THE WEIL PAIRING ON COHOMOLOGY

JACOB SWENBERG

1. INTRODUCTION
Motivated by work of Sharifi, we explore the pairing on Galois cohomology
HY(Grgs, E[n)) x H(Grs, E[n]) = H*(Grs, pin)

coming from the cup product and the Weil pairing, where:

e F'is a number field;

e n is an odd positive integer;

e S is a set of places of F' including the places above primes dividing n but not including
any places above 2;

e [/ is an elliptic curve defined over F' with good reduction outside S;

e Gpg is the Galois group of the maximal S-ramified extension Fg over F'.

The Kummer map is an injection
kn: E(F)/nE(F) — H (Gpgs, E[n]).

This gives us a pairing

E(F) x E(F) — H*(Grs, fin)-

2. KuMMER THEORY AND THE WEIL PAIRING

We keep the notation of the introduction. For a matrix M, we denote by M? its transpose.
We denote by Xy, : Gps — (Z/n)* the character giving the action of Ggg on p,. For p a
continuous homomorphism of G into another group, we denote by F(p) the fixed field of
its kernel.

2.1. Let Opg denote the ring of S-integers of F'. This Dedekind ring has class group
isomorphic to Clgg, the S-class group of F'. Let Og be the ring of S-integers of Fis. Then
we have an exact sequence

1= p, =05 =05 =1
and an isomorphism

HY(Grs,0%) 2 Clpgs.

Taking a long exact sequence on cohomology, we have an exact sequence

inv 1 1
(2.1.1) 0 = Clgs /nClps = H*(Grs, tn) — EP ~7/7,— ~L/7— 0.

vES

See [INSWOS, Prop 8.3.11] for more details. Actually maybe this isn’t quite right...
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2.2. By applying the Kummer map, cupping, and taking the Weil pairing, we have a pairing

E(F) X E<F) - H2(GF,S7/1’TL)7
(xay) — <$7 y>F,S,n = en([/{nl’] U [’%ny])a
where e, : E[n| X E[n] = u, is the Weil pairing.
Lemma 2.1. The image of (-, -)rsn lies in Clpg /nClpgs.

Proof. Consider the commutative diagram

E(F) x E(F)

| |

Hl(Gﬂs,E[?’L]) X Hl(GES,E[TLD EEE— H2<GF75',,U7L) .

Does H'(Fo, E)) - x Dyes H'(Fy, Eln]) —— Does Q/Z
The bottom (local) pairings are perfect by local Tate duality and perfectness of the Weil

pairing. By Equation [2.1.1] it suffices to show that for all v € S, the image of the local
Kummer map

Kno : E(F,) — HY(F,, E[n])
is self annihilating under the local pairing. 0
2.3. Let z,y € E(F), let T,y € E be such that nz = z and ny = y. Let a, f : Gp — FEln|

be the cocycles defined by a(o) = 07 —z and B(0) = oy — y. These cocycles are unramified
outside of S, and

kn(z) = [, kn(y) = [8].

2.4. Wefix a (Z/n)-basis vy, vy € E[n]. After choosing this basis, we identify E[n] = (Z/n)?
as column vectors. For instance, we will abuse notation and let a(o) and (o) denote column
vectors for all o € Gpg:

o= [ofd) o= 3]
where a;(c), 8i(0) € Z/n are such that
a(0) = a1 (0)vy + ag(0)vs,

B(o) = pi(o)v1 + Ba(o)vs.

2.5.  Since the Weil pairing is skew-symmetric and non-degenerate, we have that e, (v;, v;) =
0 for i = 1,2, and ¢ := e, (v1,v9) is a primitive nth root of unity. With this designated root
of unity, we may identify u, = (Z/n)(1). Then for v,w € E[n|, we have

vt Jw 0 1
en(v,w) =(¢ Jw J = [_1 0] )
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2.6.  With the chosen basis vy, ve of E[n], we obtain a matrix representation pg, of the
Galois action on n-torsion:

pen: Grs — GLa(Z/n).
In particular, the cocycle condition on o can be written as
a(or) = (o) + pen(o)a(7)
and similarly for 5. By a simple matrix computation, we note that
PEn(0) TpEa(0) = det(ppn(0)) .
On the other hand, Galois equivariance of the Weil pairing gives, for all v, w € E[n],
V' ppn(0) Jppn(0)w = xu(o)v' Jw.

From this, we obtain the well-known identities

det(ppa(0)) = xu(0)  Phn(0)d = xu(0)Jppa(o) ™.

Since ker pg,, C ker x,,, we have in particular that

pin C© Flppn) = F(En]).

3. AN EMBEDDING PROBLEM

In this section, we show how the triviality of the pairing given in the introduction is related
to a Galois embedding problem.

3.1. Consider the group of block upper-triangular matrices of the form

(Z/n)* * *
B = GLo(Z/n) *| C GLy(Z/n).
1
The matrix
1 1
IR
C = 1
1

generates a normal (but not central) cyclic subgroup (C') C B of order n, and the quotient
B/(C) can be thought of as “matrices modulo the upper right corner.” More precisely, two
matrices in B become identified in the quotient B/(C) if and only if they are equal outside

of the upper right corner.
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3.2. For o € Ggg, we denote a column vector
a(o) = xn(o)a(c ).
By the cocycle condition on «, we see that «a satisfies
alor) = xp(om)a(r o)
= Xn(o7)(@(r7)" + a(0™) ppa(r™h)) T

= Xn(0)&(7) + Xa(0T)a(07) (Xa(T71) T pE (7))
= Xn(0)&(T) + Xu(0)a(071) T ppn(7)

(0)a(r) + a(o)pea(T).

N

g

N

= Xn T

Furthermore,

C a(o)B(r an oo™ H)EIB(T)

= o(en(alo™), 8(1)))
= ex(oa(o™),06(1))
en(a(0),0B(7))™"!
= —eu(aUp)(o, 7).
In other words, (o, 7) = (%@5() is a 2-cocycle representing —e,([a] U [8]) € H*(Grs, fin)-

3.3.  We now define a continuous function (written in block matrix form)

Xn(0)  a(o)
B.js:Gps — B, B, (o) = pEn(0) ﬁ(la)

We verify that the composition B, s : Grs — B/(C) is a homomorphism: by block matrix
multiplication,

B XaloT) aloT) *
B, gloT) = pEn(0T) ﬁ(TT)
o O)Xa(T) X (0)E(T) + () pron(7) "
= pE,n(a>pE,n<T> ﬁ(a)‘FpEl,n(o')ﬁ(T)
(o) @) x ] [ ar)
= pEn(0) 5(10) PEn(T) 5(17)

— Bos(0)Bas(r) € B/(C).

3.4. However, there is a potential obstruction to lifting B, s to a homomorphism Grg — B.
Let v : Gps — Z/n be a continuous map, and let

B ;:Grs = B, B 4(0) = pen(o) Blo)| € B.



We let a cochain (7 : Grgs — u, be defined by ¢?(0) = ¢"@. One checks B];is a
homomorphism if and only if

V(oT) = x(o)v(7) + a(0)B(7) + (o),
if and only if
d({")(o,7) = e (U B).
This shows that B, s lifts to a homomorphism Gpg — B if and only if e,(a U 3) €
Z*(Grs, iin) is a coboundary, if and only if {[a], [8])rsn = 0.

3.5.  We make a few useful calculations. First, let Bg’ 5 = Bap : Grs — B be the function
defined above. Then
B, s(0)Bap(T) = CQ(U)'B(T)Ba”g(O'T).
Also,
CX"(U)Bm@(O') = Baﬁ(O')C,
SO

Baﬁ(O’)CBaﬁ(O')_l = OXn(U)‘

3.6. Matrix calculations. Let E;; be the matrix with a 1 in the (4, j) entry and zeros
elsewhere. For i = 1,2, let X; =1+ E;; and let Y; = I + E; 4. Then

C, i=17,
0, i#j.

We define a subgroup

The normal subgroup N C G generated by {Y1,Y>} is generated by {Y7,Y5, C} and we
have N' 2 (Z/n)? as groups. Let G C G be the subgroup generated by {X;, X5}. Then
G = (Z/n)?* and

Gg=N xG.

We consider N as a (Z/n)[G]-module. Let G; be the direct factor of G generated by X;. We
write the generator of G; as g; instead of X;. Then we have an isomorphism of (Z/n)[G]-
modules

L
N o = D = (= D)

4. MORE ON THE WEIL PAIRING

We recall the definition of the Weil pairing as given in [Sil09].

We assume that K(E[n]) = K. Recall that we have chosen a (Z/n)-basis vy, v € Eln|
such that e, (vy,v2) = ( is a fixed primitive nth root of unity. Let w; € E be such that
nw; = v;. For i € {1,2}, choose rational functions f;, g; € K(FE)* such that

div(f;) = nfo;] = nl0],  div(g) = Y [wi+2] - [2].
z€E[n]
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We can choose f;,g; € K(E)* since their divisors are Galois invariant. One sees that
div(g") = div(f; o [n]), so we can rescale f so that
gi = fioln].
Note that since g; is defined up to multiplication by K*, we have f; is well-defined up to
multiplication by K*". Then by definition of the Weil pairing, we have
en((0),vi) = en(0T — T, v5) = gi(07)/9:(T) = 0(4:(7))/9:(T),

whenever 7 is not in the support of div(g;). If & € Supp(div(g;)), then either = € E[n]
or T —w; € E[n]. In the former case, we have x = nZ = 0, and in the latter case,

x =nT = nw; = v;. So we assume that x & {0, vy, v}, and similarly for y.
Now, we have

7(91(%))/91(2) = en(a(a), v1)
= ep(a1(o)vy + ag(o)ve, v1)
Il

(92(7))/92(7) = en((0), v2)
= en(ag(0)v1 + ag(0)ve, va)
— Cog(o).

So a; is the Kummer character associated to ¢go(7)" = fa(x), and s is the Kummer character
associated to — f1(z). A similar computation works for y. Then

e, (aUp)(o,7) ® (= enalo), B(7)) ®(
— gal(ﬂ)ﬁz(T)—w(U)ﬁl(T) ®C
— (Cm(v) ® Cﬂz(T))(COQ(U) ® <B1(7))—1
(z,9) = (fol2), L(y)5 (fi(2), f2(4))s
= (fi(x), f2(y))s (1 (9), f2(2))s,
where (-, -)g is the pairing of Sharifi-McCallum:
(K*NKJ™) x (K*NKJ™) — H(Ggs, n2?).
We have thus shown the following theorem:
Theorem 4.1. There exists K -rational maps f1, fo : E — P with
div(f;) = n[vi] — n[0]
such that f; o [n] € K(E)*™ and for x,y # 0,vy,ve, we have
(,y) = (fi(@), f2(v)s(f1(y), fo(x))s-
Example 4.2. Consider the Legendre family of elliptic curves
B ={y* =a(x — 1)(z —1t)}, t=#0,1.

We let n = 2. Let S be a set of primes containing those dividing 2¢(1 — ¢). We can choose
v; = (0,0), v2 = (1,0). Recall that the doubling map on z-coordinates is

(22— 1

492
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Then we may take fi =z and fo =z — 1, and
22—t 2t —2r+t
2y ) g2 = 2y .

g1 =
Our pairing then takes

(x1,91), (T2, 92)) = (1,22 — 1)s(x1 — 1,12)5

However, the identity (z,y — 1)s + (x — 1,3)s = 0 does not hold for all z,y € K* (one
can see this with Hilbert symbols). In fact, this identity does not even hold for the local
pairings. We denote by (-, ), the local pairings.

We do, however, have the following condition:

Lemma 4.3. Let (z1,v1), (x2,y2) € E(K) such that x1,x2 # 0,1. Then

(z1,91), (T2, 92))0 = 1
for all places v of K.

Proof. We have
((@1,51) (T2, ¥2) )0 = (21, 22 — 1)y (22,21 — 1),y
where (-, -), denotes the Hilbert symbol. Recall that the quadratic Hilbert symbol is bilinear
and symmetric and satisfies, for a,b € K* — 1,
(a,1—a), =1, (a®,b), = 1.

We verify several identities from these. For instance, for a # b,

(a,—a), = (1/a,—1/a),
(1/a,—1/a),(a,1—a),
(1/a,—1/a), (1/a,l—a)v
(1/a,1—1/a),
(

L
a,b—a),(b,a —b),(a,b),(a —b,b—a),
(MG-@ b(b— a))y

a—b a—b)

(50 -a%),
1.
In our setting, we have

v =xy(ry — )2y —t) = 23(w; — 1) — 2y (27 — 1),
ys = wo(xy — 1) (29 — t) = 25 (w9 — 1) — @9 (15 — 1)t.

(a,b—a),(b,a —b),(a,b), =

Taking a linear combination of these equations yields

Ty (9 — 1)y — z1(21 — 1)ya = 2129(21 — 39) (27 — 1) (w5 — 1).
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Letting V; = (z122(21 — 1)(22 — 1)(27 — 29))? for i = 1,2, we have
w1(zy — 1) (21 — 29) Y7 + 2o(29 — 1) (29 — 21)YE = 1.
This implies that
1= (z1(z1 — 1)(21 — x2), (20 — 1) (22 — 21) )y
= (551,352)@(951,@ - 1)1;(1"1,1'2 - 951)v
(1 — 1, x9)p(ry — Lxe — 1)y(21 — — 1),
: (561 - 332,5172)v($1 — L2, T2 — 1)v(5€1 — T2, T2 — SUl)v
= (IE1,I2 - 1)v($2,$1 - 1)y($1 — T2, T2 — 3U1)v
: ($1,$2)v($1,$2 - Il)v(ﬂh, Ty — l’2)v
Az — Lixg —xy)y(x0 — L,y — 29)y(1 — 1,290 — 1),
= (r1,m9 — 1)y(x9, 27 — 1), - 1-1-1
= ((z1,91), (T2, ¥2))o-
O

We also wish to (v1,vs), so we derive an alternate formula in this particular case. Let
fs,93 € K(E)* correspond to v; + vy as above. Then

0(93(7))/95(F) = en(c(0), v1 + vz) = (MO0,

This formula applies for x # 0, v, + vo. For x # vy, we have

0(92(2))/92(Z) = ep(a(o),ve) = gal(a)

So ¢“ is the Kummer character associated to fa(x).

- o(92(7))  9s(@)
Ca2(‘7) _ Cal(U)COQ(U) a1(o) _ ) )
9(x)  o(gs(T))
So (2 is the Kummer character associated to fo(z)/f3(x). For y # vy, we have
(0 (@)/01(Y) = en(B(1),01) = (P
So ¢ is the Kummer character associated to 1/f;(y). Furthermore,
) = (BB (Balr) 7(9:(9) 91(¥))
93(y) 7(91(y))

So ¢#' is the Kummer character associated to f3(y)/fi(y). So for x = v; and y = vy, we
have

er(aUB)(o,7)® ¢ = (¢ @ (%) (22 g A

( ¢=(
(v1,v2) ® ¢ = (fa(v1), fr(v2) Ds(fo(vr) fs(v1) 7, fa(va) fi(v2) )G
= (fa(v1), fr(va)™ ) (f (1)f3(01)_1>f1(02)f3(02)_1)s
= (fs(v1), f3(v2))s(fi(v2), f3(v1))s(fa(vr), f3(va))g".

In the Legendre elliptic curve case, this says
<(Oa O)? (17 O)> = <_t7 1- t)S(la _t)S(_la 1- t)S = (ta 1- t)S =0

since the primes dividing ¢(1 — t) are contained in S.
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5. LOCAL VANISHING
In this section, we prove that the pairing
E(K) x BE(K) — H*(Gg.s, tin)
always has image in the image of
Clgs /nClgs — H*(Gr.s, itn)-
Recall the exact sequence
0 — Clg,s /nClgs — H*(Gk.s, jtn) — Brs(K)[n] — 0.

For a,b € K*/K*", we recall that the Kummer map followed by the cup product gives us
the element (a,b)s € H*(Gk.s, ptn). We denote its image in Brg(K) by (a,b)r. This is the
norm-residue symbol.

Recall also that we have maps

fiufo : E(K) = (K*NKI")/K*"
such that for P,Q € E(K),
(P, Q) = (f1(P), f2(Q))s(f1(Q), fo(P))s-

The period-index obstruction is a map
A: H' (Gg, En]) — Br(K)

that vanishes on the image of the Kummer map by [CS10, §2.2]. We have an isomorphism
HY(Gg, E[n]) & (K*/K*™)? such that the Kummer map ~ : E(K)/n — HY(Gg, E[n])
becomes identified with the map P — (fi(P), fa(P)).

Proposition 5.1. There ezists C1,Cy € K*/K*™ such that for all a,b € K*/K*",
A(a,b) = (Cra, Cob) g — (C1, Co) k.

Proof. See |Cla05, Thm 6]. O

Combined with the vanishing of A on the image of the Kummer map, we have the following:
Proposition 5.2. For all P,Q € E(K), we have

(P,Q) € Clg,g /n.
Proof. It suffices to show that
(f1(P), (@) + (/1(Q), fa(P))k = 0.

From Proposition [5.1] and vanishing of A on the image of x, we have

([1(P), f2(P))k = (C1Lfi(P), C2 fo(P))k — (C1, Ca) i — (Ch, [2(P))k — ([1(P), C2) ke
= A(k(P)) + (f2(P),C))k + (Ca, fL(P))k
=0+ (f2(P),C1)k + (Cy, f1(P)) k.
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We have
(f1(P), £(Q))k + (f1(Q), fo(P))x = (f1(P)f1(Q), f2(P) f2(Q))x — (f1(P), f2(P))k

= (o(P+Q),Ci)x + (Cy, i(P+ Q)
— (f2(P),C)k + (Cy, f1(P))x
— (f2(Q),C1)k + (Co, /1(Q))k

6. A FORMULA IN THE LEGENDRE CASE

As above, let E = {y* = z(z—1)(z—t)} be a Legendre elliptic curve. Let (z1,y1), (z2,y2) €
E(K). Sharifi notes that

To — 1 r1— 1
(x1,20 — 1)g + (29,11 — 1)g = (371, 2 - ) + (962, ! > + (x1,1 — 1) + (z2,1 — 29)s
1 — I S 1—272 S

Ty X9 — 1
= (_17 2 > —|—(1}1,1—{L‘1)5’+(I2,1—ZL’2)S.
) 1 — I s

The latter two terms vanish locally, so the first term must also vanish locally. We can then
apply the Sharifi-McCallum formula.
Lemma 6.1. There is an isomorphism
P =Py g:=DPgg,: (KN Kg”)/OIXCSKX” — Clk s[n]
such that if I C Og,g is an ideal with I" = aOk g, then
Pp s(a) = [I].
Proof. The Kummer sequence
1— g — 05 505 — 1
gives an exact sequence
1 — O 5/Ox" — H'(Gks, ptn) — Clg,s[n] — 0.

We have a commutative diagram with exact rows

1 ——— Ok 4/O0x"s ——— H'(Gk.s, ptn) — Clgs[n] —— 0

! 5 |

1 —— (K*NKZ")/K*" —— HYGks,pn) —— 0

Applying the snake lemma will give the desired isomorphism ®x g. Given [I] € Clk g[n],

recall that we lift to H'(G s, pn) as follows: we write IOg = aOg for some o € Og. The

cocycle G s — OF given by 0 — ca/a has class in H'(Ggs,0%)[n] corresponding to
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[I] € Clk,s. In particular, if we write I™ = aOk,g, then a"Og = aQOg, so there exists ¢, € OF
such that o" = aeg. Then for o0 € Gk g, we have

(ca/a)" =oa” /" = g€y /€.
Since the nth power map OF - OF is surjective, we may find € € OF such that €* = ¢.

Then /a := a/e € K7 is an nth root of a, and the cocycle 0 — oa/a is cohomologous with
o — o/a/{/a, which is the image of a in H (G s, pn). It follows that ®x s(a) =[I]. O

Lemma 6.2. Let L/K be a finite Galois extension. Then @y, is Galois equivariant.

Proof. Let 0 € Gk, let [I] € Clp g, and let b € L* N Lg" be such that /™ = b0 g. Then
&, (b) = [I]. Note also that

(Io)n = O'(]n) = O'bOL’S,
SO

O (0b) =o[l] = o (D). O

We return to the case n = 2.
Proposition 6.3. Let a,1 —a € K* N KJ* Then
(CL, 1-— a)g = [Cl] S C1K75 /2

where a® is the fractional ideal (1,a)Ok .
Proof. Let L = K(y/a), and let vy =1—\/a € L. Let b C K be a fractional ideal such that

(1 — CL)OK’S = 52,
and let ¢ be a fractional ideal of L such that
'YOL,S = btl_g.

By the formula of McCallum—Sharifi, we have
(a,1 —a)s = [bct™].

Now let p be a prime of K not in .S and 8 C L a prime above p. In particular, p is unramified
in L and does not divide 2. Then

0, (B¢7) = v (b647) = up(b6' =) = vp(7)  (mod 2)
Note that this implies that
vp(y) = vp(7?)  (mod 2).
The minimal polynomial of v over K is 2> —2z+1—a. Let a be the fractional ideal such that
a? = (1,a)Ok.s = (1,1—a)Ok.s. Then by considering the Newton polygon of 22 —2z+1—a
at .
vg(7) = min{vg(y),vp(77)}  (mod 2)

— min {vfp(z), %Umu - a)}

= %min{O, vy(l —a)}

= o1~ a)

= v,(a).
11



So as elements of Clg g /2, we have [bc' 7] = [a]. O
The more general proposition is as follows:

Proposition 6.4. Let n > 2. Leta,1 —a € K*NKZ". Ifn is odd, then (a,1 —a)s = 0. If
n is even, then (a,1 — a)s = [a], where a* = (a,1 — a)Ok. s as fractional ideals.

Proof. Let d = [L : K. Let o be a generator for Gk, and let { be a primitive nth root of
unity such that o/a = ("/*{/a. We note that

n—1 d—1n/d—1 n/d—1
i=0 i=0 j=0 Jj=0

Accordingly, we let v = H"/ 411 — ¢ /a).
Let ¢ C L be a fractlonal O1,s ideal such that

YOLs = ¢ b"/4,

We have
¢ = byt

Inductively, this implies that

)
i : _gi—1
< = cbnz/dH,y o
J=1

Now suppose that n is odd. Then (a,1 — a)s = [Ny xc] @ (/9. Let B be a prime of L
over a prime p of K not in S. In particular, p does not divide n and B is unramified over p.
Then

vp(Nr/k¢) = vp(Np/k¢)

J=1 i=j
d d
o 1 ol 1
= dog(0) + > jop(r” ) — (@ + 1) up(r” ™) (mod n)
j=1 j=1
d n/d—1
= dng(C) + ZZ Z Uqg( Cj+ n/d)(i=1) \/E)
i=1 7=0

Suppose further that v,(1 —a) < 0. By considering the Newton polygon of (1 — z)" — a, we
have that

. - 1
(L= GO ) = (1 — )
12



Then

(d+1)
2

vy (Npyk¢) = dug(c) + (1l —a)=0 (mod d).

If v,(1 — a) > 0, then similar Newton polygon considerations show that vy(1 — ¢¥/a) is
divisible by d for all k. So

(a,1—a)s = [Np/xc] @ ("4 =0.

Now suppose that n is even. Then

(a,1 = a) = ([Neyxe] + 5[6]) @ ¢

A similar calculation to the above yields
Up(bn/QNL/KC) = Urp(bnﬂNL/KC)

n/d—1

n n(d+1 . /) (1) n
= §vq3(b) + %vq}(b) + Zz Z v (1 — ¢ZH/DED /) (mod d)
=1 j=
d+2 d n/d-1
= ul-a)+ iy up(l = TN Ya) (mod d).
=1 j=0
If v,(1 — a) < 0, then
d+2 d+1 1
vy (62N c¢) = vy(1 —a) + V(1 —a) = 5’0,3(1—&) (mod d).
Otherwise,
vp(1—a)

So

[Cla05]
[CS10]
[MS03]

[NSW08]

[Si109]

0y (b2 Np k€)= (d + 2) =vy(l—a)=0 (mod d).

vp(b"2 Ny k¢) = = min{0,v,(1 — a)} = vp(a) (mod d).

N | —
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