# THE WEIL PAIRING ON COHOMOLOGY

### JACOB SWENBERG

### 1. Introduction

Motivated by work of Sharifi, we explore the pairing on Galois cohomology

$$H^1(G_{F,S}, E[n]) \times H^1(G_{F,S}, E[n]) \to H^2(G_{F,S}, \mu_n)$$

coming from the cup product and the Weil pairing, where:

- $\bullet$  F is a number field;
- *n* is an odd positive integer;
- S is a set of places of F including the places above primes dividing n but not including any places above 2;
- E is an elliptic curve defined over F with good reduction outside S;
- $G_{F,S}$  is the Galois group of the maximal S-ramified extension  $F_S$  over F.

The Kummer map is an injection

$$\kappa_n: E(F)/nE(F) \to H^1(G_{F,S}, E[n]).$$

This gives us a pairing

$$E(F) \times E(F) \to H^2(G_{F,S}, \mu_n).$$

# 2. Kummer Theory and the Weil Pairing

We keep the notation of the introduction. For a matrix M, we denote by  $M^t$  its transpose. We denote by  $\chi_n: G_{F,S} \to (\mathbb{Z}/n)^{\times}$  the character giving the action of  $G_{F,S}$  on  $\mu_n$ . For  $\rho$  a continuous homomorphism of  $G_F$  into another group, we denote by  $F(\rho)$  the fixed field of its kernel.

2.1. Let  $O_{F,S}$  denote the ring of S-integers of F. This Dedekind ring has class group isomorphic to  $Cl_{F,S}$ , the S-class group of F. Let  $O_S$  be the ring of S-integers of  $F_S$ . Then we have an exact sequence

$$1 \to \mu_n \to O_S^{\times} \to O_S^{\times} \to 1$$

and an isomorphism

$$H^1(G_{F,S}, O_S^{\times}) \cong \operatorname{Cl}_{F,S}.$$

Taking a long exact sequence on cohomology, we have an exact sequence

$$(2.1.1) 0 \to \operatorname{Cl}_{F,S}/n\operatorname{Cl}_{F,S} \to H^2(G_{F,S},\mu_n) \xrightarrow{\operatorname{inv}} \bigoplus_{n \in S} \frac{1}{n}\mathbb{Z}/\mathbb{Z} \to \frac{1}{n}\mathbb{Z}/\mathbb{Z} \to 0.$$

See [NSW08, Prop 8.3.11] for more details. Actually maybe this isn't quite right...

2.2. By applying the Kummer map, cupping, and taking the Weil pairing, we have a pairing

$$E(F) \times E(F) \to H^2(G_{F,S}, \mu_n),$$
  
$$(x, y) \longmapsto \langle x, y \rangle_{F,S,n} := e_n([\kappa_n x] \cup [\kappa_n y]),$$

where  $e_n : E[n] \times E[n] \to \mu_n$  is the Weil pairing.

**Lemma 2.1.** The image of  $\langle \cdot, \cdot \rangle_{F,S,n}$  lies in  $\operatorname{Cl}_{F,S}/n\operatorname{Cl}_{F,S}$ .

*Proof.* Consider the commutative diagram

$$E(F) \times E(F)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{1}(G_{F,S}, E[n]) \times H^{1}(G_{F,S}, E[n]) \longrightarrow H^{2}(G_{F,S}, \mu_{n}) \cdot$$

$$\downarrow^{\text{res}} \qquad \qquad \downarrow^{\text{res}} \qquad \qquad \downarrow$$

$$\bigoplus_{v \in S} H^{1}(F_{v}, E[n]) \times \bigoplus_{v \in S} H^{1}(F_{v}, E[n]) \longrightarrow \bigoplus_{v \in S} \mathbb{Q}/\mathbb{Z}$$

The bottom (local) pairings are perfect by local Tate duality and perfectness of the Weil pairing. By Equation 2.1.1, it suffices to show that for all  $v \in S$ , the image of the local Kummer map

$$\kappa_{n,v}: E(F_v) \to H^1(F_v, E[n])$$

is self annihilating under the local pairing.

2.3. Let  $x, y \in E(F)$ , let  $\widetilde{x}, \widetilde{y} \in E$  be such that  $n\widetilde{x} = x$  and  $n\widetilde{y} = y$ . Let  $\alpha, \beta : G_F \to E[n]$  be the cocycles defined by  $\alpha(\sigma) = \sigma \widetilde{x} - \widetilde{x}$  and  $\beta(\sigma) = \sigma \widetilde{y} - \widetilde{y}$ . These cocycles are unramified outside of S, and

$$\kappa_n(x) = [\alpha], \qquad \kappa_n(y) = [\beta].$$

2.4. We fix a  $(\mathbb{Z}/n)$ -basis  $v_1, v_2 \in E[n]$ . After choosing this basis, we identify  $E[n] \cong (\mathbb{Z}/n)^2$  as column vectors. For instance, we will abuse notation and let  $\alpha(\sigma)$  and  $\beta(\sigma)$  denote column vectors for all  $\sigma \in G_{E,S}$ :

$$\alpha(\sigma) = \begin{bmatrix} \alpha_1(\sigma) \\ \alpha_2(\sigma) \end{bmatrix}, \qquad \beta(\sigma) = \begin{bmatrix} \beta_1(\sigma) \\ \beta_2(\sigma) \end{bmatrix},$$

where  $\alpha_i(\sigma), \beta_i(\sigma) \in \mathbb{Z}/n$  are such that

$$\alpha(\sigma) = \alpha_1(\sigma)v_1 + \alpha_2(\sigma)v_2,$$

$$\beta(\sigma) = \beta_1(\sigma)v_1 + \beta_2(\sigma)v_2.$$

2.5. Since the Weil pairing is skew-symmetric and non-degenerate, we have that  $e_n(v_i, v_i) = 0$  for i = 1, 2, and  $\zeta := e_n(v_1, v_2)$  is a primitive nth root of unity. With this designated root of unity, we may identify  $\mu_n \cong (\mathbb{Z}/n)(1)$ . Then for  $v, w \in E[n]$ , we have

$$e_n(v, w) = \zeta^{v^t J w}, \qquad J := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

2.6. With the chosen basis  $v_1, v_2$  of E[n], we obtain a matrix representation  $\rho_{E,n}$  of the Galois action on n-torsion:

$$\rho_{E,n}:G_{F,S}\to \mathrm{GL}_2(\mathbb{Z}/n).$$

In particular, the cocycle condition on  $\alpha$  can be written as

$$\alpha(\sigma\tau) = \alpha(\sigma) + \rho_{E,n}(\sigma)\alpha(\tau)$$

and similarly for  $\beta$ . By a simple matrix computation, we note that

$$\rho_{E,n}(\sigma)^t J \rho_{E,n}(\sigma) = \det(\rho_{E,n}(\sigma)) J.$$

On the other hand, Galois equivariance of the Weil pairing gives, for all  $v, w \in E[n]$ ,

$$v^t \rho_{E,n}(\sigma)^t J \rho_{E,n}(\sigma) w = \chi_n(\sigma) v^t J w.$$

From this, we obtain the well-known identities

$$\det(\rho_{E,n}(\sigma)) = \chi_n(\sigma) \qquad \rho_{E,n}^t(\sigma)J = \chi_n(\sigma)J\rho_{E,n}(\sigma)^{-1}.$$

Since  $\ker \rho_{E,n} \subseteq \ker \chi_n$ , we have in particular that

$$\mu_n \subseteq F(\rho_{E,n}) = F(E[n]).$$

# 3. An Embedding Problem

In this section, we show how the triviality of the pairing given in the introduction is related to a Galois embedding problem.

3.1. Consider the group of block upper-triangular matrices of the form

$$\mathcal{B} := egin{bmatrix} (\mathbb{Z}/n)^{ imes} & * & * \ \operatorname{GL}_2(\mathbb{Z}/n) & * \ & 1 \end{bmatrix} \subset \operatorname{GL}_4(\mathbb{Z}/n).$$

The matrix

$$C := \begin{bmatrix} 1 & & & 1 \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

generates a normal (but not central) cyclic subgroup  $\langle C \rangle \subset \mathcal{B}$  of order n, and the quotient  $\mathcal{B}/\langle C \rangle$  can be thought of as "matrices modulo the upper right corner." More precisely, two matrices in  $\mathcal{B}$  become identified in the quotient  $\mathcal{B}/\langle C \rangle$  if and only if they are equal outside of the upper right corner.

3.2. For  $\sigma \in G_{F,S}$ , we denote a column vector

$$\widetilde{\alpha}(\sigma) = \chi_n(\sigma)\alpha(\sigma^{-1})^t J.$$

By the cocycle condition on  $\alpha$ , we see that  $\widetilde{\alpha}$  satisfies

$$\widetilde{\alpha}(\sigma\tau) = \chi_n(\sigma\tau)\alpha(\tau^{-1}\sigma^{-1})^t J$$

$$= \chi_n(\sigma\tau)(\alpha(\tau^{-1})^t + \alpha(\sigma^{-1})^t \rho_{E,n}(\tau^{-1})^t) J$$

$$= \chi_n(\sigma)\widetilde{\alpha}(\tau) + \chi_n(\sigma\tau)\alpha(\sigma^{-1})^t (\chi_n(\tau^{-1})J\rho_{E,n}(\tau))$$

$$= \chi_n(\sigma)\widetilde{\alpha}(\tau) + \chi_n(\sigma)\alpha(\sigma^{-1})^t J\rho_{E,n}(\tau)$$

$$= \chi_n(\sigma)\widetilde{\alpha}(\tau) + \widetilde{\alpha}(\sigma)\rho_{E,n}(\tau).$$

Furthermore,

$$\zeta^{\widetilde{\alpha}(\sigma)\beta(\tau)} = \zeta^{\chi_n(\sigma)\alpha(\sigma^{-1})^t J\beta(\tau)} 
= \sigma(e_n(\alpha(\sigma^{-1}), \beta(\tau))) 
= e_n(\sigma\alpha(\sigma^{-1}), \sigma\beta(\tau)) 
= e_n(\alpha(\sigma), \sigma\beta(\tau))^{-1} 
= -e_n(\alpha \cup \beta)(\sigma, \tau).$$

In other words,  $(\sigma, \tau) \mapsto \zeta^{\tilde{\alpha}(\sigma)\beta(\tau)}$  is a 2-cocycle representing  $-e_n([\alpha] \cup [\beta]) \in H^2(G_{F,S}, \mu_n)$ .

3.3. We now define a continuous function (written in block matrix form)

$$B_{\alpha,\beta}: G_{F,S} \to \mathcal{B}, \qquad B_{\alpha,\beta}(\sigma) = \begin{bmatrix} \chi_n(\sigma) & \widetilde{\alpha}(\sigma) \\ & \rho_{E,n}(\sigma) & \beta(\sigma) \\ & 1 \end{bmatrix}.$$

We verify that the composition  $\overline{B}_{\alpha,\beta}:G_{F,S}\to\mathcal{B}/\langle C\rangle$  is a homomorphism: by block matrix multiplication,

$$\overline{B}_{\alpha,\beta}(\sigma\tau) = \begin{bmatrix} \chi_n(\sigma\tau) & \widetilde{\alpha}(\sigma\tau) & * \\ \rho_{E,n}(\sigma\tau) & \beta(\sigma\tau) \\ 1 \end{bmatrix} \\
= \begin{bmatrix} \chi_n(\sigma)\chi_n(\tau) & \chi_n(\sigma)\widetilde{\alpha}(\tau) + \widetilde{\alpha}(\sigma)\rho_{E,n}(\tau) & * \\ \rho_{E,n}(\sigma)\rho_{E,n}(\tau) & \beta(\sigma) + \rho_{E,n}(\sigma)\beta(\tau) \\ 1 \end{bmatrix} \\
= \begin{bmatrix} \chi_n(\sigma) & \widetilde{\alpha}(\sigma) & * \\ \rho_{E,n}(\sigma) & \beta(\sigma) \\ 1 \end{bmatrix} \begin{bmatrix} \chi_n(\tau) & \widetilde{\alpha}(\tau) & * \\ \rho_{E,n}(\tau) & \beta(\tau) \\ 1 \end{bmatrix} \\
= \overline{B}_{\alpha,\beta}(\sigma)\overline{B}_{\alpha,\beta}(\tau) \in \mathcal{B}/\langle C \rangle.$$

3.4. However, there is a potential obstruction to lifting  $\overline{B}_{\alpha,\beta}$  to a homomorphism  $G_{F,S} \to \mathcal{B}$ . Let  $\gamma: G_{F,S} \to \mathbb{Z}/n$  be a continuous map, and let

$$B_{\alpha,\beta}^{\gamma}: G_{F,S} \to \mathcal{B}, \qquad B_{\alpha,\beta}^{\gamma}(\sigma) = \begin{bmatrix} \chi_n(\sigma) & \widetilde{\alpha}(\sigma) & \gamma(\sigma) \\ & \rho_{E,n}(\sigma) & \beta(\sigma) \\ & & 1 \end{bmatrix} \in \mathcal{B}.$$

We let a cochain  $\zeta^{\gamma}: G_{F,S} \to \mu_n$  be defined by  $\zeta^{\gamma}(\sigma) = \zeta^{\gamma(\sigma)}$ . One checks  $B_{\alpha,\beta}^{\gamma}$  is a homomorphism if and only if

$$\gamma(\sigma\tau) = \chi(\sigma)\gamma(\tau) + \widetilde{\alpha}(\sigma)\beta(\tau) + \gamma(\sigma),$$

if and only if

$$d(\zeta^{\gamma})(\sigma,\tau) = e_n(\alpha \cup \beta).$$

This shows that  $\overline{B}_{\alpha,\beta}$  lifts to a homomorphism  $G_{F,S} \to \mathcal{B}$  if and only if  $e_n(\alpha \cup \beta) \in Z^2(G_{F,S},\mu_n)$  is a coboundary, if and only if  $\langle [\alpha], [\beta] \rangle_{F,S,n} = 0$ .

3.5. We make a few useful calculations. First, let  $B_{\alpha,\beta}^0 = B_{\alpha,\beta} : G_{F,S} \to \mathcal{B}$  be the function defined above. Then

$$B_{\alpha,\beta}(\sigma)B_{\alpha,\beta}(\tau) = C^{\widetilde{\alpha}(\sigma)\beta(\tau)}B_{\alpha,\beta}(\sigma\tau).$$

Also,

$$C^{\chi_n(\sigma)}B_{\alpha,\beta}(\sigma) = B_{\alpha,\beta}(\sigma)C,$$

SO

$$B_{\alpha,\beta}(\sigma)CB_{\alpha,\beta}(\sigma)^{-1} = C^{\chi_n(\sigma)}.$$

3.6. Matrix calculations. Let  $E_{i,j}$  be the matrix with a 1 in the (i,j) entry and zeros elsewhere. For i = 1, 2, let  $X_i = I + E_{1,i}$  and let  $Y_i = I + E_{i,4}$ . Then

$$[X_i, Y_j] = \begin{cases} C, & i = j, \\ 0, & i \neq j. \end{cases}$$

We define a subgroup

$$\mathcal{G} := egin{bmatrix} 1 & * & * \ & I & * \ & & 1 \end{bmatrix} \subset \mathcal{B}.$$

The normal subgroup  $\mathcal{N} \subset \mathcal{G}$  generated by  $\{Y_1, Y_2\}$  is generated by  $\{Y_1, Y_2, C\}$  and we have  $\mathcal{N} \cong (\mathbb{Z}/n)^3$  as groups. Let  $G \subset \mathcal{G}$  be the subgroup generated by  $\{X_1, X_2\}$ . Then  $G \cong (\mathbb{Z}/n)^2$ , and

$$\mathcal{G} \cong \mathcal{N} \rtimes G$$
.

We consider  $\mathcal{N}$  as a  $(\mathbb{Z}/n)[G]$ -module. Let  $G_i$  be the direct factor of G generated by  $X_i$ . We write the generator of  $G_i$  as  $g_i$  instead of  $X_i$ . Then we have an isomorphism of  $(\mathbb{Z}/n)[G]$ -modules

$$\mathcal{N} \cong \frac{(\mathbb{Z}/n)[G_1]m_1 \oplus (\mathbb{Z}/n)[G_2]m_2}{((g_1 - 1)m_1 - (g_2 - 1)m_2)}.$$

# 4. More on the Weil Pairing

We recall the definition of the Weil pairing as given in [Sil09].

We assume that K(E[n]) = K. Recall that we have chosen a  $(\mathbb{Z}/n)$ -basis  $v_1, v_2 \in E[n]$  such that  $e_n(v_1, v_2) = \zeta$  is a fixed primitive *n*th root of unity. Let  $w_i \in E$  be such that  $nw_i = v_i$ . For  $i \in \{1, 2\}$ , choose rational functions  $f_i, g_i \in \overline{K}(E)^{\times}$  such that

$$\operatorname{div}(f_i) = n[v_i] - n[0], \qquad \operatorname{div}(g_i) = \sum_{z \in E[n]} [w_i + z] - [z].$$

We can choose  $f_i, g_i \in K(E)^{\times}$  since their divisors are Galois invariant. One sees that  $\operatorname{div}(g_i^n) = \operatorname{div}(f_i \circ [n])$ , so we can rescale f so that

$$g_i^n = f_i \circ [n].$$

Note that since  $g_i$  is defined up to multiplication by  $K^{\times}$ , we have  $f_i$  is well-defined up to multiplication by  $K^{\times n}$ . Then by definition of the Weil pairing, we have

$$e_n(\alpha(\sigma), v_i) = e_n(\sigma \widetilde{x} - \widetilde{x}, v_i) = g_i(\sigma \widetilde{x})/g_i(\widetilde{x}) = \sigma(g_i(\widetilde{x}))/g_i(\widetilde{x}),$$

whenever  $\widetilde{x}$  is not in the support of  $\operatorname{div}(g_i)$ . If  $\widetilde{x} \in \operatorname{Supp}(\operatorname{div}(g_i))$ , then either  $\widetilde{x} \in E[n]$  or  $\widetilde{x} - w_i \in E[n]$ . In the former case, we have  $x = n\widetilde{x} = 0$ , and in the latter case,  $x = n\widetilde{x} = nw_i = v_i$ . So we assume that  $x \notin \{0, v_1, v_2\}$ , and similarly for y.

Now, we have

$$\sigma(g_1(\widetilde{x}))/g_1(\widetilde{x}) = e_n(\alpha(\sigma), v_1)$$

$$= e_n(\alpha_1(\sigma)v_1 + \alpha_2(\sigma)v_2, v_1)$$

$$= \zeta^{-\alpha_2(\sigma)},$$

$$\sigma(g_2(\widetilde{x}))/g_2(\widetilde{x}) = e_n(\alpha(\sigma), v_2)$$

$$= e_n(\alpha_1(\sigma)v_1 + \alpha_2(\sigma)v_2, v_2)$$

$$= \zeta^{\alpha_1(\sigma)}.$$

So  $\alpha_1$  is the Kummer character associated to  $g_2(\tilde{x})^n = f_2(x)$ , and  $\alpha_2$  is the Kummer character associated to  $-f_1(x)$ . A similar computation works for y. Then

$$e_n^*(\alpha \cup \beta)(\sigma, \tau) \otimes \zeta = e_n(\alpha(\sigma), \beta(\tau)) \otimes \zeta$$

$$= \zeta^{\alpha_1(\sigma)\beta_2(\tau) - \alpha_2(\sigma)\beta_1(\tau)} \otimes \zeta$$

$$= (\zeta^{\alpha_1(\sigma)} \otimes \zeta^{\beta_2(\tau)})(\zeta^{\alpha_2(\sigma)} \otimes \zeta^{\beta_1(\tau)})^{-1}$$

$$\langle x, y \rangle = (f_2(x), f_1(y))_S^{-1}(f_1(x), f_2(y))_S$$

$$= (f_1(x), f_2(y))_S(f_1(y), f_2(x))_S,$$

where  $(\cdot, \cdot)_S$  is the pairing of Sharifi–McCallum:

$$(K^{\times} \cap K_S^{\times n}) \times (K^{\times} \cap K_S^{\times n}) \to H^2(G_{K,S}, \mu_n^{\otimes 2}).$$

We have thus shown the following theorem:

**Theorem 4.1.** There exists K-rational maps  $f_1, f_2 : E \to \mathbb{P}^1$  with

$$\operatorname{div}(f_i) = n[v_i] - n[0]$$

such that  $f_i \circ [n] \in K(E)^{\times n}$  and for  $x, y \neq 0, v_1, v_2$ , we have

$$\langle x, y \rangle = (f_1(x), f_2(y))_S (f_1(y), f_2(x))_S.$$

Example 4.2. Consider the Legendre family of elliptic curves

$$E_t := \{y^2 = x(x-1)(x-t)\}, \qquad t \neq 0, 1.$$

We let n = 2. Let S be a set of primes containing those dividing 2t(1 - t). We can choose  $v_1 = (0, 0), v_2 = (1, 0)$ . Recall that the doubling map on x-coordinates is

$$x \mapsto \frac{(x^2 - t)^2}{4y^2}.$$

Then we may take  $f_1 = x$  and  $f_2 = x - 1$ , and

$$g_1 = \frac{x^2 - t}{2y}, \qquad g_2 = \frac{x^2 - 2x + t}{2y}.$$

Our pairing then takes

$$\langle (x_1, y_1), (x_2, y_2) \rangle = (x_1, x_2 - 1)_S (x_1 - 1, x_2)_S$$

However, the identity  $(x, y - 1)_S + (x - 1, y)_S = 0$  does not hold for all  $x, y \in K^{\times}$  (one can see this with Hilbert symbols). In fact, this identity does not even hold for the local pairings. We denote by  $(\cdot, \cdot)_v$  the local pairings.

We do, however, have the following condition:

**Lemma 4.3.** Let  $(x_1, y_1), (x_2, y_2) \in E_t(K)$  such that  $x_1, x_2 \neq 0, 1$ . Then

$$\langle (x_1, y_1), (x_2, y_2) \rangle_v = 1$$

for all places v of K.

*Proof.* We have

$$\langle (x_1, y_1), (x_2, y_2) \rangle_v = (x_1, x_2 - 1)_v (x_2, x_1 - 1)_v$$

where  $(\cdot, \cdot)_v$  denotes the Hilbert symbol. Recall that the quadratic Hilbert symbol is bilinear and symmetric and satisfies, for  $a, b \in K^{\times} - 1$ ,

$$(a, 1-a)_v = 1,$$
  $(a^2, b)_v = 1.$ 

We verify several identities from these. For instance, for  $a \neq b$ ,

$$(a, -a)_v = (1/a, -1/a)_v$$

$$= (1/a, -1/a)_v (a, 1 - a)_v$$

$$= (1/a, -1/a)_v (1/a, 1 - a)_v$$

$$= (1/a, 1 - 1/a)_v$$

$$= 1,$$

$$(a, b - a)_v (b, a - b)_v (a, b)_v = (a, b - a)_v (b, a - b)_v (a, b)_v (a - b, b - a)_v$$

$$= (a(a - b), b(b - a))_v$$

$$= \left(\frac{a}{a - b}, \frac{-b}{a - b}\right)_v$$

$$= \left(\frac{a}{a - b}, 1 - \frac{a}{a - b}\right)_v$$

$$= 1$$

In our setting, we have

$$y_1^2 = x_1(x_1 - 1)(x_1 - t) = x_1^2(x_1 - 1) - x_1(x_1 - 1)t,$$
  
 $y_2^2 = x_2(x_2 - 1)(x_2 - t) = x_2^2(x_2 - 1) - x_2(x_2 - 1)t.$ 

Taking a linear combination of these equations yields

$$x_2(x_2-1)y_1^2 - x_1(x_1-1)y_2^2 = x_1x_2(x_1-x_2)(x_1-1)(x_2-1).$$

Letting 
$$Y_i = (x_1 x_2 (x_1 - 1)(x_2 - 1)(x_1 - x_2))^2$$
 for  $i = 1, 2$ , we have 
$$x_1 (x_1 - 1)(x_1 - x_2) Y_1^2 + x_2 (x_2 - 1)(x_2 - x_1) Y_2^2 = 1.$$

This implies that

$$1 = (x_{1}(x_{1} - 1)(x_{1} - x_{2}), x_{2}(x_{2} - 1)(x_{2} - x_{1}))_{v}$$

$$= (x_{1}, x_{2})_{v}(x_{1}, x_{2} - 1)_{v}(x_{1}, x_{2} - x_{1})_{v}$$

$$\cdot (x_{1} - 1, x_{2})_{v}(x_{1} - 1, x_{2} - 1)_{v}(x_{1} - 1, x_{2} - x_{1})_{v}$$

$$\cdot (x_{1} - x_{2}, x_{2})_{v}(x_{1} - x_{2}, x_{2} - 1)_{v}(x_{1} - x_{2}, x_{2} - x_{1})_{v}$$

$$= (x_{1}, x_{2} - 1)_{v}(x_{2}, x_{1} - 1)_{v}(x_{1} - x_{2}, x_{2} - x_{1})_{v}$$

$$\cdot (x_{1}, x_{2})_{v}(x_{1}, x_{2} - x_{1})_{v}(x_{2}, x_{1} - x_{2})_{v}$$

$$\cdot (x_{1} - 1, x_{2} - x_{1})_{v}(x_{2} - 1, x_{1} - x_{2})_{v}(x_{1} - 1, x_{2} - 1)_{v}$$

$$= (x_{1}, x_{2} - 1)_{v}(x_{2}, x_{1} - 1)_{v} \cdot 1 \cdot 1 \cdot 1$$

$$= \langle (x_{1}, y_{1}), (x_{2}, y_{2}) \rangle_{v}.$$

We also wish to  $\langle v_1, v_2 \rangle$ , so we derive an alternate formula in this particular case. Let  $f_3, g_3 \in K(E)^{\times}$  correspond to  $v_1 + v_2$  as above. Then

$$\sigma(g_3(\widetilde{x}))/g_3(\widetilde{x}) = e_n(\alpha(\sigma), v_1 + v_2) = \zeta^{\alpha_1(\sigma) - \alpha_2(\sigma)}.$$

This formula applies for  $x \neq 0, v_1 + v_2$ . For  $x \neq v_2$ , we have

$$\sigma(g_2(\widetilde{x}))/g_2(\widetilde{x}) = e_n(\alpha(\sigma), v_2) = \zeta^{\alpha_1(\sigma)}$$

So  $\zeta^{\alpha_1}$  is the Kummer character associated to  $f_2(x)$ .

$$\zeta^{\alpha_2(\sigma)} = \zeta^{\alpha_1(\sigma)} \zeta^{\alpha_2(\sigma) - \alpha_1(\sigma)} = \frac{\sigma(g_2(\widetilde{x}))}{g_2(\widetilde{x})} \cdot \frac{g_3(\widetilde{x})}{\sigma(g_3(\widetilde{x}))}.$$

So  $\zeta^{\alpha_2}$  is the Kummer character associated to  $f_2(x)/f_3(x)$ . For  $y \neq v_1$ , we have

$$\tau(q_1(\widetilde{y}))/q_1(\widetilde{y}) = e_n(\beta(\tau), v_1) = \zeta^{-\beta_2(\tau)}.$$

So  $\zeta^{\beta_2}$  is the Kummer character associated to  $1/f_1(y)$ . Furthermore,

$$\zeta^{\beta_1(\tau)} = \zeta^{\beta_1(\tau) - \beta_2(\tau)} \zeta^{\beta_2(\tau)} = \frac{\tau(g_3(\widetilde{y}))}{g_3(\widetilde{y})} \frac{g_1(\widetilde{y})}{\tau(g_1(\widetilde{y}))}.$$

So  $\zeta^{\beta_1}$  is the Kummer character associated to  $f_3(y)/f_1(y)$ . So for  $x=v_1$  and  $y=v_2$ , we have

$$e_n^*(\alpha \cup \beta)(\sigma, \tau) \otimes \zeta = (\zeta^{\alpha_1(\sigma)} \otimes \zeta^{\beta_2(\tau)})(\zeta^{\alpha_2(\sigma)} \otimes \zeta^{\beta_1(\tau)})^{-1},$$

$$\langle v_1, v_2 \rangle \otimes \zeta = (f_2(v_1), f_1(v_2)^{-1})_S (f_2(v_1) f_3(v_1)^{-1}, f_3(v_2) f_1(v_2)^{-1})_S^{-1}$$

$$= (f_2(v_1), f_1(v_2)^{-1})_S (f_2(v_1) f_3(v_1)^{-1}, f_1(v_2) f_3(v_2)^{-1})_S$$

$$= (f_3(v_1), f_3(v_2))_S (f_1(v_2), f_3(v_1))_S (f_2(v_1), f_3(v_2))_S^{-1}.$$

In the Legendre elliptic curve case, this says

$$\langle (0,0), (1,0) \rangle = (-t, 1-t)_S(1,-t)_S(-1,1-t)_S = (t, 1-t)_S = 0$$

since the primes dividing t(1-t) are contained in S.

### 5. Local Vanishing

In this section, we prove that the pairing

$$E(K) \times E(K) \to H^2(G_{K,S}, \mu_n)$$

always has image in the image of

$$\operatorname{Cl}_{K,S}/n\operatorname{Cl}_{K,S}\to H^2(G_{K,S},\mu_n).$$

Recall the exact sequence

$$0 \to \operatorname{Cl}_{K,S}/n\operatorname{Cl}_{K,S} \to H^2(G_{K,S}, \mu_n) \to \operatorname{Br}_S(K)[n] \to 0.$$

For  $a, b \in K^{\times}/K^{\times n}$ , we recall that the Kummer map followed by the cup product gives us the element  $(a, b)_S \in H^2(G_{K,S}, \mu_n)$ . We denote its image in  $Br_S(K)$  by  $(a, b)_K$ . This is the norm-residue symbol.

Recall also that we have maps

$$f_1, f_2: E(K) \to (K^{\times} \cap K_S^{\times n})/K^{\times n}$$

such that for  $P, Q \in E(K)$ ,

$$\langle P, Q \rangle = (f_1(P), f_2(Q))_S(f_1(Q), f_2(P))_S.$$

The period-index obstruction is a map

$$\Delta: H^1(G_K, E[n]) \to \operatorname{Br}(K)$$

that vanishes on the image of the Kummer map by [CS10, §2.2]. We have an isomorphism  $H^1(G_K, E[n]) \cong (K^{\times}/K^{\times n})^2$  such that the Kummer map  $\kappa : E(K)/n \to H^1(G_K, E[n])$  becomes identified with the map  $P \mapsto (f_1(P), f_2(P))$ .

**Proposition 5.1.** There exists  $C_1, C_2 \in K^{\times}/K^{\times n}$  such that for all  $a, b \in K^{\times}/K^{\times n}$ 

$$\Delta(a,b) = (C_1 a, C_2 b)_K - (C_1, C_2)_K.$$

Proof. See [Cla05, Thm 6].

Combined with the vanishing of  $\Delta$  on the image of the Kummer map, we have the following:

**Proposition 5.2.** For all  $P, Q \in E(K)$ , we have

$$\langle P, Q \rangle \in \operatorname{Cl}_{K,S} / n.$$

*Proof.* It suffices to show that

$$(f_1(P), f_2(Q))_K + (f_1(Q), f_2(P))_K = 0.$$

From Proposition 5.1 and vanishing of  $\Delta$  on the image of  $\kappa$ , we have

$$(f_1(P), f_2(P))_K = (C_1 f_1(P), C_2 f_2(P))_K - (C_1, C_2)_K - (C_1, f_2(P))_K - (f_1(P), C_2)_K$$
  
=  $\Delta(\kappa(P)) + (f_2(P), C_1)_K + (C_2, f_1(P))_K$   
=  $0 + (f_2(P), C_1)_K + (C_2, f_1(P))_K$ .

We have

$$(f_{1}(P), f_{2}(Q))_{K} + (f_{1}(Q), f_{2}(P))_{K} = (f_{1}(P)f_{1}(Q), f_{2}(P)f_{2}(Q))_{K} - (f_{1}(P), f_{2}(P))_{K}$$

$$- (f_{1}(Q), f_{2}(Q))_{K}$$

$$= (f_{1}(P+Q), f_{2}(P+Q))_{K} - (f_{1}(P), f_{2}(P))_{K}$$

$$- (f_{1}(Q), f_{2}(Q))_{K}$$

$$= (f_{2}(P+Q), C_{1})_{K} + (C_{2}, f_{1}(P+Q))_{K}$$

$$- (f_{2}(P), C_{1})_{K} + (C_{2}, f_{1}(P))_{K}$$

$$- (f_{2}(Q), C_{1})_{K} + (C_{2}, f_{1}(Q))_{K}$$

$$= 0.$$

# 6. A FORMULA IN THE LEGENDRE CASE

As above, let  $E = \{y^2 = x(x-1)(x-t)\}$  be a Legendre elliptic curve. Let  $(x_1, y_1), (x_2, y_2) \in E(K)$ . Sharifi notes that

$$(x_1, x_2 - 1)_S + (x_2, x_1 - 1)_S = \left(x_1, \frac{x_2 - 1}{1 - x_1}\right)_S + \left(x_2, \frac{x_1 - 1}{1 - x_2}\right)_S + (x_1, 1 - x_1)_S + (x_2, 1 - x_2)_S$$

$$= \left(\frac{x_1}{x_2}, \frac{x_2 - 1}{1 - x_1}\right)_S + (x_1, 1 - x_1)_S + (x_2, 1 - x_2)_S.$$

The latter two terms vanish locally, so the first term must also vanish locally. We can then apply the Sharifi–McCallum formula.

**Lemma 6.1.** There is an isomorphism

$$\Phi_K := \Phi_{K,S} := \Phi_{K,S,n} : (K^{\times} \cap K_S^{\times n}) / O_{K,S}^{\times} K^{\times n} \to \operatorname{Cl}_{K,S}[n]$$

such that if  $I \subset O_{K,S}$  is an ideal with  $I^n = aO_{K,S}$ , then

$$\Phi_{K,S}(a) = [I].$$

*Proof.* The Kummer sequence

$$1 \to \mu_n \to O_S^{\times} \xrightarrow{n} O_S^{\times} \to 1$$

gives an exact sequence

$$1 \to O_{K,S}^{\times}/O_{K,S}^{\times n} \to H^1(G_{K,S}, \mu_n) \to \operatorname{Cl}_{K,S}[n] \to 0.$$

We have a commutative diagram with exact rows

$$1 \longrightarrow O_{K,S}^{\times}/O_{K,S}^{\times n} \longrightarrow H^{1}(G_{K,S}, \mu_{n}) \longrightarrow \operatorname{Cl}_{K,S}[n] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow = \qquad \qquad \downarrow$$

$$1 \longrightarrow (K^{\times} \cap K_{S}^{\times n})/K^{\times n} \longrightarrow H^{1}(G_{K,S}, \mu_{n}) \longrightarrow 0$$

Applying the snake lemma will give the desired isomorphism  $\Phi_{K,S}$ . Given  $[I] \in \operatorname{Cl}_{K,S}[n]$ , recall that we lift to  $H^1(G_{K,S},\mu_n)$  as follows: we write  $IO_S = \alpha O_S$  for some  $\alpha \in O_S$ . The cocycle  $G_{K,S} \to O_S^{\times}$  given by  $\sigma \mapsto \sigma \alpha/\alpha$  has class in  $H^1(G_{K,S},O_S^{\times})[n]$  corresponding to

 $[I] \in \operatorname{Cl}_{K,S}$ . In particular, if we write  $I^n = aO_{K,S}$ , then  $\alpha^n O_S = aO_S$ , so there exists  $\epsilon_0 \in O_S^{\times}$  such that  $\alpha^n = a\epsilon_0$ . Then for  $\sigma \in G_{K,S}$ , we have

$$(\sigma \alpha / \alpha)^n = \sigma \alpha^n / \alpha^n = \sigma \epsilon_0 / \epsilon_0.$$

Since the *n*th power map  $O_S^{\times} \xrightarrow{n} O_S^{\times}$  is surjective, we may find  $\epsilon \in O_S^{\times}$  such that  $\epsilon^n = \epsilon_0$ . Then  $\sqrt[n]{a} := \alpha/\epsilon \in K_S^{\times}$  is an *n*th root of *a*, and the cocycle  $\sigma \mapsto \sigma \alpha/\alpha$  is cohomologous with  $\sigma \mapsto \sigma \sqrt[n]{a}/\sqrt[n]{a}$ , which is the image of *a* in  $H^1(G_{K,S}, \mu_n)$ . It follows that  $\Phi_{K,S}(a) = [I]$ .

**Lemma 6.2.** Let L/K be a finite Galois extension. Then  $\Phi_L$  is Galois equivariant.

*Proof.* Let  $\sigma \in G_{L/K}$ , let  $[I] \in \operatorname{Cl}_{L,S}$ , and let  $b \in L^{\times} \cap L_S^{\times n}$  be such that  $I^n = bO_{L,S}$ . Then  $\Phi_L(b) = [I]$ . Note also that

$$(I^{\sigma})^n = \sigma(I^n) = \sigma b O_{L,S},$$

SO

$$\Phi_L(\sigma b) = \sigma[I] = \sigma \Phi_L(b). \qquad \Box$$

We return to the case n=2.

**Proposition 6.3.** Let  $a, 1 - a \in K^{\times} \cap K_S^{\times 2}$ . Then

$$(a, 1 - a)_S = [\mathfrak{a}] \in \operatorname{Cl}_{K,S}/2$$

where  $\mathfrak{a}^2$  is the fractional ideal  $(1,a)O_{K,S}$ .

*Proof.* Let  $L = K(\sqrt{a})$ , and let  $\gamma = 1 - \sqrt{a} \in L$ . Let  $\mathfrak{b} \subset K$  be a fractional ideal such that

$$(1-a)O_{K,S} = \mathfrak{b}^2,$$

and let  $\mathfrak{c}$  be a fractional ideal of L such that

$$\gamma O_{L,S} = \mathfrak{bc}^{1-\sigma}.$$

By the formula of McCallum-Sharifi, we have

$$(a, 1 - a)_S = [\mathfrak{bc}^{1+\sigma}].$$

Now let  $\mathfrak{p}$  be a prime of K not in S and  $\mathfrak{P} \subset L$  a prime above  $\mathfrak{p}$ . In particular,  $\mathfrak{p}$  is unramified in L and does not divide 2. Then

$$v_{\mathfrak{p}}(\mathfrak{bc}^{1+\sigma}) = v_{\mathfrak{P}}(\mathfrak{bc}^{1+\sigma}) \equiv v_{\mathfrak{P}}(\mathfrak{bc}^{1-\sigma}) = v_{\mathfrak{P}}(\gamma) \pmod{2}.$$

Note that this implies that

$$v_{\mathfrak{P}}(\gamma) \equiv v_{\mathfrak{P}}(\gamma^{\sigma}) \pmod{2}.$$

The minimal polynomial of  $\gamma$  over K is  $x^2 - 2x + 1 - a$ . Let  $\mathfrak{a}$  be the fractional ideal such that  $\mathfrak{a}^2 = (1, a)O_{K,S} = (1, 1 - a)O_{K,S}$ . Then by considering the Newton polygon of  $x^2 - 2x + 1 - a$  at  $\mathfrak{P}$ .

$$\begin{split} v_{\mathfrak{P}}(\gamma) &\equiv \min\{v_{\mathfrak{P}}(\gamma), v_{\mathfrak{P}}(\gamma^{\sigma})\} \pmod{2} \\ &= \min\left\{v_{\mathfrak{P}}(2), \frac{1}{2}v_{\mathfrak{P}}(1-a)\right\} \\ &= \frac{1}{2}\min\{0, v_{\mathfrak{p}}(1-a)\} \\ &= \frac{1}{2}v_{\mathfrak{p}}((1, 1-a)) \\ &= v_{\mathfrak{p}}(\mathfrak{a}). \end{split}$$

So as elements of  $\operatorname{Cl}_{K,S}/2$ , we have  $[\mathfrak{bc}^{1+\sigma}] = [\mathfrak{a}]$ .

The more general proposition is as follows:

**Proposition 6.4.** Let  $n \ge 2$ . Let  $a, 1 - a \in K^{\times} \cap K_S^{\times n}$ . If n is odd, then  $(a, 1 - a)_S = 0$ . If n is even, then  $(a, 1 - a)_S = [\mathfrak{a}]$ , where  $\mathfrak{a}^2 = (a, 1 - a)O_{K,S}$  as fractional ideals.

*Proof.* Let d = [L : K]. Let  $\sigma$  be a generator for  $G_{L/K}$ , and let  $\zeta$  be a primitive nth root of unity such that  $\sigma \sqrt[n]{a} = \zeta^{n/d} \sqrt[n]{a}$ . We note that

$$1 - a = \prod_{i=0}^{n-1} (1 - \zeta^i \sqrt[n]{a}) = \prod_{i=0}^{d-1} \prod_{j=0}^{n/d-1} (1 - \zeta^{j+(n/d)i} \sqrt[n]{a}) = N_{L/K} \left( \prod_{j=0}^{n/d-1} (1 - \zeta^j \sqrt[n]{a}) \right).$$

Accordingly, we let  $\gamma = \prod_{j=0}^{n/d-1} (1 - \zeta^j \sqrt[n]{a})$ .

Let  $\mathfrak{c} \subset L$  be a fractional  $O_{L,S}$  ideal such that

$$\gamma O_{L,S} = \mathfrak{c}^{1-\sigma}\mathfrak{b}^{n/d}.$$

We have

$$\mathfrak{c}^{\sigma} = \mathfrak{c}\mathfrak{b}^{n/d}\gamma^{-1}.$$

Inductively, this implies that

$$\mathfrak{c}^{\sigma^i} = \mathfrak{c}\mathfrak{b}^{ni/d}\prod_{j=1}^i \gamma^{-\sigma^{j-1}}$$

Now suppose that n is odd. Then  $(a, 1 - a)_S = [N_{L/K}\mathfrak{c}] \otimes \zeta^{n/d}$ . Let  $\mathfrak{P}$  be a prime of L over a prime  $\mathfrak{p}$  of K not in S. In particular,  $\mathfrak{p}$  does not divide n and  $\mathfrak{P}$  is unramified over  $\mathfrak{p}$ . Then

$$v_{\mathfrak{p}}(N_{L/K}\mathfrak{c}) = v_{\mathfrak{P}}(N_{L/K}\mathfrak{c})$$

$$= \sum_{i=1}^{d} v_{\mathfrak{P}}(\mathfrak{c}^{\sigma^{i}})$$

$$= dv_{\mathfrak{P}}(\mathfrak{c}) + \sum_{i=1}^{d} \frac{ni}{d} v_{\mathfrak{P}}(\mathfrak{b}) - \sum_{i=1}^{d} \sum_{j=1}^{i} v_{\mathfrak{P}}(\gamma^{\sigma^{j-1}})$$

$$= dv_{\mathfrak{P}}(\mathfrak{c}) + \frac{n(d+1)}{2} v_{\mathfrak{P}}(\mathfrak{b}) - \sum_{j=1}^{d} \sum_{i=j}^{d} v_{\mathfrak{P}}(\gamma^{\sigma^{j-1}})$$

$$\equiv dv_{\mathfrak{P}}(\mathfrak{c}) + \sum_{j=1}^{d} j v_{\mathfrak{P}}(\gamma^{\sigma^{j-1}}) - (d+1) \sum_{j=1}^{d} v_{\mathfrak{P}}(\gamma^{\sigma^{j-1}}) \pmod{n}$$

$$\equiv dv_{\mathfrak{P}}(\mathfrak{c}) + \sum_{i=1}^{d} i \sum_{j=0}^{n/d-1} v_{\mathfrak{P}}(1 - \zeta^{j+(n/d)(i-1)} \sqrt[n]{a}).$$

Suppose further that  $v_{\mathfrak{p}}(1-a) \leq 0$ . By considering the Newton polygon of  $(1-x)^n - a$ , we have that

$$v_{\mathfrak{P}}(1-\zeta^{j+(n/d)(i-1)}\sqrt[n]{a}) = \frac{1}{n}v_{\mathfrak{p}}(1-a).$$

Then

$$v_{\mathfrak{p}}(N_{L/K}\mathfrak{c}) \equiv dv_{\mathfrak{P}}(\mathfrak{c}) + \frac{(d+1)}{2}v_{\mathfrak{p}}(1-a) \equiv 0 \pmod{d}$$

If  $v_{\mathfrak{p}}(1-a) > 0$ , then similar Newton polygon considerations show that  $v_{\mathfrak{p}}(1-\zeta^k\sqrt[n]{a})$  is divisible by d for all k. So

$$(a, 1 - a)_S = [N_{L/K} \mathfrak{c}] \otimes \zeta^{n/d} = 0.$$

Now suppose that n is even. Then

$$(a, 1 - a) = ([N_{L/K}\mathfrak{c}] + \frac{n}{2}[\mathfrak{b}]) \otimes \zeta^{n/d}.$$

A similar calculation to the above yields

$$\begin{split} v_{\mathfrak{p}}(\mathfrak{b}^{n/2}N_{L/K}\mathfrak{c}) &= v_{\mathfrak{P}}(\mathfrak{b}^{n/2}N_{L/K}\mathfrak{c}) \\ &\equiv \frac{n}{2}v_{\mathfrak{P}}(\mathfrak{b}) + \frac{n(d+1)}{2}v_{\mathfrak{P}}(\mathfrak{b}) + \sum_{i=1}^{d} i \sum_{j=0}^{n/d-1} v_{\mathfrak{P}}(1 - \zeta^{j+(n/d)(i-1)}\sqrt[n]{a}) \pmod{d} \\ &= \frac{d+2}{2}v_{\mathfrak{p}}(1-a) + \sum_{i=1}^{d} i \sum_{j=0}^{n/d-1} v_{\mathfrak{P}}(1 - \zeta^{j+(n/d)(i-1)}\sqrt[n]{a}) \pmod{d}. \end{split}$$

If  $v_{\mathfrak{p}}(1-a) < 0$ , then

$$v_{\mathfrak{p}}(\mathfrak{b}^{n/2}N_{L/K}\mathfrak{c}) \equiv \frac{d+2}{2}v_{\mathfrak{p}}(1-a) + \frac{d+1}{2}v_{\mathfrak{p}}(1-a) \equiv \frac{1}{2}v_{\mathfrak{p}}(1-a) \pmod{d}.$$

Otherwise,

$$v_{\mathfrak{p}}(\mathfrak{b}^{n/2}N_{L/K}\mathfrak{c}) \equiv (d+2)\frac{v_{\mathfrak{p}}(1-a)}{2} \equiv v_{\mathfrak{p}}(1-a) \equiv 0 \pmod{d}.$$

So

$$v_{\mathfrak{p}}(\mathfrak{b}^{n/2}N_{L/K}\mathfrak{c}) \equiv \frac{1}{2}\min\{0, v_{\mathfrak{p}}(1-a)\} = v_{\mathfrak{p}}(\mathfrak{a}) \pmod{d}.$$

## References

- [Cla05] Pete L. Clark. The period-index problem in WC-groups. I. Elliptic curves. J. Number Theory, 114(1):193–208, 2005.
- [CS10] Pete L. Clark and Shahed Sharif. Period, index and potential. III. Algebra Number Theory, 4(2):151–174, 2010.
- [MS03] William G. McCallum and Romyar T. Sharifi. A cup product in the Galois cohomology of number fields. *Duke Math. J.*, 120(2):269–310, 2003.
- [NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.
- [Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.