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JACOB SWENBERG

1. What’s up with carrying?

Let C ⊂ Z be a set of coset representatives for Z/10Z. In other
words, every n ∈ Z can be written uniquely as 10a + b for a ∈ Z and
b ∈ C. Thus, we have a bijection

Z× C ∼= Z, (a, b) 7→ 10a+ b.

Identifying C with Z/10Z, we see that the group law on the right of
the bijection above does not agree with the natural one on the left.
Indeed, let (a, b), (c, d) ∈ Z× C. Then while

(10a+ b) + (10c+ d) = 10(a+ c) + (b+ d),

we do not necessarily have b + d ∈ C. However, there exists e ∈ C
such that b+ d = e ∈ Z/10Z, and so we have a function

σ : Z/10Z× Z/10Z→ Z

such that for all b, d ∈ C, we have

b+ d− 10σ(b, d) ∈ C.

If we view the bijection above as a bijection

Z× Z/10Z ∼= Z, (a, b) 7→ [a, b],
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then we have

[a, b] + [c, d] = [a+ c+ σ(b, d), b+ d].

We view the second coordinates above as the 1’s digits, and the first
coordinates as “everything else.” The function σ(b, d) is therefore the
“carrying the 1” that happens in long addition.

2. Newfangled digits

There are a couple ways we could try to push this. First, what
happens if we change our set of coset representatives C? To reframe
this choice of coset representatives, we instead consider set-theoretic
sections s of the quotient map

π : Z→ Z/10Z.

In other words, these are functions s : Z/10Z→ Z that satisfy π(s(n)) =
n for all n. One checks that the choice of a set C of coset representa-
tives for Z/10Z is equivalent to the choice of a section s of π. We then
think of these sections as choices of meaning for the digits 0, . . . , 9. For
example, we could just pretend like the digit 9 actually means 19, and
that would correspond to a section s with s(9) = 19.

Given a section s : Z/10Z→ Z, we have a bijection

Z× Z/10Z ∼= Z, (a, b) 7→ [a, b]s := 10a+ s(b).

We would like to understand what the group law on the right cor-
responds to on the left. To do this, we first observe that for all
b, d ∈ Z/10Z,

π(s(b) + s(d)− s(b+ d)) = b+ d− (b+ d) = 0.

Therefore, there exists a function

σs : Z/10Z× Z/10Z→ Z
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such that for all b, d ∈ Z/10Z, we have

s(b) + s(d)− s(b+ d) = 10σs(b, d).

Then
[a, b]s + [c, d]s = [a+ c+ σs(b, d), b+ d]s.

Thus the choice of section s affects the carrying function! But how,
exactly? Let s1, s2 : Z/10Z → Z be two sections. Then there exists a
function α : Z/10Z→ Z such that s1(x)− s2(x) = 10α(x). Then

10(σs1(b, d)− σs2(b, d)) = (s1(b)− s2(b))
+ (s1(d)− s2(d))

− (s1(b+ d)− s2(b+ d))

= 10(α(b) + α(d)− α(b+ d)).

So
σs1(b, d)− σs2(b, d) = α(b) + α(d)− α(b+ d).

So changing the choice of section changes the “carrying function” by
a function of the form

(b, d) 7→ α(b) + α(d)− α(b+ d).

A function satisfying this identity is called a 2-coboundary.
One could ask how much we could change the section s (i.e. change

an α) without changing the carry function. Note that choosing α to
be a homomorphism changes the section, but does not change the
carrying function. However, in this case, there is no homomorphism
Z/10Z→ Z. Indeed,

H1(Z/10Z,Z) ∼= Hom(Z/10Z,Z) = 0.

This isn’t the last time we will see group cohomology, however!
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It is important to remember that while we have changed the repre-
sentation of integers into digits, we have not changed the isomorphism
class of the group of integers Z itself. Let us witness this isomorphism.
Let (a, b) ∈ Z× Z/10Z. Then for all (c, d) ∈ Z× Z/10Z,

[a, b]s1 − [c, d]s2 = 10(a− c) + s1(b)− s2(d).

We would like this to be zero for some choice of (c, d). For this, we
choose

(c, d) = (a+ α(b), b)

And one checks that

[a+ α(b), b]s2 = [a, b]s1.

We say that the map

Z× Z/10Z ∼= Z× Z/10Z, (a, b) 7→ (a+ α(b), b)

intertwines the group structure induced by s1 on the left and the
group structure induced by s2 on the right.

3. What if we carried differently?

One can ask what happens when we change the carrying function
σ itself directly. We could ask if the binary operation given by the
formula

[a, b]σ + [c, d]σ = [a+ c+ σ(b, d), b+ d]σ

is even a group structure. At the very least, we need this operation to
be associative. A simple computations shows that this is the same as
requiring that:

σ(x, y) + σ(x+ y, z) = σ(y, z) + σ(x, y + z).

This is called the 2-cocycle condition and functions

σ : Z/10Z× Z/10Z→ Z
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satisfying the 2-cocycle condition are called 2-cocycles. Note that
the set of 2-cocycles Z2(Z/10Z,Z) is a group under pointwise addi-
tion of functions, and has the set of 2-coboundaries B2(Z/10Z,Z) as a
subgroup. We define

H2(Z/10Z,Z) :=
Z2(Z/10Z,Z)

B2(Z/10Z,Z)
.

We discover that this H2 captures all possible associative addition laws
on Z× Z/10Z of the form

[a, b]σ + [c, d]σ = [a+ c+ σ(b, d), b+ d]σ

up to isomorphism.

Lemma 3.1. For all σ ∈ Z2(Z/10Z,Z), the addition law given by

[a, b]σ + [c, d]σ = [a+ c+ σ(b, d), b+ d]σ

makes Z× Z/10Z into a group, which we denote by [Z× Z/10Z]σ.

Proof. We must check that there is an identity and that there are
inverses. Note first that for all x ∈ Z/10Z, we have

σ(x, 0) + σ(x, 0) = σ(0, 0) + σ(x, 0).

In particular, σ(x, 0) = σ(0, 0). Similarly, σ(0, x) = σ(0, 0). Then one
easily checks that [−σ(0, 0), 0]σ is an identity element.

Also for all [x, y]σ, we have an inverse given by

[−x− σ(−y, y),−y],

where one uses the fact that

σ(−y, y) + σ(0,−y) = σ(y,−y) + σ(−y, 0).

�
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For now, we won’t care if the group law is abelian.
What properties do these groups have? One first easily checks that

projection onto the second factor [Z×Z/10Z]σ → Z/10Z is a surjective
group homomorphism, and the kernel is

{[x, 0]σ : x ∈ Z}.

We will use this later!

4. How many flavors of carrying are there??

We now seek to understand the structure of the groupH2(Z/10Z,Z).
It is certainly finitely generated as a sub-quotient of a free abelian
group of finite rank (namely, the set of functions Z/10Z×Z/10Z→ Z).
But it will turn out that this group is actually a finite group in this
specific example.

First, we need to explain why it’s called “group cohomology” and
where it fits in the bigger picture of algebra.

Definition 4.1. Let G be a group. A G-module is an abelian group
A equipped with a homomorphism

G→ Aut(A), g 7→ (a 7→ ga).

In particular, we have

1a = a, g(a+ b) = ga+ gb, g(ha) = (gh)a.

A morphism of G-modules is a group homomorphism f : A → B
between G-modules satisfying

f(ga) = gf(a)

for all g ∈ G and a ∈ A.
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The category of G-modules is a lot like the category of abelian
groups. In particular, we have a first isomorphism theorem, and every
subgroup is the kernel of a quotient map.

Definition 4.2. We say that a sequence A
f−→ B

h−→ C of G-module
maps is exact if ker(h) = im(f).

Example 4.3. The groups C, C×, and 2πiZ are Z/2Z-modules by the
action of complex conjugation. The sequence

0→ 2πiZ→ C exp−−→ C× → 1

is exact. Exactness at 2πiZ follows from injectivity of the map 2πiZ→
C, and exactness at C× follows from surjectivity of the complex expo-
nential map. Exactness at C is simply the fact that 2πiZ is the kernel
of exp.

Definition 4.4. Let A be a G-module. The invariants of A are

AG := {a ∈ A : ga = a ∀g ∈ G}.

Note that AG is a subgroup of A.
Unfortunately, while taking invariants is functorial, it does not pre-

serve exactness. However, there are functorial cohomology groups

Hn(G,A), n ≥ 0

such that H0(G,A) = AG and for any short exact sequence

0→ A→ B → C → 0,

there is a long exact sequence

0→ AG → · · · → Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ · · ·

The cohomology groups are defined as follows:
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We let

Cn(G,A) := {f ∈ Fun(Gn+1, A) : f(g~v) = gf(~v)}.

We have maps

d : Cn(G,A)→ Cn+1(G,A),

df(g0, . . . , gn) =
n∑
k=0

(−1)kf(g0, . . . , ĝk, . . . , gn).

Here, the hat means we omit this element from the list. These maps
fit into a sequence

0→ C0(G,A)
d−→ C1(G,A)

d−→ · · · d−→ Cn(G,A)
d−→ · · ·

such that d ◦ d = 0. Thus, we may define

Zn(G,A) := ker(d : Cn(G,A)→ Cn+1(G,A)),

Bn(G,A) := im(d : Cn−1(G,A)→ Cn(G,A)) ⊆ Zn(G,A),

Hn(G,A) :=
Zn(G,A)

Bn(G,A)
.

In our example, Z is a Z/10Z-module by the trivial action. We now
wish to compute H2(Z/10Z,Z). In general, H2(G,A) has a description
as follows:

Z2(G,A) := {σ : G2 → A : aσ(b, c)− σ(ab, c) + σ(a, bc)− σ(a, b) = 0},

B2(G,A) := {(x, y) 7→ xα(y)− α(xy) + α(x)} ⊆ Z2(G,A)

We use the following Lemma:
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Lemma 4.5. Let G be a finite cyclic group of order n, generated by
g ∈ G, and let A be a G-module. Let

NG : A→ A, a 7→
n−1∑
i=0

gia.

Then

H2(G,A) ∼= AG/NG(A), [σ] 7→ εσ :=
n−1∑
i=0

σ(gi, g).

Proof. Omitted. �

Corollary 4.6. We have

H2(Z/10Z,Z) ∼= Z/10Z.

5. How different really are these?

In general, H2(G,A) classifies short exact sequences

0→ A
ι−→ E

π−→ G→ 1

such that xι(a)x−1 = ι(π(x)a) for all x ∈ E and a ∈ A. Two such
sequences are considered equivalent if there is an isomorphism E ∼= E ′

making the diagram commute:

0 A E G 1

0 A E ′ G 1.

ι π

∼=

ι′ π′

However, what if we have an isomorphism E ∼= E ′ that doesn’t preserve
the image of A?
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