
290B: Week 5

Today we will talk about the construction teased last time, namely a functor{
analytic pre-adic
spaces/Spa Zp

}
→ {diamonds}

X 7→ X♦

which is similar to the tilting construction of week 3: it changes the characteristic

that we’re looking at, but retains some topological data. A key ingredient will

be untilting and the untilting correspondence, which is described in sections 6

and 7 of the Berkeley notes.

§1 : Recall diamonds

Recall that last time we saw two equivalent definitions of diamonds:

Proposition-definition 1.

1. A diamond is a pro-étale sheaf D on Perf of the form

D = X/R ∈ Shvproét(Perf), ∃R ⊂ X ×X an equivalence relation

for X a perfectoid space of characteristic p and R a perfectoid space such

that the two projections R⇒ X are pro-étale.

2. Equivalently,1 a diamond is a pro-étale sheaf D on Perf with a surjective

quasi-pro-étale morphism

X � D in Shvproét(Perf)

for some perfectoid space X of characteristic p.

In proving that a particular X/R yields a diamond, proving that R→ X×X
is actually an injection of perfectoid spaces will be an important step.

We won’t define the term quasi-pro-étale, as we’ll mainly be using the orig-

inal definition. If you want to learn more about this second definition, see

subsection 9.2. The subsection also contains a cool illustration of a diamond.

We will also use the following proposition in the proof of the last theorem:

1Prop 9.2.3
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Proposition 2 (Proposition 8.3.3). Let f : Y → X be a map of perfectoid

spaces. Then the following are equivalent (and if any holds, we say f is injec-

tive):

1. For all perfectoid spaces T , Hom(T, Y )→ Hom(T,X) is injective.

2. For all algebraically closed affanoid fields (C,C+), the map Y (K,K+)→
X(K,K+) is injective.

§2 : G-torsors

For a finite group G, a G-torsor (in any topos) is a morphism F′ → F with a

G-action G × F′ → F′ over F such that, locally on F, there is a G-equivariant

isomorphism F′ ∼= F ×G.

We now modify the definition to suit a topological group G.

� For a topological space T , the presheaf

T : Perfop → Set

X 7→ C0(|X|, T )

forms a pro-étale sheaf.

� If G is a topological group, then G forms a pro-étale sheaf of groups.

Moreover, if G = limiGi is profinite, then G = limiGi.

Remark 1. G is not representable, as Perf has no final object. However, if X

is a perfectoid space and G is profinite, then X ×G becomes representable (in

perfectoid spaces over X?) by

X ×G = lim
HEG: open

X ×G/H.

//

We now define a torsor in our context:

Definition 3. Let G be a topological group. A G-torsor is a morphism

F′
f−→ F ∈ Mor

(
Shv(Perf)

)
, together with an action G× F′ → F′ over F,

such that locally on F there is a G-equivariant isomorphism F′ ∼= F ×G.
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Proposition 4 (Proposition 9.3.1). Let f : F′ → F be a G-torsor, with G

profinite. Then for any affinoid X = Spa(B,B+) and any X → F, the pullback

F′ ×F X is representable by a perfectoid affinoid X ′ = Spa(A,A+). Moreover,

A is the completion of colimH AH where for each normal open subgroup H ⊂ G,

AH/B is a finite étale G/H-torsor in the algebraic sense.

§3 : The diamond Spd Qp and the pro-étale sheaf Untilt

Consider the perfectoid space Spa(Qcycl
p )[ as a pro-étale sheaf on Perf.

Let’s recall some of the notation from week 3. Qcycl
p is the completion of

the maximal cyclotomic extension Qp(µp∞) of Qp. It’s a perfectoid ring (of

characteristic zero).

For any perfectoid ring R, we have its tilt

R[ := lim
Φ
R, Φ : R

x 7→xp

−−−−→ R,

which forms a perfectoid ring2 of characteristic p; if R was already of charac-

teristic p, then R[ = R. If (R,R+) is a Huber pair with R perfectoid, then(
R[, (R+)

[
)

is a Huber pair, and there’s a homeomorphism

Spa(R,R+)→ Spa
(
R[,

(
R+
)[)

.

For R = Qcycl
p , we have

(Qcycl
p )[ ∼= Fp((t1/p

∞
)).

Lastly, here is a definition we’ll need in a moment:

Definition 5. For a perfectoid Tate ring (R,R+), an untilt is a perfectoid Tate

ring (R], R]
+

) together with an isomorphism R]
[ → R such that R]

+
and R+

are identified (under lemma 6.2.5).

We can describe untilting in terms of the Witt construction:

Theorem 6 (Lemma 6.2.8). Let (R], R]+) be an untilt of (R,R+).

1. There is a canonical surjection of rings θ : W (R+) � R]+

2. The kernel of θ is generated by a nonzero-divisor ζ of the form ζ = p+[π]α,

where π ∈ R+ is a pseudo-uniformizer and α ∈W (R+).

2With addition defined as in week 3.
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See also theorem 6.2.11 for a more precise correspondence.

Proposition 7 (Theorem 7.1.4). If f : X → Y is in Perf and Y ] is an untilt

of Y , then there’s a unique morphism of perfectoid spaces X] → Y ] whose tilt

is f .

For any perfectoid ring (R,R+), the (R,R+)-valued points of Spa(Qcycl
p )[

are {
Fp((t1/p

∞
)) ∼= (Qcycl

p )[
f−→ R; f cont.

}
∼=
{
x ∈ R×;x top. nilpotent

}
.

We now define the diamond Spd Qp:

Definition 8. We consider Z×p as inducing a equivalence relation (by its ac-

tion3) on Spa(Qcycl
p )[. Then

Spd Qp := Spa(Qcycl
p )[/Z×p = CoEq

(
Z×p × Spa(Qcycl

p )[
pr2
⇒

action
Spa(Qcycl

p )[
)
.

Remark 2. To be more consistent with the earlier notation for diamonds, this

should maybe instead be written

Spd Qp := Spa(Qcycl
p )[

/(
Z×p × Spa(Qcycl

p )[
)
, (1)

with g :Z×p × Spa(Qcycl
p )[

(pr2,action)−−−−−−−→ Spa(Qcycl
p )[ × Spa(Qcycl

p )[. (2)

//

For (1) to be a diamond, we need (2) to be an injection. This is shown in

lemma 9.4.2.

Proposition 9 (Corollary of lemma 9.4.2). Spa Qcycl
p → Spd Qp is a Z×p -torsor.

Additionally, if X = Spa(R,R+) is an affinoid perfectoid space of character-

istic p, then Spd Qp(X) is the set of isomorphism classes of data of the following

type:

1. A Z×p -torsor R → R̃ = (colimRn)
∧

, where R → Rn is finite étale with

Galois group (Z/pnZ)×.

2. A top. nilpotent t ∈ R̃× such that for all γ ∈ Z×p , γ(t) = (1 + t)γ − 1.

3Z×
p acts on (Qcycl

p )[ ∼= Fp((t1/p
∞

)) by γ(t) = (1 + t)γ − 1 for γ ∈ Z×
p .
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The idea of the proof is as follows:

We first show that Z×p ×Spa(Qcycl
p )[ → Spa(Qcycl

p )[×Spa(Qcycl
p )[ is actually

an injection, using proposition 8.3.3 and the fact that for any perfectoid affinoid

field (K,K+), Z×p acts freely on Hom(Fp((t1/p
∞

)),K).

Then we use proposition 9.3.1 and the fact that for any Spa(R,R+) →
Spd Qp, we get via pullback a Z×p -torsor over Spa(R,R+).

The following is a special case of the theorem which was teased last week as

the motivation for diamonds:

Theorem 10. The following categories are equivalent:

� Perfectoid spaces over Qp.

� Perfectoid spaces X of characteristic p equipped with a “structure mor-

phism” X → Spd Qp.

These are both fibered over Perf. Respectively, the morphisms to Perf are

� X 7→ X[

� X 7→ X.

Recall that for a (Grothendieck) fibration of categories, we need to be able to

pull back morphisms in the base category or, more precisely, to have at least

one inverse image for every morphism of Perf whose codomain is in the image of

the projection. This follows (for the first category) from proposition 7. These

fibered categories correspond, respectively, to two presheaves of groupoids on

Perf:

� X 7→ UntiltQp
(X) = {(X], ι);X]: perfectoid space over Qp, ι : X][ ∼= X}

� Spd Qp.

Definition 11. Let Untilt be the presheaf on Perf taking

S 7→
{

(S], ι); S
] a perfectoid space,

ι:S][∼=S

}
/isomorphism

We state the following important lemma without proof:

Lemma 12 (Lemma 9.4.5). Untilt is a pro-étale sheaf.
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Note that the uniqueness of proposition 7 means that we don’t have the

obvious obstruction.

In particular, this implies UntiltQp
is a pro-étale sheaf.

Proof of theorem 10. We need give an isomorphism between the sheaves UntiltQp

and Spd Qp.
Let X = Spa(R,R+) be an affinoid perfectoid space of characteristic p. For

an untilt X] = Spa(R], R]
+

), let

R̃] := R]⊗̂Qp
Qcycl
p ,

and let R̃]+ be the completion of the integral closure of R]
+

in R̃], and let

X̃] := Spa(R̃], R̃]+).

Then X̃] → X] is a pro-étale Z×p -torsor, whose tilt X̃ → X is a pro-étale

Z×p -torsor with a Z×p -equivariant map X̃ → Spa(Qcycl
p )[, so we’ve produced

X → Spd Qp.
Going the other way, suppose X̃ → X is a pro-étale Z×p -torsor with a Z×p -

equivariant map X̃ → Spa(Qcycl
p )[. By proposition 7, there is a unique X̃] →

Spa(Qcycl
p )[ which is also Z×p -equivariant. This equivarance means exactly that

X̃] comes with a descent datum along X̃ → X, and so by lemma 12 we get an

untilt X] of X over Qp.

§4 : Pre-adic spaces and the functor X 7→ X♦

In this section, we make good on the motivation for diamonds from week 4.

Remember that there was an issue with Huber pairs in general: the structure

presheaf on Spa(A,A+) can fail to be a sheaf. One way to deal with this is—

similar to the theory of algebraic spaces—to enlarge the category of adic spaces,

by looking at a larger subcategory of PSh(CAffop), where CAff is the category of

complete Huber pairs. This enlargement will, in particular, include more fiber

products than the category of adic spaces alone.

We turn CAffop into a site by giving it the coarsest topology for which

every rational cover is a cover, i.e. the topology where for every rational cover

X = Spa(A,A+) =
⋃
i Ui, the set of maps (OX(Ui),O

+
X(Ui))

op → (A,A+)op is

a cover, and these generate all covers. For (A,A+)op ∈ CAffop, we denote by

SpaY (A,A+) : the sheafification of (B,B+) 7→ HomCAff((B,B+), (A,A+)).
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Definition 13. Let F be a sheaf on CAffop, and let X = Spa(A,A+) for a

complete Huber pair (A,A+). A map F → SpaY (A,A+) is an open immersion

if there’s an open U ⊂ X such that

F = colim
V⊂U : rational

SpaY (OX(V ),O+
X(V )).

A map of sheaves F → G is an open immersion if for all (A,A+) ∈ CAff with

SpaY (A,A+)→ G, the fiber product

F ×G SpaY (A,A+)→ SpaY (A,A+)

is an open immersion.

We call a sheaf F on CAffop a pre-adic space if

F = colim
SpaY (A,A+)⊂F:open

SpaY (A,A+).

Now recall (from week 2):

Proposition-definition 14. A Huber ring A is analytic if the ideal generated

by topologically nilpotent elements is the unit ideal.

If (A,A+) is a complete Huber pair, then A is analytic if and only if all

points of Spa(A,A+) are analytic, in the sense of definition 4.2.1, and a point

x ∈ Spa(A,A+) is analytic if and only if there’s a rational neighborhood x ∈
U ⊂ Spa(A,A+) such that OX(U) is Tate.

We define a functor {
analytic pre-adic
spaces/Spa Zp

}
→ {diamonds}

X 7→ X♦

as follows:

Definition 15. Let X be an analytic pre-adic space over Spa Zp. We define a

presheaf X♦ on Perf by

X♦(T ) =
{

(T ], T ] → X)
}
/isomorphism, for T perfectoid of characteristic p,

where T ] stands for an untilt of T and T ] → X is a map of pre-adic spaces.

If X = Spa(R,R+), write Spd(R,R+) := Spa(R,R+)♦.
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Remark 3. If X is perfectoid, then X♦ = X[. Note also that the pairs

(T ], T ] → X) have no nontrivial automorphisms, so we don’t have this po-

tential obstruction to X♦ forming a sheaf. //

Definition 16. Let Spd Zp := Untilt be the sheaf on Perf taking

S 7→
{

(S], ι); S
] a perfectoid space (fibered uniquely over Spa Zp),

ι:S][∼=S

}
/isomorphism

This is a pro-étale sheaf by lemma 12.

Theorem 17. X♦ is a diamond.

Sketch. X♦ being a sheaf follows from lemma 12 and the argument of proposi-

tion 8.2.8, which shows that maps from perfectoid spaces T ] to a fixed pre-adic

X form a pro-étale sheaf.

Since X is analytic, we may thus assume (by restriction to a rational cover)

that X = Spa(R,R+) is affinoid, with R a Tate ring. Since X → Spa Zp, we

must have p ∈ R topologically nilpotent.

It remains to prove (by proposition 4):

Lemma 18. Let colimRi be a filtered direct limit of {R→ Ri}, all finite étale

algebras, which admits no nonsplit finite étale covers. Endow colimRi with the

topology making colimR◦i open and bounded, and let R̃ be the completion. We

state without proof that

Claim 19. R̃ is perfectoid.

Assume further that each Ri is a Gi-torsor over R, compatibly with change

in i for an inverse system of finite groups {Gi}. Let G = limiGi. Then

Spd(R,R+) = Spd(R̃, R̃+)/G,

and Spd(R,R+) → Spd(R̃, R̃+) is a G-torsor. In particular, Spd(R,R+) is a

diamond.

Proof of lemma 18. By proposition 8.3.3 and proposition 4, we need to show

that for any algebraically closed nonarchimedian field C of characteristic p, the

group G acts freely on Hom(R̃[, C).

Fix f : R̃[ → C. By the tilting equivalence, this corresponds to a map

f ] : R̃ → C], or more precisely R̃◦ = W (R̃[◦)/I, where I is G-stable. We get

W (f◦) : W (R̃[◦)→W (OC), which descends mod I to R̃◦ → OC] .
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Assume there exists γ ∈ G such that

R̃[ C

R̃[

f

γ f

commutes. Applying W and reducing mod I, we get

R̃◦ OC]

R̃◦

f]◦

γ
f]◦

Inverting π, we have for all i that

Ri C]

Ri

f]

γ f]

commutes, so γ must be 1. By definition of R̃, G acts freely on Hom(R̃[, C).
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