
THE WEIL PAIRING ON COHOMOLOGY

JACOB SWENBERG

1. Introduction

Motivated by work of Sharifi, we explore the pairing on Galois cohomology

H1(GF,S, E[n])×H1(GF,S, E[n])→ H2(GF,S, µn)

coming from the cup product and the Weil pairing, where:

• F is a number field;
• n is an odd positive integer;
• S is a set of places of F including the places above primes dividing n but not including

any places above 2;
• E is an elliptic curve defined over F with good reduction outside S;
• GF,S is the Galois group of the maximal S-ramified extension FS over F .

The Kummer map is an injection

κn : E(F )/nE(F )→ H1(GF,S, E[n]).

This gives us a pairing

E(F )× E(F )→ H2(GF,S, µn).

2. Kummer Theory and the Weil Pairing

We keep the notation of the introduction. For a matrix M , we denote by M t its transpose.
We denote by χn : GF,S → (Z/n)× the character giving the action of GF,S on µn. For ρ a
continuous homomorphism of GF into another group, we denote by F (ρ) the fixed field of
its kernel.

2.1. Let OF,S denote the ring of S-integers of F . This Dedekind ring has class group
isomorphic to ClF,S, the S-class group of F . Let OS be the ring of S-integers of FS. Then
we have an exact sequence

1→ µn → O×S → O×S → 1

and an isomorphism

H1(GF,S, O
×
S ) ∼= ClF,S .

Taking a long exact sequence on cohomology, we have an exact sequence

(2.1.1) 0→ ClF,S /nClF,S → H2(GF,S, µn)
inv−→
⊕
v∈S

1

n
Z/Z→ 1

n
Z/Z→ 0.

See [NSW08, Prop 8.3.11] for more details. Actually maybe this isn’t quite right...
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2.2. By applying the Kummer map, cupping, and taking the Weil pairing, we have a pairing

E(F )× E(F )→ H2(GF,S, µn),

(x, y) 7−→ 〈x, y〉F,S,n := en([κnx] ∪ [κny]),

where en : E[n]× E[n]→ µn is the Weil pairing.

Lemma 2.1. The image of 〈·, ·〉F,S,n lies in ClF,S /nClF,S.

Proof. Consider the commutative diagram

E(F ) E(F )

H1(GF,S, E[n]) H1(GF,S, E[n]) H2(GF,S, µn)

⊕
v∈S H

1(Fv, E[n])
⊕

v∈S H
1(Fv, E[n])

⊕
v∈S Q/Z

×

res

×
res

×

.

The bottom (local) pairings are perfect by local Tate duality and perfectness of the Weil
pairing. By Equation 2.1.1, it suffices to show that for all v ∈ S, the image of the local
Kummer map

κn,v : E(Fv)→ H1(Fv, E[n])

is self annihilating under the local pairing. �

2.3. Let x, y ∈ E(F ), let x̃, ỹ ∈ E be such that nx̃ = x and nỹ = y. Let α, β : GF → E[n]
be the cocycles defined by α(σ) = σx̃− x̃ and β(σ) = σỹ− ỹ. These cocycles are unramified
outside of S, and

κn(x) = [α], κn(y) = [β].

2.4. We fix a (Z/n)-basis v1, v2 ∈ E[n]. After choosing this basis, we identify E[n] ∼= (Z/n)2

as column vectors. For instance, we will abuse notation and let α(σ) and β(σ) denote column
vectors for all σ ∈ GF,S:

α(σ) =

[
α1(σ)
α2(σ)

]
, β(σ) =

[
β1(σ)
β2(σ)

]
,

where αi(σ), βi(σ) ∈ Z/n are such that

α(σ) = α1(σ)v1 + α2(σ)v2,

β(σ) = β1(σ)v1 + β2(σ)v2.

2.5. Since the Weil pairing is skew-symmetric and non-degenerate, we have that en(vi, vi) =
0 for i = 1, 2, and ζ := en(v1, v2) is a primitive nth root of unity. With this designated root
of unity, we may identify µn ∼= (Z/n)(1). Then for v, w ∈ E[n], we have

en(v, w) = ζv
tJw, J :=

[
0 1
−1 0

]
.

2



2.6. With the chosen basis v1, v2 of E[n], we obtain a matrix representation ρE,n of the
Galois action on n-torsion:

ρE,n : GF,S → GL2(Z/n).

In particular, the cocycle condition on α can be written as

α(στ) = α(σ) + ρE,n(σ)α(τ)

and similarly for β. By a simple matrix computation, we note that

ρE,n(σ)tJρE,n(σ) = det(ρE,n(σ))J.

On the other hand, Galois equivariance of the Weil pairing gives, for all v, w ∈ E[n],

vtρE,n(σ)tJρE,n(σ)w = χn(σ)vtJw.

From this, we obtain the well-known identities

det(ρE,n(σ)) = χn(σ) ρtE,n(σ)J = χn(σ)JρE,n(σ)−1.

Since ker ρE,n ⊆ kerχn, we have in particular that

µn ⊆ F (ρE,n) = F (E[n]).

3. An Embedding Problem

In this section, we show how the triviality of the pairing given in the introduction is related
to a Galois embedding problem.

3.1. Consider the group of block upper-triangular matrices of the form

B :=

(Z/n)× ∗ ∗
GL2(Z/n) ∗

1

 ⊂ GL4(Z/n).

The matrix

C :=


1 1

1
1

1


generates a normal (but not central) cyclic subgroup 〈C〉 ⊂ B of order n, and the quotient
B/〈C〉 can be thought of as “matrices modulo the upper right corner.” More precisely, two
matrices in B become identified in the quotient B/〈C〉 if and only if they are equal outside
of the upper right corner.

3



3.2. For σ ∈ GF,S, we denote a column vector

α̃(σ) = χn(σ)α(σ−1)tJ.

By the cocycle condition on α, we see that α̃ satisfies

α̃(στ) = χn(στ)α(τ−1σ−1)tJ

= χn(στ)(α(τ−1)t + α(σ−1)tρE,n(τ−1)t)J

= χn(σ)α̃(τ) + χn(στ)α(σ−1)t(χn(τ−1)JρE,n(τ))

= χn(σ)α̃(τ) + χn(σ)α(σ−1)tJρE,n(τ)

= χn(σ)α̃(τ) + α̃(σ)ρE,n(τ).

Furthermore,

ζ α̃(σ)β(τ) = ζχn(σ)α(σ−1)tJβ(τ)

= σ(en(α(σ−1), β(τ)))

= en(σα(σ−1), σβ(τ))

= en(α(σ), σβ(τ))−1

= −en(α ∪ β)(σ, τ).

In other words, (σ, τ) 7→ ζ α̃(σ)β(τ) is a 2-cocycle representing −en([α] ∪ [β]) ∈ H2(GF,S, µn).

3.3. We now define a continuous function (written in block matrix form)

Bα,β : GF,S → B, Bα,β(σ) =

χn(σ) α̃(σ)
ρE,n(σ) β(σ)

1

 .
We verify that the composition Bα,β : GF,S → B/〈C〉 is a homomorphism: by block matrix
multiplication,

Bα,β(στ) =

χn(στ) α̃(στ) ∗
ρE,n(στ) β(στ)

1


=

χn(σ)χn(τ) χn(σ)α̃(τ) + α̃(σ)ρE,n(τ) ∗
ρE,n(σ)ρE,n(τ) β(σ) + ρE,n(σ)β(τ)

1


=

χn(σ) α̃(σ) ∗
ρE,n(σ) β(σ)

1

χn(τ) α̃(τ) ∗
ρE,n(τ) β(τ)

1


= Bα,β(σ)Bα,β(τ) ∈ B/〈C〉.

3.4. However, there is a potential obstruction to lifting Bα,β to a homomorphism GF,S → B.
Let γ : GF,S → Z/n be a continuous map, and let

Bγ
α,β : GF,S → B, Bγ

α,β(σ) =

χn(σ) α̃(σ) γ(σ)
ρE,n(σ) β(σ)

1

 ∈ B.
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We let a cochain ζγ : GF,S → µn be defined by ζγ(σ) = ζγ(σ). One checks Bγ
α,β is a

homomorphism if and only if

γ(στ) = χ(σ)γ(τ) + α̃(σ)β(τ) + γ(σ),

if and only if

d(ζγ)(σ, τ) = en(α ∪ β).

This shows that Bα,β lifts to a homomorphism GF,S → B if and only if en(α ∪ β) ∈
Z2(GF,S, µn) is a coboundary, if and only if 〈[α], [β]〉F,S,n = 0.

3.5. We make a few useful calculations. First, let B0
α,β = Bα,β : GF,S → B be the function

defined above. Then

Bα,β(σ)Bα,β(τ) = C α̃(σ)β(τ)Bα,β(στ).

Also,

Cχn(σ)Bα,β(σ) = Bα,β(σ)C,

so

Bα,β(σ)CBα,β(σ)−1 = Cχn(σ).

3.6. Matrix calculations. Let Ei,j be the matrix with a 1 in the (i, j) entry and zeros
elsewhere. For i = 1, 2, let Xi = I + E1,i and let Yi = I + Ei,4. Then

[Xi, Yj] =

{
C, i = j,

0, i 6= j.

We define a subgroup

G :=

1 ∗ ∗
I ∗

1

 ⊂ B.
The normal subgroup N ⊂ G generated by {Y1, Y2} is generated by {Y1, Y2, C} and we
have N ∼= (Z/n)3 as groups. Let G ⊂ G be the subgroup generated by {X1, X2}. Then
G ∼= (Z/n)2, and

G ∼= N oG.

We consider N as a (Z/n)[G]-module. Let Gi be the direct factor of G generated by Xi. We
write the generator of Gi as gi instead of Xi. Then we have an isomorphism of (Z/n)[G]-
modules

N ∼=
(Z/n)[G1]m1 ⊕ (Z/n)[G2]m2

((g1 − 1)m1 − (g2 − 1)m2)
.

4. More on the Weil Pairing

We recall the definition of the Weil pairing as given in [Sil09].
We assume that K(E[n]) = K. Recall that we have chosen a (Z/n)-basis v1, v2 ∈ E[n]

such that en(v1, v2) = ζ is a fixed primitive nth root of unity. Let wi ∈ E be such that
nwi = vi. For i ∈ {1, 2}, choose rational functions fi, gi ∈ K(E)× such that

div(fi) = n[vi]− n[0], div(gi) =
∑
z∈E[n]

[wi + z]− [z].
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We can choose fi, gi ∈ K(E)× since their divisors are Galois invariant. One sees that
div(gni ) = div(fi ◦ [n]), so we can rescale f so that

gni = fi ◦ [n].

Note that since gi is defined up to multiplication by K×, we have fi is well-defined up to
multiplication by K×n. Then by definition of the Weil pairing, we have

en(α(σ), vi) = en(σx̃− x̃, vi) = gi(σx̃)/gi(x̃) = σ(gi(x̃))/gi(x̃),

whenever x̃ is not in the support of div(gi). If x̃ ∈ Supp(div(gi)), then either x̃ ∈ E[n]
or x̃ − wi ∈ E[n]. In the former case, we have x = nx̃ = 0, and in the latter case,
x = nx̃ = nwi = vi. So we assume that x 6∈ {0, v1, v2}, and similarly for y.

Now, we have

σ(g1(x̃))/g1(x̃) = en(α(σ), v1)

= en(α1(σ)v1 + α2(σ)v2, v1)

= ζ−α2(σ),

σ(g2(x̃))/g2(x̃) = en(α(σ), v2)

= en(α1(σ)v1 + α2(σ)v2, v2)

= ζα1(σ).

So α1 is the Kummer character associated to g2(x̃)n = f2(x), and α2 is the Kummer character
associated to −f1(x). A similar computation works for y. Then

e∗n(α ∪ β)(σ, τ)⊗ ζ = en(α(σ), β(τ))⊗ ζ
= ζα1(σ)β2(τ)−α2(σ)β1(τ) ⊗ ζ
= (ζα1(σ) ⊗ ζβ2(τ))(ζα2(σ) ⊗ ζβ1(τ))−1

〈x, y〉 = (f2(x), f1(y))−1S (f1(x), f2(y))S

= (f1(x), f2(y))S(f1(y), f2(x))S,

where (·, ·)S is the pairing of Sharifi–McCallum:

(K× ∩K×nS )× (K× ∩K×nS )→ H2(GK,S, µ
⊗2
n ).

We have thus shown the following theorem:

Theorem 4.1. There exists K-rational maps f1, f2 : E → P1 with

div(fi) = n[vi]− n[0]

such that fi ◦ [n] ∈ K(E)×n and for x, y 6= 0, v1, v2, we have

〈x, y〉 = (f1(x), f2(y))S(f1(y), f2(x))S.

Example 4.2. Consider the Legendre family of elliptic curves

Et := {y2 = x(x− 1)(x− t)}, t 6= 0, 1.

We let n = 2. Let S be a set of primes containing those dividing 2t(1 − t). We can choose
v1 = (0, 0), v2 = (1, 0). Recall that the doubling map on x-coordinates is

x 7→ (x2 − t)2

4y2
.
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Then we may take f1 = x and f2 = x− 1, and

g1 =
x2 − t

2y
, g2 =

x2 − 2x+ t

2y
.

Our pairing then takes

〈(x1, y1), (x2, y2)〉 = (x1, x2 − 1)S(x1 − 1, x2)S

However, the identity (x, y − 1)S + (x − 1, y)S = 0 does not hold for all x, y ∈ K× (one
can see this with Hilbert symbols). In fact, this identity does not even hold for the local
pairings. We denote by (·, ·)v the local pairings.

We do, however, have the following condition:

Lemma 4.3. Let (x1, y1), (x2, y2) ∈ Et(K) such that x1, x2 6= 0, 1. Then

〈(x1, y1), (x2, y2)〉v = 1

for all places v of K.

Proof. We have

〈(x1, y1), (x2, y2)〉v = (x1, x2 − 1)v(x2, x1 − 1)v

where (·, ·)v denotes the Hilbert symbol. Recall that the quadratic Hilbert symbol is bilinear
and symmetric and satisfies, for a, b ∈ K× − 1,

(a, 1− a)v = 1, (a2, b)v = 1.

We verify several identities from these. For instance, for a 6= b,

(a,−a)v = (1/a,−1/a)v

= (1/a,−1/a)v(a, 1− a)v

= (1/a,−1/a)v(1/a, 1− a)v

= (1/a, 1− 1/a)v

= 1,

(a, b− a)v(b, a− b)v(a, b)v = (a, b− a)v(b, a− b)v(a, b)v(a− b, b− a)v

= (a(a− b), b(b− a))v

=

(
a

a− b
,
−b
a− b

)
v

=

(
a

a− b
, 1− a

a− b

)
v

= 1.

In our setting, we have

y21 = x1(x1 − 1)(x1 − t) = x21(x1 − 1)− x1(x1 − 1)t,

y22 = x2(x2 − 1)(x2 − t) = x22(x2 − 1)− x2(x2 − 1)t.

Taking a linear combination of these equations yields

x2(x2 − 1)y21 − x1(x1 − 1)y22 = x1x2(x1 − x2)(x1 − 1)(x2 − 1).
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Letting Yi = (x1x2(x1 − 1)(x2 − 1)(x1 − x2))2 for i = 1, 2, we have

x1(x1 − 1)(x1 − x2)Y 2
1 + x2(x2 − 1)(x2 − x1)Y 2

2 = 1.

This implies that

1 = (x1(x1 − 1)(x1 − x2), x2(x2 − 1)(x2 − x1))v
= (x1, x2)v(x1, x2 − 1)v(x1, x2 − x1)v
· (x1 − 1, x2)v(x1 − 1, x2 − 1)v(x1 − 1, x2 − x1)v
· (x1 − x2, x2)v(x1 − x2, x2 − 1)v(x1 − x2, x2 − x1)v

= (x1, x2 − 1)v(x2, x1 − 1)v(x1 − x2, x2 − x1)v
· (x1, x2)v(x1, x2 − x1)v(x2, x1 − x2)v
· (x1 − 1, x2 − x1)v(x2 − 1, x1 − x2)v(x1 − 1, x2 − 1)v

= (x1, x2 − 1)v(x2, x1 − 1)v · 1 · 1 · 1
= 〈(x1, y1), (x2, y2)〉v.

�

We also wish to 〈v1, v2〉, so we derive an alternate formula in this particular case. Let
f3, g3 ∈ K(E)× correspond to v1 + v2 as above. Then

σ(g3(x̃))/g3(x̃) = en(α(σ), v1 + v2) = ζα1(σ)−α2(σ).

This formula applies for x 6= 0, v1 + v2. For x 6= v2, we have

σ(g2(x̃))/g2(x̃) = en(α(σ), v2) = ζα1(σ).

So ζα1 is the Kummer character associated to f2(x).

ζα2(σ) = ζα1(σ)ζα2(σ)−α1(σ) =
σ(g2(x̃))

g2(x̃)
· g3(x̃)

σ(g3(x̃))
.

So ζα2 is the Kummer character associated to f2(x)/f3(x). For y 6= v1, we have

τ(g1(ỹ))/g1(ỹ) = en(β(τ), v1) = ζ−β2(τ).

So ζβ2 is the Kummer character associated to 1/f1(y). Furthermore,

ζβ1(τ) = ζβ1(τ)−β2(τ)ζβ2(τ) =
τ(g3(ỹ))

g3(ỹ)

g1(ỹ))

τ(g1(ỹ))
.

So ζβ1 is the Kummer character associated to f3(y)/f1(y). So for x = v1 and y = v2, we
have

e∗n(α ∪ β)(σ, τ)⊗ ζ = (ζα1(σ) ⊗ ζβ2(τ))(ζα2(σ) ⊗ ζβ1(τ))−1,

〈v1, v2〉 ⊗ ζ = (f2(v1), f1(v2)
−1)S(f2(v1)f3(v1)

−1, f3(v2)f1(v2)
−1)−1S

= (f2(v1), f1(v2)
−1)S(f2(v1)f3(v1)

−1, f1(v2)f3(v2)
−1)S

= (f3(v1), f3(v2))S(f1(v2), f3(v1))S(f2(v1), f3(v2))
−1
S .

In the Legendre elliptic curve case, this says

〈(0, 0), (1, 0)〉 = (−t, 1− t)S(1,−t)S(−1, 1− t)S = (t, 1− t)S = 0

since the primes dividing t(1− t) are contained in S.
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5. Local Vanishing

In this section, we prove that the pairing

E(K)× E(K)→ H2(GK,S, µn)

always has image in the image of

ClK,S /nClK,S → H2(GK,S, µn).

Recall the exact sequence

0→ ClK,S /nClK,S → H2(GK,S, µn)→ BrS(K)[n]→ 0.

For a, b ∈ K×/K×n, we recall that the Kummer map followed by the cup product gives us
the element (a, b)S ∈ H2(GK,S, µn). We denote its image in BrS(K) by (a, b)K . This is the
norm-residue symbol.

Recall also that we have maps

f1, f2 : E(K)→ (K× ∩K×nS )/K×n

such that for P,Q ∈ E(K),

〈P,Q〉 = (f1(P ), f2(Q))S(f1(Q), f2(P ))S.

The period-index obstruction is a map

∆ : H1(GK , E[n])→ Br(K)

that vanishes on the image of the Kummer map by [CS10, §2.2]. We have an isomorphism
H1(GK , E[n]) ∼= (K×/K×n)2 such that the Kummer map κ : E(K)/n → H1(GK , E[n])
becomes identified with the map P 7→ (f1(P ), f2(P )).

Proposition 5.1. There exists C1, C2 ∈ K×/K×n such that for all a, b ∈ K×/K×n,

∆(a, b) = (C1a, C2b)K − (C1, C2)K .

Proof. See [Cla05, Thm 6]. �

Combined with the vanishing of ∆ on the image of the Kummer map, we have the following:

Proposition 5.2. For all P,Q ∈ E(K), we have

〈P,Q〉 ∈ ClK,S /n.

Proof. It suffices to show that

(f1(P ), f2(Q))K + (f1(Q), f2(P ))K = 0.

From Proposition 5.1 and vanishing of ∆ on the image of κ, we have

(f1(P ), f2(P ))K = (C1f1(P ), C2f2(P ))K − (C1, C2)K − (C1, f2(P ))K − (f1(P ), C2)K

= ∆(κ(P )) + (f2(P ), C1)K + (C2, f1(P ))K

= 0 + (f2(P ), C1)K + (C2, f1(P ))K .
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We have

(f1(P ), f2(Q))K + (f1(Q), f2(P ))K = (f1(P )f1(Q), f2(P )f2(Q))K − (f1(P ), f2(P ))K

− (f1(Q), f2(Q))K

= (f1(P +Q), f2(P +Q))K − (f1(P ), f2(P ))K

− (f1(Q), f2(Q))K

= (f2(P +Q), C1)K + (C2, f1(P +Q))K

− (f2(P ), C1)K + (C2, f1(P ))K

− (f2(Q), C1)K + (C2, f1(Q))K

= 0.

�

6. A formula in the Legendre case

As above, let E = {y2 = x(x−1)(x−t)} be a Legendre elliptic curve. Let (x1, y1), (x2, y2) ∈
E(K). Sharifi notes that

(x1, x2 − 1)S + (x2, x1 − 1)S =

(
x1,

x2 − 1

1− x1

)
S

+

(
x2,

x1 − 1

1− x2

)
S

+ (x1, 1− x1)S + (x2, 1− x2)S

=

(
x1
x2
,
x2 − 1

1− x1

)
S

+ (x1, 1− x1)S + (x2, 1− x2)S.

The latter two terms vanish locally, so the first term must also vanish locally. We can then
apply the Sharifi–McCallum formula.

Lemma 6.1. There is an isomorphism

ΦK := ΦK,S := ΦK,S,n : (K× ∩K×nS )/O×K,SK
×n → ClK,S[n]

such that if I ⊂ OK,S is an ideal with In = aOK,S, then

ΦK,S(a) = [I].

Proof. The Kummer sequence

1→ µn → O×S
n−→ O×S → 1

gives an exact sequence

1→ O×K,S/O
×n
K,S → H1(GK,S, µn)→ ClK,S[n]→ 0.

We have a commutative diagram with exact rows

1 O×K,S/O
×n
K,S H1(GK,S, µn) ClK,S[n] 0

1 (K× ∩K×nS )/K×n H1(GK,S, µn) 0

=

Applying the snake lemma will give the desired isomorphism ΦK,S. Given [I] ∈ ClK,S[n],
recall that we lift to H1(GK,S, µn) as follows: we write IOS = αOS for some α ∈ OS. The
cocycle GK,S → O×S given by σ 7→ σα/α has class in H1(GK,S, O

×
S )[n] corresponding to
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[I] ∈ ClK,S. In particular, if we write In = aOK,S, then αnOS = aOS, so there exists ε0 ∈ O×S
such that αn = aε0. Then for σ ∈ GK,S, we have

(σα/α)n = σαn/αn = σε0/ε0.

Since the nth power map O×S
n−→ O×S is surjective, we may find ε ∈ O×S such that εn = ε0.

Then n
√
a := α/ε ∈ K×S is an nth root of a, and the cocycle σ 7→ σα/α is cohomologous with

σ 7→ σ n
√
a/ n
√
a, which is the image of a in H1(GK,S, µn). It follows that ΦK,S(a) = [I]. �

Lemma 6.2. Let L/K be a finite Galois extension. Then ΦL is Galois equivariant.

Proof. Let σ ∈ GL/K , let [I] ∈ ClL,S, and let b ∈ L× ∩ L×nS be such that In = bOL,S. Then
ΦL(b) = [I]. Note also that

(Iσ)n = σ(In) = σbOL,S,

so
ΦL(σb) = σ[I] = σΦL(b). �

We return to the case n = 2.

Proposition 6.3. Let a, 1− a ∈ K× ∩K×2S . Then

(a, 1− a)S = [a] ∈ ClK,S /2

where a2 is the fractional ideal (1, a)OK,S.

Proof. Let L = K(
√
a), and let γ = 1−

√
a ∈ L. Let b ⊂ K be a fractional ideal such that

(1− a)OK,S = b2,

and let c be a fractional ideal of L such that

γOL,S = bc1−σ.

By the formula of McCallum–Sharifi, we have

(a, 1− a)S = [bc1+σ].

Now let p be a prime of K not in S and P ⊂ L a prime above p. In particular, p is unramified
in L and does not divide 2. Then

vp(bc
1+σ) = vP(bc1+σ) ≡ vP(bc1−σ) = vP(γ) (mod 2).

Note that this implies that
vP(γ) ≡ vP(γσ) (mod 2).

The minimal polynomial of γ over K is x2−2x+1−a. Let a be the fractional ideal such that
a2 = (1, a)OK,S = (1, 1−a)OK,S. Then by considering the Newton polygon of x2−2x+1−a
at P.

vP(γ) ≡ min{vP(γ), vP(γσ)} (mod 2)

= min

{
vP(2),

1

2
vP(1− a)

}
=

1

2
min{0, vp(1− a)}

=
1

2
vp((1, 1− a))

= vp(a).
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So as elements of ClK,S /2, we have [bc1+σ] = [a]. �

The more general proposition is as follows:

Proposition 6.4. Let n ≥ 2. Let a, 1− a ∈ K× ∩K×nS . If n is odd, then (a, 1− a)S = 0. If
n is even, then (a, 1− a)S = [a], where a2 = (a, 1− a)OK,S as fractional ideals.

Proof. Let d = [L : K]. Let σ be a generator for GL/K , and let ζ be a primitive nth root of

unity such that σ n
√
a = ζn/d n

√
a. We note that

1− a =
n−1∏
i=0

(1− ζ i n
√
a) =

d−1∏
i=0

n/d−1∏
j=0

(1− ζj+(n/d)i n
√
a) = NL/K

n/d−1∏
j=0

(1− ζj n
√
a)

 .

Accordingly, we let γ =
∏n/d−1

j=0 (1− ζj n
√
a).

Let c ⊂ L be a fractional OL,S ideal such that

γOL,S = c1−σbn/d.

We have
cσ = cbn/dγ−1.

Inductively, this implies that

cσ
i

= cbni/d
i∏

j=1

γ−σ
j−1

Now suppose that n is odd. Then (a, 1 − a)S = [NL/Kc] ⊗ ζn/d. Let P be a prime of L
over a prime p of K not in S. In particular, p does not divide n and P is unramified over p.
Then

vp(NL/Kc) = vP(NL/Kc)

=
d∑
i=1

vP(cσ
i

)

= dvP(c) +
d∑
i=1

ni

d
vP(b)−

d∑
i=1

i∑
j=1

vP(γσ
j−1

)

= dvP(c) +
n(d+ 1)

2
vP(b)−

d∑
j=1

d∑
i=j

vP(γσ
j−1

)

≡ dvP(c) +
d∑
j=1

jvP(γσ
j−1

)− (d+ 1)
d∑
j=1

vP(γσ
j−1

) (mod n)

≡ dvP(c) +
d∑
i=1

i

n/d−1∑
j=0

vP(1− ζj+(n/d)(i−1) n
√
a).

Suppose further that vp(1− a) ≤ 0. By considering the Newton polygon of (1− x)n − a, we
have that

vP(1− ζj+(n/d)(i−1) n
√
a) =

1

n
vp(1− a).
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Then

vp(NL/Kc) ≡ dvP(c) +
(d+ 1)

2
vp(1− a) ≡ 0 (mod d).

If vp(1 − a) > 0, then similar Newton polygon considerations show that vP(1 − ζk n
√
a) is

divisible by d for all k. So

(a, 1− a)S = [NL/Kc]⊗ ζn/d = 0.

Now suppose that n is even. Then

(a, 1− a) = ([NL/Kc] +
n

2
[b])⊗ ζn/d.

A similar calculation to the above yields

vp(b
n/2NL/Kc) = vP(bn/2NL/Kc)

≡ n

2
vP(b) +

n(d+ 1)

2
vP(b) +

d∑
i=1

i

n/d−1∑
j=0

vP(1− ζj+(n/d)(i−1) n
√
a) (mod d)

=
d+ 2

2
vp(1− a) +

d∑
i=1

i

n/d−1∑
j=0

vP(1− ζj+(n/d)(i−1) n
√
a) (mod d).

If vp(1− a) < 0, then

vp(b
n/2NL/Kc) ≡

d+ 2

2
vp(1− a) +

d+ 1

2
vp(1− a) ≡ 1

2
vp(1− a) (mod d).

Otherwise,

vp(b
n/2NL/Kc) ≡ (d+ 2)

vp(1− a)

2
≡ vp(1− a) ≡ 0 (mod d).

So

vp(b
n/2NL/Kc) ≡

1

2
min{0, vp(1− a)} = vp(a) (mod d).

�
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