ON OHTA’S ORDINARY p-ADIC EICHLER-SHIMURA ISOMORPHISM
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1. INTRODUCTION

In this short note, we given an outline of Ohta’s proof of a p-adic Eichler—Shimura iso-
morphism. We mainly follows Ohta’s original proof given in [5] which excludes certain
eigenspaces.

Throughout, let p > 5 be a prime number, and let N > 1 be an integer not divisible
by p. Recall that for each » > 0, we have modular curves X, := X;(Np") defined over
Q. Following Ohta, we choose our models of X, such that the cusp corresponding to 700 is
rational. Let C, be the set of cusps on X,., and let Y, := X,. — C,. be the corresponding open
modular curve.

We begin by considering the étale cohomology groups

H, = Hé1t<Xr,@7Zp)'

These groups admit an action of certain (adjoint) Hecke algebras b, over Z,, and in particular
an action of the Hecke operator T'(p)*. We will consider a certain idempotent e acting on H,
which is the composition of Hida’s ordinary projector for 7'(p)* and projection away from the
1,w™! eigenspaces for the action of (Z/pZ)*. There are natural trace mappings H,,; — H,
that commute with 7'(p)*, and so we may define

H::e-@Hr.

This group admits an action of the algebra b := l&qr eh,.. This group also admits an action

of Gy = Gal(Q/Q), though for this note we will be focused on the action of Gg, .

We fix embeddings Q@ — C and Q — C, for all primes £. Let I, € Gg, be the inertia
subgroup. Let Xy : Go, — Z, be the mod-p cyclotomic character. Let K be a complete
subfield of C, containing all roots of unity, and let O, be its ring of integers. Let A :=
Zy|[T)] = Z,[[1 + pZ,)] be the Iwasawa algebra. Then b is an algebra over A by sending
group elements to adjoint diamond operators. Let Ao, = A®ROy = O[[T]]. We may
consider the space S(N, Ap_ ) of Ap_ -adic cusp forms (in the sense of Hida).

Theorem 1.1 (Ohta). There is a canonical short exact sequence of h[Gg,]-modules
0= Hop — H — Hgyo — 0
such that:

(1) Forallo € I,, we have that o acts on Hgy trivially and on Hyue a8 Xeye(0) ™ (Xeye(0) 1) *;

(2) The sequence is non-canonically split as h-modules;
(3) There is a A-bilinear pairing H x H — A that induces a perfect pairing

Hsub X Hquo — A.



(4) There is a canonical isomorphism of h[Gg,]-modules
qu)@(’)w =~ eS(N; Ao )(—1).

This Theorem has numerous implications. In particular, it is a key ingredient in the
construction of the map T in Sharifi’s Conjectures.

2. GOOD QUOTIENTS OF JACOBIANS

In this section, we review the construction of “good quotients” of Jacobians of modular
curves used by Ohta. Ohta references Tilouine [7] and Mazur-Wiles [4] for this construction.

Let J,. be the Jacobian of X,. Let X/ be the modular curve corresponding to the congru-
ence subgroup I't(Np”) N Ty(p™1), and let J. be its Jacobian. We have natural projections

X 5 X5 X,
inducing maps on Jacobians
(pr)s : Il — T, s J = T
Ohta defines the “good quotients” of the J,. inductively for » > 1 as follows: we set By :=
J1/75(J}), and we let oy : J; — Bj be the quotient map. Now suppose we have constructed
o, : J. — B, for some r > 1. We let
K’r = ker(oz,, o (pr)*); Br—i—l = Jr+1/7T:(KT)O7

and a,.41 : Jr41 — B,y1 is the quotient map. Note that the kernel of «, is always connected
by construction.

Lemma 2.1 (Tilouine). For allr > 1, we have that ker(cv,.) is Q-rational and stable under all
(usual) Hecke operators. Thus, we have a well-defined Q-rational action of Hecke operators
on B,.

Let w, be the Atkin—Lehner involution of X,.. In what follows, we replace K, with w,(K,),
and correspondingly replace B, with J,./w,(ker(c,.)). Then b, acts on B,, compatibly in 7.
Let O, 1= Z, [y

Proposition 2.2 (c.f. [5], bottom of page 76). The abelian scheme B,jq,(u,.) has good
reduction. In other words, there is an abelian scheme B, o, over O, with generic fiber
By /0y (upr)-
For each r > 1, we let
G, = e(Byjo, 7).
which is a p-divisible group over O,..
Proposition 2.3. [5, Theorem 3.2.5] The following are true:
(1) The map o, induces an isomorphism
e(Jo[p™]) = e(B,[p™]).
Consequently, the p-adic Tate module T,G, is isomorphic to
e(T,J,) = eH,(1).

(2) G, is ordinary, in the sense that GS has étale Cartier dual.
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(3) Let (-,-) : Tpd, x Ty J. — Z,(1) be the usual Weil pairing. Define a “twisted Weil
pairing” by

[l s Tpdr X Ty — Zy(1), [z, 9], = (z, w.y),-

Then T,(G?}) is self-annihilating under this pairing, and this pairing gives a perfect
duality between T,(G2) and T,(GE).

(4) The action of the inertia subgroup I, C Gg, leaves T,(G) (and hence T,(GE)) sta-
ble. For o € I,, we have that o acts trivially on T,(G&), and acts on T,(GS) as

Xeye(0) (Xeye(0))"-
(5) The following exact sequence of eh,.-modules (non-canonically) splits:

0 — T,(G°) — T,G, — T,(G%) — 0.
Corollary 2.4. Let
H, sy = Homgz (T,(G),Z,),  Hyquo := Homg, (T,(G?), Z,).
Then we have a short exact sequence
0— Hysup — eH, — Hy gyo — 0

satisfying conditions (1)-(3) of Theorem[1.1 These exact sequences are compatible in r, so
taking a limit, we obtain a short exact sequence

0— Hyp - H — Hyyo — 0
satisfying conditions (1)-(3) of Theorem [1.1], where
Hsub = l'&nHr,suby Hquo = l'glj—[r,quo-

3. FROM COHOMOLOGY TO CUSP FORMS

For the following argument, Ohta refers to Tate [0].
We saw above that the sub and quo of H come from the connected-étale sequences for the
p-divisible groups G, (after taking Tate modules and Z,-duals). In particular, we saw that

H, 4uo = Homyg, (T,(GY), Zy).

We now relate this group to a space of weight 2 cusp forms. As in the Introduction, let K,
be a complete subfield of C, containing all roots of unity, and let O be its ring of integers.

Proposition 3.1. [5], c.f. 3.3.2] We have an isomorphism
Hr,quo ® OOO = COt<GT,Ooo>(_1>'
Here, Cot(G, 0., ) denotes the cotangent space of G, ., along the unit section over Ou.

Remark 3.2. In [5], 3.3.2], Ohta claims that this follows from [6, §4]. However, no explanation
is given for how this follows from Tate’s argument.

Lemma 3.3. We have an injection

Cot(Gro..) — €S2 (I (Np"), Kx).
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Proof. We have an isomorphism
Cot(Gr0.) = eCot(B,.0,[p™]) = eCot(B,0,).
Futhermore, we have h,-equivariant injections
Cot(B,0,) = Cot(Jrx.) = HY(X,, Q") @9 K = S5(T1(Np"), Ku).
Combining the above facts gives the claim. O

Proposition 3.4. [5, Prop 3.3.6] If f is in the image of the injection Cot(Gro.) —
eS2(I'1(Np"), K ), then both f and w, f are contained in Ou[[q]].

Proof sketch. We denote by X,. the integral closure of the integral model of the level 1 modular
curve X (1)/z in XrQp(un,)- Then the smooth locus XJ™ of X, over Zyp|pinyr] contains the
sections corresponding to cusps. By universal property of the Neron model J, of J,. over
Zp|pinpr], we have a morphism X5™ — J, whose base change to Q, (1) factors through the
morphism X, o(ux,~) = JrQ(uy,-)- Lhere is a formal neighborhood Spec(Z,[1in,r][[q]] — X
of the cusp corresponding to oo such that the g-expansion of f € Sy(I'1(Np"), Qp(pnyr)) =
H°( Xy g(uy,r), @) coming from Cot(Gy,0,,) is given by pulling back differentials along the
composition
Spec(Zy iy lllal] = X3 = 3 = Bzl
The g-expansion of f is therefore in O][q]].
A similar argument replacing the oo cusp with the 0 cusp gives the statement on w, f. [

Corollary 3.5. We have natural injections, for all r > 1:
Hyquo @ Ooo = €55 (I (NP"), O ) (—1).
Here, the superscript “«” denotes the image under w,. If we set (under Ohta’s trace maps)
S = @eSS(Fl(NpT), Ox),
then we have an injection R
Hypo®00 — 6(—1).
4. SURJECTIVITY ONTO ORDINARY A-ADIC CUSP FORMS
Theorem 4.1. The maps in Corollary [3.5 are isomorphisms.
In this section, we sketch the proof of this Theorem.
Lemma 4.2. The Ap_ -modules qu@(’)oo and & are free of finite rank.

Proof sketch. In fact, Ohta shows that HRO4 is free of finite rank using results of Hida 12
Thm 3.1(ii)]. Furthermore, since we have an injection as in Corollary [3.5, it suffices to show
that & is free of finite rank (why?). This follows from the Theorem below, which we will
also use. 0

Theorem 4.3. [5, Thm 2.3.6] There is a canonical isomorphism
eG = €S<N, AOoo)'

Remark 4.4. This is only a special case of [5, Thm 2.3.6]. Ohta proves a similar result in all

weights k& > 2.
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In the remainder of this section, we only roughly sketch Ohta’s arguments. To show
surjectivity, Ohta uses control Theorems of Hida to reduce to showing that

Hl,quo ® Ooo = 65;(F1<Np)7 Ooo)
By Proposition [3.1] it suffices to show that we have an isomorphism
e Cot( B zun,) = eS3(T1 (Np). Z{uny).

Let k be the residue field of Z,[uy,]. We denote by X, the special fiber of X; over k.
It is known that X; has two irreducible components Cy and C,, that intersect the sections
of X; corresponding to the cusps 0 and oo, respectively. Furthermore, Cy and C,, meet
transversally precisely at the supersingular points.

Ohta shows that the quotient J; — B; factors through the “Mazur—Wiles” good quotient
A;, and that we have an isomorphism eA; [p™] = eB;[p™].

The result then follows from the combination of the following two Propositions:

Proposition 4.5. [5, Prop 3.4.7] The quotient map J; — Ay induces isomorphisms
Cot( A1z, ux, ) = H (X1, 21)%

for all i 0 (mod p — 1) (here, the superscript “(i)” denotes the w'-eigenspace). Further-
more, let

y = A{f € Sa(T1(Np), Zylpny)) - wif € Zylpny]llal]}-

Then q-expansions give an isomorphism
HO (%1, Q) = (55)1.
Proposition 4.6. [5, Prop 3.4.8] We have an equality

eSy = eS5(T1(Np), Zpny))-

5. FINAL REMARKS

Above, we only really considered the action of I, on Hgy, and H,,. In Section 3.5 of [5,
Ohta considers the action of the full decomposition group Gg,, thus finishing the proof of
Theorem [I.1} In this report, we chose to focus on the relationship between Ohta’s Eichler—
Shimura cohomology groups and Hida’s A-adic cusp forms, so we omit the description of the
Galois action on these groups.

One might like to generalize these results to other settings (e.g. Shimura curves). One
obstruction might seem to be Ohta’s use of the geometry of the special fiber of X;. However,
work of Carayol [I] has a description of certain integral models of Shimura curves that might
be useful. Another serious obstruction seems to be Ohta’s use of g-expansions to detect
integrality of cusp forms as in Proposition [3.4 One workaround would be the development
of so-called “Serre-Tate expansions” at CM points of modular forms on Shimura curves (see,

for example, [3], §4] for Shimura curves over Q). We hope to explore these ideas further.
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