Homework 1 Solutions

1. Let \(V \) be a vector space, \(S \) a set, and \(s \in S \). Let \(U = \{f : f : S \to V \} \) and \(W = \{f \in U \mid f(s) = 0 \} \). Is \(W \) a subspace of \(U \)?

Solution. Yes; we use the subspace test. We see \(0 \in W \) so \(W \neq \emptyset \). Now, if \(f, g \in W \), \(c \in F \) (the field which \(V \) is a vector space over), then \((f + g)(s) = f(s) + g(s) = 0 + 0 = 0 \) and \((cf)(s) = c(f(s)) = c0 = 0\), so \(f + g \) and \(cf \) are both in \(W \).

2. Prove \(\text{span}\{(1, -1, 0), (0, 1, -1)\} \) coincides with the subspace of \(\mathbb{R}^3 \) consisting of all vectors \((a, b, c)\) with \(a + b + c = 0 \).

Proof. Let \(A = \text{span}\{(1, -1, 0), (0, 1, -1)\} \) and \(B = \{(a, b, c) \in \mathbb{R}^3 | a + b + c = 0\} \). We show \(A \subseteq B \) and \(B \subseteq A \). Suppose \(x \in A \). Then, \(x = c_1(1, -1, 0) + c_2(0, 1, -1) = (c_1, -c_1 + c_2, -c_2) \) for some \(c_1, c_2 \in \mathbb{R} \). Hence, \(c_1 + (-c_1 + c_2) + (-c_2) = 0 \), so \(x \in B \). Thus, \(A \subseteq B \). Now, suppose \(y = (a, b, c) \in B \). Then, \(a + b + c = 0 \), so \(b = -a - c \). Hence, \(y = (a, b, c) = (a, -a - c, c) = a(1, -1, 0) - c(0, 1, -1) \), so \(y \in A \). Thus, \(B \subseteq A \).

3. Let \(S \) be a linearly dependent subset of a vector space \(V \). Let \(S' \) be the subset of \(S \) consisting of all vectors in \(S \) that are linear combinations of the other vectors in \(S \). For any \(n > 0 \), find the smallest value of \(\text{card}(S') \) over all vector spaces \(V \) and all subsets \(S \) with \(\text{card}(S) = n \).

Solution. For each \(n \), let \(A(n) \) be the value sought. We show \(A(n) = 1 \) for each \(n \). Fix \(n > 0 \). Let \(V, S \) be as in the problem statement, say \(S = \{s_1, \ldots, s_n\} \). Then, as \(S \) is linearly dependent, for some \(k \in \{1, \ldots, n\} \) there is a relation \(\sum_{j \neq k} c_j s_j = s_k \) for some \(c_k \in \mathbb{R} \). Hence, \(\text{card}(S') \geq 1 \) for each possible pair \((V, S)\), so \(A(n) \geq 1 \). Now, let \(V = \mathbb{R}^n \) and \(S = \{0\} \cup \{e_k | 1 \leq k \leq n - 1\} \) where \(\{e_1, \ldots, e_n\} \) is the standard basis of \(\mathbb{R}^n \). Then, \(S' = \{0\} \) as \(0 = \sum_{j=1}^{n-1} 0e_j \) and \(\{e_1, \ldots, e_{n-1}\} \) is a linearly independent set. Hence, \(\text{card}(S') = 1 \), so \(A(n) \leq 1 \). Thus, \(A(n) = 1 \).

4. Find the dimension of \(\text{span}\{X^2 - 1, (X - 1)^2, X - 1\} \) in \(P_2[X] \).

Solution. Let \(V = \text{span}\{X^2 - 1, (X - 1)^2, X - 1\} \). Note \(\{X^2 - 1, X - 1\} \) is a linearly independent set, as if \(a(X^2 - 1) + b(X - 1) = 0 \), then we must have \(a = b = 0 \). Hence, \(\text{dim}(V) \geq 2 \). Now, \(\{X^2 - 1, (X - 1)^2, X - 1\} \) is a linearly dependent set. Indeed, \((X^2 - 1) - (X - 1)^2 = 2X - 2 = 2(X - 1) \) (if \(\text{char}(F) = 2 \) where \(F \) is the base field, then \((X^2 - 1) - (X - 1)^2 = 0 \)). Hence, \(\text{dim}(V) \leq 2 \), so \(\text{dim}(V) = 2 \).

5. Let \(T : V \to W \) be a linear map. Suppose \(v_1, \ldots, v_n \) span \(V \). Show \(T(v_1), \ldots, T(v_n) \) span \(R(T) \).

Proof. Let \(w \in R(T) \). Then, \(w = T(v) \) for some \(v \in V \). As \(v \in V = \text{span}\{v_1, \ldots, v_n\} \), we can write \(v = \sum_{k=1}^{n} c_k v_k \) for some \(c_k \in F \). Thus,

\[
 w = T(v) = T(\sum_{k=1}^{n} c_k v_k) = \sum_{k=1}^{n} c_k T(v_k)
\]

Hence, \(R(T) \subseteq \text{span}\{T(v_1), \ldots, T(v_n)\} \). As \(T(v_k) \in R(T) \) for each \(k \), we see \(\text{span}\{T(v_1), \ldots, T(v_n)\} \subseteq R(T) \), so \(R(T) = \text{span}\{T(v_1), \ldots, T(v_n)\} \).

6. Let \(T : V \to V \) be a linear map such that \(N(T^2) \neq 0 \). Show \(N(T) \neq 0 \).

Proof. As \(N(T^2) \neq 0 \), there is a \(v \in N(T^2) \) with \(v \neq 0 \). If \(T(v) = 0 \), then \(v \in N(T) \) and we are done. If \(T(v) \neq 0 \), then \(T(v) \in N(T) \) as \(T(T(v)) = T^2(v) = 0 \). Hence, we are done in this case as well.

7. Let \(V \) be a vector space of dimension \(n \) and \(W \subseteq V \) a subspace of dimension \(n - 1 \). Prove that there is an \(f \in V^* \) such that \(W = N(f) \).
Proof. Let $\alpha = \{v_1, \ldots, v_{n-1}\}$ be a basis for W. Extend α to a basis $\beta = \alpha \cup \{v_n\}$ for V. Let $f : V \to F$ be given by $f(\sum_{j=1}^{n} c_j v_j) = c_n$. We show $W = N(f)$. Let $w \in W$. Then, $w = \sum_{j=1}^{n-1} c_j v_j$ for some $c_j \in F$ as α is a basis for W. Then, $f(w) = f(\sum_{j=1}^{n-1} c_j v_j) = f(\sum_{j=1}^{n-1} c_j v_j + 0 v_n) = 0$. Hence, $W \subseteq N(f)$. Now, suppose $v = \sum_{j=1}^{n} c_j v_j \in N(f)$. Then, $f(v) = c_n = 0$, so $v = \sum_{j=1}^{n-1} c_j v_j \in W$ as $\alpha \subseteq W$. Thus, $N(f) \subseteq W$, so $W = N(f)$.

8. Let $\{f_1, \ldots, f_n\}$ be the dual basis of a basis $\{v_1, \ldots, v_n\}$. Find the dual basis of the basis $\{v_1 + v_2, v_2, \ldots, v_n\}$.

Solution. Let $g_k = f_k$ for $k \neq 2$ and let $g_2 = f_2 - f_1$. Then, for $k \neq 2$, $j \geq 2$, we see $g_k(v_j) = f_k(v_j) = \delta_k(j)$. Moreover, for $k \neq 2$, $g_k(v_1 + v_2) = g_k(v_1) + 0 = f_k(v_1) = \delta_k(j)$. Now, for $j \geq 3$, $g_2(v_j) = f_2(v_j) - f_1(v_j) = 0 - 0 = 0$. We see, $g_2(v_2) = f_2(v_2) - f_1(v_2) = 1 - 0 = 1$ and $g_2(v_1 + v_2) = f_2(v_1 + v_2) - f_1(v_1 + v_2) = 1 - 1 = 0$. Hence, $\{g_1, \ldots, g_n\}$ is the dual basis of $\{v_1 + v_2, v_2, \ldots, v_n\}$.

9. Let $T : V \to W$ be a linear map, V, W finite dimensional vector spaces over F. Prove that $\dim N(T) + \dim R(T^*) = \dim(V)$.

Proof. By using the rank nullity theorem ($\dim N(T) + \dim R(T) = \dim(V)$), it suffices to show $\dim R(T) = \dim R(T^*)$. Let β be a basis for V, γ a basis for W, and let β^*, γ^* be the corresponding dual bases. Then, $([T^*]_{\beta}^\gamma)^t = [T^*]_{\beta^*}^{\gamma^*}$. Hence,

$$\dim(R(T)) = rank([T^*]_{\beta}^\gamma) = row\text{rank}([T^*]_{\beta}^\gamma) = rank((T^*)^t_{\beta^*}^{\gamma^*}) = dim(R(T^*))$$

by row rank = column rank (corollary 2 on page 158).

Proof 2. We claim $N(T^*) = R(T)^0$. Indeed, suppose $f \in N(T^*)$. Then, for $w = T(v) \in R(T)$, we have $f(w) = f(T(v)) = (T^*(f))(v) = 0$ as $T^*(f) = 0$. Hence, $N(T^*) \subseteq R(T)^0$. Now, suppose $f \in R(T)^0$. Then, for $v \in V$, $(T^*(f))(v) = f(T(v)) = 0$ as $T(v) \in R(T)$. Hence, $T^*(f) = 0$, so $N(T^*) \supseteq R(T)^0$. Hence, $N(T^*) = R(T)^0$. Now, if $V = dim V = dim R(T) + dim R(T)^0$ so

$$\dim W = \dim R(T) + \dim R(T)^0 = \dim R(T) + \dim N(T^*)$$

and so

$$\dim W = \dim R(T) + \dim W^* - \dim R(T^*)$$

Thus, $\dim R(T) = \dim R(T^*)$. By rank nullity, $\dim V = \dim R(T) + \dim N(T) = \dim R(T^*) + \dim N(T)$.

Proof 3. Let $\{w_1, \ldots, w_m\}$ be a basis for $R(T)$, say $w_k = T(v_k)$ for each $1 \leq k \leq m$. Extend this to a basis $\{w_1, \ldots, w_n\}$ of W. Let $\{f_1, \ldots, f_n\}$ be the dual basis of $\{w_1, \ldots, w_n\}$. We show $\{T^*(f_1), \ldots, T^*(f_m)\}$ is a basis for $R(T^*)$. Suppose $\sum_{j=1}^{m} c_j T^*(f_j)(v_k) = 0$. Then, for each $1 \leq k \leq m$, we have

$$0 = (\sum_{j=1}^{m} c_j T^*(f_j))(v_k) = \sum_{j=1}^{m} c_j f_j(T(v_k)) = \sum_{j=1}^{m} c_j f_j(T(v_k)) = c_k$$

Hence, $\{T^*(f_1), \ldots, T^*(f_m)\}$ is a linearly independent set. To show $\{T^*(f_1), \ldots, T^*(f_m)\}$ spans $R(T^*)$, it suffices to show $T^*(f_k) = 0$ for $k > m$. Let $k > m$ and suppose $v \in V$. Then, $T^*(f_k)(v) = f_k(T(v)) = 0$ as $\{f_1, \ldots, f_m\}$ is a basis for $R(T)$ and $k > m$. Hence, $T^*(f_k)(v) = 0$ for all $v \in V$ so $T^*(f_k) = 0$.

10. Let $S = \{v_1, \ldots, v_m\}$ be a basis of a subspace W of a vector space V. Let $S' = \{v_1, \ldots, v_n\}$ be an extension of this basis for V and $\{f_1, \ldots, f_n\}$ the dual basis for S'. For each i, let g_i be the restriction of f_i to W (i.e. $g_i = f_i|W$). Prove that $\{g_1, \ldots, g_m\}$ is the dual basis for S.

Proof. We note $g_i \in W^*$ for each i and that for $1 \leq i, j \leq m$, $g_i(v_j) = f_i(v_j) = \delta_i(j)$, as desired.