
PERFECTOID RINGS AND SPACES

JACOB SWENBERG

1. Introduction

We begin with a quote from Scholze:

“...the theory of perfectoid spaces establishes a general
framework relating geometric questions over local fields
of mixed characteristic with geometric questions over lo-
cal fields of equal characteristic.”
–Peter Scholze, Perfectoid Spaces: A Survey (2013)

For example, we have the following theorem of Fontaine–Wintenberger:

Theorem 1.1 (Fontaine–Wintenberger). The completions of the fields
Qp(p

1/p∞) :=
⋃

nQp(p
1/pn) and Fp((t))(t

1/p∞) :=
⋃

n Fp((t))(t
1/pn) have

isomorphic absolute Galois groups.

In this talk, we will define perfectoid rings and spaces and their
étale covers. For the sake of time, proofs are almost entirely omitted.

2. Perfectoid Rings

Fix a prime p. We always denote the p-power map a 7→ ap by Φ.
We denote by π a pseudo-uniformizer in the appropriate Tate ring.

Recall:

• A Tate ring R is a Huber ring with a topologically nilpotent
unit. Let R be a Tate ring.
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• A uniform Huber ring is a Huber ring R with R◦ bounded.
Equivalently, R◦ is a ring of definition.

• A uniform Tate ring R with topologically nilpotent unit π, then
R is of the form R◦[π−1], and R◦ has the π-adic topology.

Definition 2.1. A perfectoid ring is a complete uniform Tate ring that
admits a topologically nilpotent unit π such that p ∈ πpR◦ and such
that the p-power map

R◦/π → R◦/πp

is an isomorphism.

Lemma 2.2. Let R be a uniform Tate ring with topologically nilpotent
unit π such that p ∈ πpR◦. The following are equivalent:

(1) Φ : R◦/π → R◦/πp is an isomorphism.

(2) Φ : R◦/π → R◦/πp is surjective.

(3) Φ : R◦/p→ R◦/p is surjective.

Proof. We first remark that Φ : R◦/π → R◦/πp is always injective.
Indeed, let a ∈ R◦, and suppose ap = bπp for some b ∈ R◦. then
(a/π)p = b ∈ R◦, so a/π ∈ R◦, and a ∈ (π). Thus, (1) and (2) are
equivalent. Furthermore, the commutative diagram

R◦/p R◦/p

R◦/π R◦/πp

Φ

Φ

show that (3) implies (2).
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It remains to see (2) implies (3). Let x ∈ R◦. Then there exists
x0 ∈ R◦ such that x − xp0 ∈ πpR◦. Inductively, we can construct a
sequence x0, x1, · · · ∈ R◦ such that

x− (xp0 + x1π
p + xp2π

2p + · · ·+ xpnπ
np) ∈ (π(n+1)p).

Then x =
∑

n x
p
nπ

np, so x− (
∑

n xnπ
n)p ∈ pR◦. �

Definition 2.3. A perfectoid field is a nonarchimedean field (complete
with respect to a non-archimedean R-valued valuation) that is also a
perfectoid ring.

Proposition 2.4. A nonarchimedean field K is perfectoid if and only
if the value group of K is not discrete, |p| < 1, and Φ : OK/p→ OK/p
is surjective.

Example 2.5. The completion Qcyc
p of Qp(µp∞) is a perfectoid field.

Similarly, the completion Fp((t
1/p∞)) of Fp((t))(t

1/p∞) is a perfectoid
field.

For an example of a perfectoid ring that is not a field, consider

Qcyc
p 〈T 1/p∞〉 :=

(
lim←−
n

Zcyc
p [T 1/p∞]/pn

)
[1/p]

Theorem 2.6 (Berkeley Lectures 6.1.10). Let (R,R+) be a Huber pair
with R perfectoid. Let X = Spa(R,R+). Then for all rational subsets
U ⊆ X, we have OX(U) is perfectoid. It follows that (R,R+) is sheafy.

2.1. Tilting.

Proposition 2.7 (Berkeley Lectures 6.1.6). Let R be a complete Tate
ring of characteristic p. Then R is perfectoid if and only if R is perfect,
i.e. Φ : R→ R is an isomorphism.

Proof. Omitted. �
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Definition 2.8. Let R be a perfectoid ring. The tilt of R is the mul-
tiplicative monoid

R[ := lim←−
Φ

R

with the inverse limit topology.

Remark 2.9. Note that Φ : R → R given by x 7→ xp is not necessarily
even a ring homomorphism, a priori. We give R[ addition by

(x+ y)i = lim
n

(xi+n + yi+n)p
n

.

(One checks this is well-defined.)

Remark 2.10. Note that if R has characteristic p, then R[ = R.

Proposition 2.11 (Berkeley Lectures 6.2.2). R[ is a topological Fp-
algebra that is a perfect complete Tate ring. Equivalently, R[ is a
characteristic-p perfectoid ring. We have

(R[)◦ = lim←−
Φ

R◦ ∼= lim←−
Φ

R◦/p ∼= lim←−
Φ

R◦/π,

where p ∈ πR◦. We may also choose π such that p ∈ πpR◦ with a
compatible system

π[ := (π1/pn)n ∈ R[

that is a pseudo-uniformizer in R[. With this choice,

R[ = (R[)◦[1/π[].

Proof. Omitted. �

Remark 2.12. We denote by (·)] : R[ → R the projection onto the first
coordinate. If K is a perfectoid field, then K[ is a complete nonar-
chimedean field with absolute value |a| = |a]|, as originally considered
by Fontaine.

The map ] defines an isomorphism

(R[)◦/π[ ∼= R◦/π.
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Example 2.13. Let (ζpn)n ⊂ Qcyc
p be a compatible system of p-power

roots of unity. Then

t = (ζpn − 1)n ∈ (Qcyc
p )[

is a pseudouniformizer. Furthermore,

(Qcyc
p )[ = Fp((t

1/p∞)).

Theorem 2.14 (Kedlaya–Shahoseini 2022). Let K be a complete sub-
field of Cp. Then K is perfectoid if and only if its tilt is not algebraic
over Fp.

Proof. Dubious. A correction was literally posted today saying their
proof is wrong. �

2.2. Tilting Equivalence. Let R be perfectoid.

Theorem 2.15 (Tilting Equivalence I (Berkeley Lectures 6.2.7)). Tilt-
ing gives an equivalence of categories between perfectoid R-algebras and
perfectoid R[-algebras.

Theorem 2.16 (Tilting Equivalence II (Berkeley Lectures 6.2.6)). Let
(R,R+) be a Huber pair with R perfectoid, let X := Spa(R,R+), and
let

(R[)+ := lim←−
Φ

R+ ⊆ R[.

Then (R[, (R[)+) is a Huber pair. Furthermore, there is a homeomor-
phism

(·)[ : X → X[ := Spa(R[, (R[)+), |f(x[)| = |f ](x)|.

preserving rational subsets. Moreover, given U ⊆ X rational, we have
OX(U) is perfectoid with tilt OX[(U [).
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3. Perfectoid Spaces

Definition 3.1. A perfectoid space is an adic space covered by adic
spaces Spa(R,R+) with R perfectoid.

Remark 3.2. If R is a perfectoid ring, we call Spa(R,R+) a affinoid
perfectoid space. Note that it is not clear that an affinoid space that is
perfectoid must be an affinoid perfectoid space!

We can glue the tilting maps to obtain a functor X 7→ X[ for any
perfectoid space.

Theorem 3.3 (Berkeley Lectures 7.1.4). Let X be a perfectoid space.
There is an equivalence of categories between the category of perfectoid
spaces over X and perfectoid spaces over X[ given by the map Y 7→ Y [.
We call this the tilting functor.

We pause here with a quote from Scholze:

‘The category of perfectoid spaces over Qp is equivalent
to the category of perfectoid spaces X of characteristic p
together with a “structure morphism X → Qp.”’
–Peter Scholze, Berkeley Lectures 7.2

It will turn out that tilting gives an equivalence of étale sites. We
start with the case of fields

Theorem 3.4. Let K be a perfectoid field. Every finite extension L/K
is perfectoid. Moreover, the tilting functor gives an equivalence of cat-
egories {

finite extensions
of K

}
←→

{
finite extensions

of K[

}
.

Corollary 3.5. The absolute Galois groups of K and K[ are isomor-
phic.
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4. Almost Mathematics

Throughout, R is a perfectoid ring.

Definition 4.1. An R◦-module is almost zero if πM = 0 for all pseudo-
uniformizers π of R.

Example 4.2. If K is a perfectoid field, then OK/mK is almost zero.

Lemma 4.3. Let R+ be a ring of integral elements in R. Then R◦/R+

is almost zero.

Proof. Let π ∈ R◦ be a pseudo-uniformizer, and let x ∈ R◦. Then πx
is topologically nilpotent, so (πx)n ∈ R+ by openness of R+. Since R+

is integrally closed, we have πx ∈ R+. �

Definition 4.4. The category of almost R◦-modules is the category of
R◦-modules quotiented by the subcategory of almost zero modules.

Question 4.5. Is this isomorphic to the category of R◦-modules, but
where morphisms are “morphisms mod almost zero morphisms?”

Theorem 4.6. Let (R,R+) be a Huber pair with R perfectoid. Let
X = Spa(R,R+). Then H i(X,O+

X) is almost zero for i > 0, and
H0(X,O+

X) = R+.

5. Étale morphisms

Definition 5.1. A morphism f : X → Y of perfectoid spaces is finite
étale if for all Spa(B,B+) ⊂ Y open, we have X ×Y Spa(B,B+) =
Spa(A,A+) where A is a finite étale B-algebra, and A+ is the integral
closure of B+ in A. A morphism f : X → Y is étale if X can be
covered by open subsets U with open subset V ⊇ f(U) of Y such that
U → V factors through an open immersion U → W with W → V
finite étale.

Theorem 5.2 (Tate). Let K be a perfectoid field and L/K a finite
extension. Then OL/OK is almost finite étale.
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Theorem 5.3. Any finite étale R-algebra is perfectoid, and the cat-
egory of such algebras is equivalent to the category of finite étale R[-
algebras under tilting.

Theorem 5.4. There exists an étale site Xét such that Xét
∼= X[

ét. In
particular, the tilt of a (finite) étale morphism is (finite) étale. Fur-
thermore, if X is affinoid, then

H i(Xét,O+
X)

is almost zero for i > 0.


