PIC 10A Disc 5A Midterm Review Worksheet
Name: _____________
1. Assume you’ve already written code to make two strings called haystack and needle.  Write code that finds the longest run of needle in haystack, represented as follows: the index where the longest repeated sequence begins, and the index one after the end of that copy of needle.  (So if needle is “ab” and haystack “nabmababc”, you should say that the longest instance starts at index 4 and ends just before index 8.)  
Hint: loop over the indices for haystack.  For each index, loop until you find a mismatch in needle.
int const len=size(haystack), bunch=size(needle);
int start=0, longest=0;
for(int offset=0; offset < len; ++offset)
{
    int index;
    //Most of the time, the length left in the string won’t be an even multiple of bunch, 
    //so we can optimize out the test.  But sometimes the final ‘\0’s will coincide.
    for(index=0; (0 != len – offset % bunch) || 
                 (index == len – offset); ++index)
    {
        if(haystack[offset + index]!=needle[index % bunch])
        {
            //Oops!  Read too far.  Back up and record.
            index -= index % bunch;
            break;
        }
    }
    if(index > longest)
    {
        //Copy over new run
        start = offset;
        longest = index;
    }
}
longest += start;
2. [bookmark: _Hlk25529330][bookmark: _GoBack]Your solution to #1 probably involved two loops, one of which compared part of a string to needle.  Now extract the body of that loop to a separate function, called strComp:
int strComp(std::string const &needle, std::string const &haystack, int offset)
{
    int const len=size(haystack), bunch=size(needle);
    for(int index=0; (0 != len – offset % bunch) || 
                     (index == len – offset); ++index)
    {
        int const shift=index % bunch;
        if(haystack[offset + index]!=needle[shift])
        {
            return index – shift;
        }
    }
    //Terminated by falling off the end of the string
    return len – offset;
}
//Main code becomes:
int start=0, longest=0;
for(int offset=0; offset < size(haystack); ++offset)
{
    int index = strComp(needle, haystack, offset);
    if(index > longest)
    {
        //Copy over new run
        start = offset;
        longest = index;
    }
}
longest+=start;


3. Define a new class: 
class strView { public: int start, end; };
Make strComp operate on objects of type strView.

????????





















4. Now make strComp a member function of strView.  

??????????
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