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1. Introduction

In this short note, we given an outline of Ohta’s proof of a p-adic Eichler–Shimura iso-
morphism. We mainly follows Ohta’s original proof given in [5] which excludes certain
eigenspaces.

Throughout, let p ≥ 5 be a prime number, and let N ≥ 1 be an integer not divisible
by p. Recall that for each r ≥ 0, we have modular curves Xr := X1(Npr) defined over
Q. Following Ohta, we choose our models of Xr such that the cusp corresponding to i∞ is
rational. Let Cr be the set of cusps on Xr, and let Yr := Xr−Cr be the corresponding open
modular curve.

We begin by considering the étale cohomology groups

Hr := H1
ét(Xr,Q,Zp).

These groups admit an action of certain (adjoint) Hecke algebras hr over Zp, and in particular
an action of the Hecke operator T (p)∗. We will consider a certain idempotent e acting on Hr

which is the composition of Hida’s ordinary projector for T (p)∗ and projection away from the
1, ω−1 eigenspaces for the action of (Z/pZ)×. There are natural trace mappings Hr+1 → Hr

that commute with T (p)∗, and so we may define

H := e · lim←−
r

Hr.

This group admits an action of the algebra h := lim←−r ehr. This group also admits an action

of GQ := Gal(Q/Q), though for this note we will be focused on the action of GQp .

We fix embeddings Q → C and Q → C` for all primes `. Let Ip ⊆ GQp be the inertia
subgroup. Let χcyc : GQp → Z×p be the mod-p cyclotomic character. Let K∞ be a complete
subfield of Cp containing all roots of unity, and let O∞ be its ring of integers. Let Λ :=
Zp[[T ]] ∼= Zp[[1 + pZp]] be the Iwasawa algebra. Then h is an algebra over Λ by sending
group elements to adjoint diamond operators. Let ΛO∞ := Λ⊗̂O∞ ∼= O∞[[T ]]. We may
consider the space S(N,ΛO∞) of ΛO∞-adic cusp forms (in the sense of Hida).

Theorem 1.1 (Ohta). There is a canonical short exact sequence of h[GQp ]-modules

0→ Hsub → H → Hquo → 0

such that:

(1) For all σ ∈ Ip, we have that σ acts on Hsub trivially and on Hquo as χcyc(σ)−1〈χcyc(σ)−1〉∗;
(2) The sequence is non-canonically split as h-modules;
(3) There is a Λ-bilinear pairing H ×H → Λ that induces a perfect pairing

Hsub ×Hquo → Λ.

.
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(4) There is a canonical isomorphism of h[GQp ]-modules

Hquo⊗̂O∞ ∼= eS(N ; ΛO∞)(−1).

This Theorem has numerous implications. In particular, it is a key ingredient in the
construction of the map Υ in Sharifi’s Conjectures.

2. Good quotients of Jacobians

In this section, we review the construction of “good quotients” of Jacobians of modular
curves used by Ohta. Ohta references Tilouine [7] and Mazur–Wiles [4] for this construction.

Let Jr be the Jacobian of Xr. Let X ′r be the modular curve corresponding to the congru-
ence subgroup Γ1(Npr) ∩ Γ0(pr+1), and let J ′r be its Jacobian. We have natural projections

Xr+1
πr−→ X ′r

ρr−→ Xr

inducing maps on Jacobians

(ρr)∗ : J ′r → Jr, π∗r : J ′r → Jr+1.

Ohta defines the “good quotients” of the Jr inductively for r ≥ 1 as follows: we set B1 :=
J1/π

∗
0(J ′0), and we let α1 : J1 → B1 be the quotient map. Now suppose we have constructed

αr : Jr → Br for some r ≥ 1. We let

Kr := ker(αr ◦ (ρr)∗), Br+1 := Jr+1/π
∗
r(Kr)

◦,

and αr+1 : Jr+1 → Br+1 is the quotient map. Note that the kernel of αr is always connected
by construction.

Lemma 2.1 (Tilouine). For all r ≥ 1, we have that ker(αr) is Q-rational and stable under all
(usual) Hecke operators. Thus, we have a well-defined Q-rational action of Hecke operators
on Br.

Let wr be the Atkin–Lehner involution of Xr. In what follows, we replace Kr with wr(Kr),
and correspondingly replace Br with Jr/wr(ker(αr)). Then hr acts on Br, compatibly in r.
Let Or := Zp[µpr ].

Proposition 2.2 (c.f. [5], bottom of page 76). The abelian scheme Br/Qp(µpr ) has good
reduction. In other words, there is an abelian scheme Br/Or over Or with generic fiber
Br/Qp(µpr ).

For each r ≥ 1, we let
Gr := e(Br/Or [p

∞]),

which is a p-divisible group over Or.

Proposition 2.3. [5, Theorem 3.2.5] The following are true:

(1) The map αr induces an isomorphism

e(Jr[p
∞]) ∼= e(Br[p

∞]).

Consequently, the p-adic Tate module TpGr is isomorphic to

e(TpJr) ∼= eHr(1).

(2) Gr is ordinary, in the sense that G◦r has étale Cartier dual.
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(3) Let (·, ·) : TpJr × TpJr → Zp(1) be the usual Weil pairing. Define a “twisted Weil
pairing” by

[·, ·]r : TpJr × TpJr → Zp(1), [x, y]r := (x,wry)r.

Then Tp(G
◦
r) is self-annihilating under this pairing, and this pairing gives a perfect

duality between Tp(G
◦
r) and Tp(G

ét
r ).

(4) The action of the inertia subgroup Ip ⊂ GQp leaves Tp(G
◦
r) (and hence Tp(G

ét
r )) sta-

ble. For σ ∈ Ip, we have that σ acts trivially on Tp(G
ét
r ), and acts on Tp(G

◦
r) as

χcyc(σ)〈χcyc(σ)〉∗.
(5) The following exact sequence of ehr-modules (non-canonically) splits:

0→ Tp(G
◦
r)→ TpGr → Tp(G

ét
r )→ 0.

Corollary 2.4. Let

Hr,sub := HomZp(Tp(G
ét
r ),Zp), Hr,quo := HomZp(Tp(G

◦
r),Zp).

Then we have a short exact sequence

0→ Hr,sub → eHr → Hr,quo → 0

satisfying conditions (1)-(3) of Theorem 1.1. These exact sequences are compatible in r, so
taking a limit, we obtain a short exact sequence

0→ Hsub → H → Hquo → 0

satisfying conditions (1)-(3) of Theorem 1.1, where

Hsub := lim←−
r

Hr,sub, Hquo := lim←−
r

Hr,quo.

3. From cohomology to cusp forms

For the following argument, Ohta refers to Tate [6].
We saw above that the sub and quo of H come from the connected-étale sequences for the

p-divisible groups Gr (after taking Tate modules and Zp-duals). In particular, we saw that

Hr,quo = HomZp(Tp(G
◦
r),Zp).

We now relate this group to a space of weight 2 cusp forms. As in the Introduction, let K∞
be a complete subfield of Cp containing all roots of unity, and let O∞ be its ring of integers.

Proposition 3.1. [5, c.f. 3.3.2] We have an isomorphism

Hr,quo ⊗O∞ ∼= Cot(Gr,O∞)(−1).

Here, Cot(Gr,O∞) denotes the cotangent space of Gr,O∞ along the unit section over O∞.

Remark 3.2. In [5, 3.3.2], Ohta claims that this follows from [6, §4]. However, no explanation
is given for how this follows from Tate’s argument.

Lemma 3.3. We have an injection

Cot(Gr,O∞)→ eS2(Γ1(Npr), K∞).
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Proof. We have an isomorphism

Cot(Gr,O∞) ∼= eCot(Br,Or [p
∞]) ∼= eCot(Br,Or).

Futhermore, we have hr-equivariant injections

Cot(Br,Or)→ Cot(Jr,K∞)→ H0(Xr,Ω
1)⊗Q K ∼= S2(Γ1(Npr), K∞).

Combining the above facts gives the claim. �

Proposition 3.4. [5, Prop 3.3.6] If f is in the image of the injection Cot(Gr,O∞) →
eS2(Γ1(Npr), K∞), then both f and wrf are contained in O∞[[q]].

Proof sketch. We denote by Xr the integral closure of the integral model of the level 1 modular
curve X(1)/Z in Xr,Qp(µNpr ). Then the smooth locus Xsm

r of Xr over Zp[µNpr ] contains the
sections corresponding to cusps. By universal property of the Neron model Jr of Jr over
Zp[µNpr ], we have a morphism Xsm

r → Jr whose base change to Qp(µNpr) factors through the
morphism Xr,Q(µNpr ) → Jr,Q(µNpr ). There is a formal neighborhood Spec(Zp[µNpR ][[q]]→ Xsm

r

of the cusp corresponding to ∞ such that the q-expansion of f ∈ S2(Γ1(Npr),Qp(µNpr)) ∼=
H0(Xr,Q(µNpr ),Ω

1) coming from Cot(Gr,O∞) is given by pulling back differentials along the
composition

Spec(Zp[µNpR ][[q]]→ Xsm
r → Jr → Br/Zp[µNpr ].

The q-expansion of f is therefore in O∞[[q]].
A similar argument replacing the∞ cusp with the 0 cusp gives the statement on wrf . �

Corollary 3.5. We have natural injections, for all r ≥ 1:

Hr,quo ⊗O∞ ↪→ eS∗2(Γ1(Npr),O∞)(−1).

Here, the superscript “∗” denotes the image under wr. If we set (under Ohta’s trace maps)

S := lim←−
r

eS∗2(Γ1(Npr),O∞),

then we have an injection
Hquo⊗̂O∞ ↪→ S(−1).

4. Surjectivity onto ordinary Λ-adic cusp forms

Theorem 4.1. The maps in Corollary 3.5 are isomorphisms.

In this section, we sketch the proof of this Theorem.

Lemma 4.2. The ΛO∞-modules Hquo⊗̂O∞ and S are free of finite rank.

Proof sketch. In fact, Ohta shows that H⊗̂O∞ is free of finite rank using results of Hida [2,
Thm 3.1(ii)]. Furthermore, since we have an injection as in Corollary 3.5, it suffices to show
that S is free of finite rank (why?). This follows from the Theorem below, which we will
also use. �

Theorem 4.3. [5, Thm 2.3.6] There is a canonical isomorphism

eS ∼= eS(N,ΛO∞).

Remark 4.4. This is only a special case of [5, Thm 2.3.6]. Ohta proves a similar result in all
weights k ≥ 2.
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In the remainder of this section, we only roughly sketch Ohta’s arguments. To show
surjectivity, Ohta uses control Theorems of Hida to reduce to showing that

H1,quo ⊗O∞ ∼= eS∗2(Γ1(Np),O∞).

By Proposition 3.1, it suffices to show that we have an isomorphism

eCot(B1,Z[µNp]) ∼= eS∗2(Γ1(Np),Z[µNp]).

Let k be the residue field of Zp[µNp]. We denote by X1 the special fiber of X1 over k.
It is known that X1 has two irreducible components C0 and C∞ that intersect the sections
of X1 corresponding to the cusps 0 and ∞, respectively. Furthermore, C0 and C∞ meet
transversally precisely at the supersingular points.

Ohta shows that the quotient J1 → B1 factors through the “Mazur–Wiles” good quotient
A1, and that we have an isomorphism eA1[p∞] ∼= eB1[p∞].

The result then follows from the combination of the following two Propositions:

Proposition 4.5. [5, Prop 3.4.7] The quotient map J1 → A1 induces isomorphisms

Cot(A1,Zp[µNp
)(i) ∼= H0(X1,Ω

1)(i)

for all i 6≡ 0 (mod p − 1) (here, the superscript “(i)” denotes the ωi-eigenspace). Further-
more, let

S ′2 := {f ∈ S2(Γ1(Np),Zp[µNp]) : w1f ∈ Zp[µNp][[q]]}.

Then q-expansions give an isomorphism

H0(X1,Ω
1)(i) ∼= (S ′2)(i).

Proposition 4.6. [5, Prop 3.4.8] We have an equality

eS ′2 = eS∗2(Γ1(Np),Z[µNp]).

5. Final remarks

Above, we only really considered the action of Ip on Hsub and Hquo. In Section 3.5 of [5],
Ohta considers the action of the full decomposition group GQp , thus finishing the proof of
Theorem 1.1. In this report, we chose to focus on the relationship between Ohta’s Eichler–
Shimura cohomology groups and Hida’s Λ-adic cusp forms, so we omit the description of the
Galois action on these groups.

One might like to generalize these results to other settings (e.g. Shimura curves). One
obstruction might seem to be Ohta’s use of the geometry of the special fiber of X1. However,
work of Carayol [1] has a description of certain integral models of Shimura curves that might
be useful. Another serious obstruction seems to be Ohta’s use of q-expansions to detect
integrality of cusp forms as in Proposition 3.4. One workaround would be the development
of so-called “Serre–Tate expansions” at CM points of modular forms on Shimura curves (see,
for example, [3, §4] for Shimura curves over Q). We hope to explore these ideas further.
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