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My main area of research is topological data analysis (TDA). My work involves both applications
and theory. On the application side, I use TDA to study the underlying structure of data sets. On
the theory side, I study mathematical objects that are fundamental to TDA. I also work in complex
social systems, where my research has focused on modeling opinion dynamics on networks.

Topological Data Analysis. The primary tool in TDA is persistent homology (PH), which is
concerned with studying and quantifying the holes in data in all dimensions. This information is
captured in a persistence diagram (PD), which details the scales at which holes form and fill in.

Applications: I have used PH to study geospatial data sets. In particular, I have used PH to study
the accessibility of resources (such as polling sites, vaccine sites, and parks) in a geographic area to
quantify areas with poor accessibility [9]. I plan to continue using TDA to study geospatial data
sets, as well as expand my focus to other areas, especially in machine learning.

Theory: I have studied persistence modules, which are algebraic objects that are fundamental to
PH, and have proved necessary and sufficient conditions for the existence of interval decompositions
for a general class of persistence modules [11]. Interval decompositions of persistence module are
the theoretical backbone in PH that provide the information in PDs. I plan to generalize my work
on interval decompositions to wider classes of persistence modules.

Complex Social Systems. My work in this area has focused on studying the time evolution
of opinions in social networks. I have formulated models of opinion dynamics and studied their
behavior through mathematical analysis and numerical simulations [10]. I plan to continue these
efforts by incorporating mean-field approaches and to model other social systems (such as disease
spread on social networks).

1 Applications of Topological Data Analysis

Figure 1: An example of a “Vietoris–Rips” filtration, which
consists of simplicial complexes.

One of the primary tools in TDA
is persistent homology (PH), which
is concerned with the “persistence”
of holes in data. Given a data set,
often in the form of a point cloud,
one constructs a filtration, which is
a nested sequence K1 ⊆ K2 ⊆ · · · ⊆
Kr of topological spaces that ap-
proximates the data set across dif-
ferent scales, and study how the ho-
mology of Ki changes as we increase i (the filtration parameter). By increasing i, new holes form
and existing holes fill in. This information is summarized in a persistence diagram (PD), which is a
multi-set {(xi, yi)}i∈I of points in R2; each point (xi, yi) corresponds to a hole, where xi and yi are
the filtration-parameter values that the hole is formed (i.e., the birth filtration-parameter value)
and is filled in (i.e., the death filtration-parameter value), respectively.

My work on applications of TDA has focused on geospatial data. My collaborators and I used PH
to evaluate and compare equity in the geographic placement of resource centers (such as polling
sites, vaccine sites, and parks) by determining and quantifying “holes in coverage,” which are
geographic areas that have poor resource coverage. One important benefit in using PH to evaluate
resource accessibility is that it allows us to simultaneously consider holes in coverage at all scales,
rather than determining them by choosing arbitrary cutoff thresholds. I plan to continue using PH
to study geospatial data, as well as explore its use in other areas, such as machine learning and
biology. I especially wish to explore incorporating PH into the framework of neural networks.
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Figure 2: Death simplices rep-
resenting holes in coverage in
Atlanta.

1.1 Past Work

1.1.1 Resource Coverage: Polling-Site Accessibility In
[9], my collaborators1 and I studied the accessibility of polling sites
for five cities (Atlanta, Chicago, Jacksonville, New York City, and
Salt Lake City) and Los Angeles County. For each of them, we
constructed a weighted Vietoris–Rips (VR) filtration using esti-
mates of average travel times, with weights based on waiting-time
estimates at the polling sites.

1.2 Ongoing Work

1.2.1 Resource Coverage: Incorporating Resource Quality My collaborators2 and I are
building on the ideas in [9] to study the geographic distribution of resources with heterogeneous
quality. In our applications, we incorporate not only distance to resources, but also the quality
(represented by a scalar) of the resources. Different resource qualities (e.g., the available amenities
of a park) lead to differences in how these resources affect nearby populations. To do this, we
construct a bifiltration — a filtration that is indexed by two filtration parameters (which, in our
case, are distance and quality) — and study the PH. The “resources” that we study are public
parks, landfills, and pubs. Our choice in resources highlights the versatility in our methodology for
measuring both desirable accessibility and unwanted exposure to a resource.

1.2.2 Resource Coverage: Assessing Solutions to Facility-Location Problems Another
project (which I started at the American Mathematical Society’s Mathematical Research Com-
munity on complex social systems) involves using PH to study facility-location problems (FLPs).
FLPs [8] are optimization problems where, given a geographic area and its population distribution,
one wishes to place facilities to serve a population by minimizing access cost. My collaborators3

and I are using PH to evaluate and compare the equity in the placement of resources from solutions
of FLPs by idenfifying and quantifying holes in coverage.

1.3 Future Work My work thus far in studying resource coverage with TDA has been limited
to the distribution of resources at a fixed time. However, because distributions of resources can
change with time, it is important to incorporate time into our TDA approaches. To use TDA to
study resource accessibility in a time-dependent setting, I seek to explore the following approaches:
− Zigzag Persistence [4] is a generalization of PH that can be used for time-dependent data. A
zigzag PD summarizes the times at which holes form and fill in.
− Vineyards [6] are time-dependent summaries of PH. Given time-dependent data, one can compute
the PD for a fixed time. The associated vineyard is the continuously-varying stack of PDs.

Beyond resource-coverage problems, I hope to explore TDA applications in the following areas:

1My collaborators are Abigail Hickok (Columbia University), Benjamin Jarman (UCLA), Michael Johnson
(UCLA), and Mason A. Porter (UCLA).

2My collaborators are Gillian Grindstaff (University of Oxford), Abigail Hickok (Columbia University), Sarah
Tymochko (UCLA), and Mason A. Porter (UCLA).

3My collaborators are Giulia De Pasquale (ETH Zürich), Fabiana Ferracina (Washington State University), Re-
becca Hardenbrook (Dartmouth College), Molly Lynch (Hollins University), J. Carlos Mart́ınez Mori (MSRI), Anna
C. Nelson (Duke University), Mason A. Porter (UCLA), and William Thompson (University of Delaware).



Jiajie Luo Research Statement 3

− TDA for Machine Learning: In summer 2022, I was an intern at the Pacific Northwest National
Laboratory (PNNL), under the supervision of Gregory Henselman-Petrusek and Tegan Emerson,
where I explored the pairing between vectorizations of PDs and machine-learning methods for
classification tasks. I seek to further explore the use of TDA for machine learning, particularly in
incorporating TDA into neural-network architectures (e.g., see [5]).

− Applications to Biology: I also plan to explore biological applications of TDA, such as in biolog-
ical aggregation [13], cancer dynamics [12], and genomics [7].

1.4 Undergraduate Mentorship I will include undergraduate students in my research on
applying TDA to real-world problems. The core ideas behind TDA and the ways that it is applied
(which, at its core, predominantly requires understanding of linear algebra) are fairly accessible.
Although I am also interested in working with students on other areas, resource-coverage problems
(see Sections 1.1 and 1.2) are especially suitable for undergraduate involvement. Concrete ways
that undergraduate students can contribute include studying new applications and adapting PH
to capture relevant application-specific information. Undergraduate students who have experience
(or wish to gain experience) in programming can also help with the coding aspects of projects. I
am currently working with Amos Ancell on using PH to study the accessibility of fire stations. We
will incorporate features (such as city boundaries) that are discussed in the “Future work” section
(5.3) of [9] to construct our filtrations.

2 Theoretical Foundations of Topological Data Analysis

My work in theoretical TDA has focused on “persistence modules,” which are algebraic objects that
are fundamental to PH. Studying persistence modules builds on the theoretical backbone of TDA.
Persistence modules also have important ramifications for practitioners, such as the relevance in
the choice of field for computing PH. I plan to continue working on theoretical problems in TDA,
especially those that are related to persistence modules.

Given a filtration K = {Ki}ri=1, one takes the kth homology with coefficients in a field F to
obtain a persistence module Hk(K;F ), which consists of (1) a sequence {Hk(Ki;F )}ri=1 of vector
spaces (which are called homology groups) over F that correspond to the topological spaces in a
filtration and (2) linear maps (which are called structure maps) between homology groups that
arise from inclusion. Using field coefficients to take homology guarantees the existence of an “in-
terval decomposition” for the persistence module. Interval decompositions provides the necessary
information to compute the corresponding PD.

Persistence diagrams depend on the choice of field. Choosing different fields to compute homol-
ogy may yield different interval decompositions, which in turn yield different PDs. When computing
homology with non-field coefficients (e.g., Z-coefficients), interval decompositions may not exist.

2.1 Past Work One can study persistence modules of free Abelian groups to understand —
from an algebraic perspective — when a filtration yields PDs that are independent of the choice
of field. In [11], my collaborator Gregory Henselman-Petrusek (PNNL) and I studied conditions
under which persistence modules of free Abelian groups admit an interval decomposition. Using
tools from lattice theory, we built our framework to prove the following necessary and sufficient
condition for the existence of interval decompositions.

Theorem 1. A persistent module of free Abelian groups has an interval decomposition if and only
if the cokernel of every induced map is free.
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We also developed a polynomial-time algorithm that produces an interval decomposition for
persistence modules of free Abelian groups, provided one exists.

2.2 Ongoing and Future Work Gregory Henselman-Petrusek and I are currently building
on our work on persistence modules of free Abelian groups. While the persistence modules in [11]
are finitely indexed, we are generalizing our results to the setting of continuously-indexed (e.g., by
R or [0, 1]) persistence modules. I expect that many of our ideas can be adapted to continuous
settings. We are also extending our results to zigzag persistence modules. In particular, we are
building a framework to study zigzag persistence modules of free Abelian groups and determining
the conditions under which they admit interval decompositions.

We also plan to extend our work beyond the setting of free Abelian groups to general Abelian
groups (i.e., including torsion). I expect that the main obstruction to overcome for this work will
be the torsion of the groups in the persistence modules. This will likely require case-wise treatment
for different orders of torsion.

2.3 Undergraduate Mentorship Theoretical projects in TDA offer students a chance to
dive into theory that is relevant to and motivated by applications. Although they require more
background than projects in my other research areas, they are accessible to motivated students who
are proficient in algebra and topology. They also offer students a taste in theoretical fields (mainly
algebra and topology) while requiring less background than other topics in these fields. They are
especially well suited to students who are unsure whether they want to pursue pure or applied
math, as well as students who wish to explore the intertwining between theory and application.

3 Complex Social Systems

In addition to studying resource accessibility (see Sections 1.1 and 1.2), my work in complex social
systems includes modeling the time evolution of opinions in social networks. Formulating and
studying models of opinion dynamics help us understand the factors that influence opinion changes.
I have formulated and studied bounded-confidence models (BCMs), which is a family of opinion
models in which agents (represented by nodes of a network) can only influence neighbors whose
opinions are “close enough” (more precisely, when their opinions differ by less than a “confidence
bound”). I plan to continue analyzing models of both opinion dynamics and other social systems.

3.1 Past Work

3.1.1 BCMs of Opinion Dynamics with Adaptive Confidence Bounds People tend to
be more receptive to those with whom they interact positively. To model this, my collaborators4

and I formulated and analyzed discrete-time BCMs with heterogeneous and adaptive confidence
bounds [10], based on the idea that positive (respectively, negative) interactions between individuals
increase (respectively, decrease) mutual receptiveness. We analytically and numerically explored
our adaptive BCMs’ long-term behaviors, including the confidence-bound dynamics, the formation
of clusters of nodes with similar opinions (which we call “limiting opinion clusters”), and the time
evolution of an “effective graph,” which is a time-dependent subgraph with edges between nodes
that can currently influence each other. We proved the following theorem, which quantifies the
relationship between the effective graph and formation of limiting clusters.

4My collaborators are Grace J. Li (UCLA) and Mason A. Porter (UCLA).
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Theorem 2. The effective graph Geff(t) is eventually constant in time. Moreover, the edges in the
limiting effective graph lim

t→∞
Geff(t) are between nodes in the same limiting opinion cluster.

Figure 3: An effective graph,
which has edges between mu-
tually receptive nodes.

For a wide range of parameters that control the increase and
decrease of confidence bounds, we demonstrated for a variety of
networks that our adaptive BCMs result in fewer large opinion
clusters and longer convergence times than associated baseline (i.e.,
nonadaptive) BCMs. We also demonstrate numerically that our
models have structurally richer effective graphs than the baseline
models.

3.2 Ongoing Work

3.2.1 Coupled Disease and Opinion Dynamics To study
the effects that opinions and disease spread have on each other,
my collaborators5 and I have proposed a multilayer network model
that combines a discrete-time BCM with a discrete-time compart-
mental disease model. In this model, each agent has both an opinion and a disease state (susceptible,
infected, or recovered), which influence each other. We will use mathematical analysis and numeri-
cal simulations to study the time evolution of the distribution of opinions, the magnitude and speed
of disease spread, and the relationship between the two.

3.2.2 BCMs of Coupled Opinion Dynamics Individuals have opinions on different topics,
and the dynamics of these opinions are often interdependent. To model this, my collaborators6 and
I have formulated and are currently analyzing a multi-opinion BCM in which agents have opinions
on a variety of different topics. In our multi-opinion BCM, whether or not two agents compromise
on one topic depends not only on their opinion difference for that topic, but also on their opinions
on all other topics. We are numerically studying how the long-term behavior in our model differs
from a baseline model with independently evolving opinions.

3.3 Future Work Agent-based models, including the models of opinion dynamics that I have
studied, require Monte Carlo simulations — which often are computationally intensive and time
consuming — to obtain robust statistics of long-term behavior. One can instead model opinion
dynamics from a mean-field perspective by considering a density description of opinion distribution
that evolve following an integro-differential equation (e.g., see [2]), which reduces the need to
perform Monte Carlo simulations. I plan to use mean-field approaches to complement my work in
agent-based modeling. Doing so will help with computation time and provide analytical insights
into the behavior of associated agent-based models.

I also hope to model other social systems, such as disease dynamics on networks [3] and human
mobility [1]. I hope to understand the ways in which different social systems can influence each
other by coupling different social models together (in a similar spirit to Section 3.2.2).

5My collaborators are Yang Yang (The Ohio State University), Mason A. Porter (UCLA), and Joseph Tien (The
Ohio State University).

6My collaborators are Grace J. Li (UCLA), Weiqi Chu (University of Massachusetts, Amherst), and Mason A.
Porter (UCLA).
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3.4 Undergraduate Mentorship I will involve undergraduate students in my research in
complex social systems. Many projects in complex social systems (for example, projects on modeling
opinion dynamics) are both down to earth and suitable for undergraduate involvement (often only
requiring predominantly a basic understanding of linear algebra and numerical methods to get
started), while also producing meaningful research that is of interest to expert practitioners. Many
projects focus entirely on numerics, in which the required background is minimal and students can
benefit by gaining valuable programming experience. Undergraduate students can contribute to
these projects in many ways, including proposing new models, designing and running numerical
simulations, and even proving theoretical results. In the past, I have formulated and studied a
BCM that incorporates opinion repulsion with Xiaohe Zhang. I am currently investigating the
behavior of a BCM on directed configuration-model networks with Ruyi Lu.
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