# CONGRUENCE MODULES IN IWASAWA THEORY

### JACOB SWENBERG

ABSTRACT. In this short note, we define congruence modules and discuss their basic properties. We also outline a result of Ohta which describes the congruence module attached to a certain exact sequence arising from a limit of cohomology groups of modular curves. We finish by discussion Ohta's application of these results to Iwasawa theory.

## Contents

| l. Algebraic preliminaries                          | 1 |
|-----------------------------------------------------|---|
| 1.1. Congruence modules                             | 1 |
| 1.2. Fitting ideals                                 | 2 |
| 2. Congruence modules attached to Eisenstein series | 3 |
| 3. Ohta's results                                   | 3 |
| 4. Connections to Iwasawa Theory                    | 5 |
| References                                          | 5 |

## 1. Algebraic preliminaries

# 1.1. Congruence modules. Let R be an integral domain with field of fractions F. Let

$$0 \to A \xrightarrow{\iota} B \xrightarrow{\pi} C \to 0$$

be a short exact sequence of flat R-modules. We write  $A_F := F \otimes_R A$ , and similarly define  $B_F$  and  $C_F$ . We may identify A with its image in  $A_F$  by flatness. Then the exact sequence

$$0 \to A_F \xrightarrow{\iota_F} B_F \xrightarrow{\pi_F} C_F \to 0$$

is split, so we may choose a section  $s: C_F \to B_F$  of  $\pi_F$ .

**Definition 1.1.** The congruence module (attached to the above situation) is

$$\mathcal{C}(\pi, s) = C/\pi(B \cap s(C)).$$

Note that for all  $\beta \in B_F$ , we have  $\beta - s(\pi_F(\beta)) \in \ker \pi_F$ . We may then define an F-linear map  $t: B_F \to A_F$  by the property that for all  $\beta \in B_F$ ,

$$\iota_F(t(\beta)) + s(\pi_F(\beta)) = \beta.$$

Note that  $t \circ \iota_F = 1_{A_F}$  is the identity. In particular,  $A \subseteq t(B)$ ., and  $t(B_F) = A_F$ . Furthermore, for all  $\xi \in C_F$ , we have

$$\iota_F(t(s(\xi))) = s(\xi) - s(\pi_F(s(\xi))) = s(\xi) - s(\xi) = 0.$$

# Lemma 1.2. We have an isomorphism

$$\phi: \mathcal{C}(\pi, s) \cong t(B)/A$$

defined as follows: let  $[c] \in \mathcal{C}(\pi, s)$ , where  $c \in C$ . Choose any  $b \in B$  with  $\pi(b) = c$ , and set  $\phi[c] = [t(b)]$ .

*Proof.* We first show this is well-defined. Let  $c, c' \in C$  and  $b, b' \in B$  be such that  $[c'] = [c] \in \mathcal{C}(\pi, s), \pi(b) = c$ , and  $\pi(b') = c'$ . Then there exists  $c_0 \in C$  such that  $s(c_0) \in B$  and  $c' - c = \pi_F(s(c_0))$ . Then

$$\pi(b'-b) = \pi(s(c_0)),$$

so  $b' = b + s(c_0) + \iota(a)$  for some  $a \in A$ . Then

$$t(b') = t(b) + t(s(c_0)) + t(\iota(a)) = t(b) + a.$$

Then  $[t(b')] = [t(b)] \in t(B)/A$ . Furthermore,  $\phi$  is clearly R-linear and surjective.

We now show  $\phi$  is injective. Suppose that  $\phi[c] = 0$  for some  $c \in C$ . Then there exists  $b \in B$  and  $a \in A$  such that  $\pi(b) = c$  and t(b) = a. Then

$$\iota(a) = \iota_F(a) = \iota_F(t(b)) = b - s(\pi_F(b)) = b - s(\pi(b)).$$

In particular,  $s(\pi(b)) \in B$ , so

$$c = \pi(b) = \pi(s(\pi(b)) \in \pi(B \cap s(C)).$$

This completes the proof.

**Example 1.3.** Let G be a group, and let X be a set on which G acts. Then we may consider the free abelian group  $\mathbb{Z}[X]$  on X as a  $\mathbb{Z}[G]$ -module. We have a natural G-equivariant map  $\deg : \mathbb{Z}[X] \to \mathbb{Z}$  given by  $\sum_{x \in X} n_x x \mapsto \sum_{x \in X} n_x$ . Let  $\mathbb{Z}[X]_0$  denote the kernel of this map. Then we have a short exact sequence

$$0 \to \mathbb{Z}[X]_0 \to \mathbb{Z}[X] \xrightarrow{\text{deg}} \mathbb{Z} \to 0.$$

Given any element  $x \in X$ , we consider the element  $N_G x = \sum_{g \in G} gx \in \mathbb{Z}[X]^G$ . We then obtain a G-equivariant splitting  $s_x : \mathbb{Q} \to \mathbb{Q}[X]$  of  $\deg_{\mathbb{Q}} : \mathbb{Q}[X] \to \mathbb{Q}$  by  $1 \mapsto \deg(N_G x)^{-1} N_G x$ . This gives the congruence module

$$\mathcal{C}(\deg, s_x) = \mathbb{Z}/(\deg(\mathbb{Z}[X] \cap s_x(\mathbb{Q}))) = \mathbb{Z}/\deg\left(\sum_{y \in G_x} y\right) = \mathbb{Z}/|G_x|.$$

1.2. Fitting ideals. We refer the reader to the appendix of [2] for more details.

**Definition 1.4.** Let R be a commutative ring.

- (1) Let A be an  $(n \times m)$ -matrix with coefficients in R. The *Fitting ideal* of A, denoted  $\text{Fitt}_R(A)$ , is R if m < n, and otherwise is the ideal of R generated by the  $n \times n$  minors of A.
- (2) Let M be a finitely presented R-module, given by an exact sequence

$$R^m \xrightarrow{h} R^n \to M \to 0.$$

Then the *Fitting ideal* of M, denoted  $Fitt_R(M)$ , is defined to be the fitting ideal of the matrix giving h.

## 2. Congruence modules attached to Eisenstein series

For a congruence subgroup  $\Gamma \subseteq \operatorname{SL}_2(\mathbb{Z})$ , we denote by  $X(\Gamma)$  the usual modular curve of level  $\Gamma$ . We use standard notation for the modular curves X(N),  $X_1(N)$ , and  $X_0(N)$ , modular forms  $M_k(\Gamma, R)$  and  $S_k(\Gamma, R)$ , and Hecke algebras  $\mathfrak{H}_k(\Gamma, R)$  and  $\mathfrak{h}_k(\Gamma, R)$ . In particular, we denote  $\operatorname{SL}_2(\mathbb{Z})$  by  $\Gamma(1)$ .

Let  $k \ge 4$ , and let p be a prime such that  $k \not\equiv 0 \pmod{p-1}$ . Then there is a short exact sequence

$$0 \to S_k(\Gamma(1), \mathbb{Z}_p) \to M_k(\Gamma(1), \mathbb{Z}_p) \to \mathbb{Z}_p \to 0,$$

where the last nonzero map takes  $f \in M_k(\Gamma(1), \mathbb{Z}_p) \subseteq \mathbb{Z}_p[[q]]$  to its constant coefficient. Upon tensoring with  $\mathbb{Q}_p$ , the above sequence uniquely splits as  $\mathfrak{H}_k(\Gamma(1), \mathbb{Q}_p)$ -modules, with the image of  $\zeta(1-k)/2 \in \mathbb{Q}_p$  given by the usual weight k Eisenstein series:

$$E_k := \frac{\zeta(1-k)}{2} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(\Gamma(1), \mathbb{Z}_p).$$

As in [3], the congruence module attached to this situation is  $\mathbb{Z}_p/\zeta(1-k)\mathbb{Z}_p$ .

In [3], Ohta generalizes this result to a  $\Lambda$ -adic setting, considering several related exact sequences of  $\Lambda$ -adic objects, when  $\Lambda$  is the Iwasawa algebra. In Section 3, we describe some of Ohta's results.

## 3. Ohta's results

Let  $p \geq 5$  be prime. Let N be a positive integer prime to p. We further assume that p does not divide  $\varphi(N)$ . Let  $K \subseteq \mathbb{C}_p$  be a complete subfield, and let  $\mathcal{O}_K$  denote its ring of integers with uniformizer  $\pi_K$ . We set

$$\mathscr{T} := \varprojlim_{r} H^{1}_{\text{\'et}}(X_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \mathbb{Z}_{p}), \qquad \widetilde{\mathscr{T}} := \varprojlim_{r} H^{1}_{\text{\'et}}(Y_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \mathbb{Z}_{p}),$$

$$\mathscr{T}_{\mathcal{O}_{K}} := \mathscr{T} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{O}_{K}, \qquad \widetilde{\mathscr{T}}_{\mathcal{O}_{K}} := \widetilde{\mathscr{T}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{O}_{K}.$$

On these modules, there are commuting continuous actions of  $G_{\mathbb{Q}}$  and the adjoint Hecke operators  $T^*(n)$  for n a positive integer, and  $T^*(q,q)$  for positive integers q prime to N. As usual, we have Hida's idempotent  $e^* := \lim_{n \to \infty} T^*(p)^{n!}$ .

Let 
$$\mathbb{Z}_{p,N} := \varprojlim_r \mathbb{Z}/Np^r\mathbb{Z}$$
. Let

$$\widetilde{\Lambda}_{\mathcal{O}_K} := \mathcal{O}_K[[\mathbb{Z}_{p,N}^{\times}]] = \varprojlim_r \mathcal{O}_K[(\mathbb{Z}/Np^r)^{\times}] \cong \mathcal{O}_K[(\mathbb{Z}/Np)^{\times}][[1+p\mathbb{Z}_p]],$$

$$\Lambda_{\mathcal{O}_K} := \mathcal{O}_K[[1+p\mathbb{Z}_p]] \cong \mathcal{O}_K[[T]], \qquad [1+p] \mapsto 1+T.$$

Here, for  $a \in 1 + p\mathbb{Z}_p$ , we denote the corresponding element of  $\Lambda_{\mathcal{O}_K}$  by [a]. Then  $\mathscr{T}_{\mathcal{O}_K}$  and  $\widetilde{\mathscr{T}}_{\mathcal{O}_K}$  are modules over  $\widetilde{\Lambda}_{\mathcal{O}_K}$ , and hence over  $\Lambda_{\mathcal{O}_K}$ . By [1, Theorem 3.1], the modules  $\mathscr{T}_{\mathcal{O}_K}^{\text{ord}} := e^* \mathscr{T}_{\mathcal{O}_K}$  and  $\widetilde{\mathscr{T}}_{\mathcal{O}_K}^{\text{ord}} := e^* \widetilde{\mathscr{T}}_{\mathcal{O}_K}$  are free of finite rank over  $\Lambda_{\mathcal{O}_K}$ .

Furthermore, let  $\mathfrak{h}_{\mathcal{O}_K}^{\operatorname{ord}}$  (resp.  $\mathfrak{H}_{\mathcal{O}_K}^{\operatorname{ord}}$ ) denote the subalgebra of  $\operatorname{End}_{\mathcal{O}_K}(\mathscr{T}_{\mathcal{O}_K}^{\operatorname{ord}})$  (resp.  $\operatorname{End}_{\mathcal{O}_K}(\widetilde{\mathscr{T}_{\mathcal{O}_K}^{\operatorname{ord}}})$ ) generated by  $T^*(n)$  and  $T^*(q,q)$ . These are Hida's universal ordinary Hecke algebras, and they act on the spaces  $S^{\operatorname{ord}}(\Lambda_{\mathcal{O}_K})$  and  $M^{\operatorname{ord}}(\Lambda_{\mathcal{O}_K})$  of ordinary  $\Lambda_{\mathcal{O}_K}$ -adic cusp forms and modular forms, respectively, via  $T^*(n) \mapsto T(n)$  and  $T^*(q,q) \mapsto T(q,q)$ . Furthermore, these Hecke algebras are  $\widetilde{\Lambda}_{\mathcal{O}_K}$ -algebras, where for  $a \in \mathbb{Z}_{p,N}^{\times}$ , the element  $[a] \in \widetilde{\Lambda}_{\mathcal{O}_K}$  acts as  $T^*(a,a)$ .

We introduce some characters.

- Let  $\chi: G_{\mathbb{Q}} \to \mathbb{Z}_p^{\times}$  be the usual p-adic cyclotomic character.
- Let  $\omega: \mathbb{Z}_p^{\times} \to \dot{\mathbb{Z}}_p^{\times}$  be the Teichmüller character, which factors through the unique section  $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{Z}_p^{\times}$ .
- Let  $\kappa: \mathbb{Z}_p^{\times} \to 1 + p\mathbb{Z}_p$  be defined by  $\kappa(a) = a\omega(a)^{-1}$ .
- Let u, v be positive integers such that  $uv = \in \{N, Np\}$ , and  $p \nmid v$ . Let  $\theta$  and  $\psi$  be Dirichlet characters of modulus u and v, respectively, such that  $\theta\psi(-1) = 1$ .
- We assume that  $(\theta, \psi)$  is not exceptional. We say that  $(\theta, \psi)$  is exceptional if  $\theta|_{(\mathbb{Z}/p\mathbb{Z})^{\times}} = \omega^{-1}$  and  $(\theta\omega\psi^{-1})(p) = 1$ .
- We henceforth assume that K is a finite extension of  $\mathbb{Q}_p$  containing the values of  $\theta$  and  $\psi$ .

We will also use a certain twist of the Kubota-Leopoldt p-adic L-function  $L_p$ . Namely, there exists  $g_{\theta\omega^2} \in Q(\Lambda_{\mathcal{O}_K})$  such that the following hold:

- If  $\theta\omega^2 = 1$ , then  $g_1 \in ((1+T) (1+p)^2)^{-1}\Lambda_{\mathbb{Z}_p}$ . Otherwise,  $g_{\theta\omega^2} \in \Lambda_{\mathcal{O}_K}$ .
- For any finite order character  $\epsilon: 1+p\mathbb{Z}_p \to \overline{\mathbb{Q}_p}^{\times}$  and any positive integer s, we have

$$g_{\theta\omega^2}(\epsilon(1+p)(1+p)^s - 1) = L_p(-1-s, \theta\omega^2\epsilon).$$

We also recall the definition of the  $\Lambda$ -adic Eisenstein series attached to  $(\theta, \psi)$ :

$$\mathcal{E} := \mathcal{E}(\theta, \psi) := \delta(\psi) g_{\theta\omega^2} + \sum_{n \ge 1} \left( \sum_{d \mid n, p \nmid d} \theta(d) \psi(n/d) d[\kappa(d)] \right) q^n \in Q(\Lambda_{\mathcal{O}_K}) + q\Lambda[[q]].$$

Here,  $\delta(\psi) = 0$  unless  $\psi = 1$  is the trivial character, in which case  $\delta(\psi) = 1/2$ .

**Definition 3.1.** The *Eisenstein ideal* (associated to  $(\theta, \psi)$ ) is

$$\widetilde{I} := \widetilde{I}(\theta, \psi) := \operatorname{Ann}_{\mathfrak{H}_{\mathcal{O}_{K}}^{\operatorname{ord}}}(\mathcal{E}(\theta, \psi)).$$

The Eisenstein maximal ideal is

$$\widetilde{\mathfrak{m}} := (\widetilde{I}, \pi_K, T).$$

We denote the images of  $\widetilde{I}$  and  $\widetilde{\mathfrak{m}}$  under the surjection  $\mathfrak{H}^{\mathrm{ord}}_{\mathcal{O}_K} \to \mathfrak{h}^{\mathrm{ord}}_{\mathcal{O}_K}$  by I and  $\mathfrak{m}$ , respectively.

For  $(\theta, \psi) \neq (\omega^{-2}, 1)$ , we let

$$A_{\theta,\psi} := \left( \prod_{\substack{d \mid N \\ d \nmid \operatorname{cond}(\theta\psi^{-1})}} ([\kappa(d)] - (\theta\omega^2\psi^{-1})^{-1}(d)\kappa(d)^{-2} \right) g_{\theta\omega^2\psi^{-1}}.$$

We now can state part of the main result of [3].

**Theorem 3.2.** [3, Theorem 1.5.5] There is an exact sequence of  $\Lambda_{\mathcal{O}_K}$ -modules

$$0 \to (\mathscr{T}^{\operatorname{ord}}_{\mathcal{O}_K})_{\widetilde{\mathfrak{m}}} \to (\widetilde{\mathscr{T}^{\operatorname{ord}}_{\mathcal{O}_K}})_{\widetilde{\mathfrak{m}}} \to \Lambda_{\mathcal{O}_K} \to 0.$$

Upon tensoring with  $Q(\Lambda_{\mathcal{O}_K})$ , this sequence splits uniquely as modules over  $(\mathfrak{H}_{\mathcal{O}_K}^{\mathrm{ord}})_{\widetilde{\mathfrak{m}}}$ , with associated congruence module isomorphic to

$$\begin{cases} \Lambda_{\mathcal{O}_K}/(A_{\theta,\psi}), & (\theta,\psi) \neq (\omega^{-2},1), \\ 0 & else. \end{cases}$$

# 4. Connections to Iwasawa Theory

Ohta uses their results, combined with methods of Kurihara and Harder–Pink, to construct "large" unramified abelian p-extensions of cyclotomic  $\mathbb{Z}_p$ -extensions of some abelian number fields.

We set up some more notation:

- Let  $\mathcal{O}$  be the extension of  $\mathbb{Z}_p$  generated by the values of  $\theta\psi^{-1}$ .
- Let F be the fixed field of the intersection of the kernels of  $\theta\omega$  and  $\psi$ .
- Let  $F_{\infty}$  be the cyclotomic  $\mathbb{Z}_p$  extension of F.
- Let  $\Delta := \operatorname{Gal}(F/\mathbb{Q})$  and let  $\Gamma := \operatorname{Gal}(F_{\infty}/F) \cong \mathbb{Z}_p$ . We know that  $\operatorname{Gal}(F_{\infty}/\mathbb{Q}) \cong \Delta \times \Gamma$ .
- We define

$$F_{\theta\omega^2\psi^{-1}}(T) := g_{\theta\omega^2\psi^{-1}}((1+p)^{-1}(1+T)^{-1}-1).$$

Then

$$F_{\theta\omega^2\psi^{-1}}((1+p)^s-1) = L_p(s,\theta\omega^2\psi^{-1}).$$

• We define

$$B_{\theta,\psi}(T) := \left(\prod_{\substack{d \mid N \\ d \nmid \operatorname{cond}(\theta\psi^{-1})}} ([\kappa(d)] - (\theta\omega\psi^{-1})(d)d\right) F_{\theta\omega^2\psi^{-1}}.$$

Ohta uses the Galois representation coming from  $(\mathscr{T}_{\mathcal{O}_K}^{\operatorname{ord}})_{\widetilde{\mathfrak{m}}}$  to construct an abelian pro-p extension  $L/F_{\infty}$ . Ohta then proves the following Theorem:

Theorem 4.1. [3, Theorem A.1.13] We have

$$\operatorname{Fitt}_{\Lambda_{\mathcal{O}}}(\operatorname{Gal}(L/F_{\infty})) \subseteq B_{\theta,\psi}\Lambda_{\mathcal{O}},$$
$$\operatorname{char}_{\Lambda_{\mathcal{O}}}(\operatorname{Gal}(L/F_{\infty})) \subseteq B_{\theta,\psi}\Lambda_{\mathcal{O}}.$$

#### References

- [1] Haruzo Hida. Galois representations into  $GL_2(\mathbf{Z}_p[[X]])$  attached to ordinary cusp forms. *Invent. Math.*, 85(3):545–613, 1986.
- [2] B. Mazur and A. Wiles. Class fields of abelian extensions of Q. Invent. Math., 76(2):179–330, 1984.
- [3] Masami Ohta. Congruence modules related to Eisenstein series. Ann. Sci. École Norm. Sup. (4), 36(2):225–269, 2003.