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Abstract. In this short note, we discuss a theorem of Golod and Šafarevič, which gives
some sufficient conditions for a number field to have an infinite class field tower. In partic-
ular, their theorem shows that infinite class field towers exist.

1. Introduction

A basic question in algebraic number theory is how class numbers grow in towers of number
fields. One might first ask if there are infinite towers of class number 1 fields. Before that,
we ask a more simple question:

Question 1.1. Let K be a number field. Does there exist a finite extension L of K such
that L has class number 1?

Roquette [4] refers to this as the “imbedding problem for K.”
Let HK denote the Hilbert class field of K. The following proposition helps us answer this

question:

Lemma 1.2. [4, Prop 1] Let K be a number field and L a finite extension of K with class
number 1. Then L contains the Hilbert class field of K.

Proof. Let K1 be the Hilbert class field of K. Let M be the normal closure of LK1 over K,
and let I ≤ Gal(M/K) be the inertia subgroup for some place v of M . Then since K1/K is
unramified, we have I ≤ Gal(M/K1), so

I ∩Gal(M/L) ⊆ Gal(M/K1) ∩Gal(M/L) = Gal(M/LK1).

So the place of L under v is unramified in LK1. So LK1/L is unramified at all places.
Furthermore, the kernel of the map Gal(M/L) → Gal(K1/K) is exactly Gal(M/LK1), so
Gal(LK1/L) is abelian. So LK1/L is an unramified abelian extension.

On the other hand, L has class number 1. By Class Field Theory, we conclude that
LK1 = L. So K1 ⊆ L. �

Corollary 1.3. Let K be a number field. Let K0 = K, and inductively define Kn+1 to be
the Hilbert class field of Kn. Then the tower of fields

K1 ⊆ K2 ⊆ · · ·
terminates if and only if K is contained in some number field with class number 1.

Proof. Suppose that there exists a number field L with class number 1 such that K ⊆ L.
Then K1 ⊆ L by Lemma 1.2. By induction, Kn ⊆ L for all n. But L is a finite extension of
K. So there exists some N such that for all n ≥ N , we have Kn = KN .
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Conversely, suppose that the tower above terminates. Then Kn = Kn+1 for some n, so Kn

has class number 1 and contains K. �

We are then lead to the following question:

Question 1.4. Is there a number field K such that the tower (Kn)n≥1 above does not
terminate?

Golod and Šafarevič [1] provided a positive answer to this in their 1964 paper “On the
Class Field Tower.”

Theorem 1.5 (Golod–Šafarevič). There exists a number field K such that the tower

K ⊆ K1 ⊆ K2 ⊆ · · ·

is infinite (i.e. does not terminate).

The key part of the proof will be an inequality relating the generator rank and relation
rank of finite p-groups.

The structure of this note is as follows. In Section 2, we establish some basic facts about
class field towers. In Section 3, we discuss generators and relations for finite p-groups and
pro-p groups. We use the concepts from this section to prove a sharpened version of the
main inequality of Golod and Šafarevič in Section 4, following the proof given by Neukirch–
Schmidt–Wingberg [3, Thm 3.9.7]. In Section 5, we use this inequality to prove that infinite
class field towers exist, focusing on imaginary quadratic fields for brevity. In Section 6, we
look at further work related to class field towers.

2. Class Field Towers

Let K be a number field throughout. As above, the ring of integers of K will be denoted
by OK , and the class group of K will be denoted by ClK .

Definition 2.1. The (Hilbert) class field tower of K is the tower of fields

K0 ⊆ K1 ⊆ K2 ⊆ · · ·

where K0 := K and Kn+1 is the Hilbert class field of Kn.

Let

K∞ :=
⋃
n≥0

Kn.

Lemma 2.2. The field K∞ is the maximal unramified pro-solvable extension of K.

Proof. (This is “obvious” according to some [3, p. 697], but I thought it was worth writing
out.)

We see that K∞ is a union of unramified extensions of K, so K∞ is unramified over K.
The Galois group Gal(K∞/K) is an inverse limit of solvable groups, since Gal(Kn/K) admits
a subnormal series

Gal(Kn/K) B Gal(Kn/K1) B · · · B Gal(Kn/Kn−1) B 1

with abelian factor groups Gal(Ki/Ki−1) ∼= ClKi−1
.
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Conversely, suppose L/K is a pro-solvable, unramified extension of K. Then there exists
a tower of extensions

K = L0 ⊆ L1 ⊆ · · · ⊆ L

with
⋃

n Ln = L and Gal(Ln/Ln−1) abelian. Then L1 is an unramfied abelian extension of
K, so is contained in the Hilbert class field K1 of K. Suppose that Ln is contained in Kn

for some n. Then Ln+1Kn is an unramified abelian extension of Kn, so is contained in Kn+1.
By induction, this shows that Ln is contained in Kn for all n. So L =

⋃
n Ln ⊆ K∞. �

Corollary 2.3. The field K∞ contains all unramified pro-p extensions of K.

Proof. Recall that finite p-groups are solvable, since any p-group has nontrivial center and a
quotient of a p-group is a p-group. �

Thus, in order to find a number field K with infinite class field tower, it suffices to find K
that admits an infinite unramified pro-p extension.

Definition 2.4. The (Hilbert) p-class field K
(p)
1 of K is the maximal unramified abelian

p-extension of K. The (Hilbert) p-class field tower of K is

K = K0 ⊆ K
(p)
1 ⊆ K

(p)
2 ⊆ · · ·

where K
(p)
n+1 is the Hilbert p-class field of K

(p)
n .

Remark 2.5. We have that
⋃

nK
(p)
n is an unramified pro-p extension of K, so is contained in

K∞. In particular, if K has finite class field tower, than K has finite p-class field tower.

3. Facts about finite p groups

For this section, G is a pro-p group. For a 2-torsion abelian group A, we denote by dim2A
the dimension of A over F2.

Definition 3.1. The rank of G, denoted rkG, is the minimal cardinality of a topological
generating set for G.

Definition 3.2. The relation rank of G, which we denote by relG, is the minimal cardinality
of a topological generating set for the kernel of a surjective map F → G, where F is a free
p group of minimal rank.

Proposition 3.3.

rkG = dimpH
1(G,Fp) and relG = dimpH

2(G,Fp).

Proof. Omitted. �

The following lemma will also be useful when working with p-primary G-modules.

Lemma 3.4. Let G be a finite p-group, and let A be a p-primary G-module (i.e. a finite
G-module of p-power order). If AG = 0, then A = 0.

Proof. Suppose A 6= 0. As a G-set, we can decompose A into G-orbits. By the orbit-stabilizer
theorem, if an orbit is not a singleton, it must have order divisible by p. Then the number
of singleton orbits must be divisible by p. But there is always the singleton orbit {0}. So
there must be some nonzero singleton orbit {a}. But then a ∈ AG − {0}, a contradiction.
So A = 0. �
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Lemma 3.5. [3, Lem 3.9.8] Let G be a finite p-group, let A be a finite Fp[G]-module, and
let bi = dimH i(G,Fp). Then there is a resolution

0→ A→ Fp[G]b0 → Fp[G]b1 → · · ·

such that (Fp[G]bi)G is in the kernel of the respective boundary map.

Proof. Recall the isomorphism of G-modules Fp → Fp[G]G given by 1 7→
∑

g∈G g. This

extends to an isomorphism φi : Fbi
p → (Fp[G]bi)G. Let a1, . . . , ab0 be an Fp-basis of AG (which

makes sense because b0 = h0(G,A) = dimFp A
G).

We have an exact sequence of G-modules

AG → A→ A/AG,

giving an exact sequence of Fp-vector spaces

0→ Hom(A/AG,Fp[G]b0)→ Hom(A,Fp[G]b0)→ Hom(AG,Fp[G]b0)→ 0.

Recall that for any G-modules A and B, we have (Hom(A,B))G = HomG(A,B), since the
G-action on Hom(A,B) is given by

(gf)(a) = gf(g−1a).

Then since H1(G,Hom(A/AG,Fp[G]b0)) = 0, the long exact cohomology sequence gives that

HomG(A,Fp[G]b0)→ HomG(AG,Fp[G]b0)

is surjective. In particular, the map AG → Fp[G]b0 given by ai 7→ φ(ei) extends to a map
s : A→ Fp[G]b0 .

We claim that s is injective. Indeed, ker s is a G-submodule of A, which is a finite G-
module of p-power order. Since (ker s)G = 0 ⊆ AG, Lemma 3.4 tells us that ker s = 0. So s
is injective.

Let B = Fp[G]b0/s(A), so that we have an exact sequence

0→ A→ Fp[G]b0 → B → 0.

Note that Fp[G]b0 is an induced module from Fb0
p , so is cohomologically trivial. Then by the

long exact sequence on cohomology, the connect maps give isomorphisms

H i(G,B) ∼= H i+1(G,A)

for i ≥ 1. Looking near the beginning of the long exact sequence, we have

0→ AG → (Fp[G]b0)G → BG → H1(G,A)→ 0.

But the first map was defined as a bijection, so has trivial cokernel. So BG ∼= H1(G,A). By
the same construction as above, we form a finite G-module C with an exact sequence

0→ B → Fp[G]b1 → C → 0

such that BG → (Fp[G]b1)G is bijective. We define ∂ : Fp[G]b0 → Fp[G]b1 as the composite

Fp[G]b0 → B → Fp[G]b1 .

But then (Fp[G]b0)G is contained in the image of A, so is sent to 0 in B. By induction, we
continue to build the resolution. �
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Definition 3.6. Let A be an Fp[G]-module. The ascending central series for A is

A0 = 0, An+1/An = (A/An)G.

The Poincaré polynomial of A is

PA(t) =
∑
n

dim(An+1/An)tn.

Lemma 3.7.
PA(t) = (1− t)

∑
n

dim(An+1)t
n.

Proof. This follows immediately from dim(An+1/An) = dim(An+1)− dim(An). �

Lemma 3.8. Let G be a finite p-group. Let A ⊆ B be finite Fp[G]-modules, and let (An)n≥0
and (Bn)n≥0 be their respective ascending central series. Then An = Bn ∩ A.

Proof. First, we have A1 = AG = A∩BG = A∩B1. So A/A1 injects into B/B1. By induction
the ascending central filtrations on these modules agree, so the ascending central series for
A agrees with that of B. �

4. The Main Inequality

Theorem 4.1 (Gaschütz, Vinberg, Neukirch–Schmidt–Wingberg). [3, Thm 3.9.7]
If G is a finite p-group, then

dimH1(G,Fp) >
1

4
(dimH2(G,Fp))

2.

Proof. Let k = dimH1(G,Fp), and r = dimH2(G,Fp). By Lemma 3.5 applied to A = Fp,
we have an exact sequence

0→ Fp → Fp[G]→ Fp[G]k → Fp[G]r.

Let A = Fp[G]/Fp be the cokernel of the first map, identified as a submodule of Fp[G]k. By
Lemma 3.8, we know that An = (Fp[G]k)n ∩ A. Also, we observe that ∂((Fp[G]k)G) = 0 =
(Fp[G]r)0 by construction of the sequence. By induction, ∂((Fp[G]k)n) ⊆ (Fp[G]r)n−1. So for
each n ≥ 1, we have a sequence

0→ An → (Fp[G]k)n → (Fp[G]r)n−1.

Let P (t) = PFp[G](t). Then PA(t) = (P (t) − 1)/t by dimension shifting (Fp[G] is induced
from Fp). The above exact sequence implies that

sn(Fp[G]k) ≤ sn(A) + sn−1(Fp[G]r).

Then for 0 < t < 1, by Lemma 3.7, we have

kP (t) ≤ P (t)− 1

t
+ rtP (t).

Rearranging, we get
(rt2 − kt+ 1)P (t) ≥ 1.

As the coefficients for P (t) are nonnegative, we get that rt2−kt+1 > 0. On the other hand,
the short exact sequence of G-modules

0→ Z→ Z→ Fp → 0
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induces a long exact sequence on cohomology:

H1(G,Z)→ H1(G,Fp)→ H2(G,Z)→ H2(G,Z)→ H2(G,Fp).

But H1(G,Z) = 0, since there are no nontrivial homomorphisms G→ Z by finiteness of G.
So r ≥ k, so 0 < k/2r < 1. Plugging in t = k/2r above,

k2

4r
− k2

2r
+ 1 > 0,

which finally gives r > 1
4
k2, as desired. �

Remark 4.2. According to Neukirch–Schmidt–Wingberg [3, Rmk p. 230], this inequality was
first proved independently by Gaschütz and Vinberg. Golod and Šafarevič made use of a
slightly weaker inequality:

rkG >
1

4
(relG− 1)2.

5. The Main Theorem

We focus on the case where K is imaginary quadratic and p = 2 for simplicity. Let
G = GK = Gal(Ksep/K). We denote by Gur the Galois group of the maximal unramified

extension of K, and we denote by G
(p)
ur its maximal pro-p quotient. In other words, G

(p)
ur is

the Galois group of the maximal unramified pro-p extension of K. We denote

hi(−) := dim2H
i(−,F2).

Lemma 5.1. [3, Cor 10.7.11] Let K be a number field, p be a rational prime, and S a finite
set of places of K. Let GS be the Galois group of the maximal S-ramified (unramified outside
of S) extension of K. Then for 0 ≤ i ≤ 2, the groups H i(GS,Fp) are finite, and

2∑
i=0

(−1)ihi(GS,Fp) ≤ θ −
∑

v∈S∩Sp

[Kv : Qv] + #S∞,

where

θ =

{
1, µp ⊆ K and S ⊆ S∞ if p 6= 2 or S ⊆ SC if p = 2,

0 else.

Proof. Omitted. �

Lemma 5.2. Let K be an imaginary quadratic field. Then

h2(G(2)
ur )− h1(G(2)

ur ) ≤ 1.

Proof. Let H C Gur be the kernel of the map Gur → G
(2)
ur so that G

(2)
ur = Gur/H. By

inflation-restriction, we have an exact sequence

0→ H1(Gur/H,F2)→ H1(Gur,F2)→ H1(H,F2)
Gur/H → H2(Gur/H,F2)→ H2(Gur,F2).

Thus

h2(Gur/H)− h1(Gur/H) ≤ h2(Gur) + dim2H
1(H,F2)

Gur/H − h1(Gur).
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Since the fixed field of Kur by H is, by definition of H, the maximal unramified pro-2
extension of K, it has no degree 2 extensions inside Kur. So H cannot have any open index
2 subgroups. So there are no nontrivial continuous homomorphisms from H to F2. So

h2(Gur/H)− h1(Gur/H) ≤ h2(Gur)− h1(Gur).

But by Lemma 5.1, we have

1− h1(Gur) + h2(Gur) ≤ 2.

So
h2(G(2)

ur )− h1(G(2)
ur ) ≤ h2(Gur)− h1(Gur) ≤ 2− 1 = 1. �

Theorem 5.3. [3, Thm 10.10.5] Let K be an imaginary quadratic field such that

dim2 ClK /2 ≥ 2 + 2
√

2.

Then K has infinite class field tower.

Proof. Suppose for the sake of contradiction that K has finite class field tower. Then K has
finite 2-class field tower. Let

hi(K) := hi(G(2)
ur ,F2).

By Theorem 4.1, we have
1

4
h1(K)2 < h2(K).

Rearranging, we have
(h1(K)− 2)2 < 4(h2(K)− h1(K) + 1).

But then by Lemma 5.2,

dim2 ClK /2 = h1(G(2)
ur ,F2)

< 2 + 2
√
h2(K)− h1(K) + 1

≤ 2 + 2
√

2.

This contradicts the assumption. So K has infinite class field tower. �

Theorem 5.4. Let K be an imaginary quadratic field extension of Q such that at least 6
rational primes are ramified in K. Then K has infinite class field tower.

Proof. By Theorem 5.3, it suffices to show that dim2 ClK /2 ≥ 5. This follows from [3, Prop
10.10.3]. �

Corollary 5.5. The field

K := Q(
√
−2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)

has infinite class field tower.

Proof. The primes 2, 3, 5, 7, 11, 13, 17, and 19 are ramified in K. By the above Theorem,
K has infinite class field tower. �

6. Further Work

In 2019, Farshid Hajir, Christian Maire, and Ravi Ramakrishna [2] proved the existence of
number fields ramified only at p and ∞ with infinite p-class field tower for all p. Previously,
only a handful of examples of this type were known.
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