OLD SOLUTIONS

JAS SINGH, SAM QUNELL, JACOB SWENBERG

Feel free to add to, revise, or comment on this document as you see fit. Solutions will be (hopefully)
correct, but for sake of time, will probably not be typed up the detail required for the actual exam.
Once more problems are added here, I will put some thoughts about common problem types that
one should be prepared to deal with (i.e. "show this is an inner product", "use Arzela Ascoli but not
really", "know how to compute exp(A)" | "iterate a function and show it converges", "do infinite
dimensional vector spaces behave well? (no)")

1. S17

Problem 1 (1). Let M be an n x n real matrix with transpose M7T. Prove that M and
MMT have the same image.

Via the Friedholm alternative, we have im(M) = ker(M7T)* and im(MMT) = ker(MMT)T)+ =
ker(MMT)L. Since V = ker(MT)Dker(MT)*, and likewise for ker(M MT), it is sufficient to prove
that ker(MT) = ker(MMT). Fix v € ker(MT). Then MMT xv — M %0 =0, so v € ker(MM7).
Now, if v € ker(MM7T), then MM*v = 0, so (MTv, MTv) = (v, MM™*v) = (v,0) = 0, and by
property of inner products, this implies that M7v = 0, and so v € ker(M?T). Thus, ker(MT) =
ker(MMT), and so im(M) = im(MMT).

1 0 a b
010 0
Problem 2 (2). Let a,b,c¢,d € R and M 0 ¢ 3 -9
0 d 2 -1

(1) Determine conditions on a, b, ¢, d s.t. there is only one Jordan block for each eigenvalue
of M in the Jordan form of M.
(2) Find the Jordan form of M when a =c=d =2 and b= —2.

. J

We first compute the characteristic polynomial of M. We see this is (z — 1)*. Therefore, the Jordan
canonical form of M has only ones on the diagonal, and so has a single Jordan block for eigenvalue

0 0 a b
: . 0 00 O .
1 iff nullity(M — I) = 1. We compute M — 0 ¢ 2 -2l This needs to have exactly three
0 d 2 -2

linearly independent rows. We require ¢ # d and a # —b.

Ifa=c=d=2andb= -2 nullity(M — I) = 2, so there are exactly 2 blocks in the Jor-
dan form. The size of the largest block corresponding to eigenvalue 1 is equal to the multiplicity of
2 — 1 in the minimal polynomial of M. We compute that (X — 1) = 0, and since (X — 1) # 0, we
have that there are 2 blocks of size 2 in the J.C.F.
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Problem 3 (3). Let M be an n x n real matrix. Suppose M is orthogonal and symmetric

(1) Prove that if M is positive definite, then M is the identity.
(2) Does the answer change if M is only positive semidefinite?

M being real and symmetric implies by spectral theorem that it is diagonalizable with real eigen-
values. M being positive definite implies that each eigenvalue is strictly greater than zero. M being
orthogonal implies that the eigenvalues of M must have magnitude 1. This means that the only
eigenvalue of M is 1, and by diagonalizability, M = 1.

The answer does not change if M is only positive semidefinite. The condition that M is orthogonal
prohibits that M has a zero eigenvalue, so it is still true that M can only have eigenvalue 1.

Problem 4 (4). Let F(z) be the determinant of the given matrix (not retyping). Compute
dF/dz(0).

Note that F(z) is a polynomial in x, and therefore, if F(z) = Y1 ja;a’, dF/dz(0) = a; i.e. the
coefficient of z. Note also Det(M) = 3 . H?:1 sign(o) x M; ;;). We will find all o such that
H?Zl M; ;) = . For any given o, exactly one of the M; ,(;) can be x, and the rest must be 1. One

can check that there is only one such o, (not sure how to write this out concisely), where we take
a1 * az2 * as3 * a4 * as5 = x. The sign of this permutation is -1, so our derivative is —1.

Problem 5 (5). Suppose V is a finite dimensional vector space over C and T : V — V is a
linear transformation. Let F/(X) € C[X]| be a polynomial. Show that F(T) is an invertible
transformation iff F(X) and the minimal polynomial of 7" have no common factors.

If the minimal polynomial of 7" and F(X) indeed have a common factor, say (z — A), then let v
be an eigenvector of T' corresponding to \. F(X) = ¢(X) x (X — \) for some polynomial ¢(X), so
F(T)yv=q(T)(T — Av) =0, so F(T) is not invertible.

Now, suppose that F(T) has no common factor with the minimal polynomial of 7', and write
F(X) = [[i,(x — \))™ where the )\; are distinct. Suppose F(T)v = 0 for some vector v (not
necessarily nonzero). In particular, (T'— A\ I)o(T — A\ 1) ] o(T — A\;)"v) = 0. Since A is not
an eigenvalue of T (by assumption on no common factors), that means that the inner operator on
v must return zero. We repeat this argument on the polynomial of T" of smaller degree, until we
eventually obtain that v = 0.

Problem 6 (6). (1) Let V denote the vector space of real n x n matrices. Prove that
(A, B) — trace(AT B) is an inner product on V.
(2) For n = 2, find an orthonormal basis of V.

Note that for any matrix A, tr(A) = tr(AT). Then (A, B) = tr(ATB) = tr((ATB)") = tr(BT A) =
(B, A), and so we have symmetry.

For any matrix A, (A, A) = tr(ATA). We see that the element in the i row and i column of
AT A is by definition Z?ZI(AT)MAj,i = AJ%Z- > 0. Then tr(ATA) = Y A%j > 0. We also
see that this equals zero iff each A; ; = 0ie. A=0.
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Fix matrices A, B,C and A € C. Then (A + \C,B) = tr((A+ X\C)T'B) = tr((AT + \CT)B) =
tr(ATB) + M(CTB) = MA, B) + (C, B), and so we have linearity.

I will show that the standard basis of V' is in fact orthonormal, i.e., b;; is 1 in the 7, j position
and zero elsewhere. One checks quickly that ¢r((bl, * b;;) = tr(bgpbij). From here, one sees
that b; ;b;; is always diagonal with one in one place and zero in the other, so each of these basis
elements is unit length. Furthermore, one also can confirm that these basis elements are pairwise
orthonormal.

Problem 7 (7). Prove existence and uniqueness of a non-negative continuous function f :
[0,1] — [0,1] satisfying f(z) =1 — [, t(t)dt]*.

Note that the set of continuous functions from [0, 1] to [0,1] is complete with the supnorm metric.
Hence, if I can show that g(f(x)) =1 — [[) tf(t)dt]* is a contraction mapping, then by contraction
mapping principle, g has a unique fixed point, and note that f is a fixed point of g iff the given
condition is true.

Note first that g(f(x)) is always continuous since it is a composition of continuous functions. Since
[fy tf(t)dt]* > 0, g(f(x)) is always < 1. Furthermore, since f(t) < 1always, [ tf(t) < [) t = 2?/2.
For z € [0,1], 1 — 22/2 € [0,1], and so g is indeed a mapping from this space to itself.

Fix p( ),q(x) in this space. Then g(p) — g(q) = [[y ta(t)dt]* — [[§ tp(t)dt]* = ([§ t(g — p)dt) *
(Jo tlg+p)dt. If d = sup,epoqlp(z) — q(2)], the absolute value of the first term of this product is
less than [ ¢« d = 22d/2. Since both f and g take values in [0, 1], we see | f + g| < 2, and so the
absolute value of the second term in this product is less than foxt % 2dt = x?. We now have, for
any z, |p(z) — q(z)| < 2*d/2, and since x € [0, 1], this is always less than or equal to d/2. Then

supgejo]|p() — q(z)| < d/2 as well, and so this is indeed a contraction mapping.

Problem 8 (8). Show that there is a constant C so that |f0)+f(1) f f(z)dz|
C’fo |f"(z)|dx for every C? function f: R — R.

Consider the integral fo . We may integrate by parts taking u = f and v =  — 1/2 since f is
differentiable. Then fo da; = (f(a:) (x—1/2) ]0 fo x—1/2)f'(x)dz. The first term evaluates
to %, and so |f(0)+f fo x)dx| < \fO f(x) * (x — 1/2)|. We may integrate by parts
on this right integral, with u = f/(z) and v = (z — 1/2) /2 since f’ is differentiable. We compute
fol (@) (x —1/2)dx = f'(z)(x —1/2)%/2]} — fo f"(x)(x —1/2)%/2dx. The first term is M
1/8 fo f” )dx by fundamental theorem of calculus. The second term, since (x — 1/2)? < 1 /4 for
x € 0,1, we see that we may take C' =1/8+1/8 =1/4.

Problem 9 (9). Let (X, d) be a bounded metric space and let C'(X) be the space of bounded
continuous real functions on X endowed with the supremum norm. Suppose C(X) is sepa-
rable.
(1) Show that for every € > 0, there is a countable set Z. C X so that for all z € X,
there exists a z € Z. where for any y in X, |d(z,y) — d(z,y)| < €.
(2) Show that X is separable.




For part a, observe that for any « € X, the function f, = d(z,y) is a bounded (since X is bounded)
continuous function of y. Since X is separable, let S be a countable set of functions in C(X) where
for any f € C(X), there exists a g € S such that sup|f(xz)—g(x)| < /2. Note that since this is true
if we take f to be f,, each f, is within £/2 of some g € S. Let Sy be the subset of S of functions
containing at least one f, within the £/2 ball around it, and note that this set is also £/2 dense with
the f,. For each g € S2, pick some f,, and let the set of these be S3. I will show that we may take
Z. = {y|fy € S3} works. Note first that this set is countable since S3 is countable. For any f,, f»
has supnorm distance €/2 or less from some Sy member g. Let f, be the S3 member corresponding
to g. Then by triangle inequality, |f.(2) — fy(2)| < €/2+¢/2 = ¢ for all z, as desired.

Given that part a is true, note that if z, 2 € X, then |d(z,y) — d(z,y)| < d(x, z) by reverse triangle
inequality, and since |d(z, 2) —d(z, 2)| = d(z, z), we see that supyex|d(z,y) —d(z,y)| = d(x, z). For
any positive natural number n, part a gives that there exists a countable set Z,, where for any
v € X, thereis a z € Zy, where d(z, 2) < €. Take the union of the Z, ,,, say Z, and note that since
this is a countable union of countable sets, it is countable. Now fix € > 0 and x € X. Then pick
1/n < e. There exists z € Z;/,, and hence z € Z, such that d(z,z) < e. Thus, Z is a countable
dense subset of X, and so X is separable.

Problem 10 (10). Let K C R™ be compact. Suppose that for every e > 0 and every pair
a,b € K there is an integer n > 1 and a sequence of points zg...z, € K so that xg = 0,
xp =b, and ||z — xx_1|| < e forevery 1 <k <n

(1) Show K is connected

(2) Show by example that K may not be path connected.

\ J

Suppose towards contradiction that K is the disjoint union of two nonempty sets that are both
closed relative to K, call these A and B. Fix a point a € A and b € B. For every 1/m with m a
positive natural number, there exists a sequence with xg = a, ,, = b, and ||z — xp_1|| < 1/m. But
this implies that there exists an a,, € A and by, € B with ||a,, — bn|| < € (there must be at least
one set change in the sequence since xy € A and x,, € B). Since K is compact, some subsequence
of the a,, and by,, say the a,,, and b,,, must converge. Since A and B are relatively closed in K,
the a,,, converge to some a* € A and the b,,, converge to some b* in B. But the condition on
the a,, — b,, implies that a* — b* = 0, and so a* = b*. This contradicts that A and B are disjoint.
Therefore, K must be connected.

To show K is not necessarily path connected, consider the set of points in R? given by {(z, sin(1/x)|z €
(0,1]} U {(0,0)} i.e. the topologist’s sine curve. It is known that this is not path connected. For
any a,b € K, if the x component of both a and b is nonzero, then both are in the path connected
component of K, and so the given condition is immediately satisfied. If WLOG a = (0,0) and
b = (x,sin(1/z)) for some x € (0, 1], there will always be some zero of sin(1/x) with x < ¢ since
sin(1/x) has infinitely many periods approaching zero. Let such a zero be x1. Then z1 is in the
path connected component of K and so we may find a chain connecting it to b via the argument
above.

Problem 11 (11). Let f, : [0,1] — R be a sequence of continuous functions satisfying
|fn(2)] < 1+ 5557, and define F(z) = Iy fn(t)dt. Show that there is a subsequence
ny — oo so that F,, converges for every x € [0, 1].
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We first show that the F), are equibounded. Note that |F, ()] < [ |fu(t)] < [§1 + {5ha =
x + arctan(nz) < 1+ /2 for any x and n.

I will now show that the F), are equicontinuous on [1/2,1]. By Arzela Ascoli, this implies that
some subsequence, the F),, converges for all z € [1/2,1]. If 1/2 < z < y < 1, then |F,(y) —
Fo(z) < [1+ e = (y — @) + arctan(ny) — arctan(nz). arctan is a continuous function
on [1/2,1], and hence, is uniformly continuous. The sum (y — x) + arctan(ny) — arctan(nz) will
also be uniformly continuous on [1/2,1], and so there exists § > 0 s.t. |r —y| < § implies that
(y — x) + arctan(ny) — arctan(nz) < e. This shows that |F,(y) — F,(x)| < e for such z,y, so the
F,, are equicontinuous on [1/2,1]. By Arzela Ascoli, some subsequence, say the F5; converges on
[1/2,1].

Now suppose that some subsequence of our original F;,, say the F}; converges on [1/j,1]. Then
[1/(j+1)/1] is also a compact interval, and so this subsequence is also equicontinuous here. There-
fore, some subsequence of the Fj;, say the Fji;;, converges on [1/(j 4+ 1),1].

We have shown that we can iteratively define subsequences that converge on [1/7, 1] for any j > 1.
To complete the proof, define our sequence to be Fy 1, F32, Fy 3.... Note that this subsequence con-
verges at zero since for any n, F,(0) = 0. Now fix any = € (0,1]. There exists some n > 1 natural
number where 1/n < x. Then for all i > n, the Fj;_; were elements of the sequence Fj, j, and so
converge on [1/n, 1], and in particular, at .

Problem 12 (12). Show that for each ¢ € R fixed, that the function F(y,t) = y* +ty? +t%y
defined for all y € R acheives its global minimum at a single point yo(t)

For fixed t, define f(y) = F(y,t), and note that this is continuous. Observe that since this function
f, as a polynomial of y, is quartic, limy_,oF(y,t) = limy__oF(y,t) = co. Therefore, there exists
a positive M such that |y| > M implies that F'(y,t) > 10. Consider f where y is restricted to the
bounded set [—M, M] and t is fixed. f is a continuous function of y on a compact set, and so by
extreme value theorem, it acheives a local minimum for some y € [—M, M]. Furthermore, since
F(0,t) = 0, we see that the minimum acheived on this set will be less than any value F' takes for
ly| > M. Equivalently, some local minimum of f for y € [—M, M] is a global minimum of F(y,t). It
remains to show that there is exactly one local minimum of f. We compute f’(y) = 4y> + 2yt + t2,
and f"(y) = 12y?+2t. If t = 0, then f(y) = y*, and so there is exactly one global minimum at y = 0.
If t > 0, then f”(y) > 0, so f cannot obtain a minimum at more than one point. We note that
/' (y) must have at least one real root since it is cubic, so there is indeed exactly one local minimum,
which is therefore a global minimum. Now suppose ¢t < 0, and suppose towards contradiction that
y1 and yy are both global minima. Then the polynomial g(y) = F(y,t) — F(y1,t) has roots at
both 75 and y;. Neither of these can be a simple root since g(y) > 0 always, and so (y; — y)? and
(y2 — y)? both divide g. But since g is monic and degree 4, we see g = (y1 — 4)?(y2 — y)?. Then
F(y,t) = (y1 —4)*(y2 — y)? + F(y1,t). Equating the coefficients of y3, we must have 2y; + 2y, = 0,
and so y; = —y2. Equating the coefficients of y, we see 2y?ys + 2y32y; = t2, but the left hand side is
also zero. This is a contradiction since ¢t < 0. Thus, f obtains a unique local minimum in [—M, M],
which is a global minimum.

2. F17

Problem 13 (1). Let V = {f(X) = ap + a1 X + a2 X% + a3X3|ay, ...a3 € C} be the complex
vector space of polynomials in the variable X of degree at most 3.
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(1) Show that V is an inner product space with (f, g) f f(t)
(2) Find an orthonormal basis of V'

First, fix f € V. Then (f, f) f f(@®)|f(t)|dt. The integrand is nonnegative and is continuous.
Therefore, this integral is always nonnegatlve and is zero iff ff = 0 everywhere on [—1, 1] iff f = 0.
For symmetry, fix g € V as well. Then (f,g) f fg = f fg = filgf = (g, f). Finally, fix

h eV andaeC. Then (af +h,g) = [1(af + h)g=a ' fg+ [1, hg = a(f,g) + (h.g), all by
linearity of the integral. Thus, this defines an inner product.

I won’t type out the full Gram Schmidt calculation. Start with a basis for this space, i.e. 1,12, 3.
We first normalize basis vector 1 with respect to this product. (1,1) = f_ll 1 = 2. So if we take
e1 = 1/4/2, this vector will be unit length. For our next vector, take by =t — (t,1/4/2) x 1/v/2. We
note that the inner product in this expression is a symmetrlc integral of an odd function, and so
is zero. So by = t. To normalize, we see (t,t) f T 2/3, so take es = \/775 and this will
be unit length and orthogonal to 1/4/2. The remaining vectors can be computed in the same way,

and calculation is made simpler by using the odd and even functions. These polynomials are the
Legendre polynomials, and when normalized, the next one is y/45/8(t> — 1/3).

Problem 14 (2). Let n > 1 be an integer, and A, B be n X n matrices.

(1) Show that if A is invertible, AB and BA have the same characteristic polynomial.
(2) Prove or disprove: the same is true even if A is not invertible.

By definition, the characteristic polynomial of AB is det(AB—xI). Since det(A) = det(A~1)~!, this
is det(A~Y)det(AB — xI)det(A). By multiplicativity of determinant, this is det(A~'(AB,I)A) =
det(BA — xI), which is exactly the characteristic polynomial of BA. (Note, we have shown that
similar matrices have the same characteristic polynomial.)

This is true even if A is not invertible. First, we will show that the invertible matrices are dense
in M, (C). Consider any € > 0, and the matrix A — /. This matrix is non-invertible iff. ¢ is an
eigenvalue of A. A has finitely many eigenvalues, so if € > 0 and is less than the smallest positive
eigenvalue of A, then A—eI will always be invertible. Therefore, |A—(A—el)| = |el| = ¢, and so in-
deed, A is a limit of invertible matrices. Let A,, be a sequence of invertible matrices converging to A,
and let B be fixed. Consider the function f : M,,(C) — Clz], f(M) = det(M B—xI)—det(BM —xI).
This is continuous since it is a composition of continuous functions (in particular, determinant is
continuous). For each A,,, A, is invertible, and we have shown f(A4,) = 0. Then since A4, have
limit A and since f is continuous, f(A) = 0 as well, so det(AB — xI) = det(BA — zI), and this is
exactly what we wanted.

Problem 15 (3). Solve the following linear system of differential equations (not going to
retype)

If A= <g _31>, then the solution is exactly x(t) = exp(A) * x(0), where x(0) is the initial

conditions at t = 0 (I believe this can be stated without proof, since this is relatively common use

of exponentials of matrices. If this seems strange to you, compare to the case where you only have

one variable. ' = ax — z = e xx(0)). So, it remains to compute exp(A). It is easiest to compute
6



the Jordan canonical form. The characteristic polynomial of this matrix is (z — 4)(x — 5). Since

this has two distinct roots, the Jordan canonical form is exactly D = (g g) We also compute the
matrix P such that P~'AP = D. To do so, we need only find the eigenvectors. A — 41— ; :1
Then (A —4I)v = 0 iff v is a scalar multiple of (1,2). Likewise, (A —5I)v = 0 iff ; _;) v=0iff

21 -1
P~ 'AP =D, and so A = PDP~!. Then exp(A) = exp(PDP~') = Pexp(D)P~!. But exp(D) is

4 5_ 4 5 4
et 0 _ 2e® —e* —e’te
exactly (0 e5>' Then Pexp(D)* P! = <265 _9et  9ph _ ob

v is a scalar multiple of (1,1). If P = (1 1), we see P71 = <_21 1 > We also see that indeed

Problem 16 (4). Let V' be a vector space over R and let V* be the dual space of V. Let
B = {e;} be a basis of V. For each i, define efk e V* by efé(ej) — (g0
(1) Show that these efé are linearly independent in V*.

(2) Give necessary and sufficient conditions (with proof) on V for these vectors to form
a basis of V*.

Linear independence is defined with finite support, so, after reordering, suppose aleqléﬁ + chezéﬁ +

...aneﬁE = 0 i.e. is the zero operator. In particular, for each e; with i« € {1,2..n}, we have

0(e;) = (aleiéé + agef + ..anel)(e;) = a;. Thus, all coefficients are zero.

We will show that this is a basis iff V' is finite dimensional. First, suppose V is indeed finite di-

mensional. It remains to show that this basis spans V*. Fix an operator L € V*. Write a; = L(e;)

for each of the (finitely many) e;. Then L and alefk + age;éﬁ + ...an(ﬁ# agree on all vectors of V' by

linearity, and are thus the same operator. Therefore, L is in the span of B.

If V' is infinite dimensional, define L(e;) = 1 for all basis vectors e; (this is well-defined, since

sums of V' elements are only defined on finite support). Let efé, ef, ...l be a finite subset of B that

is reindexed. Then L(en4+1) = 1, but (al(ﬂéﬁ + ..anel )(eny1) = 0. Thus, L is not a (finite) linear
combination of B, and so is not in the span of B.

Problem 17 (5). Let V and W be two infinite dimensional vecto spaces over C. Let
Ling(V, W) be the C vector space of C linear maps from V' to W

(1) Is X ={f € Linp(V,W)|f has finite rank} a subspace?

(2) What about Y = {f € Ling(V,W)|Ker(f) has finite dimension}?

(3) What is X NY?

(1) Yes. Fix f,g € X and a € C. Then (af + g)v = a(fv) + gv € im(f) + im(g) C
span(im(f),im(g)). Since im(f) and im(g) are finite dimensional, their combined span
is as well. So im(af + g) C span(im(f),im(g)), and hence, is finite dimensional. So
af +g€ X.

(2) No. Fix f € Y (if Y is a subspace, it must be nonempty). Then —f € Y as well (where
flv) =w <= —f(v) = —w). This is because f(v) =0 <= —f(v) = —0 = 0. Then
f+ (=f) =0, which has kernel infinite dimensional.
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One could also simply say that 0 ¢ Y implies Y is not a subspace immediately.

Interesting thought: I don’t think it is even guaranteed that Y is nonempty if V has a
continuum basis (like the set e are linearly independent for smooth functions) and W has
countably infinite basis like R[z], it seems that you could not produce any operator with
finite dimensional kernel, since the image will always be countable dimension.

This is the empty set. If Ker(f) is finite dimensional, extend a basis of Ker(f) to a
basis for V' (technically requires axiom of choice, but then again, so does the fact that V'
has a basis at all). The images of each element that was added in the extension must be
linearly independent, or else we have contradicted that these elements were not in the kernel.
Therefore, the image will be infinite rank.

Basically an infinite version of rank-nullity theorem, although we technically haven’t
proven this for the infinite dimensional case.

Problem 18 (6). For each of FF = R, C,F3, is it true that every symmetric matrix A €
Mysyo(F) is diagonalizable?

We use that if A is diagonalizable, then the diagonal entries of D will be the eigenvalues of A with
algebraic multiplicity of A corresponding to the number of times A appears on the diagonal of D.

(1)

Yes. This matrix A is in fact self adjoint, and so is diagonalizable over C. Note that the
eigenvalues of A are strictly real since it is self adjoint. If A has only one distinct eigenvalue,
this implies that A = A1 for some real A, since this is its Jordan canonical form. A is similar
to itself. If A has two distinct (real) eigenvalues, then note the characteristic polynomial of
A = (x — A)(z — A2). This will also be the characteristic polynomial of A when viewed as
an operator on R?, and so A has a real eigenvector for each of the eigenvalues A; and \.
These are linearly independent since they correspond to different eigenvalues. Thus, they
form a basis of R2, so A is diagonalizable.

One might note that I couldn’t find a quick argument for why diagonalizability over C
implies the same over R. If anyone wants to write that up, be my guest.
No. Consider A = <1 ;
nullity(A — 2I) = 1, so A cannot have an orthonormal basis of eigenvectors. (One should
guess that this is false since symmetry is not self-adjointness in C. To construct such a
matrix, one should start by guessing that the off-diagonal elements are ¢, and hope that the
first entry = 1 works. Solve for what the last entry should be so that the matrix has one
eigenvalue).

. The characteristic polynomial of this matrix is (A — 2)2, but

No. Consider A = <1 ;) The characteristic polynomial of this matrix is A2 4+ 1 (since
3 = 0 in this field). But this equation has no roots in F3 (check each element separately).
Therefore, A has no eigenvalues at all, and hence, cannot be diagonalizable. (One might
also guess that this is false since this field is not algebraically closed. There are only 18

matrices worth checking, and this seemed like the first one to try.)
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Problem 19 (7). Let a, be non increasing and positive, where > > | a, < oco. Show that
limy,_cona, =0

Fix e > 0. Since > 7 a, < 00, there exists a natural number N such that n,m > N implies that

> onia; < e (since each a; is positive). Since the a; are nonincreasing, we have that (m—n+1)%a,, =

Sortap < Z%f a; < e. Therefore, € > limsup,(m —n + 1)a, = limsupy,may, — lim(1 — n)ay,.
The rightmost limit is zero since 1 — n is fixed and a,, decreases to zero (since the infintie sum
converges). Since limsup ma,, < ¢ for any epsilon, we conclude that limsupma,, = 0. But since

mayy, is strictly positive, we must have ma,, — 0.

Problem 20 (8). Let a < b be real numbers with f : [a.b] a function s.t. L(z) = limy—. f(y)
exists for all € [a, b].

(1) Show L is continuous on [a, b].
(2) Show that {z € [a,b] : f(x) # L(x)} is countable
(3) Show f is Riemann integrable.

\. J

(1) Fix = € [a,b]. Then lim,_,;L(z) = lim,_zlimy_,.f(y) = limy_,f(y) = L(z) by definition
of L.

(2) I will show that S, = {z € [a,b] : |f(z) — L(x)| > 1/n} is finite, since the given set will then
be a countable union of finite sets, and hence countable. Suppose instead that there are
infinitely many x € [a,b] such that |f(z) — L(x)| > 1/n, and let z; be an infinite sequence
of distinct such elements. Since [a,b] is compact, there exists a convergent subsequence,
which we call the y;, that converges to y. Since L is continuous, L(y) = lim;L(y;). Since
|f(yi) — L(yi)| > 1/n for each y;, we have lim(L(y;)) > lim(f(y;) +1/n) = L(y) + 1/n by
definition of L. This is a contradiction, since 1/n is not less than zero. Thus, S,, must be
finite.

(3) The set from part b is precisely the set of discontinuities of f, and so this is countable. If
f is unbounded, let a,, be a sequence of points in [a,b] such that f(a,) > n. Since [a,b]
is compact, there exists a convergent subsequence, converging to some x. By definition,
L(xz) = limy_,f(y). But since the a,, become arbitrarily close to x, and f(an,) does not
converge, L(x) cannot be defined. Thus f must be bounded. Since f is bounded and has
countably many discontinuities, by Riemann-Lebesgue criterion, f is integrable on [a, b].

Problem 21 (9). Let (X, p) be a complete metric space and f : X — X a function. If f™ is

the n — th iterate of f, denote ¢, = sup@yexw;ﬁyW. If Y0 | ¢n < 00, show f has

a unique fixed point in X.

For any z,y € X with  # y and any natural number n, the given expression says that p(f™(x), f™(y)) <

p(z,y) * ¢p. Fix x € X and consider the sequence x, f(x), f2(z).... Then we see, if i < j, that
p(fi(x), f1(x)) = p(fi(z), F{(f774(x))) < ¢ * p(x, f7~%(z)). Likewise, we use triangle inequality to
show that p(z, £~ (x)) < Y% p(f(x), f*1(x)) < S en_1p(f(2),7) (we say o = 1). Now fix
e > 0 and write ¢ = > 2 | ¢n. There exists N € N s.t. ¢ > N implies that ¢; < /(c* p(f(x),z)).
For any N < i < j, we have that p(f'(z), f/(z)) < cip(f(x),z) > 2" en < cip(f(z),x) xc < e. This
sequence is thus Cauchy, so converges to some .



I will now show that this y is a fixed point of f, and that it is unique. Fix € > 0, and choose NN so
that ¢ > N implies that p(f*(z),y) < mine/2,e/(2¢1) (if ¢; = 0 then the proof was trivial). Then

p(f(),y) < p(f(y), [ (@) + p(f 1 (), y) < erxply, f1(2)) + p(f(2),y) < e/2,6/2. Since this
is true for any e, we have p(y, f(y)) = 0, and so y = f(y).

For uniqueness, suppose that z is another fixed point of f. Then for any positive integer n,
p(y,z) = p(f"(y), f"(2)) < cup(y,z). Since the ¢, must converge to zero, this will be false un-
less p(y,z) =01ie. y=z.

Problem 22 (10). Let a < b be real numbers and f : [a,b] — R a continuous function s.t.
ff f(z)z"dz = 0 for each integer n > 0. Prove f =0

By Stone-Weierstrauss theorem, the set of polynomials with real coeflicients is dense in the set

of continuous functions on [a,b] For any p(z) a real polynomial, write p(x) = > ;" ; a;z". Then

ff f@)p(x) =>"gai f; f(z)z® = 0. fis a continuous function on a compact set, so it is bounded

by some M > 0. Fix an ¢ > 0, and choose a p(x) such that sup|p — f| < ¢/(M(b— a)). Then
b b b b b .

/. 2= Lo+ [0 f(f—p)= [ f(f—p) <[] Mxe/(M(b—a)) = e. Therefore, [ f? =0. Since

f? is continuous and positive, this implies that f2 =0, and so f = 0.

Problem 23 (11). Prove Young’s inequality: If p,q € (1,00) and 1/p + 1/q = 1, then for
any a,b >0, ab < aP/p+bl/q

Rewriting, we must show a?/p + b%/q —ab > 0. Fix b > 0, and consider the continuous func-
tion f(a) = aP/p + b%/q — ab. Since p > 1, limyoof(a) = oo, so for some M > 0, a > M
implies that f(a) > 1. Consider the compact interval [0, M], and since f is continuous on this
compact set, it obtains a minimum on this set. I will show that for a local minimum inside this
set, f(x) = 0. Since f(0), f(M) > 0, 0 is the global minimum for f(a). Since this is true
for any b, we have a? /p + b?/q — ab > 0 always, which is what we wanted. It remains to com-
pute the local minima of f inside [0, M]. The derivative of f is a?~' — b. This is zero when-
ever a?~' = b. Furthermore, f”(a) > 0, so any critical point is a local minimum. We compute
FOY =Dy = pp/(e=1) /p 4 b2 /g — B/ P=Dp = b9 /p + b?/q — b? = 0, and hence, the global minimum

of f is zero.

Note: Most online sources give a slicker proof using that log is concave and increasing. I don’t
see how anyone would think of that on the exam, although the condition on p and q may suggest
concavity to some people. I am sure there are other solutions.

Problem 24 (12). Let X be a compact metric space and C(X) be the space of continuous
real-valued functions on X endowed with the supremum norm. Let F' C C'(X) be non-empty.
Prove that F' is compact iff F' is closed, bounded, and equicontinuous.

If F'is compact, then F' is immediately closed and bounded. It remains to show it is equicontinuous.
Fix ¢ > 0. Let S5 be the set of f € F such that |z — y| < ¢ implies |f(x) — f(y)| < e. Since each
f is continuous on a compact set, it is uniformly continuous, and so the set of S5 forms a cover of
F. Note that if 1 < d2 that S5, D Ss,. So for our finite subcover, some Ss is in fact a cover of
F, implying that every f € F satisfies [t —y| < § implies | f(x)— f(y)| < e. F is thus equicontinuous.
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For the reverse direction, we will show F' is closed and totally bounded, since this implies com-
pactness in a metric space. We have already assumed F' is closed. Fix ¢ > 0. We will construct
a finite epsilon net of F. Since F' is equicontinuous, there exists § > 0 where |z — y| < ¢ im-
plies that |f(z) — f(y)| < /3 for all z,y € X and f € F. Since X is compact, there exists a
finite § net of X, say the a;. For all f € F, consider the vector in R" of (f(a1), f(a2), f(as3)...).
F' is equibounded, so each component of these vectors are bounded, and hence each vector is
bounded in magnitude. These vectors form a bounded subset of R™, and so by compactness of
this set, there exists a finite £/3 net of these vectors. Equivalently, there exists a finite set of f;
where for any g € F, |g(a;) — fi(a;)| < €/3 for each a; and f;. Fix € X. Then there exists
an aj where |z — aj| < §. There also exists an f; where |f;(a;) — g(a;)] < ¢/3 for all j. So
l9(x) — £i(@)] < llg(x) — g(a)| + lg(az) — fila;)| + [fi(a;) — fi(a)]- Since |a; — x| < &, the first and
last term are less than €/3, and the middle is less than /3 by choice of f; and a;. This implies that
the f; are a finite € net of F, and so F is totally bounded, and hence also compact.

3. S18

Problem 25 (1). | Prove that e?, e?...e™ are linearly independent in the space of continuous
functions on the interval [1,2].

We argue by induction on n. The base case n = 1 is vacuous. Suppose that the first n of these
functions are linearly independent. Suppose that aje! + ase? + ...an+1e("+1)t = 0 for some a; and
for all ¢ in this interval. Taking derivatives of both sides, we obtain aje’ + 2a2e?* + ...na,e™ + (n+
D)yt = 0. Subtracting n+1 of the first equation from the second, we have (1—(n+1))a; et +
(2—(n+1))aze® +...(n — (n+1))e™ = 0. Simplifying, —naie’ + (—n + 1)age? + ... — lae™ = 0.
By induction, the coefficients b; = (i —n — 1)a; are all zero. Since i > n + 1 for these 4, this implies
all a; are zero. Our original equation now reads an+1e(”+1)t = 0 for all ¢, so apy1 = 0. This set is
thus linearly independent.

Problem 26 (2). Let A and B be two real 5 x 5 real matrices such that A2 = A, B? = B,
amd 1 — (A 4 B) is invertible. Prove rank(A) = rank(B).

Observe that A(1 - A— B) = A— A2 — AB = —AB. Likewise, (1 - A— B)B= B — B? - AB =
—AB = A(1— A— B). Therefore, rank(A(1—A— B)) = rank((1— A— B)B). Since (1— A— B) is
invertible, rank(A) = rank(A(1—A—B)) = rank((1— A— B)B) = rank(B). (To see this last step,
one can use Sylvester’s rank inequality, or just note that the rank of (1 — A — B)|w = dim(W)).

Problem 27 (3). Let A = (a;;) be a complex n x n matrix. Suppose e =1+ A + A2
Prove or disprove: A =0

This is false. Every M, (C) contains a nonzero nilpotent matrix A where A? =0 (i.e. <8 (1)> and

its extensions). For this matrix, e? =1+ A + A2/2! 4+ ... =1 + A. Likewise, 1 + A+ A% =1+ A.

For an alternative solution, we show that the real equation f(x) = e® —2? —2 —1 = 0 has a positive

solution. Note that this function on the left side is continuous since it is the difference of continuous

functions. Then f(1) < 0, f(10) > 0, and so by I.V.T., there exists a ¢ € (1,10) s.t. f(c) =0. Now,

consider the diagonal matrix D where each diagonal entry is c. One sees that e = 1+ D + D?.
11



Problem 28 (4). Consider the following matrices (I'm not retyping these, go look at the
problem sheet). Which pairs are similar over R?

Two real matrices are similar over R iff they have the same real Jordan canonical form. Each of
these matrices is triangular, so we read off that the characteristic polynomial of each matrix is
(x —1)3. There are thus three possibilities for the real canonical form: 3 blocks of size 1, one block
of size 2 and one block of size 1, or 1 block of size 3. Therefore, the Jordan form for each matrix is
determined by the total number of blocks.

Note that the number of blocks in the J.C.F. for eigenvalue A is equal to nullity(X — A\I). For
matrices A through F, we see that this nullity is 2, so these are all similar. For matrix F', this
nullity is 1, so this is not similar to any of the other matrices.

Problem 29 (5). Let A, B be two positive definite 2 x 2 matrices. Prove or disprove:
(1) A+B is positive definite
(2) AB+BA is positive definite

The first claim is true. Fix any nonzero v € C2. Then (z, (A+ B)z) = (x, Az)+ (x, Bx) by linearity,
and each term is strictly greater than zero by positive definiteness of A, B.

The second claim is false. Consider A = (2 0

0 1> . This is positive definite since it is symmetric and

both eigenvalues (2 and 1) are positive. Let B = <11//\§§ lé/\éi
of this matrix is A2 — 37\/8 + 1/16. By Descartes’ rule of signs, this polynomial has only positive
roots, and so B is symmetric with positive eigenvalues, and so is positive definite. We compute

AB + BA = <3}/\3§ 3/ §/§> The characteristic polynomial is A2 — 19\/2, and so zero is an

). The characteristic polynomial

eigenvalue of this matrix, and so this matrix is not positive definite.

The example seems rather strange, but the idea was that if we can force the constant coefficient of
the characteristic polynomial to be zero or less, then we are done. To do so, if we let B be a matrix
that is "almost" not positive definite, and scale its rows and columns, we ought to be able to make
it no longer positive definite.

Problem 30 (6). Compute the determinant of the following matrix: (not retyped for sake
of time)

Note that subtracting a multiple of one row from another does not change the determinant (this is
equivalent to left multiplying by a particular elementary matrix with determinant one). We subtract

1 2 4 8 16

0 0 0 0 -31
multiples of the first row from each remaining row to obtain | 0 0 0 -31 —62 |. We

0 0 -31 —-62 -—124

0 —31 —62 —124 —248
compute the determinant by taking a column sum along the first column. The determinant is
1xdet(A11) + 0xdet(A21) +0x%.... = 1xdet(Ay1). The determinant of A ; can be computed by
taking repeated column sums along the first column, yielding that det(A) = 1% (—1%—31) % (—31) *
(—1%—31) * —31 = 314,
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Problem 31 (7). Prove that for each p € N, the infinite series y | M converges.

Let a, = sin(mn/p) and b, = 1/n. By theorem, if a, has bounded partial sums, b, is non-
increasing, and b, — 0, then > >, a,b, converges. 1/n is indeed nonincreasing and converges
to zero, so it remains to show that a, = sin(nn/p) has bounded partial sums. Observe that
sin(mn/p) = —sin(n(—n)/p) = —sin(r(2p — n)/p). Consider the sum Zipzl sin(mn/p). For
each n € [1,2p]\{p,2p}, we see that 2p — n € [1,2p]\{p,2p} and is distinct from n. Therefore,

2P sin(wn/p) = sin(r) + sin(2n) + D n1nspnzep Sin(mxn/p) = 0. Likewise, we compute that for

n=1
any positive integer k, Zipzkl sin(mn/p) = 0 since the summand is periodic in n with period 2p. Now,

for any positive integer m, by Euclidean algorithm, write m = 2p*q+ 1 for integers g and r and r <
2p. Then 3™ sin(2msn/p) = 27, sin(2m+n/p)+> 0" o, 1y sin(2mxn/p) = 3200, L sin(2mxn/p).
Since | sin(27 xn/p)| < 1, we see | YL sin(2m+n/p)| < 770, 1 [sin(2m*n/p)| =7 < 2p. There-
fore, every partial sum of the a,, is bounded in [—2p, 2p]. The conditions of our theorem are satisfied,
S0 Y7, apby, converges.

Problem 32 (8). This problem is notoriously hard and I don’t have the bravery to try to
understand and type it up. Sylvester posted his solution on CCLE, although it is unlikely
anyone could write it up in full detail for the exam. It just seems like an unreasonable and
uninstructive problem.

Problem 33 (9). Let f : R — R be non-decreasing (but not necessarily continuous).
Prove f is Riemann integrable on any finite interval (a,b) € R. DO NOT PROVE US-
ING LEBESGUE THEORY UNLESS YOU ALSO PROVE LEBESGUE THEORY.

To prove using Lebesgue theory, one would first have to demonstrate that f has countably many
discontinuities (assign a distinct rational number to each jump, or use the trick Sylvester showed
on CCLE), and then prove that this implies that we can find partitions that minimize the contribu-
tion of each jump (create an interval around each jump of size less than 277 if this is jump number 7).

A direct proof is more straightforward. Fix such (a,b) and let P, be the partition of (a,b) into
n uniform segments, ie., r9 = a,z; = a+ (b —a)/n,z2 = a+ (b —a) * 2/n,x, = b. Then
the upper sum U(f, P,) = E?:_Dl(xi+l — i) * SUPye(z; 2, f (2). Since f is nondecreasing, this
supremum is always f(z;+1), and by choice of partition, z;+1 — z; is always (b — a)/n. Then
U(f, Py) = 07 f(@i1)%(b—a)/n. Likewise, we compute L(f, P,) = S.0" f(2;)%(b—a)/n. There-
fore, U(f, Py) — L(f, Py) = (f(b) — f(a)) * (b—a)/n. The limit of the sequence U(f, P,) — L(f, P,,)

as n — oo is therefore zero, and so f is Riemann integrable.

Problem 34 (10). Let n € N and U C R"™ be nonempty, open, and connected. Suppose
f : U — R is such that all first partial derivatives of f exist and vanish at each point of U.
Prove f is constant.

I will first show f is constant on each open ball B contained in U. Fix any point = € U, and

since U is open, let B(x,r) be the ball of radius r around z, and suppose this ball is contained

in U. Fixy € B(z,r). Write x = (x1,22,...7) and y = (x1 + h1,x2 + ho,...xy + hy). Then

fy) = f(@) = (f(y) = fxr + he, @2 4 hoyown)) + (f (@1 4 hayn) — f(21 + by oo, 2n)) +

(f(x1 + hi,z2...xy) — f(z)), where for any term in this sum, the arguments of f differ in only one
13



coordinate. Note that each (1 + h1, 22 + ....., i + hi, Tit1, Tit2..., Ty) is contained in B(x,r) since
their distance from z must be less than d(z,y). By fundamental theorem of calculus, one com-
putes that f(x1+ h1, 22+ ooy @i + Riy T 1, Tigoee, Tn) — f(@1 + M1, o+ oo Ty i1, T2y Ty) =
fohi Oif(x1+ hi,@o + ooy T + S, Ti 1, Tig2enr, Ty )ds = foh’" 0 = 0 since the partial derivatives vanish
everywhere in U. This means that each term from our sum is zero, and so f(y) = f(z). Therefore,
f is constant on any open ball contained in U.

We now use an interesting characterization of connected sets (an exercise in the week two anal-
ysis notes). Let C be the open cover of U consisting of every open ball contained in U. Since U
is connected, for any B, and By, there exists a sequence of balls By = B,, Bs...B,, = B} where
B; N Bjy1 # 0. Now, fix any =,y € U, and pick a B, in C containing = and a B, containing y in
C'. There exists a chain between them as described above. Then since B, N By # (), and since f is
constant on each of B, and Bg, we must have that f(c) = f(x) for each ¢ € By. Continuing in this
way, f(c;) = f(x) for each ¢; € B;. In particular, since y € B,,, f(y) = f(z), as desired.

There is probably a way to do this with path connectedness that I am not seeing. Since U is
nonempty, open, and connected, it is path connected. Every directional derivative vanishes since
each partial one does. Is there a quick way we can integrate along a path connecting x and y?

Problem 35 (11). Let (X, p) be a compact metric space and let f : X — X be an isometry.
Prove f(X) = X.

Suppose towards contradiction that f(X) is a proper subset of X, and pick xg € X\ f(X). f is
an isometry, and so maps open sets to open sets (and hence, closed sets to closed sets), and so
we see that f(X) is clopen. This implies that there exists an r > 0 such that B(z,r) C X\ f(X)
since X\ f(X) is open. One sees that f(B(z,r)) = B(f(z),r). Note that we may repeat these
arguments to show that, if f* is f applied i times, that f!(B(x,r)) = B(f%(z),r). Since X is
compact, some subsequence of the f*(z) must converge. But since each f*(z) € f/(X)\fF(X), the
balls B(f!(x),r) are actually disjoint. This is a contradiction, since the fi(x) are always separated
by distance at least r.

Problem 36 (12). Let F' be a family of real-valued functions on a compact metric space
taking values in [—1,1]. Prove that if F' is equicontinuous then the function
g(x) =sup{f(z) : f € F} is continuous.

Pick € > 0 and x in our metric space. By equicontinuity of ' and compactness of our metric space,
there exists 6 > 0 such that |z —y| < ¢ implies that | f(z) — f(y)| < £/2 for any x,y in our space and
f € F. Now suppose |z — y| < §. By definition of supremum, there exists a function f, € F such
that g(z) < fao(z) +£/2. By equicontinuity, fo(z) +¢/2 < fo(y) +€/2+¢/2 < g(y) + &. Therefore,
g9(x) —g(y) <e.

Likewise, there exists fj, € F such that g(y) < fi(y)+¢e/2. We likewise compute that g(y) < g(x)+e.
Thus, we have |g(z) — g(y)| < e, so g is continuous.
14



4. F18

Problem 37 (1). Let {a,},>1 be a sequence of nonnegative numbers such that

Z an, diverges.

n>1

Z tn diverges
2a, + 1 '

n>1

Show that

\ J

Suppose that there exists some positive integer N such that a,, < 1 for all n > N. Then for n > N,

we have
Qan, < 1
—Qy,.
2a,+1 3"

Since the series Y 7 \ an diverges and a, > 0 for all n, we have that the set of partial sums

SM @y is unbounded. Since
M

Z2a 11 72&”’
n=

Then the partial sums Zﬁi N 727 are unbounded, so the series

diverges, so the series

n=N 2(1 +1
Dot g diverges.
Suppose ‘instead that there are infinitely many n such that a,, > 1. For such n,

G 112 1 12 1

2ap+1 2 2a,+17-2 3 3
Since ay,/(2a, + 1) > 1/3 for infinitely many n, the limit of a,/(2a, + 1) cannot be zero, so the
series diverges again.

Problem 38 (2). Let A be a connected subset of R™ such that the complement of A is the
union of two separated sets B and C, that is

R"\A=BUC with BNC=BnC =g.
Show that AU B is a connected subset of R™.

Let D be a nonempty subset of AU B that is relatively open and closed in AU B. Then DN A is
relatively open and closed in A, and since A is connected, we either have AC Dor DN A= @.
Suppose first that DN A = &. Then D C B, and (AU B) \ D is also relatively open and closed in
AUB,and A C (AUB)\ D. So we can replace D with (AU B)\ D and get A C D.
We claim that D U C' is open and closed in R™. First, D U C is closed: let z € CUD. If x ¢ C
and z ¢ D, then there exists ¢ > 0 such that the e-ball around x doesn’t meet either D or C,
contradicting = being in the closure of DUC. Sox € DUC. If r € C,thenx ¢ B. Sox € AC D
orx€C,sox € DUC. Ifx ¢ C,thenx € D. If t € AU B, then = € D because D is relatively
closed in AU B. Otherwise, x € C. In any case, x € DU C. This shows that DU C' is closed in R™.
Now we show that D U C is open in R". Let x € DUC. Case 1: x € D. Since D is relatively open
in AU B, there exists €1 > 0 such that |y — z| < ¢; and y € AU B implies y € D. Then for any
y € R" with |y — z| < 1, either y € D or y ¢ AU B, in which case y € C. So D U C contains the
e1-ball centered at z. Case 2: © € C. Then z ¢ B, so there exists g9 > 0 such that ly — x| < &2
implies y ¢ B. Theny € AUC C DUC. So DU C contains an e3-ball centered at x. Since DU C
contains an open ball around each point, we have D U C' is open in R"™.
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Since R™ is connected, we must have D U C = R"™. Then since C is disjoint from A U B,
DN(AuB)=(DUC)N(AUB)=AUB.

So AUB = D. We have shown that the only nonempty subset of AU B that is both relatively open
and closed in AU B is all of AU B, so AU B is connected.

- ~

Problem 39 (3). Let f : [0,1] — R and ¢ : [0,1] — [0,1] be two Riemann integrable
functions. Assume that

l9(z) — g(y)| = alz —y| forany z,y€]0,1]
and some fixed o € (0,1). Show that f o g is Riemann integrable.

We rely on the Riemann-Lebesgue theorem, which says that a bounded function on [a, b] is Riemann
integrable if and only if its set of discontinuities has measure zero. By measure zero, we mean for
all € > 0, the set of discontinuities can be covered by countably many open intervals whose lengths
sum to less than €. Let ¢(I) denote the length of an interval I, so that ¢((a,b)) = b — a.
Note that if g is continuous at x and f is continuous at g(z), then f o g is continuous at z. Let
Dyog, Dy, and Dy be the sets of discontinuities of f o g, f, and g respectively. So x € Do, if and
only if x € Dy or g(x) € Dy, so
Dyog = Dy U g~ (Dy).

Let ¢ > 0. Since D, has measure zero, there exist open intervals Iy, Iz,--- C R such that

w1 lIy) < €/2 and Dy C J, . Since Dy has measure zero, there exist open intervals
I, 15, - - C R such that > 72, £(I}) < ag/2 and Dy C U, 1}
Consider an open interval (a,b). If z,y € g7'((a, b)), then

b—a

2~ ] < ~lg(e) — gl)] <

It follows that g~'((a,b)) is contained in an open interval of length (b — a)/a. For each I}, let Jg
be an open interval containing g~!(I}) such that ¢(Jy) = ¢(I})/a. For all z € g~'(Dy), we have
g(x) € Dy, so g(z) € I, for some k, so x € g~1(I}), so x € Jj. This shows that

97 (D) €
k

and

o B 1 o ,

> U ) = - > Ur) <e/2.

k=1 k=1
Then

-Dfog C UIk UUJka
k k

and

S UI)+> UI) <e/2+¢e/2=¢.
k k

We have covered Dy with countably many open intervals whose lengths sum to less than e. Since
€ > 0 was arbitrary, Do, has measure zero. Also, f is bounded, so f o g is bounded. It follows
from Lebesgue’s criterion for Riemann integrability that f o g is Riemann integrable.

Problem 40 (4). Let f : [0,1] — R be a continuous function on the closed interval [0, 1]
and differentiable on the open interval (0,1). Assume that f(0) = 0 and f’ is a decreasing
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function on (0, 1). Show that

is a decreasing function on (0, 1).

Suppose for the sake of contradiction that g is not decreasing on (0, 1). Then for some 0 < z < y < 1,
we have g(y) > g(x). Since g is differentiable on (0,1), by the Mean Value Theorem, there exists
¢ € (z,y) such that

r—y
Note that
cf'(c) — flc
gI(C) — ( )62 ( )
So ¢f’(¢) > f(e). Since f is continuous on [0, | and differentiable on (0, ¢), the mean value theorem
again says that there exists d € (0, c¢) such that
fle) = f(0) _ fle

c—0 c

So d < cand f'(d) < f'(c). But this contradicts f" decreasing on (0,1). So the original assumption
was false, and ¢ is decreasing on (0, 1).

Problem 41 (5). Let B := {z € R" : || <1} and let g : 9B — R be a 1-Lipschitz function.
(a) Show that the function f: B — R given by

f(z):= yiergB[g(y) + |z — yl]

is 1-Lipschitz.
(b) Show that the set M(g) := {h : B — R | h is 1-Lipschitz and h|gpp = ¢} is compact
in the space of continuous functions on B endowed with the supremum norm.

(a) Let x1,z2 € B. The function y — ¢(y) + |z — y| is continuous on the set 0B. Also, OB is
closed and bounded, so is compact. So for k = 1,2, there exists some y; € 9B such that

fzx) = inf [g9(y) + |2k — yl] = 9(y) + |2k — vl
yeoB
By definition of infimum, we have
f(z2) = g(y2) + |z2 — Y2l < g(y1) + 22 — 11l
Then by the reverse triangle inequality,
f(xz2) = f(z1) < g(y) + |z2 — il — g(y1) — 21 — ] < |z2 — .
By interchanging z9 and z1,
f(z) = flag) < |zo — 2.
So

|f(21) = f(w2)| < |w2 — 21

and f is 1-Lipschitz.
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(b) The Arzela-Ascoli Theorem states that for a compact metric space K and a subset F C
C(K,R) of the continuous functions from K — R endowed with the supremum norm, we
have F' compact if and only if F' is closed, uniformly bounded, and equicontinuous. In
this case, K = B is compact because B is closed and bounded in R". Furthermore, every
function in M(g) is 1-Lipschitz, so continuous, so M(g) C C(B,R). So it suffices to show
that M (g) is equicontinuous, and closed and bounded with respect to the supremum norm.

Let € > 0. Suppose |z — y| < ¢ for some x,y € B. Let h € M(g). Since h is 1-Lipschitz,
we have

|h(z) —h(y)| < |z —y| <e.

This shows that M(g) is equicontinuous.

Let hy, ho,--- € M(g) be a sequence with h, converging uniformly to some continuous
function h : B — R (equivalently, converging in the supremum norm). In particular, h, — h
pointwise. Since all h,, are 1-Lipschitz, for any z,y € B, we have

[h(z) = h(B)] = lim |y (@) — h(y)] < lim [z —y] = o — .

So h is 1-Lipschitz. Let x € dB. Then h,(z) = g(x) for all n. So h(z) = lim, h,(z) =
lim,, g(z) = g(z). So hlsp = g. So h € M(g). Since M(g) contains all of its limit points,
M(g) is closed.

For all z,y € B, we have |z — y| < |z| + |y| < 2. Fix some xg € B. Then for all z € B
and all h € M(g), we have

h(2)] < [h(x) = h(zo)| + [P(z0)| < |2 — ol + |g(z0)] <2+ |g(z0)].

So M(g) is uniformly bounded by 2 + |g(x0)|. So M(g) is closed and bounded with respect
to the supremum norm, and equicontinuous, so is compact with respect to the supremum
norm.

Problem 42 (6). For z € (0,00), let

1 _ e—tw
F(x) = —dt.
@= [

Show that F : (0,00) — (0,00) is well-defined, bijective, of class C!, and that its inverse is
of class C'.

. J

By using u-substitution, we let u(t) = tx for > 0 fixed and ¢ > 0. Then for ¢ > 0 and M > ¢,

M —tx Mz —u
1—e 1—e
STl = ﬁ/ ST
/s t% ex u3/?
Let
M 1—e ¥

Cle. M) = — du.
(e, M) / e du

The integrand is nonnegative for u > 0. To show that C'(e, M) converges as ¢ — 0 and M — oo, it
suffices to show that C'(e, M) is bounded above by some constant, since C(e, M) is monotonically
increasing as both e decreases and M increases. For v > 0, by the mean value theorem, there exists
some v > 0 such that (1 —e™)/u=€e""<1. Sol—e* <wu. Then

1 1— e U 1
/ —=5 du < / w2 du = 202! < 2.
3 U /2 3
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Foru>1,wehave 1l —e * <1—e"'. So

M _eu M
/ —gydu< (1- el)/ u P du=(1—-e )2 -2M"Y?) <2271 <2
1 U 1

This shows that

M _
1—e™®
/E 37 du < 4

So C(g, M) converges to some constant C' > 0 as ¢ — 0 and M — oo. Then for all z > 0, we have
C(ex,Mz) — C as well. So

tx

Plz) = /OOO ;?dt:C\/:E

t

Is well-defined. This function is bijective (0,00) — (0,00), with inverse G(y) = (y/C)?. We check
that G and F' are mutually inverse: for x > 0 and y > 0,

G(F(x)) = (F(z)/C)? = V&’ ==z, F(G(y)) = Cv/Gly) = C(y/C) = y.

We have F’(z) = 5% is continuous on (0,00), so F is C!, and G'(z) = 2y/C? is also continuous,
NG

so G is C! as well.

Problem 43 (7). Let T : R™ — R” be a linear transformation with the property that
T(T(x)) =T(z) forall zeR".

Show that there exists 1 < m < n and a basis of R™ such that in this basis the entries of T
satisfy

{1 ifi=jand1<i<m,
ij =

0 otherwise.

Note: this problem is technically false, since the conclusion would imply 717 = 1 always, but T
could be the zero map.

Let m = rank(T), and let vy,..., v, be a basis of im(7T") C R™. So there exists 1,...,x, € R"
such that T'(zy) = vy, for all k. By the Rank-Nullity Theorem, dim(ker(7")) = n —rank(7) = n—m.
So let vypt1, ..., 0, be a basis of ker(T'). We claim that vq,...,v, is a basis for R™. It suffices to
show that these n vectors span R"™, since R™ has dimension n. Let z € R™. Let xg = x — T'(x).
Then

T(xg) =T(x) —T(T(z)) =0.
So xg € ker(T) = span{vm+1,...,vn}, and T'(z) € im(T) = span{vi,...,vm}, so v = T'(z) + xo €
spanf{vy,...,v,}. So v1,...,v, is a basis for R™.
In this basis, for 1 < i < m, we have

SoT;j=1lifi=jand1<i<m,and T;; =0if 1 <j <m and 7 # j. Also, for j > m, we have
vj € ker(T'), so T'(vj) =0, so T;; =0 if j > m.

Problem 44 (8). Let X be an n X n symmetric (real) matrix and z € C with Im(z) > 0.
Define
G=(X-271
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Show that

Im(Gy;
Z |Gij|2 _ ( )

= Im(z)

By the Spectral Theorem, since X is real and symmetric, X is diagonalizable with real eigenvalues.
So z is not an eigenvalue of X, so X — z has trivial kernel, so is invertible. So G is well-defined. We
have

So

GX=G(X —2)+2G=(X—-2)G+ 2G = XG.
So G and X commute. Let G* denote the conjugate transpose (adjoint) of G. Then taking adjoints
of the above equation, since X is real and symmetric, X* = X, so

G'X=GX"=(XG)"=(GX)"=X"G" = XG".
So X also commutes with G*. Also,
GX =1+ z2G,

and
G'X =(XG)"=(GX)* =1+2zG".

2 Y |GylP =2 ) GyGy

1<j<n 1<j<n

=2 ) Gy(GY;i

1<j<n

So

GG X — Q)i + Gyt — G
G(G"X = 1)ii +Gii — Gy
=ZzZ(GG")ii + 2Im(Gy)
=2Im(Gii) +% Y |Gij|*.

1<j<n

QIm(z) Z ’Gij‘zzz Z ’Gz'j‘z_5 Z ‘Gij‘z

1<j<n 1<j<n 1<j<n
=2Im(Gy),

Then

N 2 2Im(Gy)  Im(Gy)
> 1G5 = SR = e

1<j<n

Problem 45 (9). Let f,g : R” — R be linearly independent elements of the vector space
(over R) of linear mappings from R” to R. Show that for any v € R", there exists v; and vy
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such that
v=vi+v2, f(v)=f(v1), and g(v)=g(ve).

Since f and g are linearly independent, neither can be the zero map, so rank(f) = rank(g) = 1. By
the Rank-Nullity theorem, we have dimker f = dimker g =n — rank(f) =n — 1.

Let V = ker f Nker g. Suppose for the sake of contradiction that dimV' > n — 2. Since V C ker f,
we have dim(V) < n — 1, so dim(V) = n — 1. But since dimker f = n — 1, we have V' = ker f.
Similarly, V' = kerg, so ker f = kerg. Let v € R™ be such that f(v) # 0. Let A = g(v)/f(v), so
g(v) = Af(v). Now let w € R™. Then

f(w?ﬁ%)zf@ﬂf@ﬂzO

Sow—%vekerf:kerg, SO

= w—Mv = w—f(w) v) = w—ﬂw) v) = g(w) — w
0=g (w=200) = gtw) ~ 2 0) = gw) - Lr00) = gt) - s

So g(w) = Af(w) for all w € R™. But this contradicts f and g being linearly independent. So our
assumption was wrong, and dimV <n — 2.
Furthermore, the inclusion-exclusion formula gives

dim(ker f + ker g) = dimker f 4+ dimker g — dim(ker f Nkerg) >n—-14+n—-1—(n—2) =n.

So ker f +ker g = R™, so for all v € R™, there exists v; € ker g and vy € ker f such that v = v + vo,
and

f(v) = f(v1) + f(v2) = f(w),

and
g(v) = g(v1) + g(v2) = g(v2).

Problem 46 (10). Let A := . Calculate lim,,_,o A™.

O[O = =
W= O
w— o O

Since A is lower triangular, we can read the eigenvalues off the diagonal as 1, 1/2 and 1/3. Since
there are 3 distinct eigenvalues, A is diagonalizable. Let v1,v9,v3 be eigenvectors for 1, 1/2, and
1/3, respectively. Then the matrix P with columns vy is invertible, and A = PDP~! where

1 0 0
D=0 1/2 0
0 0 1/3

Specifically, we calculate that v; can be (1,1,1), vy can be (0,1,2), and v3 can be (0,0,1). Note
that

1 0 0
D=0 27" 0
0o 0 37"
Since matrix multiplication is continuous,
100
lim A" = lim PD"P~! = PlimD")P' =P |0 0 0| P!
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Then

1 00t oo0l1T o0 o0 1 0 0lt 00 1 00
limA®*=1[1 1 0| ]o o ol |-1 1 ol=1|1 1 0[]0 0 ofl=||1 00O
" 1 2 1110001 =21 1 2 110 0 0 1 00

Problem 47 (11). Let V' be the space of all 3 x 3 real matrices that are skew-symmetric,
ie. A* = —A, where A’ denotes the transpose of A. Prove that the expression

(A B) = %Tr(ABt)

defines an inner product on V. Exhibit an orthonormal basis of V' with respect to this inner
product.

The trace of a matrix’s transpose is the same as the original trace, so
1 1 1
(B,A) = 3 Tr(BA') = §Tr((ABt)t) = §Tr(ABt) = (A, B).

So the form is symmetric.
Now for any A1, As, B € V and ¢, ¢co € R, by linearity of matrix multiplication and trace,

1
(c1A1 + A2, B) = B Tr((c1 A1 + CQAQ)Bt)
= %Tr(clAlBt + CQAQBt)

1 1
= 015 TI‘(AlBt) + 625 TI‘(AQBt)
= 01<A1, B> + 02<A2, B>

So the form is linear in the first coordinate (so linear in the second coordinate by symmetry). For
any AeV,

(A, A) = %Tr(AAt)

= 2> (A,
i=1

with equality if and only if A;; = 0 for all 4, j, if and only if A = 0. This completes the proof that
the form is an inner product.
For an orthonormal basis of V', let

0 10 0 01 0 0 0
Ai:=1]-1 0 0|, Ay:=]0 0 0|, A3:=|0 0 1
0 00 ~1.0 0 0 -1 0

Each of Ay, is visibly skew-symmetric. It suffices to show that they are orthonormal (which implies
they are linearly independent) and that they span V. Note that A, A} is diagonal, with two 1s and
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a zero on the diagonal, so (Ay, Ay) = 2 Tr(A,AL) = 1(2) = 1. It is straightforward to calculate
that the Ay are mutually orthogonal. To see that they span V', suppose A € V. Then fori = 1,2, 3,
we have Aii = _Al;i = —Au‘, SO Aii = 0. For ] 7& i, Aij = _Aji~ So

0 Az Ang
A= |-A1p 0 Ax| =A1nA1 + A134; = Az As.
—Aj;z3 —A 0

This completes the problem.

Problem 48 (12). Let V be a finite-dimensional vector space. Let T': V' — V be a linear
transformation such that T'(W) C W for every subspace W of V with dim(W) = dim(V') — 1.
Prove that T is a scalar multiple of the identity.

Let n = dim(V'). First, we claim that every nonzero vector of V is an eigenvector. Suppose that
some v # 0 is not an eigenvector. Then v,T(v) are linearly independent. Let v; = v, vo = T'(v),
and extend to a basis vy,...,v, of V. Let W = span{vi,vs,...,v,}. Then dim(W) =n — 1, so
T(W) CW. But T(v) = va & W, a contradiction. It follows that for every nonzero vector v, there
exists a scalar A such that T'(v) = Av. A priori, the scalar A depends on v, but we will prove it does
not. Let vq,...,v, be a basis of V. Then for each k, there exists a scalar \; such that T'(vy) = Ag.
Consider ), vr. On one hand, there exists some scalar A such that

T <ka> = )\ka = Z)\Uk.
k k k
On the other hand,

T (Z ’Uk> = ZT(Uk) = Z /\kvk.
k k k

0= Z()\ — )\k)vk.
k
Since the v, are linearly independent, we must have A — Ay, = 0. So A\ = A for all k. Then
T'(v) = Avy, for all k. For any v € V, there are scalars aj, such that v =), ajvg. Then

Tw)=T (Z akvk> = Zak)\vk = ).
k k

Then

So T' = Aid.

5. S19

Problem 49 (1). Consider C(]0,1]), and let X be the subset of C([0,1]) of all 1 lipschitz
functions f such that f(0) = 0. Show X is connected and complete.

For completeness, it is sufficient to show this space is closed, since the given space is already com-
plete. If f, € X converge uniformly to some f € C([0,1]), we see that f(0) = 0. Likewise, for any
2,y € [0,1], we have | £(z) — f()] < |F(@) — ful@)| + 1a(@) = fa(®)| + | faly) = ()| by triangle
inequality. For n large enough, the first and last term are both less than £/2 by uniform convergence.
The middle term is less than or equal to |x — y| for all n. Then |f(z) — f(y)| < |z — y| + € for all
e >0, and so |f(z) — f(y)| < |z —y|. Thus, f € X, so X is closed, and so complete.
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For connectedness, we will show convexity. For any t € [0,1], and f,¢g € X, one checks quickly
that tf + (1 —t)g € X.

Problem 50 (2). Let a,b € R be two real numbers and consider a sequence a,, defined
recursively:

agy = a,a1 = b,a, = %(an_l + ap—2) when n > 2. Prove that lim, ,~ exists and
compute its value.

First, observe that both ap and a; can be written in the form ¢ a + (1 — ¢) % b for some ¢ € [0, 1].
Suppose that this is true for some a,_s and a,_1. Then a, = %(cn_la +cp0a+ (1 —cpo1)b+
(1 = cp—2)b) = da + (1 — d)b where d = %, and note d € [0,1] as well. So, write each
a; as ¢; xa+ (1 — ¢) * b for some ¢; € [0,1]. I will show that the a; have limit a‘g%. Note

a; — %21’ =(¢;—3)a+ (% - cl)b It is sufficient then to show that ¢; —> 1/3 I will show that for

20—

i even and at least 2, ¢; = 3*21 241 and for i odd and at least 3, ¢; = OIS 2_—=L From here, it is easy

to see that lime; = 1/3. It is true for co = 1/2 and c¢3 = 1/4. If n is even and at least 4, then

cn = (Cn—1+cn_2)/2 = 2:;;%, as desired. Similar can be shown for n odd and at least 5.

Problem 51 (3). Let a,b € R with a < b and let f : [a,b] — R be a Riemann integrable
function. Assume there is 6 > 0 such that f(z) > ¢ for all x € [a.b]. Show that 1/f is
Riemann integrable.

Fix ¢ > 0. Since f is Riemann integrable, let P, be a partition of [a,b] such that U(f, P,) —
L(f,P,) < ¢/6% On P,, we have that U(1/f, P,)— (l/f, ) = E[%er]epn(xlﬂ :):Z)supx,ye[%xlﬂ]\l/f( x)—
1/f( )= Z[zz@z-«—l]epn (xH'l_‘TZ)SUPx y€[1‘27$2+1]’f *f | = Z[Zz7$z+1]€Pn (Tip1—m5)sUp, WE[Ti,wi41] ’f f(x)‘ <

*(U(f, Pn) = L(f, Pr)) =

Problem 52 (4). Let a,b € R with a < b and let f,g : [a,b] — R be continuous functions
differentiable on (a,b). Show there exists { € (a,b) such that (f(b) — f(a))g' (¢) = (g(b) —

9(a))f'(¢)

Consider the function h(z) = g(x) = (f(b) — f(a)) — f(x) * (g(b) —
functions that are continuous on [a, b] and differentiable on (a, b), it
well. We see that h(b) = g(a)f(b)—g(b)f(a). Likewise, h(a) = g(a)f(b
theorem, there exists a point ¢ € (a,b) such that h'(¢ ) g () (f(b)—
This is equivalent to the given condition.

g(a)). As this is a difference of
has both of these properties as
)—g(b)f(a) = h(b). By Rolle’s
fa)) =" (¢)(g(b) —g(a)) = 0.

Problem 53 (5). Show that each metric space can be embedded isometrically into a Banach
space.

Let Cy(D) be the space of bounded continuous functions on X into R with the standard supremum
norm, and note that this space is complete. If D is empty we are trivially done, so if not, fix zg € D,
and define S(z) = f.(y) = d(z,y) — d(zo,y). This is continuous since the metric is, and is bounded
by reverse triangle inequality. For isometry, (S(x)—S(2))(y) = d(z,y) —d(z,y). By reverse triangle
inequality, this is less than or equal to d(z, z), and taking y = z gives that |S(z) — S(y)| > d(z, 2),
and so |S(xz) — S(z)| = d(z, 2), as desired.
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Note: This is in the week 2 notes. I have no idea how someone would just come up with this
on their own, and I am 90 percent positive it is only in the notes because Sylvester saw this ques-
tion and got worried that there would be more. It seems like the sort of question that a professor just
thought was a neat fact and wasn’t actually a suitable question. I wouldn’t worry about whether you
could solve this from scratch, but rather, keep in mind that it could be similar to future questions.

Problem 54 (6). For n > 1, let f, : Rt = R, f,(z) = n%e_‘"”/”. Show that the f,, converge
uniformly to zero, but limy oo f3° fu(x) = 1.

Note each f,, is nonnegative. For each f,, we compute f}(z) = %e‘x/n + %e‘x/n = %e‘x/n.
Therefore, f, has a critical point iff x = n. We also check that f/(x) = ;—3}6_””/” — %e‘m/" =
z=2n , which is negative when = = n, and so this is a local maximum. We check f,(0) =0

n
and f,(kn) for integer k is % The root test shows that this sequence converges as k — oo, and

e—x/n

since f () is negative for x > n, we see that lim,_ o fn(2) = 0. Therefore, the global maximum of

fn(x)is fu(n) = %

Now pick € > 0. For all n satisfying 1/n < e e, and all = positive, we have |f,(z) — 0(x)| < ¢, and
so we have uniform convergence.

We calculate the given integrals via integration by parts. First, a u substitution gives that fooo fulx) =
Jo T ux e du. Taking up = u, dv = e, this expression is equal to limg o —ue™ “[§ — [; —e™" =

limg_soo — e~ 4+ 1 =1 by our above calculation. So, lim, s fooo fu(x) =limp00l = 1.

1 0 3
Problem 55 (7). For A= |3 -5 3|, write A~! as a polynomial in A with real coeffi-
1 -1 2

cients.

We compute the characteristic polynomial of A to be 23 + 222 + 13z — 1 (I'm not typing out this
calculation). By Cayley-Hamilton theorem, A3 4+ 242 + 134 — 1 = 0. Applying A~! to both sides,
A2 +24A+13=A"1

Problem 56 (8). Let V be the vector space of all 2 x 2 matrices with real entries. Let W
be the subspace generaged by all matrices of the form AB — BA for A, B € V. What is the
dimension of W? Justify your answer

We note that for any matrix of the form AB — BA, tr(AB — BA) = tr(AB) —tr(BA) = tr(AB) —
tr(AB) = 0. Any matrix in the span of such matrices must also be traceless, and so this subspace
is a supspace of the kernel of the trace operator. We know that the trace operator has kernel 3,

since ((1) —01 , 8 (1) , ? 8) are all in this space, are linearly independent, but [ is not in this

space, so 3 < dim(ker(tr)) < 4 i.e. dim(ker(tr)) = 3. In particular, dim(W) < 3. We will exhibit
01

three linearly independent matrices in W, and so dim(W) = 3. First, taking A = 0 0 and
1 0\ . . 0 0 0 0\ .
B = 0 o) &ives that A € W. Now, taking C' = 0 1 and D = 1 o) 8ives that D € W.

Finally, taking M = A+ D and N = B + D gives that (1 -1

1 _1) € W. We see that this matrix,

and A, D are linearly independent, so dim (W) = 3.
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Problem 57 (9). Let V be the vector space over C of all complex polynomials of degree at
most 10. Let D : V — V be the differentiation operator. find all eigenvalues and eigenvectors
of eP on V.

Observe that D is nilpotent with D' = 0 but D'© # 0. We note that e’ = Zz‘lio D'/i!. We
see that e”(c) = ¢ where ¢ is constant (and hence, eigenvalue 1). I will show that in fact the
nonzero constant functions (a subspace of degree 1 over C) are the only eigenvectors. Let f be any
polynomial in V' with degree m more than 1. Then eP(f) = f + Z?;l D¥(f)/i!, and note that
this sum term will be a polynomial of degree exactly m — 1. The leading coefficient of e”(f) is the
leading coefficient of f, and hence, if f is an eigenvector, it must have eigenvalue 1. This implies
that Zg}l Di(f)/i! = 0, which is impossible, since each D?(f) has distinct degree.

Problem 58 (10). Let A be an n x n complex diagonalizable matrix and I the n x n identity

matrix. Show M = (A I

0 A) is not diagonalizable.

We use that a matrix is diagonalizable over C iff its minimal polynomial is squarefree. For any

n n—1 .
positive integer n, we compute that M" = % nin . Then, for any polynomial > 7" ;a; * z*
n . - n—1
with a; € C, we have that p(M) = <p(64) iz a;(j)* 4 ) We have p(M) is zero iff p(A) is

zero and the upper right component is zero. But p(A) is zero iff the characteristic polynomial of A,
ma(x), divides p(x). We also note that the upper right corner is exactly equal to p’(A). This is zero
exactly when ma(z)|p’(A). Since m 4 is squarefree, m4 divides p and p’ if and only if m?|p. This
implies that the minimal polynomial of M must be divisible by mi, and so cannot be squarefree.
M 1is not diagonalizable.

Problem 59 (11). Let A be an n x n complex matrix. Prove that rank(A) = rank(A?) iff
limy_o(A + M)A exists.

Problem 60 (12). Let A = (a;;) be an n x n real matrix whose diagonal entries are all at

least 1, and such that >, a?’j < 1. Prove A7} exists.

Write A = D 4+ B where D is the diagonal component of A and B is the off diagonal component of
B. We note that D is positive definite since its eigenvalues are along the diagonal and all positive.
We note also that the condition on the remaining terms implies that ||B|| < 1, since (BT Bv); =

Zj(BTB)i,jvj </ b§j|v\ by Cauchy Schwarz, and therefore, ||BT B|| < |v| Do bl%j < |v|. This
implies that |(Bv, Bv)| = | < BT Bv,v) < |v| * |[BT Bv| < |v|?, again by Cauchy-Schwarz.

Now, suppose Av = Dv + Bv = 0 for some v. Then Dv = —Bv. But if v # 0, we have |Dv| > |v],
but | — Bv| < |v], a contradiction. Thus, v = 0, and A is invertible.

Note: This was an old Berkeley problem (week 4 Thursday), but I think it is the first time it
has appeared on a test for UCLA. No idea what to think about that. Maybe keep in mind that old
Berkeley probs could appear?
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6. F'19

Problem 61 (1). Let A be an invertible n x n matrix with real entries and let e; be the
first standard basis vector. For each A € R, define Ay(z) = Az + A{e1,x)e;. Show that Ay
is invertible iff 1+ A(e1, A~tey) # 0.

Consider the set of vectors A~ le;. Since A~! has full rank and the e; are a basis, the A~ le; are a
basis as well. For each A~te;, we see that Ay(A7te;) = e; + Mer, A~ te;)er. From here, we see that
the Ay(A~te;) for i > 2 are linearly independent, and Ay(A~tep) is in their span iff Ay(A~te;) = 0.
Therefore, Ay is invertible iff Ay(A7te1) # 0 iff (1 + ey, A7ter))er # 0 iff the given condition is
true.

Problem 62 (2). Find a real symmetric matrix A so that A% + A = (not typing it out)

1 0 0 1
0 3/2 1/2 0

We can see that 0 1/2 3/2 0 works.
1 0 0 1

To find this matrix, the real symmetry condition suggests looking at eigenvalues and eigenvectors
of A. Such an eigenvector would also be an eigenvector of A2 + A with eigenvalue A\*> + . Finding
eigenvectors of A2 4+ A isn’t difficult. From here, you can compute what Ae; for each e; is, and this
gives the above matrix for a certain choice of the eigenvalues.

Problem 63 (4). Let V be a vector space and 1 < n < dim(V') be an integer. Let {V;} be
a collection of n dimensional subspaces of V' with the property that dim(V;NV;) =n —1 for
every i # j. Show that at least one of the following holds:

All V; share a common n — 1 dimensional subspace.

There is an n + 1 dimensional subspace of V' containing all V;.

Problem 64 (5). Show that an = x n matrix A with real entries obeys limy_,||A¥|| = 0 iff
all (possibly complex) eigenvalues have modulus strictly less than 1.

Note that the operator norm of any real matrix A, when viewed as an operator of a real vector space,
is the same as the operator norm when viewed as an operator over a complex space. This is because
the singular values remain the same, and the operator norm is the largest singular value modulus.
Therefore, it is sufficient to show this equivalence holds when A is viewed as an operator over a
complex vector space. If A has any eigenvalue of modulus > 1, then fix a unit length eigenvector v
corresponding to this \. Then A*v = \Fv, which has norm at least one. The operator norm is the
supremum of such vector norms, and so must be at least one for all k. This implies that the limit
cannot go to zero.

Now, if all eigenvalues have modulus less than one, consider the Jordan canonical form of A. One
checks that its entries are vanishing, and so the operator norm of J*¥ — 0. Then ||A¥|| < ||P|| *
[|J¥]| % [|P~1|| — 0, where P is the invertible matrix satisfying PJP~! = A.
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Problem 65 (6). Let M,, be the vector space of n x n matrices with real entries. Given
B € M, we define a linear transformation Ly, : M,, — M, by Lg(A) = BT AB.
Prove Lp is invertible iff B is.

Find rank(Lp) when B is diagonal.

Find rank(Lp) in general.

For the first part, if B is invertible, then so is B~7, and we see that Lg(A)~! = (BT)"1AB~!. If
B is not invertible, then BT is not invertible. This implies that BTv = 0 for some nonzero v. Take
A to be the matrix each of whose columns is v. Then Lg(A) =0, so Lp is not invertible.

Let E;; be the standard basis of M, i.e. E;; is only nonzero in row ¢ column j, where it is one.
Then rank(Lp) is precisely the number of linearly independent Lp(E; ;). Suppose that B;; = \;.
Then we compute that Lg(E; j) = A% Aj* E; ;. The set of nonzero Lg(E; ;) is linearly independent
since the F; ; are linearly independent, and so Lg(E; ;) is nonzero iff A; and A; are both nonzero.
Note that rank(B) is exactly the number of nonzero \;, and so there are rank(B)? eigenmatrices
not corresponding to the eigenvalue zero. Thus, rank(Lg) = rank(B)2.

[ Problem 66 (7). Show that the equation z = cos(x) has exactly one solution on [0, 1] ]

x = cos(z) iff f(x) = x — cos(x) = 0, so we show that f(z) has exactly one root on [0,1]. Note
that f is continuous since it is a difference of continuous functions. f(0) = 0 — cos(0) = —1.
f(1) = 1 —cos(1). Since 1 € [0,7/2], we have that 0 < cos(1) < 1, and so f(1) > 0. Then
0 € (f(0), f(1)). By LLV.T., there exists a ¢ € (0,1) such that f(¢) = 0. For uniqueness, observe
that f'(z) = 1+ sin(z). For z € [0,1], sin(x) > —1, and so f'(x) is positive. This means that f(z)
is strictly increasing on [0, 1], and hence injective.

Problem 67 (8). Show that supo<p<i ) ,cz H_SW < 00

Write Hn%hg = h x f(nh) where f(x) = ﬁ Note that f is an even function, and therefore,
hx f(nh) = h* f((—n) %= h). The given sum is then equal to h * f(0) + 2% > >, h« f(nh). It
is sufficient to show that supo<p<i ) ,cz+ b * f(nh) < oo since h * f(0) = h < 1. Fix N > 0.
Then SN hx f(nh) = L(f, P,) where f = ﬁ and P, partitions [0, Nh] into N uniformly sized
blocks, where we have used that f is decreasing on the positive reals. But L(f, P,) < ONh f(z)dz =
arctan(Nh) — arctan(0) < 7/2. Since SN h * f(nh) is increasing in N and is bounded above
by /2, by MCT, it converges to some positive real less than or equal to m/2. Since this was
independent of h, the supremum over all such A of this sum will also be no greater than /2.

Problem 68 (9). (1) Show that the relation (2 + z +y) = 22 + €* + €Y determines z as
a smooth function of (z,y) in some neighborhood of the origin.
(2) Show that (0,0) is a critical point of z(z,y) and determine its nature (minimum,
maximum, etc.)
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Problem 69 (11). Let X denote the set of non-decreasing functions f : [0, 1] — [0, 1] with
the supnorm metric.

Prove (X, d) is complete.

Prove it is not compact.

Let f,(x) be a Cauchy sequence of functions in X. Note that this implies that f,(x) is a Cauchy
sequence of real numbers for each x € [0,1], and by completeness of R, f,,(x) converges pointwise
to some function f. It remains to show that f € X. We see that for any =, f(x) = lim, f,(x)
by pointwise convergence, and so f(z) € [0,1]. Now, fix 0 < z < y < 1. Then f(y) — f(x) =
limp fn(y) — fo(z). Since f,(y) — fn(x) is nonnegative, so to is the limit, so we have f is nonde-
creasing.

Since compactness implies separability in metric spaces, it is sufficient to show that X is not
separable. Consider the functions f,(x) = 0if x < r and 1 if x > r, where r € [0,1]. Then
sup| fr, () — fry(x)] <1, and if 71 < ro, then fr, (r1) — fry(r1) = —1, and so sup|fr, () — fr,(x)] =1
for all distinct 71, 72. Note that there are uncountably many f, since [0, 1] is uncountable. There
can be no countable dense subset of X, since this would imply that the balls B(f,,,1/2) all contain
a distinct element of our dense subset, which contradicts the countability of such a set. X is not
separable, and hence, not compact.

Problem 70 (12). Let [*°(Z) denote the space of bounded functions x : Z — R together with
the metric d(z,y) = suppez|z(n) — y(n)|. Show that a function f : [*°(Z) — R is continuous
iff its restriction to any compact subset of (°°(Z) is continuous.

For the forward direction, assume f is continuous, and let K be a compact subset of L>°(Z). For
any point x € K, f is continuous at x since any sequence of K elements x, converging to z is a
sequence of L*°(Z) elements converging to z. By continuity of f in [*°(Z), f(z,) — f(x), and so f
is continuous on K.

For the reverse direction, assume f is continuous on any compact K C [*°(Z). Let z, be a se-
quence of [*°(Z) elements converging to x € {°°(Z). I will show that K = {z,} U {z} is compact.
For any infinite sequence y,, in K, either the ¥, have only finitely many distinct values, in which case
some subsequence is constant, or the y, have infinitely many distinct values, in which case some sub-
sequence must converge to x. K is sequentially compact, and hence, compact. By assumption, f is
continuous on K, and 80 limy, o0 f(x5) = f(x). f is thus sequentially continuous, and so continuous.

Note that the ambient space did not matter at all. The conclusion is actually generally true for
metric spaces.

7. 520
8. F20

Problem 71 (1). Let M be an n x n matrix with rational entries such that M? = 2I.
Prove n is even.
Give an example of such matrix M for n = 2.

The minimal polynomial of M must divide 22 — 2. But M # £+v/21, and so 2> — 2 is the minimal
polynomial of M. Note also that the characteristic polynomial must divide some power of the
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minimal polynomial since A is a (complex) root of the minimal polynomial iff it is a root of‘ the
characteristic polynomial. This implies that the characteristic polynomial is exactly (2% — 2)* for
some positive integer 7, and hence, n must be even since this polynomial is degree 21.

We see that the matrix (1 11) works. (To find this, just write out the general expression for a

2 by 2 matrix and solve for possible entries)

Problem 72 (2). Let A be an orthogonal n x n matrix.

Prove A? is orthogonal
Prove A + %I is invertible.

A3 is orthogonal iff (A3)T A3 = I. But (43)T = (AT)3. We see that AT x AT x AT x Ax Ax A=1
by orthogonality of A.

A+ %I is invertible iff 1/2 is not an eigenvlaue of A. I will show that orthogonal matrices can
only have eigenvalues of modulus 1. Fix an eigenvector of A, v, corresponding to eigenvalue A.
Then Av,v) = (Av,v) = (v, ATv) = (v, A~1v). Since A~ Av = v, we have that v is an eigen-
vector of A~! with eigenvalue 1/\. (X must be nonzero or else A is not invertible at all). Then
(v, A7lv) = $(v,v). We have that \? = 1, as desired.

Problem 73 (3). Let M be a complex 4 x 4 matrix such that M® = M* = 2M3 — M2,
Describe all possible J.C.F. of M.

The condition M* —2M?3 + M? = 0 gives that the minimal polynomial of M divides ?(x —1)2, and
so the only possible eigenvalues of M are 0 and 1. Note also that the power of x — A in the minimal
polynomial is equal to the size of the largest Jordan Block for that eigenvalue. In particular, there
can be no Jordan Blocks of size 3 or more for either possible eigenvalue. I will now show that there
can be no block for eigenvalue 1 of size greater than 1. Let B be such a block. Note that (B"); ; =n
for all n, and so M% # M*. All blocks for eigenvalue zero are nilpotent with order no greater than
4, and so B% = B* for such blocks. This leaves us with only a few possible matrices, as described
below.

(1) 4 zero’s on the diagonal, 4 blocks

(2) 4 zeros on the diagonal, 1 block of size 2, 2 blocks of size 1
(3) 4 zero’s on the diagonal, 2 blocks of size 2

(4) 3 zeros on the diagonal and one 1, all blocks of size 1.

(5) 3 zeros on the diagonal, one block of size 2 for the zeros

(6) 2 zeros and 2 ones on the diagonal, all blocks size 1.

(7) 2 zeros and 2 ones on the diagonal, block of zeros is of size 2.
(8) 1 zero on the diagonal and 3 ones, all blocks size 1.

(9) 4 ones on the diagonal, all blocks size 1.

Problem 74 (4). Let A be a 2 x 2 real matrix with eigenvalues 2 and —1. Consider the set

X of 2 x 2 real matrices C' such that C' = (61 i) is diagonalizable over C. Prove X is a 2

dimensional subspace of M, (R)
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A matrix of this form is diagonalizable iff its minimal polynomial is squarefree. We compute that
the characteristic polynomial of C' is pa(x)?, where pa(x) is the characteristic polynomial of A.
But since A is a 2 X 2 matrix with eigenvalues 2 and —1, p(z) is exactly (z — 2)(x + 1). We see
that C'— 21 and C + I are nonzero since A — 2I and A 4 I are nonzero, and so C is diagonalizable
iff (C —2I)(C+1)=0. We compute that (C' — 2I)(C + 2I) = <8 AB+§A_ B), and so C
is diagonalizable iff B = AB + BA. Write A = PDP~! where D is the diagonal matrix with 2
and —1 on the diagonal. Write ' = P~'BP. We see that B = AB + BA iff F = DF + FD, and
each choice of such F'C yields a unique such B, and each such B yields a unique such C. Write

wx_(4w T

F = (w x) Then we must have (
Yy oz Yy oz Yy  —2z

and any choice of x and y are valid. This is then indeed a dimension 2 subspace.

). We see that w = z = 0 is required,

Problem 75 (5). Let K = F), be a finite field with p elements where p is prime. Let V = K
be a vector space, and let W C V' be a subspace of V such that dim(W) = 5. Compute the
number of subspaces U C V such that dim(U) = 6 and dim(W NU) = 3.

Problem 76 (6). Let vy,....v;, € R” satisfy (v;,vj) <Oforalll <i<j <k. Provek <n+1.

. J

We argue by induction on n. The case for n = 1 is trivial. Suppose that the claim is true for all
n < N for some fixed N. Suppose towards contradiction that in RN*! there exists N + 2 vectors
v1 through vy such that (v;,v;) < 0 for ¢ < j. Consider the N + 1 vectors w; = v; — (v, UN42)UN+2-
We see that these vectors inhabit ’U]J\-, 4o, Which is an N dimensional subspace of RN+1 However,
for i < j, Wwe see <w,~,wj> = <Ui,1)j> - 2<7}i7 UN+2><UN+27 Uj> + <Ui,1)N+2><Uj, UN+2><UN+2, UN+2>. The
first two terms are negative by assumption, and the last term can be made to have arbitrarily small
absolute value by rescaling vyyo. If vy is rescaled such that the (finitely many) (w;, w;) < 0,
then we have a contradiction, because U]J\‘; 4o 18 isomorphic to RY . but we have found N + 1 vectors
with mutually negative inner product in this space.

Problem 77 (9). Let f(z) be areal and continuous function on [0, 1]. Show that lim, .o (n+

1) [y 2" f(x)dw = f(1).

Fix € > 0. Since f is continuous on the compact set [0, 1], it is bounded. In particular, there exists
positive M such that f(z) < M for all z and f(z) > —M for all z. Write ¢, = (¢/M)"/ 1), For
any n, observe that the given integral is equal to (n+ 1) [;" " f(z) + (n+ 1) fcln " f(x). The first
integral is less than € and greater than —e by using the boundedness of f. Since 2" is positive on
(Cn, 1) and 2™ and f are both continuous, by Mean Value theorem for integrals, (n+1) [ Cln " f(x) =
(n+1)f(en) fcln 2" = f(cn)*(1—e/M) for some ¢, € ((n,1). Taking limits, since ¢,, — 1 and since f
is continuous, we have that the given limit is in the interval (f(1)*(1—¢e/M)—e¢, f(1)x(1—¢/M)+¢)
for any € > 0. This implies that the given limit is indeed f(1).

Problem 78 (10). Let f,, be a uniformly bounded equicontinuous sequence of real valued
functions on a compact metric space X with distance function d. Define the functions g,
from X — R by g, = max{fi(x),...fn(z)}. Show that g, converges uniformly.

Note that for any z, gn4+1(z) > gn(x). Note also that the g, converge pointwise at any x since the
sequence gy, (x) is a bounded (by uniform boundedness of f,,) monotone sequence of real numbers.
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By Dini’s theorem, since X is compact, it is sufficient to show that the limit function g is continuous.

First, we will show that g(z) = sup(fi(z), f2(x)...). The supremum is defined since f,, are uni-
formly bounded. Note that g(z) > fn(z) for all n, and so g(z) > sup(fi(x), f2(z)...). Since each
gn(x) < sup(fi(x)...), we have that the limit g(x) < sup(fi(x)...) as well.

We now show continuity of g. Fix z,y € X. Then g(z) — g(y) = sup;(fi(x) — g(y)) < sup;(fi(z) —
fi(y)). Fix e > 0. By equicontinuity of the f,, there exists § > 0 such that |f,(z) — fu(y)| < e
when |z — y| < §. Then for this delta, we have |g(z) — g(y)| < € as well, implying continuity of g.

Problem 79 (11). For each n € N, let f, : R — R, and assume that these functions are
uniformly bounded. Let X be a countable subset of R. Show that the sequence f, has a
subsequence that converges pointwise for all z € X.

Enumerate the X elements as x1,x9.... Consider the sequence fi(z1), fa(x1), f3(x1)... This is a
bounded sequence of real numbers since the f,, are uniformly bounded. Therefore, by compactness,
some subsequence of the fi(z1), fo(z1)... converges, i.e., some subsequence of the f, converge
pointwise at z1. Relabel this subsequence as fi 1, f1,2, f1,3.... Now suppose that we have a sequence
gn that converges for x; for all 1 < ¢ < k for some k. Then we may apply the above argument to
find a subsequence of the g, that converge at x11 as well. Applying this argument to our sequence
fi,1, fi2... repeatedly, we obtain nested subsequences, where f 1, fx2... converges for all x; with
1 < k.

Now, define f, = fri. Fix z; € X. For k > i, we see that the f; are a subsequence of f; 1, fi2...,
and this sequence was defined to converge at x;. Thus, the f; are a subsequence of the f, that
converge at all x € X4.

Problem 80 (12). Let X be an open convex subset of R™. Let f : X — R be a differentiable
function.
Show that for any x,y € X, there is a point z lying on the line segment from z to y for

which f(y) — f(z) = Vf(z) x (y — z).

Use part a to show that if the partial derivatives of f are bounded, then f is uniformly
continuous on X.

Fix z,y € X. Define g(t) : [0, 1] — R where g(t) = f((1—t)xx+txy). Note that g is continuous since
it is a composition of continuous functions, and since X is convex, (1 —t)*xz+t*y € X for all ¢ in
this range. By Mean Value Theorem, there exists a t* € [0, 1] such that ¢'(¢*)*(1—0) = f(1) — f(0).
Now, observe that f(1) — f(0) = f(y) — f(x). By chain rule, ¢'(t*) = Vf((1 — t*)z + t*y) * (y — x).
Taking z = (1 — t*)x + t*y works.

Suppose that the partial derivatives of f are bounded. Then |V f| < M for some positive M.

Fix ¢ > 0. Then if |y — x| < e/M, we have that |f(y) — f(x)| < |Vf|*|(y — x)| (Cauchy Shchwarz)
< g, as desired.
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