{R}^0.
3. $\mathcal{P}(\mathcal{M}^\square) = \mathcal{P}(\mathcal{M}^0) \otimes_{S^0_∞} S_∞$ and $\mathcal{P}(\mathcal{M}^0) = \mathcal{P}(\mathcal{M}^\square) \otimes_{S^0_∞} S^0_∞$, and the same holds for \mathcal{R}^0.
4. If \mathcal{M}^0 is a unframed weak patching P^0-module, then $\mathcal{M}^\square = \mathcal{M}^0 \otimes_{\mathcal{P}^0} \mathcal{R}^\square = \{M^0_n \otimes_{R^0_n} R^\square_n\}_{n \geq 1}$

This allows us to translate statements about unframed objects to statements about framed objects, without losing any significant information.

Remark. When patching is used in practice, and R_n and R^\square_n represent the unframed and unframed versions of a global Galois deformation ring, one typically has a canonical embedding $R_n \hookrightarrow R^\square_n$, but only a noncanonical choice of isomorphism $R^\square_n \cong R_n[[t_{d^0 + 1}, \ldots, t_d]]$. In particular, this means that the maps $M^\square_n \to M_n$ and $R^\square_n \to R_n$ implied by the construction of the $(-)^\circ$ are noncanonical. This makes the treatment of framing we are using in this note somewhat nonstandard.
The approach taken in the note essentially amounts to fixing for all time isomorphisms $R_n \cong R_n[[t_{d^2+1}, \ldots, t_d]]$ for each n, and hence fixing surjections $\tilde{R}_n \to R_n$. While this choice is certainly noncanonical, making such a choice does not cause any issues with any of the standard patching arguments, so doing this is essentially harmless. (Also note that Proposition II.2.1(4) guarantees that our definition of \mathcal{M} lines up with the usual definition.)

The reason we are taking this approach is that part (1) of Proposition II.2.1 ensures that an unframed patching system over M_0 produces a framed patching system, still over M_0, as we have $M_n/\mathfrak{n} \cong M^\circ/\mathfrak{n}^\circ = M_0$. In the standard approach, we would not be able to make such a statement, as we would not have a map $M_n \to M^\circ_n$, so instead of being able to say that \mathcal{M} is a patching system over M_0, we would only be able to say (after some appropriate modification of our definition) that \mathcal{M} is a patching system over some framed object \tilde{M}_0, which would only be finite over $\mathcal{O}[[t_{d^2+1}, \ldots, t_d]]$ not \mathcal{O}. One would then deduce results about \tilde{R}_0 and \tilde{M}_0 via patching, and then deduce the corresponding results about R_0 and M_0 from this. While setting up the theory in this way would not require any substantial changes to our arguments or results, it would introduce the extra baggage of having to worry about both the unframed objects M_0 and R_0 and their framed counterparts \tilde{M}_0 and \tilde{R}_0.

Ignoring the minor issue of fixing these noncanonical isomorphism, our approach is somewhat conceptually cleaner in that it is usually not necessary to remember that the objects R_n and M_n were originally constructed from unframed objects, and it is not necessary to distinguish the variables t_1, \ldots, t_{d^2} (coming from the “Taylor–Wiles primes”) from the variables t_{d^2+1}, \ldots, t_d (coming from the framing) in the definition of $S_\infty = \mathcal{O}[[t_1, \ldots, t_d]]$.

II.3 A module theoretic interpretation

One could also give the following alternative construction of objects considered in Section II.1.

Define the S_∞-algebra

$$
\mathfrak{G} = \prod_{n=1}^{\infty} S_\infty / \mathcal{I}_n
$$

and note every weak patching system is naturally an \mathfrak{G}-module, and in fact is finitely generated (by the assumption that the S_∞-ranks of the M_n’s were uniformly bounded). Moreover, it is not hard to see that every finitely generated \mathfrak{G}-module arises from a weak patching system in this way, and that in fact \mathfrak{W} is equivalent to the category of finitely generated \mathfrak{G}-modules.

Similarly if

$$
\mathfrak{G} = \mathfrak{G} / \mathfrak{w} = \prod_{n=1}^{\infty} S_\infty / \mathcal{I}_n,
$$

then \mathfrak{W} is equivalent to the category of finitely generated \mathfrak{G}-modules.

Now for any open ideal \mathfrak{a} of S_∞, we have $(S_\infty / \mathcal{I}_n)/\mathfrak{a} \cong S_\infty / \mathfrak{a}$ for all but finitely many n, by (•).
It follows by Propositions I.2.1 and I.2.2 that there is a prime ideal \(\mathfrak{Z}_a \subseteq S / a = \prod_{n=1}^{\infty} (S_\infty / \mathcal{I}_n) / a \) with the property that if \(\mathcal{M} \) is any weak patching system (regarded as a \(S \)-module) then there is a (functorial) isomorphism \((\mathcal{M} / a)_{\mathfrak{Z}_a} \cong \mathcal{U}(\mathcal{M} / a) \).

Moreover, Proposition I.2.1 implies that the collection of ideals \(\{ \mathfrak{Z}_a \}_{a \subseteq S_\infty} \) is compatible with the transition maps \(S / a' \rightarrow S / a \) (in the sense that \(\mathfrak{Z}_a' \) is the preimage of \(\mathfrak{Z}_a \)) and so one can define a prime ideal \(\mathfrak{Z} = \lim_{a} \mathfrak{Z}_a \subseteq S_\infty \) with the property that \((\mathcal{M} / a)_{\mathfrak{Z}_a} \cong \mathcal{U}(\mathcal{M} / a) \) for any \(\mathcal{M} \in \mathfrak{W} \) and any open ideal \(a \subseteq S_\infty \).

We may thus define \(\mathcal{P} : \mathfrak{W} \rightarrow \text{Mod}_{S_\infty} \) by

\[
\mathcal{P}(\mathcal{M}) = \lim_{a} (\mathcal{M} / a)_{\mathfrak{Z}_a},
\]

which clearly agrees with our definition above.

We usually will use these two constructions interchangeably in the following discussions.

II.4 Basic properties of patching

In this section, we’ll establish some basic properties of the functor \(\mathcal{P} \).

First, for any finitely generated \(S_\infty \)-module \(M \), we will define the constant patching system \(\overline{M} \) to be \(\overline{M} = \{ M / \mathcal{I}_n \}_{n \geq 1} \). The next lemma should justify this choice of terminology:

Lemma II.4.1. For any finitely generated \(S_\infty \)-module \(M \), there is a natural isomorphism \(\mathcal{P}(\overline{M}) \cong M \).

Proof. Since \(M / a \) is finite for all open \(a \subseteq S_\infty \) Proposition I.1.3 gives a natural isomorphism \((M/a)^{\mathcal{U}} \cong M/a \) of \(S_\infty/a \)-modules. Thus

\[
\mathcal{P}(\overline{M}) = \lim_{a} \mathcal{U}(M/a) = \lim_{a} (M/a)^{\mathcal{U}} \cong \lim_{a} M/a \cong M
\]

as any finite type \(S_\infty \)-module is complete. \(\Box \)

In turns out that \(\mathcal{P} \) is a reasonably well behaved functor. In fact:

Proposition II.4.2. \(\mathcal{P} : \mathfrak{W} \rightarrow \text{Mod}_{S_\infty}^{fg} \) is a right-exact functor.

Proof. Let \(\text{Ab} \) be the category of abelian groups. For any directed index set \(I \), let \(\text{finAb}^I \) be the category of inverse systems of finite abelian groups indexed by \(I \). We claim that if \(I \) is countable, the functor \(\varprojlim_{I} : \text{finAb}^I \rightarrow \text{Ab} \) is exact.
II.4. BASIC PROPERTIES OF PATCHING

By [Sta19, Lemma 0598], it suffices to show that any \((A_i, f_{ji} : A_j \to A_i) \in \text{finAb}^I\) satisfies the Mittag-Leffler condition: For any \(i \in I\) there is a \(j \geq i\) for which \(\text{im}(f_{ki}) = \text{im}(f_{ji})\) for all \(k \geq j\).

But as \(A_i\) is finite, it has only finitely many subgroups and so the collection \(\{\text{im}(f_{ji})\}_{j \geq i}\) of subgroups of \(A_i\) must have some minimal member, \(\text{im}(f_{ji})\), under inclusion. Then for any \(k \geq j\), \(\text{im}(f_{ki}) = \text{im}(f_{ji} \circ f_{kj}) \subseteq \text{im}(f_{ji})\) and hence \(\text{im}(f_{ki}) = \text{im}(f_{ji})\). So indeed every object of \(\text{finAb}^I\) satisfies the Mittag-Leffler condition, and so \(\lim\) is exact.

Now assume \(\mathcal{A}, \mathcal{B}\) and \(\mathcal{C}\) are weak patching systems, and we have an exact sequence

\[
0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0
\]

Then for any \(a \subseteq S_{\infty}\), \(\mathcal{A}/a \to \mathcal{B}/a \to \mathcal{C}/a \to 0\) is exact, so by the exactness of \(\mathcal{U}(-)\) we get the exact sequence

\[
\mathcal{U}(\mathcal{A}/a) \to \mathcal{U}(\mathcal{B}/a) \to \mathcal{U}(\mathcal{C}/a) \to 0.
\]

Thus we have a exact sequence of complexes

\[
(\mathcal{U}(\mathcal{A}/a))_a \to (\mathcal{U}(\mathcal{B}/a))_a \to (\mathcal{U}(\mathcal{C}/a))_a \to 0
\]

But now as \(\mathcal{U}(\mathcal{A}/a), \mathcal{U}(\mathcal{B}/a)\) and \(\mathcal{U}(\mathcal{C}/a)\) are all finite, and \(S_{\infty}\) has only countably many open ideals, the above argument shows that taking inverse limits preserves exactness, and so indeed

\[
\mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{B}) \to \mathcal{P}(\mathcal{C}) \to 0
\]

is exact. \(\square\)

Remark. Note that in general, \(\mathcal{P}\) is not left-exact. Indeed, assume that the ideals \(I_n\) are chosen so that \(S_{\infty}/I_n\) is \(\varpi\)-torsion free for all \(n\) (which is the case for the ideals considered in Lemma II.1.1). Then define \(\varphi : S_{\infty} \to S_{\infty}\) by \(\varphi_n(x) = \varpi^n x\). It is clear that \(\varphi\) is injective, but we can also see that \(\varphi^\mathcal{P} : \mathcal{P}(S_{\infty}) \to \mathcal{P}(S_{\infty})\) is the zero map (since for any \(a\), \(\varphi_{n,a} : S_{\infty}/a \to S_{\infty}/a\) is the zero map for all but finitely many \(n\)). Thus \(\mathcal{P}\) cannot be left-exact.

Proposition II.4.3. For any \(\mathcal{M} \in \mathfrak{wP}\), \(\mathcal{P}(\mathcal{M})\) is a finitely generated \(S_{\infty}\)-module. That is, \(\mathcal{P}\) is a functor \(\mathfrak{wP} \to \text{Mod}_{S_{\infty}}^\text{fg}\).

Proof. Let \(\mathcal{M} = \{M_n\}_{n \geq 1}\). As the \(S_{\infty}\)-ranks of of the \(M_n\)'s are bounded, there is some \(N \geq 1\) such that there exist a family of surjections \(\varphi_n : (S_{\infty}/I_n)^N \to M_n\) for all \(n \geq 1\). The \(\varphi_n\)'s combine to form a surjection \(S_{\infty}^N \to \mathcal{M}\) in \(\mathfrak{wP}\). By Proposition II.4.2 this gives a surjection \(\varphi^\mathcal{P} : S_{\infty}^N \to \mathcal{P}(\mathcal{M})\) of \(S_{\infty}\)-modules, and so \(\mathcal{P}(\mathcal{M})\) is a finitely generated \(S_{\infty}\)-module. \(\square\)

Now Proposition II.4.2, and Definition II.1.2 easily imply the following basic properties:

Proposition II.4.4. If \(\mathcal{M} = \{M_n\}_{n \geq 1} \in \mathfrak{wP}\) then:

1. For any ideal \(J \subseteq S_{\infty}\), \(\mathcal{P}(\mathcal{M}/J) \cong \mathcal{P}(\mathcal{M})/J\)
2. For any open ideal \(a \subseteq S_{\infty}\), \(\mathcal{P}(\mathcal{M})/a \cong \mathcal{U}(\mathcal{M}/a)\).
3. If \mathcal{M} is a weak patching system over M_0, then $\mathcal{P}(\mathcal{M})/n \cong M_0$.
4. If \mathcal{M} is MCM, then $\mathcal{P}(\mathcal{M})$ is a finite free S_∞-module.

Proof. Part (1) simply follows from Proposition II.4.2 applied to the exact sequence

$$0 \to J(M) \to M \to M/J \to 0.$$

So now if $a \subseteq S_\infty$ is open, we have $(\mathcal{M}/a)/a' \cong \mathcal{M}/a$ for all $a' \subseteq a$ and so $U((\mathcal{M}/a)/a') \cong U(\mathcal{M}/a)$. Thus by part (1) and Lemma II.4.1

$$\mathcal{P}(\mathcal{M})/a \cong \mathcal{P}(\mathcal{M}/a) = \lim_{\rightarrow} U((\mathcal{M}/a)/a') = \lim_{\rightarrow} U(\mathcal{M}/a) \cong U(\mathcal{M}/a),$$

proving (2).

Now assume that \mathcal{M} is a weak patching system over M_0. Letting S_∞ act on M_0 via $S_\infty \to S_\infty/n = \mathcal{O}$ we see that for all $n \geq 1$, $(M_0/I_n) = M_0 = M_n/n = M_0/n$ (as $I_n \subseteq n \subseteq \text{Ann}_{S_\infty}(M_0)$) and so $\mathcal{M}/n = M_0$. Thus by part (1) and Lemma II.4.1

$$\mathcal{P}(\mathcal{M})/n \cong \mathcal{P}(\mathcal{M}/n) \cong \mathcal{P}(M_0) \cong M_0,$$

proving (3).

Lastly, assume that \mathcal{M} is MCM. Then for all $n \geq 1$, $M_n \cong (S_\infty/I_n)^{r_n}$ for some r_n. As the r_n’s are bounded, there is some r such that $r_i = r$, and hence $M_i \cong (S_\infty/I_i)^r$, for \mathfrak{g}-many i. Define an \mathfrak{g}-morphism $\varphi : S_\infty^r \to \mathcal{M}$ by letting $\varphi_i : S_\infty^r \to (S_\infty/I_i)^r \cong M_i$ for \mathfrak{g}-many i. Then for any open $a \subseteq S_\infty$, $\varphi_{i,a} : S_\infty^r/a \to M_i/a$ is an isomorphism for \mathfrak{g}-many i, and so φ induces an isomorphism $U((S_\infty/a)^r) \cong U(\mathcal{M}/a)$ for all a, and thus an isomorphism $\varphi^\mathcal{P} : S_\infty^r = \mathcal{P}(S_\infty^r) \to \mathcal{P}(\mathcal{M})$ is an isomorphism. So indeed, $\mathcal{P}(\mathcal{M})$ is a finite type, free S_∞-module, proving (4). □

The following simple consequence of Proposition II.4.4 is central to most applications of this theory:

Corollary II.4.5. If \mathcal{R} is a weak patching algebra and \mathcal{M} is an MCM weak patching \mathcal{R}-module, then:

1. The homomorphism $S_\infty \to \mathcal{P}(\mathcal{R})$ inducing the S_∞-algebra structure on $\mathcal{P}(\mathcal{R})$ is injective;
2. The Krull dimension of $\mathcal{P}(\mathcal{R})$ is $d + 1 (= \dim S_\infty)$;
3. $\mathcal{P}(\mathcal{M})$ is a maximal Cohen–Macaulay module over $\mathcal{P}(\mathcal{R})$ and $(\mathfrak{m}, t_1, \ldots, t_d) \subseteq S_\infty \subseteq \mathcal{P}(\mathcal{R})$ is a regular sequence for $\mathcal{P}(\mathcal{M})$.

Proof. For (1), the map $\iota : S_\infty \to \mathcal{P}(\mathcal{R})$ induces the S_∞-module structure on $\mathcal{P}(\mathcal{M})$, which is faithful by Proposition II.4.4(4), and so ι must be injective.

It follows from (1) that $\dim \mathcal{P}(\mathcal{R}) \geq \dim S_\infty$. But as $\mathcal{P}(\mathcal{R})$ is finite over S_∞, it also follows that $\dim \mathcal{P}(\mathcal{R}) \leq \dim S_\infty$. This proves (2).
Now assume that \mathcal{M} is MCM. By Proposition II.4.4(4), $\mathcal{P}(\mathcal{M})$ is finite free over $\iota(S_\infty) \cong S_\infty$ and so $\mathcal{P}(\mathcal{M})$ is indeed Cohen–Macaulay of dimension $d + 1 = \dim S_\infty$. In particular $(t_1, \ldots, t_d, \varpi) \subseteq S_\infty \subseteq \mathcal{P}(\mathcal{R})$ is a regular sequence.

II.5 Covers of Patching Algebras

In the classical setup of Taylor–Wiles–Kisin patching, one considers a patching algebra $\mathcal{R} = \{R_n\}_{n \geq 1}$, where the R_n’s are all taken to be quotients of a fixed ring R_∞. We thus make the following definition:

Definition II.5.1. If $\mathcal{R} = \{R_n\}_{n \geq 1}$ is a weak patching algebra we say that a cover $(R_\infty, \{\varphi_n\})$ of \mathcal{R} is:

- A complete, local ring R_∞, which is topologically finitely generated as an \mathcal{O}-algebra of dimension $d + 1 (= \dim S_\infty)$ together with:
- For each n, a continuous, surjective \mathcal{O}-algebra homomorphism $\varphi_n : R_\infty \to R_n$.

We say that $(R_\infty, \{\varphi_n\})$ is a CM cover if the ring R_∞ is Cohen–Macaulay, and we say that $(R_\infty, \{\varphi_n\})$ is a regular cover if the ring R_∞ is regular (for example, if $R_\infty \cong \mathcal{O}[[x_1, \ldots, x_d]]$). We also say that $(R_\infty, \{\varphi_n\})$ is an irreducible cover if R_∞ is a domain.

We will often use R_∞ to denote the cover $(R_\infty, \{\varphi_n\})$.

Remark. We will often consider covers R_∞ of patching algebras $\mathcal{R} = \{R_n\}_{n \geq 1}$ over a ring R_0. In such a situation one gets an infinite family of surjective morphisms $R_\infty \overset{\varphi_n}{\longrightarrow} R_n \cong R_n/\mathfrak{n} \overset{\sim}{\longrightarrow} R_0$. In general, we will make no assumptions that these maps are in any way compatible with each other. Indeed, the lack of any compatibilities between the maps $\varphi_n : R_\infty \to R_n$ is part of reason why the pigeonhole principle argument (in the classical formulation) or the ultraproduct formalism (in the approach used here) is necessary for patching arguments.

Note that:

Lemma II.5.2. If $(R_\infty, \{\varphi_n\})$ is a cover of a weak patching algebra \mathcal{R}, then the φ_n’s induce a natural continuous surjection $\varphi_\infty : R_\infty \to \mathcal{P}(\mathcal{R})$.

Proof. The φ_n’s induce a continuous map $\Phi = \prod_{n \geq 1} \varphi_n : R_\infty \to \prod_{n \geq 1} R_n$, and thus induce continuous maps

$\Phi_a : R_\infty \overset{\Phi}{\longrightarrow} \prod_{n \geq 1} R_n \to \prod_{n \geq 1} (R_n/\mathfrak{a}) \to \mathcal{U}(\mathcal{R}/\mathfrak{a})$

for all open $\mathfrak{a} \subseteq S_\infty$, and thus they indeed induce a continuous map

$\varphi_\infty = (\Phi_a)_a : R_\infty \to \varprojlim_{\mathfrak{a}} \mathcal{U}(\mathcal{R}/\mathfrak{a}) = \mathcal{P}(\mathcal{R})$.
We now claim that each \(\Phi_a \) is surjective. As each map \(R_\infty \xrightarrow{\varphi_n} R_n \to R_n/a \) is continuous, we may give each \(R_n/a \) the structure of a continuous \(R_\infty \)-algebra. Then the map \(\Phi_a : R_\infty \to U(\mathcal{R}/a) \) defines the continuous \(R_\infty \)-algebra structure on \(U(\mathcal{R}/a) \) from Proposition I.1.1. By Proposition I.1.3, \(U(\mathcal{R}/a) \cong R_i/a \) as \(R \)-algebras for \(\exists \)-many \(i \). But for any such \(i \), the map \(R_\infty \xrightarrow{\varphi_i} R_i \to R_i/a \) defining the \(R_\infty \)-algebra structure is surjective, and so \(\Phi_a : R_\infty \to U(\mathcal{R}/a) \) must indeed be surjective.

It follows that \(\varphi_\infty (R_\infty) \subseteq \mathcal{P}(\mathcal{R}) \) is dense. But now as \(R_\infty \) is topologically finitely generated over \(\mathcal{O} \), it is compact, and so \(\varphi_\infty (R_\infty) \) is also closed in \(\mathcal{P}(\mathcal{R}) \). Therefore \(\varphi_\infty \) is indeed surjective.

We will say that the cover \(R_\infty \) is minimal if \(\varphi_\infty \) is an isomorphism.

From now on, if \(\mathcal{M} \) is weak patching \(\mathcal{R} \) module and \(R_\infty \) is a cover of \(\mathcal{R} \), we will treat \(\mathcal{P}(\mathcal{M}) \) as a \(R_\infty \)-module via the map \(\varphi_\infty : R_\infty \to \mathcal{P}(\mathcal{R}) \) from Lemma II.5.2.

Lemma II.5.2 and Corollary II.4.5 give the following useful result:

Corollary II.5.3. If \(\mathcal{R} \) is a weak patching algebra with a cover \(R_\infty \), and \(\mathcal{M} \) is any \(\mathcal{MCM} \) weak patching \(\mathcal{R} \)-module, then \(\mathcal{P}(\mathcal{M}) \) is maximal Cohen–Macaulay over \(R_\infty \).

Proof. By Lemma II.5.2, \(\mathcal{P}(\mathcal{R}) \) may be thought of as a quotient of \(R_\infty \). From the definition of Cohen–Macaulay modules, if \(f : A \to B \) is any surjective map of rings, and \(M \) is a \(B \)-module, then \(M \) is Cohen–Macaulay over \(B \) if and only if it is Cohen–Macaulay over \(A \). Thus by Corollary II.4.5, \(\mathcal{P}(\mathcal{M}) \) is Cohen–Macaulay over \(R_\infty \).

Furthermore, by Corollary II.4.5 and Definition II.5.1, we have \(\dim R_\infty = d + 1 = \dim \mathcal{P}(\mathcal{R}) = \dim \mathcal{P}(\mathcal{M}) \), so \(\mathcal{P}(\mathcal{M}) \) is maximal Cohen–Macaulay over \(R_\infty \).

For the remainder of this section we will consider a finite \(\mathcal{O} \)-algebra \(R_0 \) and a nonzero \(R_0 \)-module \(M_0 \), and we will assume that \(M_0 \) be a nonzero \(R_0 \)-module, which is finite type and free over \(\mathcal{O} \). One of the primary goals of patching is to deduce information about the \(R_0 \)-module structure of \(M_0 \) by considering patching systems over \(\mathcal{R} \) and \(\mathcal{M} \).

With this in mind assume that we are given a triple \((R_\infty, \mathcal{R}, \mathcal{M}) \) where:

- \(\mathcal{R} = \{R_n\}_{n \geq 1} \) is a patching algebra over \(R_0 \);
- \(\mathcal{M} = \{M_n\}_{n \geq 1} \) is a \(\mathcal{MCM} \) patching \(\mathcal{R} \)-module over \(M_0 \);
- \(R_\infty \) is a cover of \(\mathcal{R} \).

We will be primarily interested in triples \((R_\infty, \mathcal{R}, \mathcal{M}) \) satisfying the following property:

\[R_\infty \text{ acts faithfully on the module } \mathcal{P}(\mathcal{M}) \]

(Supp)

In general, it can be quite difficult to check if (Supp) if we do not have much direct information about \(R_0 \) and \(M_0 \), and this presents one of the major challenges in the study of automorphy lifting. For now, we will not attempt to give general strategies for testing (Supp) and instead only note the following special case:
Lemma II.5.4. If R_∞ is a domain, then $(R_\infty, \mathcal{R}, \mathcal{M})$ always satisfies (Supp).

Proof. This follows immediately from standard properties of maximal Cohen–Macaulay modules, as $\mathcal{P}(\mathcal{M})$ is maximal Cohen–Macaulay over R_∞.

Alternatively, assume that (Supp) fails. Then $\text{Ann}_{R_\infty} \mathcal{P}(\mathcal{M}) \neq (0)$, so as R_∞ is a domain, we get that $\dim R_\infty/\text{Ann}_{R_\infty} \mathcal{P}(\mathcal{M}) < \dim R_\infty = \dim S_\infty$. But now lifting the structure homomorphism $S_\infty \to \mathcal{P}(\mathcal{R})$ to $S_\infty \to R_\infty$, we see that the action of S_∞ on $\mathcal{P}(\mathcal{M})$ factors through the composition $S_\infty \to R_\infty \to R_\infty/\text{Ann}_{R_\infty} \mathcal{P}(\mathcal{M})$. Since $\dim S_\infty > \dim R_\infty/\text{Ann}_{R_\infty} \mathcal{P}(\mathcal{M})$, this map cannot be surjective, and so S_∞ cannot act faithfully on $\mathcal{P}(\mathcal{M})$. But this contradicts the fact that $\mathcal{P}(\mathcal{M})$ is free over S_∞. Hence (Supp) must hold.

We can now prove the main result of this section:

Theorem II.5.5. Let R_0 be a finite \mathcal{O}-algebra and let M_0 be a nonzero R_0-module, which is finite and free over \mathcal{O}. Assume that we are given:

- A patching algebra $\mathcal{R} = \{R_n\}_{n \geq 1}$ over R_0;
- A MCM patching \mathcal{R}-module $\mathcal{M} = \{M_n\}_{n \geq 1}$ over M_0;
- A cover R_∞ of \mathcal{R}.

such that $(R_\infty, \mathcal{R}, \mathcal{M})$ satisfies (Supp). Then we have the following:

1. R_∞ is a minimal cover, i.e. $R_\infty \cong \mathcal{P}(\mathcal{R})$, and $R_0 = R_\infty/\mathfrak{n}$ (where R_∞ is given the structure of a S_∞-algebra via the isomorphism $R_\infty \cong \mathcal{P}(\mathcal{R})$).
2. $\text{Supp}_{R_0} M_0 = \text{Spec} R_0$. In particular, for any generic point η of $\text{Spec} R_0$ with function field $K(\eta)$ (i.e. $K(\eta)$ is the field of fractions of R_0/\mathfrak{n}), $M_0 \otimes_{R_0} K(\eta) \neq 0$.
3. If η is any generic point of $\text{Spec} R_0$, and $\bar{\eta}$ is a generic point of $\text{Spec} R_\infty$ with $\eta \in \bar{\eta}$ (i.e. $\bar{\eta} \subseteq \eta$ treating both as ideals of R_∞), then

$$\dim_{K(\eta)} M_0 \otimes_{R_0} K(\eta) \geq \dim_{K(\bar{\eta})} \mathcal{P}(\mathcal{M}) \otimes_{R_\infty} K(\bar{\eta}) \geq 1,$$

where $K(\eta)$ and $K(\bar{\eta})$ are the function fields of η and $\bar{\eta}$, respectively (i.e. the field of fractions of R_0/\mathfrak{n} and $R_\infty/\bar{\mathfrak{n}}$).
4. If R_∞ is a CM cover, then $(t_1, \ldots, t_d, \omega) \subseteq R_\infty$ is a regular sequence for R_∞, and R_0 is ω-torsion free (and hence Cohen–Macaulay).
5. If R_∞ is a regular cover, then M_0 is free over R_0.

Proof. By definition, the action of R_∞ on $\mathcal{P}(\mathcal{M})$ factors through the map $\varphi_\infty : R_\infty \to \mathcal{P}(\mathcal{R})$ from Lemma II.5.2. By (Supp), this map must be injective, and thus an isomorphism. In particular Proposition II.4.4(3) implies that $R_\infty/\mathfrak{n} \cong \mathcal{P}(\mathcal{R})/\mathfrak{n} \cong R_0$. This proves (1).

For (2), note that $\text{Ann}_{R_\infty} \mathcal{P}(\mathcal{M}) = (0)$ by (Supp), which implies that $\text{Supp}_{R_\infty} \mathcal{P}(\mathcal{M}) = \text{Spec} R_\infty$, as $\mathcal{P}(\mathcal{M})$ is a finitely generated R_∞-module. This now implies that $\text{Supp}_{R_0} M_0 = \text{Supp}_{R_\infty/n} \mathcal{P}(\mathcal{M})/n = \text{Supp}_{R_\infty} \mathcal{P}(\mathcal{M})/n = V(\mathfrak{n}) = \text{Spec} R_\infty/n = \text{Spec} R_0$.
Now for any \(P \in \text{Spec} \, R_\infty \), let \(K(P) \) be the residue field of \(P \) (that is, the field of fractions of \(R_\infty/P \)). As \(\mathcal{P}(\mathcal{M}) \) is a finite type \(R_\infty \) algebra, the map \(P \mapsto \dim_{K(P)} \mathcal{P}(M) \otimes_{R_\infty} K(P) \) is upper semi-continuous on \(\text{Spec} \, R_\infty \). In particular, if \(\eta \) is a generic point of \(\text{Spec} \, R_0 \) and \(\tilde{\eta} \) is a generic point of \(\text{Spec} \, R_\infty \) contained in \(\eta \),

\[
\dim_{K(\eta)} \mathcal{P}(M) \otimes_{R_\infty} K(\eta) \geq \dim_{K(\tilde{\eta})} \mathcal{P}(\mathcal{M}) \otimes_{R_\infty} K(\tilde{\eta}) \geq 1
\]

(where the second inequality is just from the fact that \(\tilde{\eta} \in \text{Supp}_{R_\infty} \mathcal{P}(\mathcal{M}) = \text{Spec} \, R_\infty \)). As

\[
\mathcal{P}(\mathcal{M}) \otimes_{R_\infty} K(\eta) \cong (\mathcal{P}(\mathcal{M}) \otimes_{R_\infty} R_0) \otimes_{R_0} K(\eta) \cong M_0 \otimes K(\eta),
\]

this gives (3).

Now as \(\mathcal{M} \) is MCM, Corollary II.4.5(3) implies that \((t_1, \ldots, t_d, \varpi) \subseteq \mathcal{P}(\mathcal{R}) = R_\infty \) is a regular sequence for \(\mathcal{P}(\mathcal{M}) \), and hence is a system of parameters for \(R_\infty \). Now assume that \(R_\infty \) is Cohen–Macaulay. This implies that any system of parameters for \(R_\infty \) is also a regular sequence, so indeed \((t_1, \ldots, t_d, \varpi)\) is a regular sequence for \(R_\infty \).

But by the definition of regular sequences, it follows that \(R_0 = R_\infty/(t_1, \ldots, t_d) \) is Cohen–Macaulay and \((\varpi)\) is an \(R_0\)-regular sequence, which implies that \(R_0 \) is \(\varpi\)-torsion free. This proves (4).

Finally, if \(R_\infty \) is a regular local ring, then as \(\mathcal{P}(\mathcal{M}) \) is maximal Cohen–Macaulay over \(R_\infty \), the Auslander–Buchsbaum formula implies that \(\mathcal{P}(\mathcal{M}) \) is free over \(R_\infty \) (see [Dia97, Theorem 2.1] for more details). Modding out by \(n \) this now implies that \(\mathcal{P}(\mathcal{M})/n \cong M_0 \) is free over \(\mathcal{P}(\mathcal{R})/n \cong R_0 \), proving (5).

\[\square\]

II.6 Generically smooth covers

Theorem II.5.5 gives a significantly stronger result in the case when the cover is regular. The covers that arise in practice are typically only regular in the simplest cases, however they do sometimes satisfy a weaker condition, which we summarize in the following definition:

Definition II.6.1. We say that a cover \((R_\infty, \{\varphi_n\}_{n \geq 1})\) is **generically smooth** if \(R_\infty \) is a domain and \(\text{Spec} \, R_\infty[1/\varpi] \) is formally smooth over \(E \).

In the case of a generically smooth cover, we get the following stronger version of Theorem II.5.5

Theorem II.6.2. Let \(R_0 \) be a finite \(\mathcal{O} \)-algebra and let \(M_0 \) be a nonzero \(R_0 \)-module, which is finite and free over \(\mathcal{O} \). Assume that we are given:

- A patching algebra \(\mathcal{R} = \{R_n\}_{n \geq 1} \) over \(R_0 \);
- A MCM patching \(\mathcal{R} \)-module \(\mathcal{M} = \{M_n\}_{n \geq 1} \) over \(M_0 \);
- A generically smooth cover \(R_\infty \) of \(\mathcal{R} \).

Then \(\mathcal{P}(\mathcal{M}) \otimes \mathcal{O} \) \(E \) is a projective \(R_\infty[1/\varpi] \)-module, and \(M_0 \otimes \mathcal{O} \) \(E \) is a free \(R_0[1/\varpi] \) module.
II.6. GENERICALLY SMOOTH COVERS

Proof. By assumption, R_∞ is a domain, and hence $(R_\infty, \mathcal{R}, \mathcal{M})$ satisfies (Supp), so the results of Theorem II.5.5 are applicable. In particular, $R_\infty \cong \mathcal{P}(\mathcal{R})$ (making R_∞ into an S_∞-algebra) and $R_\infty/n \cong R_0$.

Now as \mathcal{M} is MCM, $\mathcal{P}(\mathcal{M})$ is free over S_∞, and so $\mathcal{P}(\mathcal{M})_E := \mathcal{P}(\mathcal{M}) \otimes_{\mathcal{O}} E$ is free over $S_\infty[1/\wp] = S_\infty \otimes_{\mathcal{O}} E$. To show that $\mathcal{P}(\mathcal{M}) \otimes_{\mathcal{O}} E$ is a projective $R_\infty[1/\wp]$-module, it suffices to prove that for any prime $\mathfrak{p} \subseteq R_\infty[1/\wp]$ the completion $\mathcal{P}(\mathcal{M})_{E, \mathfrak{p}} := \mathcal{P}(\mathcal{M})_E \otimes_{R_\infty[1/\wp]} R_\infty[1/\wp]_{\mathfrak{p}}$ is free over $R_\infty[1/\wp]_{\mathfrak{p}}$.

Let $\mathfrak{q} = (S_\infty \otimes_{\mathcal{O}} E) \cap \mathfrak{p}$ be the prime ideal of $S_\infty \otimes_{\mathcal{O}} E$ lying under \mathfrak{p}. Then $\mathcal{P}(\mathcal{M})_E \otimes_{S_\infty[1/\wp]} S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$ is free over $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$. Let $\mathfrak{p} = \mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_k$ be the primes of $R_\infty[1/\wp]$ lying over \mathfrak{q}. By [Sta19, Lemma 07N9],

$$R_\infty[1/\wp] \otimes_{S_\infty[1/\wp]} S_\infty[1/\wp]_{\mathfrak{q}}^\wedge \cong \bigoplus_{i=1}^{k} R_\infty[1/\wp]_{\mathfrak{p}_i}$$

and so

$$\mathcal{P}(\mathcal{M})_E \otimes_{S_\infty[1/\wp]} S_\infty[1/\wp]_{\mathfrak{q}}^\wedge = \bigoplus_{i=1}^{k} \mathcal{P}(\mathcal{M})_E \otimes_{R_\infty[1/\wp]} R_\infty[1/\wp]_{\mathfrak{p}_i} = \bigoplus_{i=1}^{k} \mathcal{P}(\mathcal{M})_{E, \mathfrak{p}_i}^\wedge.$$

It follows that $\mathcal{P}(\mathcal{M})_{E, \mathfrak{p}}^\wedge = \mathcal{P}(\mathcal{M})_{E, \mathfrak{p}_1}^\wedge$ is a direct summand of a free $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$-module, and is thus a projective $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$-module. As $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$ is local, $\mathcal{P}(\mathcal{M})_{E, \mathfrak{p}}^\wedge$ is a free $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$-module.

But now as S_∞ is regular, so is $S_\infty[1/\wp]_{\mathfrak{q}}$, and hence $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$ is a complete regular local ring, which contains a field E. By the Cohen structure theorem, $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge \cong K[[y_1, \ldots, y_d]]$ for some field K. As $\mathcal{P}(\mathcal{M})_{E, \mathfrak{p}}^\wedge$ is free over $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$ and, $R_\infty[1/\wp]_{\mathfrak{p}}^\wedge$ is finite over $S_\infty[1/\wp]_{\mathfrak{q}}^\wedge$ we get that $\mathcal{P}(\mathcal{M})_{E, \mathfrak{p}}^\wedge$ is maximal Cohen–Macaulay over $R_\infty[1/\wp]_{\mathfrak{p}}^\wedge$ (with regular sequence (y_1, \ldots, y_d)).

But now as $R_\infty[1/\wp]$ is formally smooth, $R_\infty[1/\wp]_{\mathfrak{p}}^\wedge$ is regular. Thus the Auslander–Buchsbaum formula (just as in the proof of Theorem II.5.5) implies that $\mathcal{P}(\mathcal{M})_{E, \mathfrak{p}}^\wedge$ is free over $R_\infty[1/\wp]_{\mathfrak{p}}^\wedge$.

So indeed $\mathcal{P}(\mathcal{M})_E$ is projective over $R_\infty[1/\wp]$. Since $R_\infty[1/\wp]$ is a domain, this implies that $\mathcal{P}(\mathcal{M})_E$ is locally free of some rank, say m. It follows that $\mathcal{P}(\mathcal{M})_E/n \cong (\mathcal{P}(\mathcal{M})/n) \otimes_{\mathcal{O}} E \cong M_0 \otimes_{\mathcal{O}} E$ is locally free of rank m over $R_0[1/\wp]$.

But now as R_0 is finite over \mathcal{O}, $R_0[1/\wp]$ is finite over E and so it is a direct sum of finitely many local E-algebras. It follows that a locally free rank m $R_0[1/\wp]$-module is actually free of rank m, completing the proof. \qed

Remark. The conditions we imposed on R_∞ in this section were fairly restrictive, namely we required the entire scheme $\text{Spec } R_\infty[1/\wp]$ to be formally smooth. A weaker condition, and one which is satisfied far more often in practice, would be to only require that $\text{Spec } R_\infty[1/\wp]$ is formally smooth at each point of $\text{Spec } R_0[1/\wp]$, for all of the embeddings $\iota_n : \text{Spec } R_0[1/\wp] \to \text{Spec } R_\infty[1/\wp]$ given by the maps $R_\infty \to R_n \to R_0$.

In such a situation we would expect to be able to give a similar result to Theorem II.6.2\(^2\) except that there is no way to guarantee that the embedding \(i_\infty: \text{Spec} \, R_0[1/\varpi] \hookrightarrow \text{Spec} \, R_\infty[1/\varpi]\) induced by \(R_\infty \rightarrow \mathcal{P}(\mathcal{R}) \rightarrow R_0\) also only hits the formally smooth points of \(\text{Spec} \, R_\infty[1/\varpi]\). The reason for this is that we haven’t imposed any compatibility between the different embeddings \(i_n\), and so all we can say about \(i_\infty\) is that it’s a limit of some subsequence of the \(i_n\)’s, which can have a non-formally smooth point in it’s image as the formally smooth locus of \(\text{Spec} \, R_\infty[1/\varpi]\) is not typically closed.

To get around this issue, we will need to impose extra restrictions on the maps \(R_\infty \rightarrow R_n\) to make the embeddings \(i_n\) somewhat more compatible. We will return to this idea later.

II.7 Quasi-Patching Algebras

In the situation described in Theorem II.5.5 it was very convenient that the rings \(\mathcal{R} = \{R_n\}_{n \geq 1}\) formed a patching system over \(R_0\), in particular, that they were finitely generated as \(S_\infty\)-modules of bounded rank.

When the patching argument is used in practice, one typically considers a sequence of rings \(\mathcal{R} = \{R_n\}_{n \geq 1}\) and a sequence of modules \(R_n\)-modules \(\mathcal{M} = \{M_n\}_{n \geq 1}\), over a ring \(R_0\) and an \(R_0\)-module \(M_0\). In almost all situations, \(\mathcal{M}\) is known to form a patching system (and usually a MCM patching system, in fact). However the sequence of rings \(\mathcal{R}\) is not always known to form a patching algebra. In particular the rings \(R_n\), or even the ring \(R_0\), are not known to be finitely generated \(S_\infty\)-modules. In fact, one common application of the patching argument is to prove that the ring \(R_0\) is actually finite over \(\mathcal{O}\).

So to use the full strength of the patching arguments, we will sometimes need to consider the following slightly more general situation:

Definition II.7.1. We say that a quasi-patching algebra is a triple \((\mathcal{R} = \{R_n\}_{n \geq 1}, R_0, \{\alpha_n\}_{n \geq 1})\) where

- For each \(n \geq 0\), \(R_n\) is an, topologically finitely generated \(\mathcal{O}\)-algebra (not necessarily finite over \(\mathcal{O}\)).
- For each \(n \geq 1\), \(R_n\) has the structure of a \(S_\infty/\mathcal{I}_n\)-algebra.
- For each \(n \geq 1\), \(\alpha_n\) is an isomorphism \(\alpha_n : R_n/n \xrightarrow{\sim} R_0\) of \(\mathcal{O}\)-algebras.
- There is some \(g \geq 0\) such that for each \(n \geq 0\), \(R_n\) is topologically generated an an \(\mathcal{O}\)-algebra by at most \(g\) elements (equivalently, the set \(\{\dim(\mathcal{R}/\mathfrak{m}_{R_n})\}_{n \geq 0}\) is bounded).

Again, in this situation we will also refer to \(\mathcal{R}\) as a quasi-patching algebra over \(R_0\).

We first observe the following:

\(^2\)Possibly at the cost of only proving that \(M_0 \otimes_{\mathcal{O}} E\) is locally free of constant rank over each component of \(\text{Spec} \, R_\infty\) in the case when \(\text{Spec} \, R_\infty\) is not irreducible.
Lemma II.7.2. Let R be a complete, local S_{∞}-algebra. Assume that R is topologically finitely generated over \mathcal{O} by g elements and $\dim_\mathbb{F} R/\mathfrak{m}_{S_{\infty}} R = r < \infty$. Then R is finitely generated as an S_{∞}-module by at most r^g elements.

Proof. Let $J = \mathfrak{m}_{S_{\infty}} R \subseteq \mathfrak{m}_R$. By assumption, R/J is a finite, and hence Artinian, local ring with length at most r. It follows that $\mathfrak{m}_R^r R/J = 0$ in R/J and so $\mathfrak{m}_R^r \subseteq J$ in R. In particular, $\mathfrak{m}_R^k \subseteq J^k \subseteq \mathfrak{m}_R^k$ for all $k \geq 1$, and so $\{\mathfrak{m}_R^k\}$ is cofinal with $\{J^k\}$ and so $R \cong \varprojlim R/J^k$ as topological rings.

Now let $x_1, \ldots, x_g \in \mathfrak{m}_R$ be a set of topological generators for R over \mathcal{O}, and let

$$A = \left\{x_1^{e_1} \cdots x_g^{e_g} \mid 0 \leq e_i \leq r - 1\right\} \subseteq R,$$

so that $\# A \leq r^g$. We claim that R is generated by A as an S_{∞}-module. Let $B \subseteq R$ be the S_{∞}-submodule of R generated by A. As R/J is topologically generated by x_1, \ldots, x_g as a S_{∞}-algebra and $x_i^{e_i} \equiv 0 \pmod{J}$ whenever $e_i \geq r$, it clearly follows that R/J is generated by A (mod J) as an S_{∞}-module, and so $B + J = R$. Now for any $k \geq 1$ it follows that

$$B + J^k = B + J^k R = B + J^k (B + J) = (B + J^k B) + J^{k+1} = B + J^{k+1},$$

and so $B + J^k = B + J = R$ for all $k \geq 1$ (i.e. that R/J^k is generated A (mod J^k)). Since B is clearly closed in the profinite topology on R (as the structure map $f : S_{\infty} \to R$ satisfies $f^{-1}(\mathfrak{m}_R) = \mathfrak{m}_{S_{\infty}}$, and is thus continuous) we now have

$$B = \bigcap_{k \geq 1} (B + J^k) = \bigcap_{k \geq 1} R = R,$$

as desired. \hfill \square

Lemma II.7.3. If \mathcal{R} is a quasi-patching algebra over R_0. Then the following are equivalent:

1. \mathcal{R} is a patching algebra;
2. R_0 is finite over \mathcal{O};
3. R_0/ϖ is a finite dimensional \mathbb{F}-vector space.

Proof. Let $\mathcal{R} = \{R_n\}_{n \geq 1}$.

By definition, if \mathcal{R} is a patching algebra over R_0, then R_0 is finite over \mathcal{O} (as each R_n is for $n \geq 1$, and R_0 is a quotient of R_n), so (1) \Rightarrow (2). (2) \Rightarrow (3) is trivial.

So now assume (3). Let $r = \dim_\mathbb{F} R_0/\varpi$. Then for each $n \geq 1$,

$$R_n/\mathfrak{m}_{S_{\infty}} R_n \cong (R_n/nR_n)/\varpi \cong R_0/\varpi$$

and so $\dim_\mathbb{F} R_n/\mathfrak{m}_{S_{\infty}} R_n = r < \infty$. By the definition of quasi-patching algebra, there is a $g \geq 1$ such that each R_n is topologically generated by at most g elements as an \mathcal{O}-algebra. Lemma II.7.2 now implies that each R_n is finitely generated as a S_{∞}-module of rank at most r^g. Thus \mathcal{R} is indeed a patching algebra, so (3) \Rightarrow (1). \hfill \square
At this point, one could define $\mathcal{P}(\mathcal{R})$ for a quasi-patching algebra \mathcal{R} by the formula $\mathcal{P}(\mathcal{R}) = \lim_{\alpha} \mathcal{U}(\mathcal{R}/a)$ just as for weak patching algebras. However we will refrain from making such a definition as when \mathcal{R} is only a quasi-patching algebra, the rings R_n/a do not necessarily have cardinalities bounded independently of n (and in fact, are not necessarily even finite) and so $\mathcal{U}(\mathcal{R}/a)$ may be a complicated, and rather poorly behaved object. Instead, we will define a different object $\mathcal{P}(\mathcal{R})$ which will be better behaved and will agree with $\mathcal{P}(\mathcal{R})$ in the case when \mathcal{R} is a patching algebra.

Lemma II.7.4. Let $\mathcal{R} = \{R_n\}_{n \geq 1}$ be a quasi-patching algebra over R_0. For each $k \geq 1$, let $\mathcal{R}/m^k_{\mathcal{R}} = \{R_n/m^k_{R_n}\}_{k \geq 1}$. Then $\mathcal{R}/m^k_{\mathcal{R}}$ is a patching algebra over $R_0/m^k_{R_0}$. Moreover for any $k \geq 1$, we have $\mathcal{P}(\mathcal{R}/m^k_{\mathcal{R}}) = \mathcal{U}(\mathcal{R}/m^k_{\mathcal{R}})$, and $\mathcal{U}(\mathcal{R}/m^k_{\mathcal{R}})$ is a finite ring.

Proof. If each R_n is topologically generated by g elements, the same is true of $R_n/m^k_{R_n}$. Now for any n, let $\alpha_n : R_n \to R_n/n \cong R_0$ denote the surjection, and note that $\alpha_n(m_{R_n}) = m_{R_0}$, and hence $\alpha_n(m^k_{R_n}) = \alpha_n(m_{R_n})^k = m^k_{R_0}$. But then

$$\frac{R_n/m^k_{R_n}}{n(R_n/m^k_{R_n})} \cong \frac{R_n}{nR_n + m^k_{R_n}} \cong \frac{R_n/nR_n}{m^k_{R_n}(R_n/nR_n)} \cong \frac{R_0}{\alpha_n(m^k_{R_0})} \cong R_0/m^k_{R_0},$$

and so $\mathcal{R}/m^k_{\mathcal{R}}$ is a quasi-patching algebra over $R_0/m^k_{R_0}$. But now R_0 is topologically finitely generated over \mathcal{O}, so $R_0/m^k_{R_0}$ is finite, and hence finite over \mathcal{O}. Thus Lemma II.7.3 implies that $R_n/m^k_{R_n}$ is actually a patching algebra over $R_0/m^k_{R_0}$.

For the last statement, note that for any fixed k we have $m_{S_\infty} \subseteq m_{R_n}$ and so $m^k_{S_\infty} \subseteq m^k_{R_n}$ for all n. Then each $R_n/m^k_{R_n}$ is a finitely generated $S_\infty/m^k_{S_\infty}$-module of bounded rank. Since $S_\infty/m^k_{S_\infty}$ is finite, it follows that each $R_n/m^k_{R_n}$ is a finite ring, of bounded rank. It follows that $\mathcal{U}(\mathcal{R}/m^k_{\mathcal{R}})$ is also a finite ring. Finally,

$$\mathcal{P}(\mathcal{R}/m^k_{\mathcal{R}}) = \lim_{\alpha} \mathcal{U} \left(\frac{R_n/m^k_{R_n}}{a} \right) = \lim_{a \subseteq m^k_{S_\infty}} \mathcal{U} \left(\frac{R_n/m^k_{R_n}}{a} \right) = \lim_{a \subseteq m^k_{S_\infty}} \mathcal{U}(R_n/m^k_{R_n}) = \mathcal{U}(R_n/m^k_{R_n}).$$

Thus we may define

Definition II.7.5. For any quasi-patching algebra \mathcal{R}, define

$$\mathcal{F}(\mathcal{R}) = \lim_{k} \mathcal{P}(\mathcal{R}/m^k_{\mathcal{R}}) = \lim_{k} \mathcal{U}(\mathcal{R}/m^k_{\mathcal{R}}),$$

given the structure of a local S_∞ algebra.

We first establish some basic properties of $\mathcal{F}(\mathcal{R})$:
Lemma II.7.6. Let \(\mathcal{A} = \{ R_n \}_{n \geq 1} \) be a quasi-patching algebra over \(R_0 \). Then the following hold:

1. \(\mathcal{P}(\mathcal{A}) \) is complete and topologically finitely generated over \(\mathcal{O} \).
2. For any ideal \(J \subseteq S_\infty \), \(\mathcal{P}(\mathcal{A}) / J \cong \mathcal{P}(\mathcal{A} / J) \).
3. \(\mathcal{P}(\mathcal{A}) / n \cong R_0 \).
4. For any integer \(k \geq 1 \), \(\mathcal{P}(\mathcal{A}) / m_k^{\mathcal{A}(\mathcal{A})} \cong \mathcal{P}(\mathcal{A} / m_k^{\mathcal{A}}) \).

Proof. By Lemma II.7.4 each \(\mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) \) is a finite ring, and so \(\mathcal{P}(\mathcal{A}) \) is profinite, and hence complete. Now by assumption, each \(R_n \) is topologically generated by \(g \) elements, for some fixed \(g \geq 0 \). Thus there exist surjective maps \(f_{n,k} : \mathcal{O}[[x_1, \ldots, x_g]] \to R_n \to R_n / m_k^{R_n} \). By the same argument as in Lemma II.5.2 this induces a compatible system of surjective maps \(f_k : \mathcal{O}[[x_1, \ldots, x_g]] \to \mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) \) and hence a continuous surjective map \(\mathcal{O}[[x_1, \ldots, x_g]] \to \lim_{k} \mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) = \mathcal{P}(\mathcal{A}) \). This proves (1).

Now fix any ideal \(J \subseteq S_\infty \). For any fixed \(k \) we have a natural isomorphism \(\mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) / J \cong \mathcal{U}(\mathcal{A} / J) / m_k^{\mathcal{A}(\mathcal{A})} \). Taking inverse limits gives

\[
\mathcal{P}(\mathcal{A} / J) = \lim_{k} \mathcal{U}(\mathcal{A} / J) / m_k^{\mathcal{A}(\mathcal{A})} \cong \lim_{k} \left(\mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) / J \right).
\]

Now noting that the rings \(\mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) \) are all finite, and the \(S_\infty \)-module \(S_\infty / J \) is finitely presented, exactness of \(\lim_{k} \) (as in Proposition II.4.2) gives that

\[
\mathcal{P}(\mathcal{A} / J) \cong \lim_{k} \left(\mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) / J \right) \cong \lim_{k} \left(\mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) \right) / J = \mathcal{P}(\mathcal{A}) / J,
\]

proving (2).

Setting \(J = n \), this gives \(\mathcal{P}(\mathcal{A}) / n \cong \mathcal{P}(\mathcal{A} / n) \) and by assumption \(\mathcal{A} / n = \{ R_n / n \}_{n \geq 1} = \{ R_0 \}_{n \geq 1} \). Hence

\[
\mathcal{P}(\mathcal{A}) / n \cong \mathcal{P}(\mathcal{A} / n) = \lim_{k} \mathcal{U}(\mathcal{A} / m_k^{\mathcal{A}}) / m_k^{\mathcal{A}(\mathcal{A})} = \lim_{k} \mathcal{U}(R_0 / m_k^{R_0}) = \lim_{k} R_0 / m_k^{R_0} = R_0,
\]

proving (3).

Now similarly to part (2), for any fixed \(k \) we have

\[
\mathcal{P}(\mathcal{A}) / m_k^{\mathcal{A}(\mathcal{A})} \cong \lim_{m} \left(\mathcal{U}(\mathcal{A} / m_m^{\mathcal{A}}) / m_k^{\mathcal{A}(\mathcal{A})} \right) \cong \lim_{m} \left(\mathcal{U}(\mathcal{A} / m_m^{\mathcal{A}}) / m_k^{\mathcal{A}(\mathcal{A})} \right) \cong \lim_{m \geq k} \mathcal{U}(\mathcal{A} / m_m^{\mathcal{A}}) / m_k^{\mathcal{A}(\mathcal{A})} \cong \mathcal{P}(\mathcal{A} / m_k^{\mathcal{A}}),
\]

proving (4).
Lemma II.7.7. Let $\mathcal{R} = \{R_n\}$ be a quasi-patching algebra over R_0, and $\mathcal{M} = \{M_n\}$ be a patching \mathcal{R}-module over M_0. For any k, define $m^k_{R_n} \mathcal{M} = \{m^k_{R_n} M_n\}_{n \geq 1}$. We have the following:

1. There is a natural isomorphism $\mathcal{P}(\mathcal{M}) \cong \varprojlim_k U(\mathcal{M} / m^k_{\mathcal{R}} \mathcal{M})$.

2. $\mathcal{P}(\mathcal{M})$ can be given a natural $\tilde{\mathcal{P}}(\mathcal{R})$-module structure, inducing the S_{∞}-module structure on $\mathcal{P}(\mathcal{M})$ via the structure map $S_{\infty} \to \tilde{\mathcal{P}}(\mathcal{R})$ and the R_0-module structure on M_0 via the isomorphisms $\mathcal{P}(\mathcal{R}) / n \cong R_0$ and $\mathcal{P}(\mathcal{M}) / n \cong M_0$.

Proof. Write $\mathcal{M} = \prod_{n=1}^{\infty} M_n$. We claim that the two inverse systems:

$$\begin{align*}
\{m^k_{R_n} \mathcal{M} = \prod_{n=1}^{\infty} m^k_{R_n} M_n \mid k \geq 1\} & \quad \text{and} \quad \{a \mathcal{M} = \prod_{n=1}^{\infty} a M_n \mid a \subseteq S_{\infty}\}
\end{align*}$$

of submodules of \mathcal{M} are cofinal. First, for any k and n we have $m^k_{S_{\infty}} M_n \subseteq m^k_{R_n} M_n$. Now as \mathcal{M} is a patching system, there is some $N \geq 1$ such that each m_n is generated as a S_{∞}-module by N elements. Then it follows that for any open $a \subseteq S_{\infty}$ and any n that $\text{length}(M_n / a) \leq N \text{ length}(S_{\infty} / a)$ and so for any $k \geq N$ we have $m^k_{S_{\infty}} M_n \subseteq a M_n$. So the above systems are indeed cofinal systems of submodules of \mathcal{M}, and hence of the localization \mathcal{M}_S (where S is as in Section II.3). By standard properties of inverse limits it follows that

$$\mathcal{P}(\mathcal{M}) = \varprojlim_a U(\mathcal{M} / a) = \varprojlim_a (\mathcal{M} / a \mathcal{M})_3 = \varprojlim_k (\mathcal{R} / m^k_{\mathcal{R}})_3 = \varprojlim_k U(\mathcal{R} / m^k_{\mathcal{R}}),$$

proving (1).

Now for each k and n, $R_n / m^k_{R_n}$ acts naturally on $M_n / m^k_{R_n} M_n$. This implies that $U(\mathcal{R} / m^k_{\mathcal{R}})$ acts naturally on $U(\mathcal{M} / m^k_{\mathcal{R}} \mathcal{M})$ and so taking inverse limits gives a natural action of $\tilde{\mathcal{P}}(\mathcal{R}) = \varprojlim_k \mathcal{R} / m^k_{\mathcal{R}}$ on $\mathcal{P}(\mathcal{M}) = \varprojlim_k U(\mathcal{M} / m^k_{\mathcal{R}} \mathcal{M})$. The listed properties of this action now follow automatically. \hfill \Box

Corollary II.7.8. If \mathcal{R} is a patching algebra, then there is a natural isomorphism $\tilde{\mathcal{P}}(\mathcal{R}) \cong \mathcal{P}(\mathcal{R})$.

Proof. Applying Lemma II.7.7(1) with $\mathcal{R} = \mathcal{M}$ gives $\mathcal{P}(\mathcal{R}) = \varprojlim_k U(\mathcal{R} / m^k_{\mathcal{R}}) = \tilde{\mathcal{P}}(\mathcal{R})$. \hfill \Box

Quasi-patching algebras, \mathcal{R}, that arise in practice usually do so in a context similar to Theorem II.5.5 (so together with a “cover” R_∞ and an MCM patching \mathcal{R}-module \mathcal{M}). We would like to find a criterion to ensure that such quasi-patching algebras are actually a patching algebra, or equivalently (by Lemma II.7.3) that the ring R_0 is finite over O. We can define a cover $(R_\infty, \{\varphi_n\})$ of a quasi-patching algebra \mathcal{R} just as in definition II.5.1 (recalling that this requires $\text{dim } R_\infty = \text{dim } S_{\infty}$). Note that if $\mathcal{R} = \{R_n\}_{n \geq 1}$ is covered by a finitely generated
O-algebra then the last condition of Definition II.7.1 is automatically satisfied — simply let g be the cardinality of a topological generating set for R_∞ over O. We then have the natural analogue of Lemma II.5.2:

Lemma II.7.9. Let R be a quasi-patching algebra over a ring R_0, and let R_∞ be a cover of R_∞. Then there exists a continuous, surjective O-algebra homomorphism $\varphi_\infty : R_\infty \twoheadrightarrow \mathcal{P}(R)$. In particular, $\dim \mathcal{P}(R) \leq \dim R_\infty = d + 1$.

Proof. For any k we have a continuous map

$$\Phi_k : R_\infty \to \prod_{n=1}^{\infty} R_n \to \prod_{n=1}^{\infty} (R_n/m_{R_n}^k) \to U(R/m_{R_\infty}^k)$$

which induces a continuous map

$$\varphi_\infty = (\Phi_k)_k : R_\infty \to \varprojlim_k U(R/m_{R_\infty}^k) = \mathcal{P}(R).$$

The proof that Φ_k and φ_∞ are surjective is identical to the proof of Lemma II.5.2.

Thus if R is a quasi-patching algebra covered by R_∞ and M is a weak patching R-module, then R_∞ acts on $\mathcal{P}(M)$, and if M is MCM, then $\mathcal{P}(M)$ is maximal Cohen–Macaulay over R_∞. From now on we consider a triple (R_∞, R, M) where:

- $R = \{R_n\}_{n \geq 1}$ is a quasi-patching algebra over R_0;
- $M = \{M_n\}_{n \geq 1}$ is a MCM patching R-module over M_0;
- R_∞ is a cover of R.

We again say that such a triple satisfies (Supp) if R_∞ acts faithfully on $\mathcal{P}(M)$, and note that this is still automatically satisfied if R_∞ is a domain.

We can now prove the main theorem of this section:

Theorem II.7.10. Let R be a quasi-patching system over R_0. Assume that we are given a cover R_∞ of R and an MCM patching R-module M over M_0. Then if (R_∞, R, M) satisfies (Supp) then R is a patching system, and so in particular R_0 is finite over O.

Proof. Since M is MCM, $\mathcal{P}(M)$ is free of finite rank over S_∞ and so $\text{depth}_{S_\infty} \mathcal{P}(M) = \dim S_\infty = \dim R_\infty$. By Lemma II.7.7 the S_∞-module structure on $\mathcal{P}(M)$ is induced by its $\mathcal{P}(R)$-module structure. It follows that

$$\text{depth}_{R_\infty} \mathcal{P}(M) = \text{depth}_{\mathcal{P}(R)} \mathcal{P}(M) \geq \text{depth}_{S_\infty} \mathcal{P}(M) = \dim R_\infty \geq \dim \mathcal{P}(R)$$

and so $\text{depth}_{R_\infty} \mathcal{P}(M) = \dim R_\infty = \dim \mathcal{P}(R)$. Hence $\mathcal{P}(M)$ is maximal Cohen–Macaulay over R_∞. It now follows that if R_∞ is a domain that (Supp) is satisfied.
Now assume that (Supp) holds. As the action of R_∞ on $\mathcal{P}(\mathcal{M})$ factors through $\varphi_\infty : R_\infty \to \widetilde{\mathcal{P}(\mathcal{R})}$, φ_∞ must be an isomorphism. Give R_∞ the structure of an S_∞-algebra via φ_∞. Then by Lemma II.7.6(3), $R_\infty/n \cong \mathcal{P}(\mathcal{R})/n \cong R_0$ and so $R_\infty/m_{S_\infty} \cong R_0/\varnothing$. Let $\overline{R}_0 = R_0/\varnothing$. By Lemma II.7.3 it suffices to show that \overline{R}_0 is finite dimensional over \mathbb{F}. As \overline{R}_0 is topologically finitely generated over \mathbb{F}, this is equivalent so saying that $\dim \overline{R}_0 = 0$.

So let $P \subseteq \overline{R}_0$ be any prime. Lift P to a prime ideal $P \subseteq R_\infty$ via the isomorphism $R_\infty/m_{S_\infty} \cong \overline{R}_0$, so that $m_{S_\infty} R_\infty \subseteq P$. Since $\mathcal{P}(\mathcal{M})$ has full support over R_∞ and $P \subseteq R_\infty$ is prime, it follows that R_∞/P acts faithfully on

$$\mathcal{P}(\mathcal{M})/P = (\mathcal{P}(\mathcal{M})/m_{S_\infty} \mathcal{P}(\mathcal{M}))/P = (M_0/\varnothing M_0)/P,$$

which is finite, as M_0 is finite over \mathcal{O}. It follows that $R_\infty/P \cong \overline{R}_0/P$ is finite. As \overline{R}_0 is a local ring, this implies that $P = m_{\overline{R}_0}$. Thus $m_{\overline{R}_0}$ is the only prime ideal of \overline{R}_0 and so indeed $\dim \overline{R}_0 = 0$, completing the proof.

This theorem means that the main results of the previous sections (in particular Theorems II.5.5 and II.6.2) can be applied in the case when \mathcal{R} is merely assumed to be a quasi-patching algebra, instead of a patching algebra.

II.8 $R = \mathbb{T}$ theorems

When the theory of patching is applied in practice, in addition to a patching algebra $\mathcal{R} = \{R_n\}_{n \geq 1}$ over R_0 and a (usually MCM) patching \mathcal{R}-module $\mathcal{M} = \{M_n\}_{n \geq 1}$ over M_0, one generally also has another collection of rings $\{T_n\}_{n \geq 0}$ (which arise as the completions of various Hecke algebras), such that each T_n is naturally a quotient of R_n, and R_n acts on M_n via the quotient map $R_n \to T_n$. The rings T_n carry a great deal of number theoretic significance, so it is often quite important to understand their structure and their relation to the rings R_n.

To incorporate these rings T_n into the picture, we make the following definition:

Definition II.8.1. If $\mathcal{R} = \{R_n\}_{n \geq 1}$ is a quasi-patching algebra over a ring R_0 and $\mathcal{M} = \{M_n\}_{n \geq 1}$ is a patching \mathcal{R}-module over an R_0-module M_0, then for each $n \geq 0$, let $T_n^{\mathcal{R}}(\mathcal{M})$ be the image of R_n in $\text{End}_{S_\infty}(M_n)$. Let $T_n^{\mathcal{R}}(\mathcal{M}) = \{T_n^{\mathcal{R}}(\mathcal{M})\}_{n \geq 1}$.

Lemma II.8.2. If \mathcal{R} is a quasi-patching algebra and $\mathcal{M} = \{M_n\}_{n \geq 1}$ is a weak patching \mathcal{R}-module, then $T_n^{\mathcal{R}}(\mathcal{M})$ is a weak patching algebra.

Proof. Since \mathcal{M} is a weak patching system, there must exist an integer N for which $\text{rank}_{S_\infty} M_n \leq N$ for all $n \geq 1$. It follows that for any $n \geq 1$, $\text{rank}_{S_\infty} T_n^{\mathcal{R}}(\mathcal{M}) \leq \text{rank}_{S_\infty} \text{End}_{S_\infty}(M_n) \leq N^2$, and so $T_n^{\mathcal{R}}(\mathcal{M})$ is a weak patching algebra.

Now the results of the previous sections can be used to deduce information about the quotient map $\pi_0 : R_0 \to T_0^{\mathcal{R}}(\mathcal{M})$:
II.9. DUALITY

Theorem II.8.3. Assume we are given the following:

- A quasi-patching algebra \(\mathcal{R} \) over a ring \(R_0 \).
- An MCM patching \(\mathcal{R} \)-module \(\mathcal{M} \) over an \(R_0 \)-module \(M_0 \).
- A cover \((R_\infty, \{\varphi_n\}) \) of \(\mathcal{R} \), where \(R_\infty \) is a domain.

and assume that \((R_\infty, \mathcal{R}, \mathcal{M}) \) satisfies \((\text{Supp})\). Then letting \(T_0 = T_0^\mathcal{R}(\mathcal{M}) \) we have:

1. The map \(\pi_0 : R_0 \to T_0 \) induces an isomorphism \(R_0^{\text{red}} \iso T_0^{\text{red}} \).
2. If \(R_\infty \) is a generically smooth cover of \(\mathcal{R} \), then \(\pi_0 \) induces an isomorphism \(R_0[1/\varpi] \iso T_0[1/\varpi] \).
3. If \(R_\infty \) is a generically smooth cover of \(\mathcal{R} \) and \(R_\infty \) is Cohen–Macaulay, then \(\pi_0 \) is an isomorphism \(R_0 \iso T_0 \).

Proof. First note that Theorem II.7.10 implies that \(R_0 \) is finite over \(\mathcal{O} \) and \(\mathcal{R} \) is a patching algebra over \(R_0 \). By definition \(R_0 \) acts on \(M_0 \) via \(\pi_0 : R_0 \to T_0 \), and \(T_0 \) acts faithfully on \(M_0 \).

By Theorem II.5.5(2) we have \(\text{Supp}_{R_0} M_0 = R_0 \). Thus for any prime ideal \(\mathfrak{p} \subseteq R_0 \), if \(K(R_0/\mathfrak{p}) \) is the fraction field of \(R_0/\mathfrak{p} \) then \(M_0 \otimes_{R_0} K(R_0/\mathfrak{p}) \neq 0 \) and so as \(K(R_0/\mathfrak{p}) \) is a field, it acts faithfully on \(M_0 \otimes_{R_0} K(R_0/\mathfrak{p}) \). Hence \(R_0/\mathfrak{p} \subseteq K(R_0/\mathfrak{p}) \) acts faithfully on \(M_0 \otimes_{R_0} K(R_0/\mathfrak{p}) \) and thus on \(M_0/\mathfrak{p} M_0 \).

But now the action of \(R_0/\mathfrak{p} \) on \(M_0/\mathfrak{p} M_0 \) still factors through a surjection \(R_0/\mathfrak{p} \to T_0/\mathfrak{p} T_0 \) and so we see that \(R_0/\mathfrak{p} \iso T_0/\mathfrak{p} T_0 \) for all primes \(\mathfrak{p} \subseteq R_0 \). This implies that the kernel of \(\pi_0 : R_0 \to T_0 \) is in the intersection of all prime ideals of \(R_0 \), and thus is nilpotent, so we indeed get \(R_0^{\text{red}} \iso T_0^{\text{red}} \), proving (1).

Now assume that \(R_\infty \) is a generically smooth cover of \(\mathcal{R} \). Then by Theorem II.6.2, \(M_0 \otimes_\mathcal{O} E \) is free over \(R_0[1/\varpi] \), and so \(R_0[1/\varpi] \) certainly acts faithfully on \(M_0 \otimes_\mathcal{O} E \). As the action of \(R_0[1/\varpi] \) on \(M_0 \otimes_\mathcal{O} E \) still factors through the map \(R_0[1/\varpi] \to T_0[1/\varpi] \) induced by \(\pi_0 \), this map must be an isomorphism, proving (2).

In particular, if \(R_\infty \) is a generically smooth cover, then \(\ker \pi_0 \subseteq R_0 \) must be \(\varpi^N \)-torsion for some \(N \). But now if we further assume that \(R_\infty \) is Cohen–Macaulay, Theorem II.5.5(4) implies that \(R_0 \) is \(\varpi \)-torsion free, and hence \(\ker \pi_0 = 0 \). So indeed if \(R_\infty \) is generically smooth and CM, then \(\pi_0 \) is an isomorphism \(R_0 \iso T_0 \), proving (3). \(\square \)

II.9 Duality

For applications of patching beyond automorphy lifting (e.g. computing multiplicities) it is often necessary to precisely determine the \(R_\infty \)-module structure of a patched module \(\mathcal{P}(\mathcal{M}) \). Theorem II.5.5 gives this structure in the case when \(R_\infty \) is regular, but it does not give enough information to determine this structure in general.

In many cases that arise in practice, the modules \(M_n \) satisfy some form of self-duality, which can be
used to impose extra restrictions on the module $\mathcal{P}(\mathcal{M})$, and even precisely determine it in many cases (see [Man19]).

To study duality we make the following definitions:

Definition II.9.1. Let $\mathcal{M} = \{M_n\}_{n \geq 1}$ be an MCM weak patching system. We define

$$\mathcal{M}^* = \{M^*_n\}_{n \geq 1} = \{ \text{Hom}_{S_\infty}(M_n, S_\infty/I_n) \}_{n \geq 1},$$

and note that this is clearly also an MCM weak patching module. If \mathcal{M} is an MCM weak patching R-module, for some weak patching algebra $R = \{R_n\}_{n \geq 1}$, we will treat \mathcal{M}^* as an MCM weak patching R-module, by letting R_n act on $M^*_n = \text{Hom}_{S_\infty}(M_n, S_\infty/I_n)$ by $(rf)(x) = f(rx)$.

If \mathcal{M} is an MCM weak patching MCM R-module we say that \mathcal{M} is self-dual if $\mathcal{M} \cong \mathcal{M}^*$ as weak patching R-modules.

Note that for any weak MCM patching module \mathcal{M}, we clearly have a natural isomorphism $\mathcal{M}^{**} \cong \mathcal{M}$, compatible with the R-module structure in the case when \mathcal{M} is a weak MCM patching R-algebra.

From now on, if A is any local Cohen–Macaulay O-algebra, we will let ω_A denote its dualizing module (which will always exist if A is complete and topologically finitely generated over O). We will need the following easy lemma in our discussion below:

Lemma II.9.2. If A is a local Cohen–Macaulay ring and B is an A-algebra which is also Cohen–Macaulay with $\dim A = \dim B$, then for any B-module M,

$$\text{Hom}_A(M, \omega_A) \cong \text{Hom}_B(M, \omega_B)$$

as left $\text{End}_B(M)$-modules.

Proof. By [Sta19, Tag 08YP] there is an isomorphism

$$\text{Hom}_A(M, \omega_A) \cong \text{Hom}_B(M, \text{Hom}_A(B, \omega_A))$$

sending $\alpha : M \to \omega_A$ to $\alpha' : m \mapsto (b \mapsto \alpha(bm))$, which clearly preserves the action of $\text{End}_B(M)$ (as $(\alpha \circ \psi)(bm) = \alpha(b\psi(m))$ for any $\psi \in \text{End}_B(M)$). It remains to show that $\text{Hom}_A(B, \omega_A) \cong \omega_B$, which is just Theorem 21.15 from [Eis95] in the case $\dim A = \dim B$. \hfill \Box

Before going on, we should say how this notion of duality arises in practice, as our definition above takes a somewhat different form. Consider the setup and notation from Section II.2. In particular, assume that the ideals $I_n \subseteq S_\infty$ all take the form $I_n = I_n^o S_\infty$ and moreover that the ideals $I_n^o \subseteq S_\infty^o$ satisfy the condition:

For all $n \geq 1$, S_∞^o/I_n^o is a finite free O-module and I_n^o is generated by d^o elements. \hfill (**) and note that the system of ideals constructed in Lemma II.1.1 clearly satisfy (**). Now we have
II.9. DUALITY

Proposition II.9.3. Assume that we are given:

- An unframed weak patching algebra \(\mathcal{R} = \{R_n\}_{n \geq 1} \).
- Unframed MCM weak patching \(\mathcal{R} \)-modules \(\mathcal{M} = \{M_n\}_{n \geq 1} \) and \(\mathcal{N} = \{N_n\}_{n \geq 1} \)
- For each \(n \geq 1 \) an \(R_n \)-equivariant perfect pairing \(\langle \cdot \rangle_n : M_n \times N_n \to \mathcal{O} \)

Let \(\mathcal{R} = (\mathcal{R}^\circ)^\square \), \(\mathcal{M} = (\mathcal{M}^\circ)^\square \) and \(\mathcal{N} = (\mathcal{N}^\circ)^\square \).

If the ideals \(T_n^\circ \subseteq S_n^\infty \) satisfy \((\star\star)\) then \((\mathcal{M}^\square)^* \cong \mathcal{N}^\square \) as weak patching \(\mathcal{R} \)-modules.

Proof. The \(R_n \)-equivariant perfect \(\langle \cdot \rangle_n : M_n \times N_n \to \mathcal{O} \) implies that \(N_n^\circ \cong \text{Hom}_\mathcal{O}(M_n^\circ, \mathcal{O}) \) as \(R_n \)-modules. Tensoring with \(\mathcal{O}[[t_d^+, \ldots, t_d]] \) over \(\mathcal{O} \) implies that we have isomorphisms

\[
N_n^\square = N_n^\circ \otimes_\mathcal{O} \mathcal{O}[[t_d^+, \ldots, t_d]] \cong \text{Hom}_\mathcal{O}[[t_d^+, \ldots, t_d]](M_n^\circ \otimes_\mathcal{O} \mathcal{O}[[t_d^+, \ldots, t_d]], \mathcal{O}[[t_d^+, \ldots, t_d]])
\]

\[
\cong \text{Hom}_\mathcal{O}[[t_d^+, \ldots, t_d]](M_n^\square, \mathcal{O}[[t_d^+, \ldots, t_d]])
\]

\(R_n^\square = R_n^\circ \otimes_\mathcal{O} \mathcal{O}[[t_d^+, \ldots, t_d]] \)-modules.

Now we have \(S_n^\infty / T_n = S_n^\infty / T_n^\circ S_n^\infty \cong (S_n^\circ / T_n^\circ) \otimes_\mathcal{O} \mathcal{O}[[t_d^+, \ldots, t_d]] \). It follows from \((\star\star)\) that \(S_n^\infty / T_n^\circ \) is a complete intersection of relative dimension 0 over \(\mathcal{O} \), and so \(S_n^\infty / T_n \) is also a complete intersection with \(\text{dim } S_n^\infty / T_n = d - d^0 + 1 = \text{dim } \mathcal{O}[[t_d^+, \ldots, t_d]] \). In particular, \(S_n^\infty / T_n \) is Gorenstein, and so \(\omega_{S_n^\infty / T_n} \cong S_n^\infty / T_n \). Lemma II.9.2 now implies that

\[
N_n^\square \cong \text{Hom}_\mathcal{O}[[t_d^+, \ldots, t_d]](M_n^\square, \mathcal{O}[[t_d^+, \ldots, t_d]]) \cong \text{Hom}_{S_n^\infty / T_n}(M_n^\square, S_n^\infty / T_n)
\]

for all \(n \geq 1 \). So indeed \((\mathcal{M}^\square)^* \cong \mathcal{N}^\square \) as weak patching \(\mathcal{R} \)-modules.

We are now ready to show that patching preserves duality:

Theorem II.9.4. Let \(\mathcal{R} \) be a weak patching algebra and let \(\mathcal{M} \) be an MCM patching \(\mathcal{R} \)-module. Then we have \(\mathcal{P}(\mathcal{M}^*) \cong \text{Hom}_{S_n^\infty}(\mathcal{P}(\mathcal{M}), S_n^\infty) \) as \(\mathcal{P}(\mathcal{R}) \)-modules.

Furthermore, if \(R_n \) is a CM cover of \(\mathcal{R} \) then \(\mathcal{P}(\mathcal{M}^*) \cong \text{Hom}_{R_n}(\mathcal{P}(\mathcal{M}), \omega_{R_n}) \) as \(R_n \)-modules.

Proof. We shall first compute \(\mathcal{U}(\mathcal{M}^*/a) \) for any open ideal \(a \subseteq S_n^\infty \). For any such \(a \), we have \(T_n \subseteq a \) for all but finitely many \(n \), and so \(S_n^\infty / a \) is a \(S_n^\infty / T_n \)-module for all but finitely many \(n \).

But now for all \(n \), \(M_n \) is finite free over \(S_n^\infty / T_n \) by assumption, and so it is projective. Thus the functor \(\text{Hom}_{S_n^\infty}(M_n, -) \) is exact and so if \(T_n \subseteq a \) then

\[
M_n^*/a = \text{Hom}_{S_n^\infty}(M_n, S_n^\infty / T_n) / a \cong \text{Hom}_{S_n^\infty}(M_n, S_n^\infty / a) = \text{Hom}_{S_n^\infty/a}(M_n / a, S_n^\infty / a)
\]
as \(R_n / a \)-modules.

Now by Proposition I.1.3, for \(\mathfrak{I} \)-many \(i \) we have that \(\mathcal{U}(\mathcal{R} / a) \cong R_i / a \) and \(\mathcal{U}(\mathcal{M} / a) \cong M_i / a \) and \(\mathcal{U}(\mathcal{M}^*/a) \cong M_i^*/a \) as \(R_i / a \)-modules. Taking any such \(i \), the above computation gives that

\[
\mathcal{U}(\mathcal{M}^*/a) \cong \text{Hom}_{S_n^\infty/a}(\mathcal{U}(\mathcal{M} / a), S_n^\infty / a)
\]
as $\mathcal{U}(\mathbb{R}/a)$-modules. Taking inverse limits, it now follows that

$$\mathcal{P}(\mathcal{M}^*) \cong \varprojlim_a \text{Hom}_{S_\infty/a}(\mathcal{U}(\mathcal{M}/a), S_\infty/a)$$

as $\mathcal{P}(\mathbb{R})$-modules. It remains to show that the right hand side is just $\text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty)$. But using the fact that $\mathcal{P}(\mathcal{M})$, and thus $\text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty)$ is a finite free S_∞-module (and thus is m_{S_∞}-adically complete) we get that

$$\text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty) \cong \varprojlim_a \text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty)/a$$

as $\mathcal{P}(\mathbb{R}) = \varprojlim_a \mathcal{P}(\mathbb{R})/a$-modules. But now for any a, as $\mathcal{P}(\mathcal{M})$ is a finite free, and hence projective, S_∞-module

$$\text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty)/a \cong \text{Hom}_{S_\infty/a}(\mathcal{P}(\mathcal{M})/a, S_\infty/a) \cong \text{Hom}_{S_\infty/a}(\mathcal{U}(\mathcal{M}/a), S_\infty/a)$$

as $\mathcal{P}(\mathbb{R})/a = \mathcal{U}(\mathbb{R}/a)$-modules. So indeed

$$\text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty) \cong \varprojlim_a \text{Hom}_{S_\infty/a}(\mathcal{U}(\mathcal{M}/a), S_\infty/a) \cong \mathcal{P}(\mathcal{M}^*)$$

as $\mathcal{P}(\mathbb{R})$-modules.

Now assume that \mathbb{R}_∞ is a CM cover of \mathbb{R}. Then $\dim \mathbb{R}_\infty = d + 1 = \dim S_\infty$, so Lemma II.9.2 implies that

$$\mathcal{P}(\mathcal{M}^*) \cong \text{Hom}_{S_\infty}(\mathcal{P}(\mathcal{M}), S_\infty) \cong \text{Hom}_{\mathbb{R}_\infty}(\mathcal{P}(\mathcal{M}), \omega_{\mathbb{R}_\infty})$$

as \mathbb{R}_∞-modules (where we have used the fact that $\omega_{S_\infty} = S_\infty$). \qed
Bibliography

