CLASS FIELD TOWERS AND A THEOREM OF GOLOD-SAFAREVIC
JACOB SWENBERG

ABSTRACT. In this short note, we discuss a theorem of Golod and Safarevi¢, which gives
some sufficient conditions for a number field to have an infinite class field tower. In partic-
ular, their theorem shows that infinite class field towers exist.

1. INTRODUCTION

A basic question in algebraic number theory is how class numbers grow in towers of number
fields. One might first ask if there are infinite towers of class number 1 fields. Before that,
we ask a more simple question:

Question 1.1. Let K be a number field. Does there exist a finite extension L of K such
that L has class number 17

Roquette [4] refers to this as the “imbedding problem for K.”
Let Hy denote the Hilbert class field of K. The following proposition helps us answer this
question:

Lemma 1.2. [4 Prop 1] Let K be a number field and L a finite extension of K with class
number 1. Then L contains the Hilbert class field of K.

Proof. Let K7 be the Hilbert class field of K. Let M be the normal closure of LK, over K,
and let I < Gal(M/K) be the inertia subgroup for some place v of M. Then since K;/K is
unramified, we have I < Gal(M/K3), so

[N Gal(M/L) C Gal(M/K;) N Gal(M/L) = Gal(M/LK,).

So the place of L under v is unramified in LK;. So LK;/L is unramified at all places.
Furthermore, the kernel of the map Gal(M/L) — Gal(K;/K) is exactly Gal(M/LK}), so
Gal(LK,/L) is abelian. So LK;/L is an unramified abelian extension.

On the other hand, L has class number 1. By Class Field Theory, we conclude that
LKy=1L. So K; C L. O

Corollary 1.3. Let K be a number field. Let Ko = K, and inductively define K,,1 to be
the Hilbert class field of K,. Then the tower of fields

KiCKyC---
terminates if and only if K is contained in some number field with class number 1.

Proof. Suppose that there exists a number field L with class number 1 such that K C L.
Then K; C L by Lemma[I.2] By induction, K,, C L for all n. But L is a finite extension of

K. So there exists some N such that for all n > N, we have K,, = Ky.
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Conversely, suppose that the tower above terminates. Then K,, = K, for some n, so K,
has class number 1 and contains K. 0

We are then lead to the following question:

Question 1.4. Is there a number field K such that the tower (K,),>1 above does not
terminate?

Golod and Safarevi¢ [I] provided a positive answer to this in their 1964 paper “On the
Class Field Tower.”

Theorem 1.5 (Golod-Safarevic). There exists a number field K such that the tower
KCK CKyC---
is infinite (i.e. does not terminate).

The key part of the proof will be an inequality relating the generator rank and relation
rank of finite p-groups.

The structure of this note is as follows. In Section [2| we establish some basic facts about
class field towers. In Section [3| we discuss generators and relations for finite p-groups and
pro-p groups. We use the concepts from this section to prove a sharpened version of the
main inequality of Golod and Safarevi¢ in Section , following the proof given by Neukirch—
Schmidt-Wingberg [3, Thm 3.9.7]. In Section [5| we use this inequality to prove that infinite
class field towers exist, focusing on imaginary quadratic fields for brevity. In Section [6] we
look at further work related to class field towers.

2. CrAss FIELD TOWERS

Let K be a number field throughout. As above, the ring of integers of K will be denoted
by Ok, and the class group of K will be denoted by Clg.

Definition 2.1. The (Hilbert) class field tower of K is the tower of fields
KoC K1 CKyC -+
where Ky := K and K, is the Hilbert class field of K.

Let
K, = U K,.
n>0

Lemma 2.2. The field K, is the maximal unramified pro-solvable extension of K.

Proof. (This is “obvious” according to some [3, p. 697], but I thought it was worth writing
out.)

We see that K, is a union of unramified extensions of K, so K, is unramified over K.
The Galois group Gal(K«/K) is an inverse limit of solvable groups, since Gal(K,,/K) admits
a subnormal series

Gal(K,/K) > Gal(K,,/K;) > -+ > Gal(K,/K,—1) > 1
with abelian factor groups Gal(K;/K;_1) = Clg, ,.
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Conversely, suppose L/K is a pro-solvable, unramified extension of K. Then there exists
a tower of extensions
K=LCLiC---CL
with (J,, L, = L and Gal(L,/L,_1) abelian. Then L, is an unramfied abelian extension of
K, so is contained in the Hilbert class field K; of K. Suppose that L, is contained in K,
for some n. Then L, 1K, is an unramified abelian extension of K, so is contained in K, .
By induction, this shows that L, is contained in K, for all n. So L =, L, C K. ]

Corollary 2.3. The field K., contains all unramified pro-p extensions of K.

Proof. Recall that finite p-groups are solvable, since any p-group has nontrivial center and a
quotient of a p-group is a p-group. O

Thus, in order to find a number field K with infinite class field tower, it suffices to find K
that admits an infinite unramified pro-p extension.

Definition 2.4. The (Hilbert) p-class field K{p ) of K is the maximal unramified abelian
p-extension of K. The (Hilbert) p-class field tower of K is

K=K CKPCKPC-.
where K7, is the Hilbert p-class field of K7,

Remark 2.5. We have that |, KY is an unramified pro-p extension of K, so is contained in
K. In particular, if K has finite class field tower, than K has finite p-class field tower.

3. FACTS ABOUT FINITE p GROUPS

For this section, G is a pro-p group. For a 2-torsion abelian group A, we denote by dimy A
the dimension of A over [F,.

Definition 3.1. The rank of GG, denoted rk GG, is the minimal cardinality of a topological
generating set for G.

Definition 3.2. The relation rank of G, which we denote by rel GG, is the minimal cardinality
of a topological generating set for the kernel of a surjective map F' — G, where F' is a free
p group of minimal rank.

Proposition 3.3.
tk G = dim, H'(G,F,) and rel G = dim, H*(G,F,).
Proof. Omitted. O
The following lemma will also be useful when working with p-primary G-modules.

Lemma 3.4. Let G be a finite p-group, and let A be a p-primary G-module (i.e. a finite
G-module of p-power order). If A% =0, then A = 0.

Proof. Suppose A # 0. As a G-set, we can decompose A into G-orbits. By the orbit-stabilizer
theorem, if an orbit is not a singleton, it must have order divisible by p. Then the number
of singleton orbits must be divisible by p. But there is always the singleton orbit {0}. So
there must be some nonzero singleton orbit {a}. But then a € A® — {0}, a contradiction.

So A=0. O
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Lemma 3.5. [3| Lem 3.9.8] Let G be a finite p-group, let A be a finite F,[G]|-module, and
let b = dim H'(G,F,). Then there is a resolution

0— A—=TFJ[G)" = F[G]" — -
such that (F,[G]*)Y is in the kernel of the respective boundary map.
Proof. Recall the isomorphism of G-modules F, — F,[G]¢ given by 1 — gec 9- This

extends to an isomorphism ¢; : F2 — (F,[G]*)¢. Let ay,. .., ay, be an Fy-basis of A% (which
makes sense because by = h’(G, A) = dimg, A%).
We have an exact sequence of G-modules
A% 5 A — AJAC
giving an exact sequence of [F,-vector spaces
0 — Hom(A/A% F,[G]*) — Hom(A, F,[G]*) — Hom(AY F,[G]*) — 0.
Recall that for any G-modules A and B, we have (Hom(A, B))® = Homg(A4, B), since the
G-action on Hom(A, B) is given by
(9f)(a) = gf(g"a).
Then since H'(G, Hom(A/A% F,[G]%)) = 0, the long exact cohomology sequence gives that
Homg (A, F,[G]™) — Homg (A%, F,[G]™)

is surjective. In particular, the map A% — F,[G]% given by a; — ¢(e;) extends to a map
s: A— F,[G]b.

We claim that s is injective. Indeed, ker s is a G-submodule of A, which is a finite G-
module of p-power order. Since (kers)¥ = 0 C A%, Lemma tells us that kers = 0. So s
is injective.

Let B = F,[G]*/s(A), so that we have an exact sequence

0— A—TF,[G]" = B —0.

Note that F,[G]"™ is an induced module from F%, so is cohomologically trivial. Then by the
long exact sequence on cohomology, the connect maps give isomorphisms

H'(G,B) = H(G, A)
for + > 1. Looking near the beginning of the long exact sequence, we have
0— A% = (F,[G]™)¢ — B¢ - HY (G, A) — 0.

But the first map was defined as a bijection, so has trivial cokernel. So B¢ = H(G, A). By
the same construction as above, we form a finite G-module C' with an exact sequence

0= B—TFG" —C—=0
such that B¢ — (F,[G]?)Y is bijective. We define 9 : F,[G]* — F,[G]* as the composite
F,[G]" — B — F,[G]™.

But then (F,[G]*)% is contained in the image of A, so is sent to 0 in B. By induction, we

continue to build the resolution. O
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Definition 3.6. Let A be an F,[G]-module. The ascending central series for A is
Ay =0, Ani1 /A, = (A)A)C.

The Poincaré polynomial of A is

= dim(A,1 /A"

Lemma 3.7.

=(1—1)> dim(A,)t".

Proof. This follows immediately from dim(A,,1/A,) = dim(A, ;1) — dim(A,). O

Lemma 3.8. Let G be a finite p-group. Let A C B be finite F,|G]-modules, and let (An)n>0
and (By,)n>0 be their respective ascending central series. Then A, = B, N A.
Proof. First, we have A} = AY = ANBY = ANB,;. So A/A, injects into B/B;. By induction

the ascending central filtrations on these modules agree, so the ascending central series for
A agrees with that of B. O

4. THE MAIN INEQUALITY

Theorem 4.1 (Gaschiitz, Vinberg, Neukirch-Schmidt—Wingberg). [3, Thm 3.9.7]
If G s a finite p-group, then

dim H'(G,F,) > }l(dim H*(G,F,))>.

Proof. Let k = dim H'(G,F,), and r = dim H*(G,F,). By Lemma [3.5 applied to A = F,,
we have an exact sequence

0 — F, = F,[G] = F,[G]" = F,[G]".
Let A= [ ]/F, be the cokernel of the first map, identified as a submodule of F [G]
Lemma | we know that A, = (F,[G]¥), N A. Also, we observe that O((F,[G]" ) )=0=
(F,[G])o by construction of the sequence. By induction, 9((F,[G]¥),) C (Fp[G]T) . So for
each n > 1, we have a sequence

0= Ay = (F[G]")n = (Fp[G] 1.
Let P(t) = Pr,ic)(t). Then Pa(t) = (P(t) — 1)/t by dimension shifting (F,[G] is induced
from F,). The above exact sequence implies that

5n(Fp[G1") < $n(A) + 501 (Fp[G]").
Then for 0 <t < 1, by Lemma [3.7, we have

P(t) -1

kP(t) < +rtP(t).

Rearranging, we get

(rt* — kt + 1)P(t) > 1.
As the coefficients for P(t) are nonnegative, we get that rt*> —kt+1 > 0. On the other hand,
the short exact sequence of G-modules

0—+%Z—4—TF,—0
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induces a long exact sequence on cohomology:
HY(G,Z) — H'(G,F,) — H*(G,Z) — H*(G,Z) — H*(G,F,).

But H'(G,Z) = 0, since there are no nontrivial homomorphisms G — Z by finiteness of G.
Sor>k,so0<k/2r <1. Plugging in t = k/2r above,

k> k2
———+1>0
4r  2r * ’
which finally gives r > 1k?, as desired. O

Remark 4.2. According to Neukirch-Schmidt—Wingberg [3, Rmk p. 230], this inequality was
first proved independently by Gaschiitz and Vinberg. Golod and Safarevi¢ made use of a
slightly weaker inequality:

rk G > i(relG —1)%

5. THE MAIN THEOREM

We focus on the case where K is imaginary quadratic and p = 2 for simplicity. Let
G = Gk = Gal(K*?/K). We denote by G, the Galois group of the maximal unramified

extension of K, and we denote by G its maximal pro-p quotient. In other words, G is
the Galois group of the maximal unramified pro-p extension of K. We denote

h'(—) := dimg H'(—,Fy).

Lemma 5.1. [3, Cor 10.7.11] Let K be a number field, p be a rational prime, and S a finite
set of places of K. Let Gg be the Galois group of the mazimal S-ramified (unramified outside
of S) extension of K. Then for 0 <1i <2, the groups H'(Gg,F,) are finite, and

2

Y (-1'R(Gs, F)) <0— > Ky Q] + #5w,

=0 veESNS)

where

0— I, upCKand SC Sy ifp#2o0rSCScifp=2,
0 else.
Proof. Omitted. 0
Lemma 5.2. Let K be an imaginary quadratic field. Then
PGE) = hHGY) < 1.
Proof. Let H < G, be the kernel of the map G, — G2 so that G2 = Gu/H. By
inflation-restriction, we have an exact sequence
0 — HYGy/H,Fy) = HY (G, Fy) — H (H,Fy)C /" — H*(Gyp/H,Fy) — H*(Gyr, Fy).

Thus

B (G /H) — WG yr/H) < h3(Gyy) + dimy HY(H,Fy) /" — pY(G,,).
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Since the fixed field of K" by H is, by definition of H, the maximal unramified pro-2
extension of K, it has no degree 2 extensions inside K"". So H cannot have any open index
2 subgroups. So there are no nontrivial continuous homomorphisms from H to Fy. So

W (Gur/H) = W (Gur/H) < 1*(Gur) = hH (G )-
But by Lemma [5.1] we have
1 —h'(Gu) + W3 (Guw) < 2.
So
RGP — hHGP) < hY(Gy) — R Guy) <2—-1=1. O
Theorem 5.3. [3, Thm 10.10.5] Let K be an imaginary quadratic field such that
dim, Clg /2 > 2+ 2V/2.
Then K has infinite class field tower.

Proof. Suppose for the sake of contradiction that K has finite class field tower. Then K has
finite 2-class field tower. Let . ‘
h(K) = 0" (G, Fa).
By Theorem [.1], we have
1
Zhl(K)Q < h*(K).
Rearranging, we have
(RHK) —2)* < 4(h*(K) — h*(K) + 1).
But then by Lemma
dim, Clg /2 = WGP, TFy)
<2+ 2y/h2(K) - hi(K)+1
<24 2V2.

This contradicts the assumption. So K has infinite class field tower. O

Theorem 5.4. Let K be an imaginary quadratic field extension of Q such that at least 6
rational primes are ramified in K. Then K has infinite class field tower.

Proof. By Theorem , it suffices to show that dims Clg /2 > 5. This follows from [3, Prop
10.10.3]. 0J

Corollary 5.5. The field
K:=Q\W-2-3-5-7-11-13-17-19)
has infinite class field tower.

Proof. The primes 2, 3, 5, 7, 11, 13, 17, and 19 are ramified in K. By the above Theorem,
K has infinite class field tower. 0

6. FURTHER WORK

In 2019, Farshid Hajir, Christian Maire, and Ravi Ramakrishna [2] proved the existence of
number fields ramified only at p and oo with infinite p-class field tower for all p. Previously,

only a handful of examples of this type were known.
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