PIC 10A Disc 5A Midterm Review Worksheet
Name: _____________
1. Assume you’ve already written code to make two strings called haystack and needle. Write code that finds the longest run of needle in haystack, represented as follows: the index where the longest repeated sequence begins, and the index one after the end of that copy of needle. (So if needle is “ab” and haystack “nabmababc”, you should say that the longest instance starts at index 4 and ends just before index 8.)
Hint: loop over the indices for haystack. For each index, loop until you find a mismatch in needle.
int const len=size(haystack), bunch=size(needle);
int start=0, longest=0;
for(int offset=0; offset < len; ++offset)
{
 int index;
 //Most of the time, the length left in the string won’t be an even multiple of bunch,
 //so we can optimize out the test. But sometimes the final ‘\0’s will coincide.
 for(index=0; (0 != len – offset % bunch) ||
 (index == len – offset); ++index)
 {
 if(haystack[offset + index]!=needle[index % bunch])
 {
 //Oops! Read too far. Back up and record.
 index -= index % bunch;
 break;
 }
 }
 if(index > longest)
 {
 //Copy over new run
 start = offset;
 longest = index;
 }
}
longest += start;
2. [bookmark: _Hlk25529330][bookmark: _GoBack]Your solution to #1 probably involved two loops, one of which compared part of a string to needle. Now extract the body of that loop to a separate function, called strComp:
int strComp(std::string const &needle, std::string const &haystack, int offset)
{
 int const len=size(haystack), bunch=size(needle);
 for(int index=0; (0 != len – offset % bunch) ||
 (index == len – offset); ++index)
 {
 int const shift=index % bunch;
 if(haystack[offset + index]!=needle[shift])
 {
 return index – shift;
 }
 }
 //Terminated by falling off the end of the string
 return len – offset;
}
//Main code becomes:
int start=0, longest=0;
for(int offset=0; offset < size(haystack); ++offset)
{
 int index = strComp(needle, haystack, offset);
 if(index > longest)
 {
 //Copy over new run
 start = offset;
 longest = index;
 }
}
longest+=start;

3. Define a new class:
class strView { public: int start, end; };
Make strComp operate on objects of type strView.

????????

4. Now make strComp a member function of strView.

??????????

PIC 10A Disc 5A

Midterm Review

Worksheet

Name: _____________

1.

Assume you’ve already written code to make two

string

s called

haystack

and

needle

.

Write code

that

finds

the longest run

of

needle

in

haystack

, represented as follows: the

index where the longest repeated sequence begins, and the index

one after

the end of that

copy of needle. (So if

needle

is

“ab”

and h

aystack

“nabmab

ab

c”

, you should say that

the

longest

instance starts at index 4 and ends just bef

ore index

8

.)

Hint: loop over the indices for haystack. For each index, loop until you find a mismatch in

needle.

int const len=size(haystack)

, bunch=size(needle)

;

int start

=0

, longest=0

;

for(int

offset

=0

;

offset

<

len

; ++

offset

)

{

int

index

;

//Most of the time

,

the length left in t

he string won

’

t be an even multiple of bunch,

//

so we can

optimize out the test. But sometimes the final

‘

\

0

’

s

will co

incide

.

for(i

ndex

=0

;

(

0 !=

len

–

offset

% bunch

) ||

(

index ==

len

–

offset

)

; ++

i

ndex)

{

if(

haystack[offset + index]!=needle[index

%

bunch

]

)

{

//Oo

ps! Read

too far. Back up

and record

.

index

-

= index % bunch;

brea

k;

}

}

if(

index

> longest)

{

//Copy

over new run

start = off

set;

longest = index

;

}

}

longest += start;

2.

Your solution to #1 probably involved two loops, one of which compared part of a string to

needle

.

Now ex

tract the body

of

that

loop to a separate function

, called

strComp

:

int

strComp(std::string const &needle, std::string const &haystack

, int offset)

{

int const

len

=size(haystack),

bu

nch=size(needle);

for(

int

i

ndex

=0

;

(

0 !=

len

–

offset

% bunch

) ||

(

index ==

len

–

offset

)

; ++

i

ndex)

{

int const shift=index % bunch;

if(

haystack[offset + index]!=needle[

shift

]

)

{

return index

–

shift

;

}

}

//Terminated by falling off the end of the string

return len

–

offset;

}

//

Main code

becomes:

int start

=0

, longest=0

;

for(int

offset

=0

;

offset

<

size(haystack)

; ++

offset

)

{

int

index

= strComp(needle, haystack, offset)

;

if(

index

> longest)

{

//Copy

over new run

start = off

set;

longest = index

;

}

}

longest+=start;

PIC 10A Disc 5A Midterm Review Worksheet Name: _____________ 1. Assume you’ve already written code to make two string s called haystack and needle . Write code that finds the longest run of needle in haystack , represented as follows: the index where the longest repeated sequence begins, and the index one after the end of that copy of needle. (So if needle is “ab” and h aystack “nabmab ab c” , you should say that the longest instance starts at index 4 and ends just bef ore index 8 .) Hint: loop over the indices for haystack. For each index, loop until you find a mismatch in needle. int const len=size(haystack) , bunch=size(needle) ; int start =0 , longest=0 ; for(int offset =0 ; offset < len ; ++ offset) { int index ; //Most of the time , the length left in t he string won ’ t be an even multiple of bunch, // so we can optimize out the test. But sometimes the final ‘ \ 0 ’ s will co incide . for(i ndex =0 ; (0 != len – offset % bunch) || (index == len – offset) ; ++ i ndex) { if(haystack[offset + index]!=needle[index % bunch]) { //Oo ps! Read too far. Back up and record . index - = index % bunch; brea k; } } if(index > longest) { //Copy over new run start = off set; longest = index ; } } longest += start; 2. Your solution to #1 probably involved two loops, one of which compared part of a string to needle . Now ex tract the body of that loop to a separate function , called strComp : int strComp(std::string const &needle, std::string const &haystack , int offset) { int const len =size(haystack), bu nch=size(needle); for(int i ndex =0 ; (0 != len – offset % bunch) || (index == len – offset) ; ++ i ndex) { int const shift=index % bunch; if(haystack[offset + index]!=needle[shift]) { return index – shift ; } } //Terminated by falling off the end of the string return len – offset; } // Main code becomes: int start =0 , longest=0 ; for(int offset =0 ; offset < size(haystack) ; ++ offset) { int index = strComp(needle, haystack, offset) ; if(index > longest) { //Copy over new run start = off set; longest = index ; } } longest+=start;

