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1. Introduction

In these notes, we discuss the theory of Euler systems in the cohomology
of Shimura varieties.

The primary reference for these notes is Loeffler and Zerbes’s notes for
the 2018 Arizona Winter School [2].

2. The Bloch–Kato Conjecture

Throughout, let K be a number field, p a prime, and E a finite extension
of Qp. Let V be a finite-dimensional E-valued representation of the absolute
Galois group GK := Gal(K/K). In other words, V is a finite-dimensional
E-vector space equipped with a continuous homomorphism

ρ : GK → AutE(V ).

Definition 2.1. We say that V comes from geometry if it is a subquotient
of

H i
ét(XK ,Qp)(j)⊗Qp E

for some K-variety X and some integers i, j.

Definition 2.2. Let v be a place of K for which V is unramified. Let Frobv
denote an (arithmetic) Frobenius at v, which is well-defined up to conjugation
(equivalently, a lift of v to K). The local Euler factor of V at v is

Pv(V, t) := det(1− t · ρ(Frob−1
v )) ∈ E[t].

We fix an embedding Q → C, and embeddings Q → Q` for all primes
`. This determines inertia subgroups Iv ⊆ GKv ⊆ GK for all places v of K.
There is some way to define Pv(V, t) for ramified places v of V .

Definition 2.3. Assume that Pv(V, t) has coefficients in Q for all v. The
global L-function of V is

L(V, s) :=
∏
v

Pv(V, q
−s
v )−1.

Conjecture 2.4. If V is semisimple and comes from geometry, then L(V, s)
has a meromorphic continuation to the whole complex plane with finitely
many poles, and there is a functional equation relating L(V, s) and L(V ∗, 1−
s).
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For each place v of K, we define a subgroup

H1
f (Kv, V ) :=

{
ker(H1(Kv, V )→ H1(Iv, V )) v - p
ker(H1(Kv, V )→ H1(Kv, V ⊗Qp Bcris) v | p.

⊆ H1(Kv, V ).

Here, we take continuous cohomology (continuous cocycles modulo con-
tinuous coboundaries).

Definition 2.5. The Bloch–Kato Selmer group of V is

H1
f (K,V ) := {α ∈ H1(K,V ) : resv(α) ∈ H1

f (Kv, V ) for all v}.

Conjecture 2.6 (Bloch–Kato).

dimH1
f (K,V )− dimH0(K,V ) = ords=0 L(V ∗(1), s).

Example 2.7. Let V = Qp(1). Then V ∗(1) = Qp. Then for all v, we have

Pv(Qp(1), q−sv )−1 = (1− q−sv )−1.

From the product formula for ζK(s), we have

L(Qp, s) = ζK(s).

In particular, L(Qp, s) has a meromorphic continuation to C with a simple
pole at s = 1 and functional equation. By inspecting the functional equation,
one can find that

ords=0 L(Qp, s) = r1 + r2 − 1,

where r1, r2 are, respectively, the number of real embeddings and the num-
ber of pairs of complex conjugate embeddings of K. On the other hand,
H0(K,Qp(1)) = 0, and Kummer theory gives

H1
f (K,Qp(1)) = O×K ⊗Qp.

Thus, the Bloch–Kato conjecture is equivalent to Dirichlet’s unit theorem in
this case.

Example 2.8. Let E be an elliptic curve over a number field F . Let V =
VpE = TpE ⊗Qp. Kummer theory gives an injection

E(F )⊗Qp → H1
f (F, V ).
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The cokernel of this map is zero if the Tate–Shafarevich group of E over F
is finite.

Let us compute L(V ∗(1), s). It turns out that

V ∼= H1
ét(EF ,Qp)(1).

So
V ∗(1) ∼= H1

ét(EF ,Qp)
∗

We have, by the functional equation,

Pv(V
∗(1), s) = Pv(H

1
ét(EF ,Qp)

∗, s) = Pv(H
1
ét(EF ,Qp), 1− s).

Since Pv(H1
ét(EF ,Qp), s) is the local Euler factor for the Hasse–Weil zeta

function of E, we have

ords=0 L(V ∗(1), s) = ords=1 L(E/F, s).

Finally, H0(F, V ∗(1)) = 0 in this case. We have used finiteness of the Tate–
Shafarevich group, the functional equation for L, and the Bloch–Kato con-
jecture to conclude that

rankE(F ) = dimH1
f (F, V ) = ords=1 L(E/F, s).

This is part of the conjecture of Birch and Swinnerton-Dyer.

3. Euler Systems: A Definition

Let V be a continuous Qp-valued representation of GQ. Let T ⊂ V be a
GF -stable Zp-lattice. Let S be a set of primes including p together with the
ramified primes of V . Thus, V is also a GF -representation for any number
field F . Furthermore, on cohomology, we have corestriction maps for an finite
extension L/K

corLK : H i(L, V )→ H i(K,V ).

In degree 0, corestriction is just the norm map. Corestriction commutes with
connecting maps in long exact sequences on cohomology.

For ` not dividing m, we let σ` := Frob` ∈ Gal(Q(µm)/Q).

Definition 3.1. An Euler system for (T, S) (also called an Euler system for
V ) is a collection (cm)m≥1 where cm ∈ H1(Q(µm), T ), such that

cor
Q(µm`)
Q(m) (cm`) =

{
cm ` ∈ S or ` | m
P`(V

∗(1), σ−1
` ) · cm else.
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Intuitively, we pick up Euler factors of L(V ∗(1), s) as we take norms.

Theorem 3.2 (Rubin). Let (cn)n be an Euler system for V with c1 6= 0.
Then after some technical assumptions on V , we have

Selstrict(Q, V ∗(1)) = 0.

Remark 3.3. Instead of working over Q, we could work with an arbitrary
number field. Then the elements of our Euler system will be indexed by
certain ray class fields.
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4. Kolyvagin’s Euler System

In this section, we exhibit our first example of an Euler system, due to
Kolyvagin. This Euler system allowed Kolyvagin to prove that X(E/K) is
finite for many elliptic curves E over Q and suitable imaginary quadratic
fields K. The main reference for this section is [1].

4.1. Cast of Characters. Let p be an odd prime. Let E be an elliptic curve
over Q of conductor N . We assume that E does not have CM, which only
excludes finitely many elliptic curves. Recall the following theorems

Theorem 4.1 (Serre). For almost all primes p, the mod-p Galois represen-
tation attached to E is surjective. In other words, the homomorphism

ρE,p : GQ → Aut(E[p])

is surjective.

We will refer to such primes as Serre primes (for E).

Theorem 4.2 (Modularity of Elliptic Curves, Wiles, Breuil–Conrad–Dia-
mond–Taylor). The curve E is modular: there exists a non-constant mor-
phism φ : X0(N)→ E.

Moreover, one can choose this parametrization so that the infinity cusp maps
to the identity of E.

Recall that the modular curve X0(N) parametrizes elliptic curves E
equipped with a cyclic N -isogeny E → E ′. We can construct many such
curves using CM-theory. Let K be an imaginary quadratic field of discrimi-
nant −D such that all prime factors of N are split. Then we may choose an
ideal N of OK such that OK/N ∼= Z/N . For simplicity, let us assume that
O×K = {±1}. By embedding K → C, we have a cyclic N -isogeny of elliptic
curves

C/OK → C/N−1.

This gives a point x1 ∈ X0(N)(HK), where HK is the Hilbert class field of
K. Mapping via the modular parametrization φ gives y1 ∈ E(HK). We set
yK = NHK/Ky1 ∈ E(K).

Generally, we consider the orders On = Z+nOK . We restrict to squarefree
n ∈ N(S), positive integers supported on S where S is the set of primes ` not
dividing NDp such that Frob` ∈ Gal(K(E[p])/Q) is the conjugacy class of
complex conjugation. The set S is infinite by Cebotarev’s density theorem.
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For n ∈ N(S), we let Nn = N ∩ On, then On/Nn
∼= Z/N , and as above,

we obtain a point xn ∈ X0(N)(Kn) (called a Heegner point), where Kn is the
ring class field corresponding to On. In particular, Gal(Kn/K) ∼= Pic(On),
and we have an exact diagram

1 (OK/nOK)×/(Z/n)× Pic(On) Pic(OK) 1

1 Gal(Kn/HK) Gal(Kn/K) Gal(HK/K) 1.

∼= ∼= ∼=

Finally, we let yn = φ(xn) ∈ E(Kn). The Kummer classes associated to these
points will form our Euler system.

Recall that the short exact sequence

0→ E[p]→ E
p−→ E → 0

gives, for any number field L, a long exact sequence on cohomology

· · · → E(L)
p−→ E(L)→ H1(L,E[p])→ H1(L,E)

p−→ H1(L,E)→ · · ·

which can be contracted to

0→ E(L)/pE(L)→ H1(L,E[p])→ H1(L,E)[p]→ 0.

Recall that

Selp(E/L) := ker

(
H1(L,E[p])→

∏
v

H1(Lv, E)

)
,

X(E/L) := ker

(
H1(L,E)→

∏
v

H1(Lv, E)

)
,

where the products are taken over all places v of L. By the Snake Lemma,
we obtain an exact sequence

0→ E(L)/pE(L)
δ−→ Selp(E/L)→X(E/L)[p]→ 0.

The following is due to Kolyvagin.

Proposition 4.3. Let p be a Serre prime for E. Suppose that yK 6∈ pE(K).
Then Selp(E/K) is cyclic, generated by δyK.
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Corollary 4.4. Let p be a Serre prime for E. Suppose that yK 6∈ pE(K).
Then E(K) has rank 1 and X(E/K)[p] = 0.

For p dividing yK in E(K), Kolyvagin used a more sophisticated argument
using pn instead of p to show that X(E/K) is finite, but we will restrict to
showing the above proposition for simplicity. We henceforth will also assume
that p is a Serre prime for E.

4.2. The Norm Relation and Kolyvagin’s Derivative. Let ` ∈ S as
above. Since Frob` = Frob∞ ∈ Gal(K/Q), we have that ` is inert in
K, then splits completely in K(E[p])/K. One consequence of this is that
Ẽ`[p] ∼= (Z/p)2, where Ẽ` denotes the reduction of E at `. Recall that the
characteristic polynomial of Frob` on E[p] is x2 − a`x+ `, whereas the char-
acteristic polynomial of complex conjugation on E[p] is x2 − 1. Thus, we
have

a` ≡ `+ 1 ≡ 0 (mod p).

Now let n ∈ N(S) be squarefree. We let

Gn = Gal(Kn/K1) ∼= (OK/n)×/(Z/n)× ∼=
∏
`|n

(OK/`)
×/(Z/`)× ∼=

∏
`|n

Z/(`+1).

For ` | n, we let G` = Gal(Kn/Kn/`) ∼= Z/(` + 1) with a fixed generator σ`.
Then Gn

∼=
∏

`|nG`. We let NG`
be the norm from Gn to Gn/`.

Lemma 4.5. NG`
yn = a`yn/`.

Proof. Let T` be the `-th Hecke operator as a correspondence on X0(N).
This correspondence has bidegree ` + 1 as a divisor on X0(N)×X0(N). So
T`xn/` is a degree `+ 1 divisor on X0(N) consisting of points corresponding
to quotients of the curve xn/` by subgroups of order `. By magic, these
correspond to the `+ 1 conjugates of xn, and the result follows since

N`yn = φ(NG`
xn) = φ(T`xn/`) = a`φ(xn/`) = a`yn/`.

(This needs more explanation) �

We let

D` :=
∑̀
i=1

iσi` ∈ Z[G`].

Lemma 4.6. (σ` − 1)D` = `+ 1−NG`
.
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Proof.

(σ` − 1)D` =
∑̀
i=1

iσi+1
` −

∑̀
i=1

iσi`

=
`+1∑
i=2

(i− 1)σi` −
∑̀
i=1

iσi`

= `− σ` +
∑̀
i=2

(i− 1)σi` −
∑̀
i=2

iσi`

= `− σ` −
∑̀
i=2

σi`

= `−
∑̀
i=1

σi`

= `+ 1−NG`
.

�

We let
Dn :=

∏
`|n

D`.

Proposition 4.7. [Dnyn] ∈ (E(Kn)/pE(Kn))Gn.

Proof. For all ` | n, we have

(σ`−1)Dnyn = (`+1−NG`
)Dn/`yn = Dn/`((`+1)yn−a`yn/`) ≡ 0 (mod p).

�

We now let
Pn :=

∑
σ∈GK1/K

σ̃(Dnyn),

where σ̃ ∈ GKn/K is a chosen lift of σ. Note that P1 = yK . The above
proposition shows that

[Pn] ∈ (E(Kn)/pE(Kn))GKn/K .
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4.3. Cohomology Classes from Points. We would like to use the classes
[Pn] above to obtain classes in H1(K,E[p]).

We have an exact diagram

0 E(K)/pE(K) H1(K,E[p]) H1(K,E)[p] 0

0 (E(Kn)/pE(Kn))GKn/K H1(Kn, E[p])GKn/K H1(Kn, E)[p]GKn/K .

δ

δn

We claim that the middle vertical map (restriction) is an isomorphism. By
inflation-restriction, its kernel isH1(Kn/K,E(Kn)[p]) and its cokernel is con-
tained in H2(Kn/K,E(Kn)[p]). However, we have the following:

Proposition 4.8. E(Kn)[p] = 0.

Proof. Suppose that E(Kn)[p] 6= 0. Then as groups, we either have

E(Kn)[p] ∼= Z/p or E(Kn)[p] ∼= (Z/p)2.

In the first case, GQ will stabilize E(Kn)[p], so the image of ρE : GQ →
GL2(Z/p) will be contained in a Borel subgroup. This contradicts p being a
Serre prime for E. In the second case, we have K(E[p]) ⊆ Kn, so GKn/Q →
GL2(Z/p) is a surjection. But since p is odd, GL2(Z/p) cannot be a quotient
of a generalized dihedral group (look at centers). So we have a contradiction
in either case. �

Finally, we let

c(n) := res−1(δn[Pn]) ∈ H1(K,E[p]).

Lemma 4.9. Let d(n) ∈ H1(K,E)[p] be the image of c(n). Then:

(1) d(n) is the inflation of a cocycle d̃(n) ∈ H1(Kn/K,E)[p].

(2) c(n) ∈ H1(K,E[p]) is trivial if and only if Pn ∈ pE(Kn).

(3) d(n) ∈ H1(K,E)[p] is trivial if and only if d̃(n) ∈ H1(Kn/K,E)[p] is
trivial if and only if Pn ∈ pE(Kn) + E(K).

Proof. For (1), it suffices to see that d(n) is in the kernel of restriction

H1(K,E)→ H1(Kn, E).

This is the right vertical map in the above diagram. However, tracing the
right square the other direction shows this triviality. The other statements
come from similar diagram chases. �
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4.4. Eigenspaces. Recall that the Galois group Gal(K/Q) = 〈τ〉 ∼= Z/2
acts on H1(K,−). We have a corresponding decomposition into eigenspaces

H1(K,E[p]) = H1(K,E[p])+ ⊕H1(K,E[p])−.

Let ε = ±1 be the negative of the sign of the functional equation for L(E, s).
Alternatively, ε is the eigenvalue of the Fricke involution(

0 −1
N 0

)
acting on the eigenform associated to E.

Proposition 4.10. c(n) ∈ H1(K,E[p])εn and d(n) ∈ H1(K,E)[p]εn, where
εn = εµ(n), where µ(n) is the Möbius function.

Proof. Omitted. �

4.5. Duality. Fix a finite place v of K at which E has good reduction. Let
Ov denote the ring of integers of Kv, and let kv denote the residue field. Since
E has good reduction at v, we have that inertia at v acts trivially on E(Kv).

Lemma 4.11. H1(Kur
v /Kv, E) = 0.

Proof. Omitted. �

Corollary 4.12. The Kummer map gives an isomorphism

E(Kv)/pE(Kv) ∼= H1(Kur
v /Kv, E[p]).

Recall that the Weil pairing

E[p]× E[p]→ µp

is a Galois invariant, non-degenerate, skew-symmetric, bilinear pairing. Com-
bined with the cup product on Galois cohomology, we obtain a pairing

〈·, ·〉 : H1(Kv, E[p])×H1(Kv, E[p])→ H2(Kv, µp) ∼= Z/p,

where the last isomorphism comes from the invariant map. This pairing is
non-degenerate as a consequence of the following major theorem:
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Theorem 4.13 (Local Tate Duality). Let A be a finite GKv-module. The
cup product and evaluation give a pairing

H i(Kv,Hom(A, µ))×H2−i(Kv, A)→ H2(Kv, µ) ∼= Q/Z

that, for 0 ≤ i ≤ 2, induces an isomorphism

H i(Kv,Hom(A, µ)) ∼= Hom(H2−i(Kv, A),Q/Z).

Proposition 4.14. The pairing 〈·, ·〉 above induces a non-degenerate pairing

E(Kv)/p×H1(Kv, E)[p]→ Z/p.

Proof. This amounts to the fact that E(Kv)/p ∼= H1(Kur
v /Kv, E[p]) is its

own annihilator under the pairing above. This is due to Tate, and we omit
the proof here. �

Now let L = K(E[p]). We assumed that D is coprime to Np, so that
G = Gal(L/K) ∼= GL2(Z/p).

Proposition 4.15. Restricting and evaluating cocycles gives a pairing

[·, ·] : H1(K,E[p])×GL → E(L)[p].

If s ∈ H1(K,E[p]) is such that [s, ρ] = 0 for all ρ ∈ GL, then s = 0.

Proof. Omitted. Follows from an argument due to Serre involving the Hochschild–
Serre spectral sequence. �

Let

GSel = {ρ ∈ GL : [s, ρ] = 0 for all s ∈ Selp(E/K) ⊆ H1(K,E[p])}.

Let M be the fixed field of GSel.

Proposition 4.16. The induced pairing

[·, ·] : Selp(E/K)×Gal(M/L)→ E(L)[p]

is perfect. In particular, we have isomorphisms

Selp(E/K) ∼= Hom(Gal(M/L), E(L)[p]),

Gal(M/L) ∼= Hom(Selp(E/K), E(L)[p]).
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Proof. Omitted. �

We let H = Gal(M/L) ∼= Hom(Selp(E/K), E[p]). Let I be the kernel of
δyK restricted to H. Complex conjugation τ acts on these Galois groups by
conjugation.

Lemma 4.17. We have H+/I+ ∼= Z/p, and

H+ = {(τh)2 : h ∈ H}, I+ = {(τi)2 : i ∈ I}.

Proof. Note that H has odd order, as p is odd. So we can recover H+ as
H1+τ . For h ∈ H, we have

h1+τ = τhτ−1h = (τh)2.

A similar argument works for I+. Then

H+/I+ ∼= (H/I)+ = E+
p
∼= Z/p.

�

Proposition 4.18. Let s ∈ Selp(E/K)±. The following are equivalent:

(1) s = 0;

(2) [s, ρ] = 0 for all ρ ∈ H;

(3) [s, ρ] = 0 for all ρ ∈ H+;

(4) [s, ρ] = 0 for all ρ ∈ H+ − I+.

Proof. We prove the case where s ∈ Selp(E/K)+. The forward implications
are clear. Suppose [s, ρ] = 0 for all ρ ∈ H+ − I+. Then s vanishes on
all of H+ by group theory (H+ 6= I+). We have a G-map H → E[p] that
preserves ±-eigenspaces, so s(H) ⊂ E[p]−. But E[p] is a simple G-module,
so s(H) = 0. By the perfectness of the pairing [·, ·], we have s = 0. �

4.6. The Main Propositon. Throughout this section, we suppose that p
is a Serre prime for E and that yK 6∈ pE(K). Recall that for ` ∈ S, we have
` is unramified in M , inert in K/Q, and splits in L/K. So Frob` looks like
τh for some h ∈ H.

As preparation for the main proof, we give the following proposition:
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Proposition 4.19 (Preparation). The following are equivalent:

(1) c(`) = 0;

(2) c(`) ∈ Sel(E/K)p;

(3) P` ∈ pE(K`);

(4) d(`) = 0;

(5) d(`)v = 0 ∈ H1(Kv, E[p]) for v the place of K above `;

(6) P1 = yK ∈ pE(Kv) for v | `.

(7) h1+τ ∈ I+.

Proof. Omitted for now. �

We now arrive at the proof of Proposition 4.3.

Proposition 4.20 (Proposition 4.3). Let p be a Serre prime for E. Suppose
that yK 6∈ pE(K). Then Selp(E/K) is cyclic, generated by δyK.

Proof sketch. Recall that δyK = c(1) ∈ Selp(E/K)ε. We first show that
Selp(E/K)−ε = 0...

It then suffices to show that

Selp(E/K)ε ∼= (Z/p) · δyK .

By the Kummer duality above, it suffices to show that s ∈ Selp(E/K)ε

satisfies [s, ρ] = 0 for all ρ ∈ I. By a similar argument as before, we can
restrict to I+, so we take ρ = (τi)2 for i ∈ I.

Let q ∈ S be such that c(q) 6= 0 ∈ H1(K,E[p]) (which we can do by the
above preparation). Let L′ be the fixed field of the kernel of c(q) restricted
to L. Then L′/L is disjoint from M/L and has Galois group isomorphic to
E[p].

Let ` ∈ S be such that Frob` = τi ∈ Gal(M/Q) and Frob` = τj ∈
Gal(L′/Q) with j1+τ 6= 1. By an unstated proposition, one shows that
d(`q)v = 0 for v - ` and d(`q)v 6= 0 for v | `. By another proposition,
sv = 0 for v the place of K above `. By Cebotarev, we can choose several `
to get vanishing of s on all of I+. �

14



5. Shimura varieties

5.1. Modular curves, Adelically. To motivate the Shimura curves we con-
sider, we first show how modular curves can be interpreted adelically. The
reference for this section is [3, §38.6].

Let H be the complex upper half-plane, our first example of a symmetric
space. Recall that SL2(R) acts transitively on H with stabilizer at i given by
SO2(R). Note the SO2(R) is a maximal compact subgroup of GL2(R). This
gives an isometry

SL2(R)/ SO2(R) ∼= H.

Let H± = H ∪ H− denote the union of the upper and lower complex half-
planes. We similarly obtain a Riemannian isometry

GL2(R)/R× SO2(R) ∼= H±.

We have the classical modular curve

Y (1) = SL2(Z)\H ∼= GL2(Z)\H±,

which we can now write as

Y (1) = GL2(Z)\GL2(R)/R× SO2(R).

We now suggestively let G = GL2 (the algebraic group). Recall the ring
of adeles A of Q has a decomposition

A = Qf ×Q∞
where Qf is the ring of finite adeles and Q∞ = R.

Similarly, G(QA) has a decomposition

G(A) ∼= G(Qf )×G(Q∞).

Here G(Qf ) has a compact open subgroup G(Ẑ) and G(Q∞) has maximal
compact subgroup K∞. As a consequence of strong approximation, we have
a bijection

G(Q)\G(A)/G(Ẑ) ∼= G(Z)\G(R).

Putting this all together, we have

Y (1) = GL2(Z)\GL2(R)/R× SO2(R)

= (G(Q)\G(A)/G(Ẑ))/R× SO2(R)

= G(Q)\G(A)/K

where K = G(Ẑ)× R× SO2(R).
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5.2. Review of Quaternion Algebras. Let B be a quaternion algebra
over a totally real number field F . In other words, B is the non-commutative
algebra over F generated by i, j such that for some a, b ∈ F , we have

i2 = a, j2 = b, ij = −ji.

For instance, one could take B = M2(F ). The algebra B comes equipped
with a standard (anti)involution β 7→ β given on the generators by i = −i
and j = −j. This induces a reduced norm map ν : B× → F× where

ν(β) = ββ.

For a place v of F , Bv := B ⊗F Fv is either isomorphic to M2(Fv) or
the unique division quaternion algebra over Fv. In the former case, we say
B is unramified at v, and in the latter case, we say that B is ramified at
v. It is well-known that the set of ramified places of B is finite and of even
cardinality.

In particular, if v is a real place of F , then Bv
∼= M2(R) or Bv

∼= H. Then
B×v has maximal compact subgropu SO2(R) or H1 (norm 1 quaternions). We
let r be the number of real ramified places of B and s the number of real
unramified places of B. We say B satisfies the Eichler condition if s > 0.

5.3. Quaternionic Shimura Varieties. For this subsection, we also refer
to online notes of Jacques Tilouine titled “Quaternionic and Hilbert modular
forms and their Galois representations.” We describe a slightly more general
class of Shimura variety.

We can view B× as an algebraic group over F . Let G := resFQ(B×). We
also define

G∗ := {g ∈ G : ν(g) ∈ Q×},
G1 := {g ∈ G∗ : ν(g) = 1}.

We let K∞ = SO2(R)s × (H1)r.

Definition 5.1. Let U ⊆ G(Qf ) be a compact open subgroup. The Shimura
variety for G of level U is

X(U) := G(Q)\G(A)/U(F×∞K∞).

We will eventually see that for U sufficiently small, X(U) has the structure
of a smooth complex variety.

Theorem 5.2. Fujisaki If B is a division algebra, then X(U) is compact for
all U .
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6. Building Euler Systems

We now examine some ways of constructing Euler systems. We use
Jannsen’s “continuous étale cohomology” unless otherwise stated.

6.1. Hochschild–Serre. Let X be a variety over a number field K.

Theorem 6.1 (Jannsen’s Hochschild–Serre spectral sequence). For any n ∈
Z, there exists a convergent spectral sequence

Eij
2 = H i(K,Hj

et(XK ,Qp(n)))⇒ H i+j
et (X,Qp(n)).

Let

ϕi : H i(X,Qp(n))→ H0(K,H i
et(XK ,Qp)(n)) = H i

et(XK ,Qp(n))GK

be the corresponding edge morphism in this spectral sequence. This factors
as

H i(X,Qp(n))→ E0,i
∞ ↪→ E0,i

2 .

The kernel of this map is F 1H i(X,Qp(n)). We also get an injective map
E1,i−1
∞ → E1,i−1

2 . Recall that

E1,i−1
∞ = F 1H i(X,Qp(n))/F 2H i(X,Qp(n))

E0,i
∞ = H i(X,Qp(n))/F 1H i(X,Qp(n)).

The composition

F 1H i(X,Qp(n))→ E1,i−1
∞ → E1,i−1

2 = H1(K,H i−1(XK ,Qp(n)))

gives us a way to cook up Euler systems. Namely, if our representation is
V = H i−1(XQ,Qp(n)) for X a Q-variety, we can find special elements of
F 1H i(XQ(µm),Qp(n)) giving classes in H1(Q(µm), V ) for varying m.

6.2. Loeffler–Zerbes’ “Bag of Tricks”. We thus seek to construct coho-
mology classes in H i(X,Qp(n)). Loeffler and Zerbes give the following as
tools to construct such classes:

(1) Cup products:

H i(X,Qp(n))⊗Hj(X,Qp(m))→ H i+j(X,Qp(n+m)).

17



(2) Kummer maps:

O(X)× → H1(X,Qp(1)).

(3) Pushforward maps: for Z ⊂ X a smooth codimension d subvariety of
a smooth variety X, we have

H i(Z,Qp(n))→ H i+2d(X,Qp(n+ d)).

In the case where i = n = 0, the element 1 ∈ H0(Z,Qp) gives 1Z ∈
H2d(X,Qp(d)) the cycle class of Z.

6.3. Galois Representations Attached to Modular Forms. Let f =∑
n anq

n be a normalized cuspidal Hecke eigenform of weight 2 and level
Γ1(N). Let L be the number field generated by the Fourier coefficients of f .
We suppose that L embeds into a p-adic field E and view L as a subfield of
E.

Definition 6.2. We let Vp(f) be the largest subspace

Vp(f) ⊆ H1
et(Y1(N)Q,Qp)⊗Qp E

on which the Hecke operators T (`) act as a`(f) for ` - N .

We list the following facts:

• Vp(f) is a 2-dimensional irreducible p-adic Galois representation.

• Vp(f) is a direct summand of H1.

• For ` - Np, the local Euler factor at p is given by

P`(Vp(f), s) = 1− a`(f)t+ `χ(`)t2,

where χ is the character of f .

• If f corresponds to an elliptic curve A, then

Vp(f) ∼= H1(AQ,Qp) ∼= Vp(A)(−1).

We seek to construct an Euler system for Vp(f). Note that Y1(N) is an
affine curve, so H2(Y1(N)Q,Qp) = 0. Then Hochschild–Serre gives us a map

H2(Y,Qp(1))→ H1(Q, H1(Y1(N)Q,Qp)(n))→ H1(Q, Vp(f)).

18



6.4. Sneaking up on Cyclotomic Fields. Let X be a Q-variety, We seek
to build Euler systems for H i(XQ,Qp(n)). This requires constructing classes
in H1(K,H i(XQ,Qp(n))) for K varying over cyclotomic fields. Recall the
Hochschild–Serre spectral sequence:

Eij
2 : H i(K,Hj(XQ,Qp(n)))⇒ H i+j(XK ,Qp(n)).

In particular, we have edge morphisms

ϕi : H i+1(XK ,Qp(n))→ H i+1(XQ,Qp(n))GK

and if we set F 1H i+1(XK ,Qp(n)) to be the kernel of this map, we have a
map

ψi : F 1H i+1(XK ,Qp(n))→ H1(K,H i(XQ,Qp(n))).

We thus will seek classes in H i(XK ,Qp(n)) for K varying over cyclotomic
fields. It turns out that proving norm relations is easier if we somehow view
this as cohomology of a different modular curve.

Recall that for an open compact subgroup U ⊂ GL2(Af ), we have a
Q-curve X(U) whose C-points are

X(U)(C) ∼= GL2(Q)\GL2(A)/U(R× SO2(R)).

Decomposing GL2(A) as GL2(R)×GL2(Qf ), we may identify

X(U)(C) ∼= GL+
2 (Q)\[H×GL2(Af )/U ]

For example, if

U1(N) =

{(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0, d ≡ 1 (mod N)

}
then X(U1(N)) = Y1(N). On the other hand, if we let

U1(N)m = {u ∈ U1(N) : det(u) ≡ 1 (mod m)},

then
X(U1(N)m) ∼= Y1(N)×Q µ

◦
m,

where µ◦m is the Q-variety of primitive m-th roots of unity. Note that as
Q-schemes,

Y1(N)×Q µ
◦
m = Y1(N)×Q SpecQ(µm) ∼= Y1(N)Q(µm).

Thus, varying the level of our modular curve achieves the same thing as base
changing to various cyclotomic fields.
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7. Siegel Units

7.1. Introducing Siegel Units. Recall that for a Q-variety X, we have
Kummer maps

O(X)× → H1(X,Qp(1)).

This gives us a way to construct cohomology classes by using global units on
X.

Definition 7.1. Let U ⊂ GL2(Af ) be a compact open subgroup and X(U)
the corresponding (open) modular curve. A modular unit of level U is an
element of O(X(U))×.

Let
U(N) = ker(GL2(Ẑ)→ GL2(Z/N))

Proposition 7.2. Modular units of level U(N) are in bijection with holo-
morphic functions on Γ(N)\H that are nonzero away from the cusps, mero-
morphic at the cusps, and whose q-expansions at the cusps have coefficients
in Q(µN).

Definition 7.3. Let (α, β) ∈ (Q/Z)2 − 0. The function gα,β is constructed
as follows: write

(α, β) = (a/N, b/N), a, b, N ∈ Z, N ≥ 1, 0 ≤ a < N.

Then setting q = e2πiτ and

w =
1

12
− a

N
+

a2

2N2
,

we let
gα,β(τ) = qw

∏
n≥0

(1− qn+a/NζbN)
∏
n≥1

(1− qn−a/Nζ−bN ).

Definition 7.4. A Siegel unit is a function of the form

cgα,β =
(gα,β)c

2

gcα,cβ
,

where c > 1 is coprime to 6 and the order of α and β in Q/Z.

Remark 7.5. According to Loeffler–Zerbes and Sharifi, pretty much all known
examples of Euler systems come from Siegel units.
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Proposition 7.6. For α, β ∈ ( 1
N
Z/Z)2−0, the Siegel units cgα,β are modular

units of level U(N). Moreover, GL2(Z/N) acts on X(U(N)) and transforms
Siegel units by

cgα,β|σ = cg(α,β)σ.

Here, (α, β)σ denotes right-multiplication of a row vector by σ ∈ GL2(Z/N).

Proposition 7.7. The function cg0,1/N is a modular unit of level U1(N).

Proof. �

7.2. An alternate definition of Siegel units. Here is an alternate de-
scription of Siegel units. Recall that Y (N) parametrizes elliptic curves with
full level N structure. Let E → Y (N) denote the universal elliptic curve
over Y (N). This elliptic scheme comes equipped with N -torsion sections
ι1, ι2 : Y (N) → E . For α, β ∈ ( 1

N
Z/Z)2 − 0, write α = a/N and β = b/N .

Let
ιa,b = aι1 + bι2 : Y (N)→ E .

We recall the following fact about elliptic curves.

Lemma 7.8. Let E be an elliptic curve, and let D =
∑

x∈E nx(x) be a
divisor on E. Then D is a principal divisor if and only if

∑
x∈E nx = 0 and∑

x∈E[nx]x = 0 ∈ E.

Let c > 1 be an integer coprime to 6N . Then c2(0) − E [c] is a divisor
of degree 0 that sums to 0, so is the divisor of some rational function θ ∈
Q(E)×. Note that this divisor is also stable under pushforward along the
multiplication by N map [N ] : E → E , so we can rescale θ so that [n]∗θ = θ.
Since θ only has zeroes and poles along 0 and c-torsion, the pullback cgα,β :=
ι∗a,bθ is a global unit on Y (N).

7.3. The Norm Relation. We now describe the basic norm relation that
Siegel units satisfy.

Proposition 7.9. Let α, β ∈ Q/Z not both zero, and let A ≥ 1. Let c be
coprime to 6A and the order of α and β. Then the following relations hold:

(1)
∏

Aα′=α cgα′,β(τ) = cgα,β(A−1τ);

(2)
∏

Aβ′=β cgα,β′(τ) = cgα,β(Aτ);

(3)
∏

A(α′,β′)=(α,β) cgα′,β′(τ) = cgα,β(τ).
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Proof. Note that (1) and (2) together imply (3). Furthermore, suppose (1)

is true. Let J =

(
0 1
−1 0

)
. Then

∏
Aβ′=β

cgα,β′(τ) =
∏
Aβ′=β

(cgα,β′ |JJ−1)(τ)

=
∏
Aβ′=β

cg−β′,α(−1/τ)

= cg−β,α(−A/τ)

= (cg−β,α|J−1J)(−/Aτ)

= cgα,β(Aτ).

It then suffices to prove (1). We omit the proof for now. �

Let ` be a prime, and let π : Y1(N`) → Y1(N) be the quotient map.
Recall that since this is a finite morphism, we may define the norm π∗ :
O(Y1(N`))× → O(Y1(N))× given by

(π∗f)(x) =
∏

y∈π−1(x)

f(y).

Corollary 7.10. We have

π∗(cg0,1/N`) =

{
cg0,1/N , ` | N,
cg0,1/N · (cg0,u/N)−1, ` - N,

where u is the inverse of ` mod N when ` - N .

Proof. Let τ ∈ Y1(N) = Γ1(N)\H. Elements of the fiber of π over τ are given
by γτ for γ in a set of coset representatives of Γ1(N`)\Γ1(N).

Suppose first that ` | N .

π∗(cg0,1/N`)(τ) =
∏

γ∈Γ1(N`)\Γ1(N)

cg0,1/N`(γτ) =
∏

γ∈Γ1(N`)\Γ1(N)

cg(0,1/N`)γ(τ)

Note that for γ =

(
a b
Nc 1 +Nd

)
∈ Γ1(N), we have

(0, 1/N`)

(
a b
Nc 1 +Nd

)
= (c/`, 1/N`+ d/`).
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So γ stabilizes (0, 1/N`) if and only if γ ∈ Γ1(N`). Furthermore, the orbit
of (0, 1/N`) under Γ1(N) consists precisely of (α′, β′) such that `(α′, β′) =
(0, 1/N) (using that ` | N). So

π∗(cg0,1/N`)(τ) =
∏

`(α′,β′)=(0,1/N)

cgα′,β′(τ) = cg0,1/N(τ).

We omit the proof for ` - N . �
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