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1. Overview

In the first section, we discuss Nim and introduce some ideas without using too much math
notation, but you can skip to Section 3, where I explain the questions I’m interested in.

2. Nim

Recall the game of Nim. There are n piles of stones with a1, . . . , an ≥ 0 stones in them, respec-
tively. Two players, player A and player B, take turns. On each player’s turn, they pick a pile and
remove any nonzero number of stones from the pile they have chosen. The player to take away the
last stone wins.

We observe that it is impossible to draw in Nim. The game must terminate, since there are
finitely many stones in play, and each turn reduces the number of stones in play by at least 1. At
the end of the game, one of the players removes the last stone, so one player must win.

What would “optimal play” look like in this game? Playing optimally should mean that if a
player has a strategy that leads to guaranteed victory, then that player will use that strategy. If
there is no way for a given player to win, assuming the other player plays optimally, then we are
indifferent between any moves we could make. If a given player has a strategy to guarantee victory,
we say that player starts their turn in a winning state. Otherwise, we say the player is in a losing
state. Note that in a given state s, if there are no possible moves, then there are no moves that
guarantee victory, so s is a losing state. For example, in Nim, the state with no stones is a losing
state, which agrees with the fact that the player who takes the last stones wins.

For example, if, at the start of person A’s turn, there is one pile left, then A can win by removing
all of the stones in this pile. If there are two piles, then A would not want to take away a whole
pile, since that would allow person B to remove the last pile.

From this discussion, it is clear that player A is in a winning state if and only if player A can
make a move that puts player B in a losing state, and player A is in a losing state if and only if any
move player A makes will put player B in a winning state. A priori, we might not expect that a
given state has to be winning or losing. But for Nim, it turns out to be a well-defined classification.

Lemma. For Nim, every possible starting state of the game is either winning or losing in a well-
defined way.

Proof. We represent a state of the game as (a1, . . . , an), where ak is a nonnegative integer for each
k. We then proceed by induction on a1 + · · · + an. If a1 + · · · + an = 0, then as ak ≥ 0 for all k,
we must have ak = 0 for all k. From above, we know this is a losing state. Now suppose that for
some positive integer T , all states with a1 + · · · + an < T can be classified as winning or losing.
Now suppose a1 + · · · + an = T . Let S(a1, . . . , an) be the set of possible states one move away
from (a1, . . . , an). Every possible move reduces a1 + · · ·+ an, so each state in S(a1, . . . , an) can be
classified as winning or losing by the induction hypothesis. If all of these states are winning states,
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then (a1, . . . , an) is a losing state. Otherwise, there exists a state s ∈ S(a1, . . . , an) that is losing.
Then (a1, . . . , an) is winning. By induction, every state is either winning or losing. �

For an explanation of the winning strategy of Nim, see Section 4.

3. Games More Generally

For our purposes, a “game” will mean something a little more general.

Definition 1. A game is a triple (S,→,W ), where S is a set of states, “→” is a relation on S
(i.e. a subset of S × S, where the statement “a → b” means (a, b) is in the subset) and W is a
subset of S such that for all a ∈ S, we have a ∈W if and only if there exists b ∈ S such that b 6∈ S
and a→ b. We call W the set of winning states, and we call L := S \W the set of losing states.
If a→ b, we say that a→ b is a possible move, and we say that we can move from a to b.

Note that we don’t require games to actually end. For example, a game could be S = {0, 1},
and 0→ 1 and 1→ 0 and 1 ∈W . This satisfies the definition, but “playing” the game would never
end, since the gameplay would look like

0→ 1→ 0→ 1→ · · ·
I don’t really care about the end of a game, but I do care about winning or losing!

Because I like abstract nonsense, I’ll make another definition.

Definition 2. A cogame is a triple (S,→,M), where S is a set of states, “→” is a relation on
S, and M is a subset of S such that for all a ∈ S, we have a ∈ M if and only if there exists b ∈ S
such that b 6∈M and b→ a. We call M the set of cowinning states.

The only thing different in this definition is that the order of the relation has been reversed.
Is Nim a cogame with M = W? On one hand, if there exists b ∈ S such that b 6∈W and b→ a,

then b ∈ L, so a ∈ W . If a ∈ L, then b → a implies b ∈ W , a contradiction. But the converse is
not so clear. We must show that for any a ∈ W , there exists b ∈ L with b → a. In other words,
does every winning state come from a losing state? This turns out to be true (see Section 4).

Here’s a more fun game related to Nim. Let e1, . . . , en be the usual basis for Rn, and let

S = (R≥0)n := {
∑
k

akek : ak ∈ R, ak ≥ 0.}

For x, y ∈ S, we say x → y if x − y = rek for some k and some r > 0. Intuitively, a move is
decreasing one coordinate by some nonzero amount, but now that amount can be arbitrarily small.
Is there a unique game structure on this? It turns out the answer is no for n = 2. In fact, any
order-preserving bijection φ : R≥0 → R≥0 with φ(0) = 0 defines a game structure by declaring

W = {(a, b) ∈ S : b 6= φ(a)}.
Indeed, suppose (a, b) ∈ W . Then b > φ(a) or b < φ(a). If b > φ(a), then decrease b to φ(a) so
that (a, φ(a)) 6∈W . If b < φ(a), then a > φ−1(b), so decrease a to φ−1(b) so that b = φ(φ−1(b)) and
(φ−1(b), b) 6∈ W . Conversely, suppose b = φ(a). Then changing b to b′ 6= b will result in b′ 6= φ(a),
and changing a to a′ will result in b 6= φ(a′). This shows that this is a game. More concretely,
φ(x) = x and φ(x) = x2 give two different game structures on S. Can you generalize this to n > 2?
This also happens to be a cogame. Is every game structure on this set a cogame?

Some relations don’t admit any game structure. For example if the relation is a → b for all
a, b ∈ S, then if a state a was losing, we have a → a, so a is winning, a contradiction. But if all
states are winning, then no state is winning, since a winning state requires a losing state. This is
an apparent paradox, so we conclude that no game with this relation exists. It is then a necessary
condition that there exists a ∈ S with a 6→ a.
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4. Appendix: Winning Nim

For this section, we denote states of Nim by finite sequences (a1, . . . , an), where ak is a nonneg-
ative integer for all k. We define an operation ⊕ on nonnegative integers as follows: write a and b
in binary: a =

∑
aj2

j and b =
∑
bj2

j , where aj , bj ∈ {0, 1} for all j. Then define

a⊕ b :=
∑

(aj − bj)22j .

Lemma. The operation ⊕ makes Z≥0 into an abelian group in which every element is its own
inverse.

Proof. For aj , bj , cj ∈ {0, 1}, we have (aj−bj)2 is just addition modulo 2. So (aj−bj)2 = (bj−aj)2,
and ((aj−bj)2−cj)2 = ((bj−cj)2−aj)2, and (aj−aj)2 = 0. Combining these facts with associativity
of usual addition gives commutativity, associativity, and involutivity. Oh, and 0 is the identity. �

Theorem. In Nim, a state (a1, . . . , an) is winning if and only if

a1 ⊕ · · · ⊕ an 6= 0.

Proof. Similar to above, we induct on a1+· · ·+an. For a1+· · ·+an = 0, we have a1 = · · · = an = 0,
so (a1, . . . , an) is losing and a1 ⊕ · · · ⊕ an = 0.

Now suppose the result holds for a1 + · · · + an < T for some positive integer T . Suppose that
a1 ⊕ · · · ⊕ an = 0. We show that any move results in a nonzero ⊕-sum. Without loss of generality,
any move changes a1 to a′1 6= a1. Then we are assuming that

a1 ⊕ · · · ⊕ an = a′1 ⊕ · · · ⊕ an.
Then

a1 ⊕ a′1 = a1 ⊕ a′1 ⊕ (a2 ⊕ · · · ⊕ an)⊕ (a2 ⊕ · · · ⊕ an) = (a1 ⊕ · · · ⊕ an)⊕ (a′1 ⊕ · · · ⊕ an) = 0.

So
a1 = a1 ⊕ a′1 ⊕ a′1 = a′1.

But this contradicts a1 6= a′1. It follows that any move makes the ⊕-sum nonzero, and by the
inductive hypothesis, all possible moves result in winning states, so the given state (a1, . . . , an) is
losing.

Suppose that a1 ⊕ · · · ⊕ an 6= 0. We show that there exists a move that makes the ⊕-sum zero.
Let a0 := a1 ⊕ · · · ⊕ an. The leading nonzero binary digit of a0 must come from some ak. Then
ak⊕ a0 has leading nonzero binary digit farther to the right than ak, so ak⊕ a0 is less than ak. For
our move, we decrease ak to ak ⊕ a0. Without loss of generality, k = 1. Then

(a1 ⊕ a0)⊕ a2 ⊕ · · · ⊕ an = a0 ⊕ (a1 ⊕ · · · ⊕ an) = a0 ⊕ a0 = 0.

By induction hypothesis, (a1⊕a0, a2, . . . , an) is a losing state, so (a1, . . . , an) is winning. The result
then holds by induction. �

Here’s the way to apply this in real life, through an example.

Example 1. Suppose the state of the game is (3, 4, 7) and it is player B’s turn. We write

3 = 1 + 2, 4 = 4, 7 = 1 + 2 + 4

and count if there are an even or odd number of each power of 2 in these expansions. In this case,
there are an even number of each power, so 3 ⊕ 4 ⊕ 7 is a losing state. Say player B changes the
state to (3, 4, 6). Now

3 = 1 + 2, 4 = 4, 6 = 2 + 4.

So 3 ⊕ 4 ⊕ 6 = 1, so player A already knows they will win. There is a 1 in the binary expansion
of 3, so we decrease 3 to 3 ⊕ 1 = 2. So player A changes the state to (2, 4, 6). Again, any move
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made by player B will still result in player A winning, so player B impatiently changes the state to
(2, 4, 0). Then player A calculates 2⊕ 4 = 6 = 2 + 4, so player A decreases 4 to 4⊕ 6 = 2. So the
new state is (2, 2). Player B at this point knows that they are definitely doomed to loose, so they
change the state to (2, 1). Then player A changes it to (1, 1), then player B changes it to (1, 0),
and player A takes the last stone and wins.

From all of this, we can show that Nim is a cogame.

Proposition. Nim is a cogame with M = W .

Proof. Let (a1, . . . , an) ∈ W . Then a1 ⊕ · · · ⊕ an 6= 0. Let an+1 := a1 ⊕ · · · ⊕ an. Then
(a1, . . . , an, an+1) ∈ L, as

a1 ⊕ · · · ⊕ an ⊕ an+1 = an+1 ⊕ an+1 = 0.

Furthermore, we have (a1, . . . , an, an+1) → (a1, . . . , an) by just subtracting an+1 from the n + 1
pile. �
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