# ON OHTA'S ORDINARY p-ADIC EICHLER-SHIMURA ISOMORPHISM

#### JACOB SWENBERG

# 1. Introduction

In this short note, we given an outline of Ohta's proof of a p-adic Eichler–Shimura isomorphism. We mainly follows Ohta's original proof given in [5] which excludes certain eigenspaces.

Throughout, let  $p \geq 5$  be a prime number, and let  $N \geq 1$  be an integer not divisible by p. Recall that for each  $r \geq 0$ , we have modular curves  $X_r := X_1(Np^r)$  defined over  $\mathbb{Q}$ . Following Ohta, we choose our models of  $X_r$  such that the cusp corresponding to  $i\infty$  is rational. Let  $C_r$  be the set of cusps on  $X_r$ , and let  $Y_r := X_r - C_r$  be the corresponding open modular curve.

We begin by considering the étale cohomology groups

$$H_r := H^1_{\operatorname{\acute{e}t}}(X_{r,\overline{\mathbb{Q}}},\mathbb{Z}_p).$$

These groups admit an action of certain (adjoint) Hecke algebras  $\mathfrak{h}_r$  over  $\mathbb{Z}_p$ , and in particular an action of the Hecke operator  $T(p)^*$ . We will consider a certain idempotent e acting on  $H_r$  which is the composition of Hida's ordinary projector for  $T(p)^*$  and projection away from the  $1, \omega^{-1}$  eigenspaces for the action of  $(\mathbb{Z}/p\mathbb{Z})^{\times}$ . There are natural trace mappings  $H_{r+1} \to H_r$  that commute with  $T(p)^*$ , and so we may define

$$H := e \cdot \varprojlim_r H_r.$$

This group admits an action of the algebra  $\mathfrak{h} := \varprojlim_r e\mathfrak{h}_r$ . This group also admits an action of  $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ , though for this note we will be focused on the action of  $G_{\mathbb{Q}_p}$ .

We fix embeddings  $\overline{\mathbb{Q}} \to \mathbb{C}$  and  $\overline{\mathbb{Q}} \to \mathbb{C}_{\ell}$  for all primes  $\ell$ . Let  $I_p \subseteq G_{\mathbb{Q}_p}$  be the inertia subgroup. Let  $\chi_{cyc}: G_{\mathbb{Q}_p} \to \mathbb{Z}_p^{\times}$  be the mod-p cyclotomic character. Let  $K_{\infty}$  be a complete subfield of  $\mathbb{C}_p$  containing all roots of unity, and let  $\mathcal{O}_{\infty}$  be its ring of integers. Let  $\Lambda := \mathbb{Z}_p[[T]] \cong \mathbb{Z}_p[[1+p\mathbb{Z}_p]]$  be the Iwasawa algebra. Then  $\mathfrak{h}$  is an algebra over  $\Lambda$  by sending group elements to adjoint diamond operators. Let  $\Lambda_{\mathcal{O}_{\infty}} := \Lambda \widehat{\otimes} \mathcal{O}_{\infty} \cong \mathcal{O}_{\infty}[[T]]$ . We may consider the space  $S(N, \Lambda_{\mathcal{O}_{\infty}})$  of  $\Lambda_{\mathcal{O}_{\infty}}$ -adic cusp forms (in the sense of Hida).

**Theorem 1.1** (Ohta). There is a canonical short exact sequence of  $\mathfrak{h}[G_{\mathbb{Q}_p}]$ -modules

$$0 \to H_{sub} \to H \to H_{quo} \to 0$$

such that:

- (1) For all  $\sigma \in I_p$ , we have that  $\sigma$  acts on  $H_{sub}$  trivially and on  $H_{quo}$  as  $\chi_{cyc}(\sigma)^{-1}\langle \chi_{cyc}(\sigma)^{-1}\rangle^*$ ;
- (2) The sequence is non-canonically split as h-modules;
- (3) There is a  $\Lambda$ -bilinear pairing  $H \times H \to \Lambda$  that induces a perfect pairing

$$H_{sub} \times H_{quo} \to \Lambda$$
.

.

(4) There is a canonical isomorphism of  $\mathfrak{h}[G_{\mathbb{Q}_p}]$ -modules

$$H_{quo}\widehat{\otimes}\mathcal{O}_{\infty}\cong eS(N;\Lambda_{\mathcal{O}_{\infty}})(-1).$$

This Theorem has numerous implications. In particular, it is a key ingredient in the construction of the map  $\Upsilon$  in Sharifi's Conjectures.

## 2. Good quotients of Jacobians

In this section, we review the construction of "good quotients" of Jacobians of modular curves used by Ohta. Ohta references Tilouine [7] and Mazur–Wiles [4] for this construction.

Let  $J_r$  be the Jacobian of  $X_r$ . Let  $X'_r$  be the modular curve corresponding to the congruence subgroup  $\Gamma_1(Np^r) \cap \Gamma_0(p^{r+1})$ , and let  $J'_r$  be its Jacobian. We have natural projections

$$X_{r+1} \xrightarrow{\pi_r} X'_r \xrightarrow{\rho_r} X_r$$

inducing maps on Jacobians

$$(\rho_r)_*: J'_r \to J_r, \qquad \pi_r^*: J'_r \to J_{r+1}.$$

Ohta defines the "good quotients" of the  $J_r$  inductively for  $r \geq 1$  as follows: we set  $B_1 := J_1/\pi_0^*(J_0')$ , and we let  $\alpha_1 : J_1 \to B_1$  be the quotient map. Now suppose we have constructed  $\alpha_r : J_r \to B_r$  for some  $r \geq 1$ . We let

$$K_r := \ker(\alpha_r \circ (\rho_r)_*), \qquad B_{r+1} := J_{r+1}/\pi_r^* (K_r)^\circ,$$

and  $\alpha_{r+1}: J_{r+1} \to B_{r+1}$  is the quotient map. Note that the kernel of  $\alpha_r$  is always connected by construction.

**Lemma 2.1** (Tilouine). For all  $r \geq 1$ , we have that  $\ker(\alpha_r)$  is  $\mathbb{Q}$ -rational and stable under all (usual) Hecke operators. Thus, we have a well-defined  $\mathbb{Q}$ -rational action of Hecke operators on  $B_r$ .

Let  $w_r$  be the Atkin–Lehner involution of  $X_r$ . In what follows, we replace  $K_r$  with  $w_r(K_r)$ , and correspondingly replace  $B_r$  with  $J_r/w_r(\ker(\alpha_r))$ . Then  $\mathfrak{h}_r$  acts on  $B_r$ , compatibly in r. Let  $\mathcal{O}_r := \mathbb{Z}_p[\mu_{p^r}]$ .

**Proposition 2.2** (c.f. [5], bottom of page 76). The abelian scheme  $B_{r/\mathbb{Q}_p(\mu_{p^r})}$  has good reduction. In other words, there is an abelian scheme  $B_{r/\mathbb{Q}_r}$  over  $\mathcal{O}_r$  with generic fiber  $B_{r/\mathbb{Q}_p(\mu_{p^r})}$ .

For each  $r \geq 1$ , we let

$$G_r := e(B_{r/\mathcal{O}_r}[p^\infty]),$$

which is a p-divisible group over  $\mathcal{O}_r$ .

**Proposition 2.3.** [5, Theorem 3.2.5] The following are true:

(1) The map  $\alpha_r$  induces an isomorphism

$$e(J_r[p^\infty]) \cong e(B_r[p^\infty]).$$

Consequently, the p-adic Tate module  $T_pG_r$  is isomorphic to

$$e(T_pJ_r)\cong eH_r(1).$$

(2)  $G_r$  is ordinary, in the sense that  $G_r^{\circ}$  has étale Cartier dual.

(3) Let  $(\cdot,\cdot):T_pJ_r\times T_pJ_r\to \mathbb{Z}_p(1)$  be the usual Weil pairing. Define a "twisted Weil pairing" by

$$[\cdot,\cdot]_r:T_pJ_r\times T_pJ_r\to \mathbb{Z}_p(1), \qquad [x,y]_r:=(x,w_ry)_r.$$

Then  $T_p(G_r^{\circ})$  is self-annihilating under this pairing, and this pairing gives a perfect duality between  $T_p(G_r^{\circ})$  and  $T_p(G_r^{\acute{e}t})$ .

- (4) The action of the inertia subgroup  $I_p \subset G_{\mathbb{Q}_p}$  leaves  $T_p(G_r^{\circ})$  (and hence  $T_p(G_r^{\acute{e}t})$ ) stable. For  $\sigma \in I_p$ , we have that  $\sigma$  acts trivially on  $T_p(G_r^{\acute{e}t})$ , and acts on  $T_p(G_r^{\circ})$  as  $\chi_{cyc}(\sigma)\langle\chi_{cyc}(\sigma)\rangle^*$ .
- (5) The following exact sequence of  $e\mathfrak{h}_r$ -modules (non-canonically) splits:

$$0 \to T_p(G_r^{\circ}) \to T_pG_r \to T_p(G_r^{\acute{e}t}) \to 0.$$

## Corollary 2.4. Let

$$H_{r,sub} := \operatorname{Hom}_{\mathbb{Z}_p}(T_p(G_r^{\acute{e}t}), \mathbb{Z}_p), \qquad H_{r,quo} := \operatorname{Hom}_{\mathbb{Z}_p}(T_p(G_r^{\circ}), \mathbb{Z}_p).$$

Then we have a short exact sequence

$$0 \to H_{r,sub} \to eH_r \to H_{r,auo} \to 0$$

satisfying conditions (1)-(3) of Theorem 1.1. These exact sequences are compatible in r, so taking a limit, we obtain a short exact sequence

$$0 \to H_{sub} \to H \to H_{auo} \to 0$$

satisfying conditions (1)-(3) of Theorem 1.1, where

$$H_{sub} := \varprojlim_{r} H_{r,sub}, \qquad H_{quo} := \varprojlim_{r} H_{r,quo}.$$

### 3. From Cohomology to cusp forms

For the following argument, Ohta refers to Tate [6].

We saw above that the sub and quo of H come from the connected-étale sequences for the p-divisible groups  $G_r$  (after taking Tate modules and  $\mathbb{Z}_p$ -duals). In particular, we saw that

$$H_{r,quo} = \operatorname{Hom}_{\mathbb{Z}_p}(T_p(G_r^{\circ}), \mathbb{Z}_p).$$

We now relate this group to a space of weight 2 cusp forms. As in the Introduction, let  $K_{\infty}$ be a complete subfield of  $\mathbb{C}_p$  containing all roots of unity, and let  $\mathcal{O}_{\infty}$  be its ring of integers.

Proposition 3.1. [5, c.f. 3.3.2] We have an isomorphism

$$H_{r,quo} \otimes \mathcal{O}_{\infty} \cong \operatorname{Cot}(G_{r,\mathcal{O}_{\infty}})(-1).$$

Here,  $\operatorname{Cot}(G_{r,\mathcal{O}_{\infty}})$  denotes the cotangent space of  $G_{r,\mathcal{O}_{\infty}}$  along the unit section over  $\mathcal{O}_{\infty}$ .

Remark 3.2. In [5, 3.3.2], Ohta claims that this follows from [6, §4]. However, no explanation is given for how this follows from Tate's argument.

# Lemma 3.3. We have an injection

$$\operatorname{Cot}(G_{r,\mathcal{O}_{\infty}}) \to eS_2(\Gamma_1(Np^r), K_{\infty}).$$

*Proof.* We have an isomorphism

$$\operatorname{Cot}(G_{r,\mathcal{O}_{\infty}}) \cong e \operatorname{Cot}(B_{r,\mathcal{O}_r}[p^{\infty}]) \cong e \operatorname{Cot}(B_{r,\mathcal{O}_r}).$$

Futhermore, we have  $\mathfrak{h}_r$ -equivariant injections

$$\operatorname{Cot}(B_{r,\mathcal{O}_r}) \to \operatorname{Cot}(J_{r,K_\infty}) \to H^0(X_r,\Omega^1) \otimes_{\mathbb{Q}} K \cong S_2(\Gamma_1(Np^r),K_\infty).$$

Combining the above facts gives the claim.

**Proposition 3.4.** [5, Prop 3.3.6] If f is in the image of the injection  $Cot(G_{r,\mathcal{O}_{\infty}}) \rightarrow eS_2(\Gamma_1(Np^r), K_{\infty})$ , then both f and  $w_r f$  are contained in  $\mathcal{O}_{\infty}[[q]]$ .

Proof sketch. We denote by  $\mathfrak{X}_r$  the integral closure of the integral model of the level 1 modular curve  $X(1)_{/\mathbb{Z}}$  in  $X_{r,\mathbb{Q}_p(\mu_{Np^r})}$ . Then the smooth locus  $\mathfrak{X}_r^{sm}$  of  $\mathfrak{X}_r$  over  $\mathbb{Z}_p[\mu_{Np^r}]$  contains the sections corresponding to cusps. By universal property of the Neron model  $\mathfrak{J}_r$  of  $J_r$  over  $\mathbb{Z}_p[\mu_{Np^r}]$ , we have a morphism  $\mathfrak{X}_r^{sm} \to \mathfrak{J}_r$  whose base change to  $\mathbb{Q}_p(\mu_{Np^r})$  factors through the morphism  $X_{r,\mathbb{Q}(\mu_{Np^r})} \to J_{r,\mathbb{Q}(\mu_{Np^r})}$ . There is a formal neighborhood  $\operatorname{Spec}(\mathbb{Z}_p[\mu_{Np^R}][[q]] \to \mathfrak{X}_r^{sm}$  of the cusp corresponding to  $\infty$  such that the q-expansion of  $f \in S_2(\Gamma_1(Np^r), \mathbb{Q}_p(\mu_{Np^r})) \cong H^0(X_{r,\mathbb{Q}(\mu_{Np^r})}, \Omega^1)$  coming from  $\operatorname{Cot}(G_{r,\mathcal{O}_\infty})$  is given by pulling back differentials along the composition

$$\operatorname{Spec}(\mathbb{Z}_p[\mu_{Np^R}][[q]] \to \mathfrak{X}_r^{sm} \to \mathfrak{J}_r \to B_{r/\mathbb{Z}_p[\mu_{Np^r}]}.$$

The q-expansion of f is therefore in  $\mathcal{O}_{\infty}[[q]]$ .

A similar argument replacing the  $\infty$  cusp with the 0 cusp gives the statement on  $w_r f$ .

Corollary 3.5. We have natural injections, for all  $r \geq 1$ :

$$H_{r,quo} \otimes \mathcal{O}_{\infty} \hookrightarrow eS_2^*(\Gamma_1(Np^r), \mathcal{O}_{\infty})(-1).$$

Here, the superscript "\*" denotes the image under  $w_r$ . If we set (under Ohta's trace maps)

$$\mathfrak{S} := \varprojlim_r eS_2^*(\Gamma_1(Np^r), \mathcal{O}_\infty),$$

then we have an injection

$$H_{quo}\widehat{\otimes}\mathcal{O}_{\infty} \hookrightarrow \mathfrak{S}(-1).$$

### 4. Surjectivity onto ordinary $\Lambda$ -adic cusp forms

**Theorem 4.1.** The maps in Corollary 3.5 are isomorphisms.

In this section, we sketch the proof of this Theorem.

**Lemma 4.2.** The  $\Lambda_{\mathcal{O}_{\infty}}$ -modules  $H_{quo}\widehat{\otimes}\mathcal{O}_{\infty}$  and  $\mathfrak{S}$  are free of finite rank.

*Proof sketch.* In fact, Ohta shows that  $H \widehat{\otimes} \mathcal{O}_{\infty}$  is free of finite rank using results of Hida [2, Thm 3.1(ii)]. Furthermore, since we have an injection as in Corollary 3.5, it suffices to show that  $\mathfrak{S}$  is free of finite rank (why?). This follows from the Theorem below, which we will also use.

**Theorem 4.3.** [5, Thm 2.3.6] There is a canonical isomorphism

$$e\mathfrak{S} \cong eS(N, \Lambda_{\mathcal{O}_{\infty}}).$$

Remark 4.4. This is only a special case of [5, Thm 2.3.6]. Ohta proves a similar result in all weights  $k \geq 2$ .

In the remainder of this section, we only roughly sketch Ohta's arguments. To show surjectivity, Ohta uses control Theorems of Hida to reduce to showing that

$$H_{1,quo} \otimes \mathcal{O}_{\infty} \cong eS_2^*(\Gamma_1(Np), \mathcal{O}_{\infty}).$$

By Proposition 3.1, it suffices to show that we have an isomorphism

$$e \operatorname{Cot}(B_{1,\mathbb{Z}[\mu_{N_p}]}) \cong eS_2^*(\Gamma_1(N_p),\mathbb{Z}[\mu_{N_p}]).$$

Let k be the residue field of  $\mathbb{Z}_p[\mu_{Np}]$ . We denote by  $\overline{X_1}$  the special fiber of  $\mathfrak{X}_1$  over k. It is known that  $\overline{X_1}$  has two irreducible components  $C_0$  and  $C_\infty$  that intersect the sections of  $\mathfrak{X}_1$  corresponding to the cusps 0 and  $\infty$ , respectively. Furthermore,  $C_0$  and  $C_\infty$  meet transversally precisely at the supersingular points.

Ohta shows that the quotient  $J_1 \to B_1$  factors through the "Mazur-Wiles" good quotient  $A_1$ , and that we have an isomorphism  $eA_1[p^{\infty}] \cong eB_1[p^{\infty}]$ .

The result then follows from the combination of the following two Propositions:

**Proposition 4.5.** [5, Prop 3.4.7] The quotient map  $J_1 \to A_1$  induces isomorphisms

$$\operatorname{Cot}(A_{1,\mathbb{Z}_p[\mu_{N_p}})^{(i)} \cong H^0(\mathfrak{X}_1,\Omega^1)^{(i)}$$

for all  $i \not\equiv 0 \pmod{p-1}$  (here, the superscript "(i)" denotes the  $\omega^i$ -eigenspace). Furthermore, let

$$S_2' := \{ f \in S_2(\Gamma_1(Np), \mathbb{Z}_p[\mu_{Np}]) : w_1 f \in \mathbb{Z}_p[\mu_{Np}][[q]] \}.$$

Then q-expansions give an isomorphism

$$H^0(\mathfrak{X}_1, \Omega^1)^{(i)} \cong (S_2')^{(i)}.$$

**Proposition 4.6.** [5, Prop 3.4.8] We have an equality

$$eS_2' = eS_2^*(\Gamma_1(Np), \mathbb{Z}[\mu_{Np}]).$$

#### 5. Final remarks

Above, we only really considered the action of  $I_p$  on  $H_{sub}$  and  $H_{quo}$ . In Section 3.5 of [5], Ohta considers the action of the full decomposition group  $G_{\mathbb{Q}_p}$ , thus finishing the proof of Theorem 1.1. In this report, we chose to focus on the relationship between Ohta's Eichler–Shimura cohomology groups and Hida's  $\Lambda$ -adic cusp forms, so we omit the description of the Galois action on these groups.

One might like to generalize these results to other settings (e.g. Shimura curves). One obstruction might seem to be Ohta's use of the geometry of the special fiber of  $\mathfrak{X}_1$ . However, work of Carayol [1] has a description of certain integral models of Shimura curves that might be useful. Another serious obstruction seems to be Ohta's use of q-expansions to detect integrality of cusp forms as in Proposition 3.4. One workaround would be the development of so-called "Serre–Tate expansions" at CM points of modular forms on Shimura curves (see, for example, [3, §4] for Shimura curves over  $\mathbb{Q}$ ). We hope to explore these ideas further.

### References

- [1] Henri Carayol. Sur la mauvaise réduction des courbes de Shimura. Compositio Math., 59(2):151–230, 1986.
- [2] Haruzo Hida. Galois representations into  $GL_2(\mathbf{Z}_p[[X]])$  attached to ordinary cusp forms. *Invent. Math.*, 85(3):545–613, 1986.
- [3] Matteo Longo, Paola Magrone, and Eduardo Rocha Walchek. Big heegner points, generalized heegner classes and p-adic l-functions in the quaternionic setting, 2024.
- [4] B. Mazur and A. Wiles. Class fields of abelian extensions of Q. Invent. Math., 76(2):179–330, 1984.
- [5] Masami Ohta. On the p-adic Eichler-Shimura isomorphism for  $\Lambda$ -adic cusp forms. J. Reine Angew. Math., 463:49–98, 1995.
- [6] J. T. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158–183. Springer, Berlin-New York, 1967.
- [7] Jacques Tilouine. Un sous-groupe p-divisible de la jacobienne de  $X_1(Np^r)$  comme module sur l'algèbre de Hecke. Bull. Soc. Math. France, 115(3):329–360, 1987.