Corrections: Bounded Analytic Functions, Springer 2007, by J. B. Garnett

Page x, line 11 bis: Replace "Weighted Norm Inequalities" by "Weighted Norm Inequalities for Maximal Functions and Conjugate Functions".

Page xi, line 8: Put "Appendix: The Koszul Complex 354" between lines 8 and 9.

page xiv, line 3 bis: Replace \mathcal{F} by $\overline{\mathcal{F}}$.

Page 4, formula (1.12) should read $|w'(z_0)| = \frac{1-|w_0|^2}{1-|z_0|^2}$.

Page 13, line 3: Replace $(P_y * f)(t)$ by $(P_y * f)(x)$

Page 15, Part (b) of Theorem (3.1): Replace $(P_y * f)$ by $(P_y * f)(x)$

Page 17, Equation (3.7): Replace $\int ||u(x+y)||_{L^p(dx)}$ by $||u(x+iy)||_{L^p(dx)}$, but keep the rest of the display, i.e. \sup_y and $< \infty$.

Page 23, line 7 bis: Replace f = 0 by $||f||_1 \neq 0$.

Page 24, line 12: Replace $\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n$ by $\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n$

Page 24, line 7 bis: Replace \int_1 by $\int_I.$

Page 24, Equation (4.4): Replace \int_t by \int_I

Page 29, line 13bis: Replace $u_z(z)$ by $u_2(z)$.

Page 35, Corollary 6.4: Replace $\frac{1}{2\pi} \int v(z_0 + re^{i\theta}) d\theta = -\infty$ by $\frac{1}{2\pi} \int v(z_0 + re^{i\theta}) d\theta > -\infty$.

Page 35, line 10b. In the definition of $v_r(z)$ replace $|z| \le r$ by $|z| \ge r$.

Page 39, Exercise 1. Replace $\left(\frac{\delta-\eta}{1+\eta\delta}\right)$ by $\left(\frac{\delta-\eta}{1-\eta\delta}\right)$.

Page 41, line 2 bis should read:

discs $K(f(z_n), r_n)$ converge to W_{Ak} . But by Schwarz's lemma, $f(K(z_n, r_n)) \subset$

Page 43, line 7b. $B \le 1/\mu(\{0\})$.

Page 45, line 9 bis: Replace $\frac{C}{\lambda}|f|d\mu$ by $\frac{C}{\lambda}\int |f|d\mu$.

Page 50, lines 6 should read:

$$\int |F(x+iy)|^p dx \le \frac{c}{1+y} + \frac{1}{1+y} \int P_{1+2y}(t) d\mu(t)$$

Page 50, line 7 should read:

$$\leq c + \frac{2}{\pi} \int \frac{d\mu(t)}{1 + t^2}.$$

Page 50, line 13 should read:

$$||F||_{H^p}^p = \lim_{y \to 0} \left(\frac{c}{1+y} + \frac{u((1+2y)i) - c(1+2y)}{1+y} \right) = u(i). \quad \Box$$

Page 54, line 9: $H^{\infty}(D), ||f||_{\infty} \le 1$.

Page 59, line 16: Replace $d\mu = f(t) = dt$ by $d\mu = f(t)dt$.

Page 60, line 15: Replace $e^{-2\pi xy}\hat{\mu}(s)$ by $e^{-2\pi sy}\hat{\mu}(s)$.

Page 65, line 1: Replace $\log |f(z)|$ by $\log |f(t)|$.

Page 65, line 18: Replace are by arc

Page 65, line 12 bis: Replace Re $f \leq 0$ by Re $f \geq 0$.

Page 67, line 12: Replace $2\mu_s$ by $d\mu_s$.

Page 67, line 4 bis: Replace $e^{(-u_2+iv_2)}$ by $e^{-(u_2+iv_2)}$.

Page 68, line 17: Replace $d\mu$, by $d\mu_s$.

Page 68, line 6 bis: Replace $\log^+|f(\theta)|$ by $\log^+|f(z)|$.

Page 73, line 12 bis: Replace E by E.

Page 78, line 12 bis: Replace (b) by (b).

Page 80, lines 4 bis and 3 bis and page 81, line 1: Replace script L by script S.

Page 94, line 5 bis: Replace $\lim_{x\to 1}$ by $\lim_{r\to 1}$.

Page 99, line 3: Replace $\log 1(1-r)$ by $\log(1/(1-r))$.

Page 107, line 4: Replace Im $w \ge \lambda$ by $|\operatorname{Im} w| \ge \lambda$.

Page 111, display (3.2): Replace $\sup_{y<1}$ by $\sup_{r<1}$.

Page 115, line 11 bis. Replace $2|u\tilde{v}|$ by $2|u\tilde{u}|$.

Page 120, line 9 bis: Replace $f_E e^{i\theta} d\mu$ by $\int_E e^{i\theta} d\mu$.

Page 124, line 5: Replace \leq by =.

Page 124, line 6: Add the line "Now $||H^*f||_p \le C_p ||f||_p$, 2 , follows by duality from part (b)."

Page 137, line 12: Replace $|\log |g_{\tau}(\theta)||$ by $|\log |g_{\tau}(\theta)||$, i.e. replace || by || with more space.

Page 137, line 2 bis should read: $\leq 2\eta(\delta) + C|e^{i\tau} - z| + C|e^{i\sigma} - z|$.

Page 142, line 16: Replace $||F||_1$ by $||F||_1^{1/2}$.

Page 158, line 3 bis: extreme right side should be $\frac{2F}{\left(\frac{1+\chi}{1-\chi}+\frac{1+w}{1-w}\right)}$.

Page 205, line 15 bis: Lemma 5.1. Mooney

Page 238, line 5 bis: Replace H^2 by H^2 .

Page 269, line 12: Replace I_{n_0} , j by $I_{n_0,j}$.

Page 269, line 18: Replace $\Sigma_{I_{m+s},j\subset I_{m,k}}$ by $\Sigma_{I_{m+s,j}\subset I_{m,k}}$

Page 280, line 6: $\sum_{S_n} y_j \le A 2^{n+1} y_k$.

Page 305, line 2 bis: The second assertion in Exercise 8 is false as stated. It is correct however if X is a dual space and the functionals z_j are weak-star continuous on X. See also P. Gorkin and R. Mortini, J. London Math. Soc. (2) 67, (2003) 481-498 for further results.

Page 312, line 10: Replace Theorem 3.8 by Theorem 3.9.

Page 318, line 14: Replace $-\sum_{j=0}^{N} \int \int_{\partial \Delta_j}$ by $-\sum_{j=0}^{N} \int_{\partial \Delta_j}$, i.e. replace \iint by \int on the right of the display.

Page 321, line 9: Replace $\partial/\partial z(g^3G_{j,k})$ by $\partial/\partial z(g^3G_{j,k})\log(1/|z|)dxdy$.

Page 332, Figure VIII.4, caption: Add "The bottom row has twice the number of zeros as pictured."

Page 357, line 12 bis: Replace Theorem 2.2 by Theorem 4.2.

Page 359, line 3 bis: Replace $(\overline{f}_l \overline{f}_k' - \overline{f}_k \overline{f}_k')$ by $(\overline{f}_l \overline{f}_k' - \overline{f}_k \overline{f}_l')$

Page 360, line 9: Replace \int by \iint on the left of the display

Page 367, line 1 bis: $K_n = k_1 + \ldots + k_{n-1}$

Page 368, line 2: $F_n = f_n - K_n$ instead of $f_n = F_n - K_n$

Page 368, lines 10 bis to 12 bis: φ and ϕ should be the same symbol, preferably φ .

Page 371, line 12: Replace $\partial f/\partial z = \partial \hat{f}/\partial \overline{z}$ by $\overline{\partial f/\partial z} = \partial \overline{f}/\partial \overline{z}$.

Page 385, line 12. Add) at end of $f \in B$

Page 389, line 9 bis: Replace U_A by \mathcal{U}_A .

Page 392, line 15 bis: Replace $||f||_{\infty} \le 1$ by $||f||_{\infty} < 1$.

Page 392, line 11 bis: Replace $||f_n||_{\infty} \le 1$ by $||f_n||_{\infty} < 1$.

Page 402, lines 4 and 5: $a = \min(\exp(-C_1/C_2), \exp(-C_1/c(\delta)))$ and $b = C_2/c(\delta)$.

Page 404, line 3: Replace $B_{1,1}(z_n)$ by $B'_{1,1}(z_n)$.

Page 422, line 5: Replace 2 $\arctan\left(\frac{x-x_k}{y}\right)$ by 2 $\arctan\left(\frac{x-x_k}{y_k}\right)$, i.e. replace y by y_k .

Page 422, line 3 bis: Replace $(s-t)^2$ by $(x-t)^2$.

Page 423, line 8 bis: Replace 4/Ny, 2 by 4/Ny

Page 432, line 2: Replace k_j by K_j .

Page 453, line 4: A_0 should be A_o .