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We say a Radon measure µ on Euclidean space Rn has dimension α > 0 if the limit

lim
r→0

µ(B(x, r))
rα

exists and is positive µ almost everywhere. Then some remarkable things happen.
First, α must be an integer, α = k ≤ n. Second, there is a countable family Γj of k−
dimensional Lipschitz surfaces and a Borel function f such that for every Borel set A

µ(A) =
∑

j

∫
A∩Γj

f(x)dΛk(x),

where Λk is k-dimensional Hausdorff measure.

This theorem depends on the work of many authors, Besicovitch, Marstrand, Mat-
tila, Kirchheim, and Preiss. The course, whose only prerequisites are Mathematics 245
A and B, will cover the background needed for this theorem, the proof of the theorem,
and several related results and applications.

The course will have two homework assignments.

- J. Garnett


