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1 Background

My research is about studying multiplicative structures in homotopy theory.
One of the fundamental goals of algebraic topology is to have a better understanding of the stable

homotopy groups of the sphere spectrum. One our most effective computational tools for computing
them is the Adams spectral sequence, which uses a homology theory to approximate the homotopy
classes of maps between two spectra X and Y . The Adams spectral sequence for a ring spectrum E
starts with the E2 page, given by Es,t

2 = Exts,tE∗E
(E∗X,E∗Y ), where E∗X and E∗Y are comodules

over E∗E. Under appropriate conditions this converges to [X,Yˆ
E ]t−s. In the specific case where

E = HFp and X = Y = S, the spectral sequence takes the form Exts,tA∗
p
(Fp,Fp) ⇒ πt−s(S) ⊗ Zp,

where A∗
p = HFp∗HFp is the dual Steenrod algebra.

In order to use the Adams spectral sequence to compute the homotopy groups of the sphere
spectrum there are three basic steps. First, the E2 page has to be computed. Since the E2 page is
algebraic, this is a mechanical computation, which can be done by hand or by a computer. Second,
the differentials in the spectral sequence have to be computed, which allows us to go from the E2

page to the E∞ page. Finally, the E∞ page is the associated graded of a filtration on the homotopy
groups, so in order to recover the actual homotopy group we need to resolve any potential extension
problems. My work is most related to the second step of computing differentials.

In general the differentials can be quite challenging to compute, but the Adams spectral sequence
has several pieces of additional structure on it that we can use to help in determining differentials.
Probably the most important is that the Adams spectral sequence has a multiplicative structure,
which makes each page of the spectral sequence into a differential graded algebra. The Leibniz
rule can then be used to propagate one known differential to give us information on many other
differentials.

Another important piece of additional structure on the Adams spectral sequence are Steenrod
operations. Steenrod operations in this context are shadows of homotopy coherently commutative
multiplication maps µn : EΣn ⊗Σn Y ⊗n → Y , where EΣn ⊗Σn Y ⊗n =: Dn(Y ) is the nth extended
power of Y . However, we actually use a variant of the extended power which uses a subgroup of
Σn instead to build Steenrod operations. When π is a subgroup of Σn, let Dπ(Y ) := EΣn ⊗π Y

⊗n.
Then given a map f ∈ [X,Y ], we can build a map

Pπf : Dπ(X) → Dn(X)
Dn(f)−−−−→ Dn(Y )

µn−→ Y.

Then Pπf induces maps from the homotopy groups of DπX to the homotopy groups of Y , or if we
think about it another way, an element of of πkDπ(X) induces a map [X,Y ] → πkY .

This can all be interpreted in various categories, like chain complexes, spectra and filtered
spectra. When p is a prime, if we work with chain complexes over Fp, and consider the case n = p
and π = Cp ⊂ Σp, then when X = Fp [m], we have that X⊗p = Fp [mp] is actually invariant under
the Cp action, so we get that Dp(Fp [m]) = ECp ⊗Cp Fp [mp] ≃ BCp[mp], and in the category of
chain complexes over Fp, BCp is a chain complex whose homology computes the Cp-group homology
of Fp. Then these group homology classes give operations on the homology of any chain complex K,
with a homotopy coherently commutative multiplication map Dp(K) → K. When K = C∗(A;Fp)
is the singular cochain complex of a space A, this constructs the usual Steenrod operations on the
cohomology H∗(A;Fp). This is also how the Steenrod operations on the Adams spectral sequence
were originally constructed.

Novikov [11] and Liulevicius [7] introduced Steenrod operations on the cohomology of Hopf
agebras and therefore on the E2 page of the Adams spectra sequence. The fact that the Adams
spectral sequence has Steenrod operations is therefore a purely algebraic one.
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A series of authors, Kahn [6], Milgram [9], Mäkinen [8] and Bruner [3] (ordered by increasing
generality), realized that by lifting the algebraic maps that produce the Steenrod operations in
Ext to maps of filtered spectra, one can get information about the differentials of the Steenrod
operations.

Bruner [3] showed that if we assume that the ring spectrum carries an H∞-structure (a struc-
ture stronger than merely homotopy commutative, but weaker than E∞), then the maps of chain
complexes that give the power operations on Ext lift to maps of spectra, and that we can then use
these maps of spectra to compute the differentials on power operations. Specifically, for a class
of topological degree n, the differentials on a Steenrod operation are determined by the attaching
map of a corresponding cell in a particular cell structure on DCp(S

n).
The fact that we can produce and compute Steenrod operations in the Adams spectral sequence

is perhaps somewhat surprising though, since the Adams resolution functor is not an E∞-functor, so
the H∞ structure of our ring spectrum is not being preserved when we take the Adams resolution,
but it does give us enough to build the appropriate maps that induce the Steenrod operations on
the level of spectra. There has been some work generalizing Bruner’s ideas to other contexts like
equivariant and motivic homotopy theory. For example, Sean Tilson [13] used Bruner’s ideas to
produce a formula for d2 in the C2 equivariant Adams spectral sequence.

However, Burklund, Hahn and Senger [4] give a construction that suggests an alternative route
for generalizing Bruner’s work. Their construction gives a recipe for turning an existing E∞-functor,
T : C → CFil, intertwining that functor with the cobar resolution of a ring object, E, and producing
a new E∞-functor from objects to filtered objects, Sh(T ;E). Concretely, Sh(T ;E) is the composite

C ⊗ cb(E)−−−−−→ C∆ T∆

−−→ CFil,∆ Tot−−→ CFil.

If T is the Whitehead tower functor, then the associated spectral sequence for Sh(T ;E)X has E1

page isomorphic to the E2 page of the usual E-Adams spectral sequence for X.
Since this construction is an E∞ one, it gives us an alternate route for constructing the Steenrod

operations in the Adams spectral sequence. The advantage of this method is that it gives us
a construction and results that generalize to many kinds of Adams-like spectral sequences in a
broader variety of contexts. I’ll talk about my work on this idea in the next section.

The context in which I’m most interested in applying these ideas is that of equivariant homotopy
theory. Equivariant homotopy theory is a version of homotopy theory where we have a group G
and we keep track of G-actions as we build the usual objects of homotopy theory like cohomology
theories and spectra. Since many objects of interest in homotopy theory come with natural group
actions, keeping track of those actions when studying those objects allows us to maintain greater
control over those objects and get stronger results. There are several things that are interesting
about power operations in the equivariant case. The homotopy groups of a G-spectrum, X, are
indexed by a subgroup H of G and an integer n, and are defined by πH

n (X) = [(G/H)+ ∧ Sn, X]G.
For a fixed n, we can assemble the groups for each subgroup into the structure of a Mackey functor,
which we can denote πnX. Consequently, the Adams spectral sequence can be taken to have values
in Mackey functors, so perhaps the first thing we’d like to know is what the Steenrod operations
and differentials are on elements that live in πH

n where H is a proper subgroup of G.
Secondly, one can get spheres with nontrivial group actions by taking the one point compact-

ification of a real G-representation V to get a representation sphere, written SV . Then for a
G-spectrum X we can define RO(G)-graded homotopy groups πG

⋆ X by πG
V (X) := [SV , X]G. Sim-

ilarly, the equivariant Adams spectral sequence can also be viewed as having an RO(G) grading.
Now for a class in degree V , the differentials on the Steenrod operations on that class will be
determined by the attaching maps in the appropriate cell structure on DCp(S

V ).
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Thirdly, one of the interesting features of equivariant homotopy theory is that there are many
distinct lifts of the non-equivariant E∞-operad which can be partially ordered by which norm maps
they have [2]. We say that a G-spectrum is a genuine G-E∞ ring if it is an algebra for the maximum
lift. Much like π0 of an E∞ spectrum is an ordinary ring, π0 of a G-E∞ ring is a Green functor,
which is a commutative monoid in Mackey functors, however π0 of a genuine G-E∞ ring has the
additional structure of norm maps, which make it into an object called a Tambara functor.

Now if E is a genuine G-E∞ ring, then when T sends genuine G-E∞ rings to genuine G-E∞
filtrations, Sh(T ;E) does as well. As a result, we can get interesting differences in structure on the
resulting Sh(T ;E)X depending on the choice of T . For example, the equivariant Whitehead tower
functor only preserves the weakest G-E∞ structure, but the regular slice filtration preserves the
maximal G-E∞ structure. Accordingly, the Adams-like spectral sequences associated to the regular
slice filtration will be spectral sequences of Tambara functors. I’m very interested in studying the
interaction of the Tambara functor structure with the Steenrod operations.

As a result, I’m also interested in the study of the algebra of Tambara functors. However
many of the fundamental questions that have been answered for commutative rings become more
complicated for Tambara functors and have not yet been answered. For example, in a joint paper
(discussed below) my collaborators and I answered the question of which Tambara functors are
algebraically closed (Nullstellensatzian). To get a sense of how much is still unknown about Tambara
functors, some important questions that don’t yet have complete answers that I am interested in
are: What does it mean to localize a Tambara functor at a prime ideal? What properties does
the category of modules over a Tambara field have? How can we build schemes out of Tambara
functors?

2 Thesis Research

2.1 Steenrod operations in Adams-like spectral sequences

The goal of this project was to first reproduce the Steenrod operations in the Adams spectral
sequence using the fact that Sh(T ;E)Y is an E∞ filtered spectrum when T is an E∞ tower functor
and E and Y are E∞-rings and second work on proving formulas for the differentials of the Steenrod
operations similar to those shown by Bruner, and ideally do so in a way that generalizes to other
contexts.

If F• is a filtered spectrum, let Es,n
r (F•) denote the spectral sequence that we get from F• by

applying π•, so Es,n
1 (F•) = πnFs,s+1, where Fs,s+1 is the cofiber of the map Fs+1 → Fs. There is a

filtered spectrum U•(r, s, n) that represents a class in Es,n
1 (F•) along with choices of lifts that prove

that the first r − 1 differentials are 0, so that it represents a well defined class in Es,n
r .

Now when F• is E∞, we can apply our general recipe for producing Steenrod operations to a
map α : U•(r, s, n) → F• to get a map

DCp(U•(r, s, n)) = E+
Cp

⊗Cp U•(r, s, n)
⊗p

E+
Cp

⊗Cpα
⊗p

−−−−−−−−→ E+
Cp

⊗Cp F
⊗p
• → F•.

Then classes γ : U•(r
′, s′, n′) → DCp(U•(r, s, n)) give us classes Pα ◦ γ : U•(r

′, s′, n′) ⊗ X →
F•. However, there aren’t always enough such maps γ to get all of the Steenrod operations that
we expect. To see why, consider the case for p = 2 and U(1, s, n). The associated graded for
D2(U(1, s, n)) has a D2(S

n) in filtration 2s, an S2n−1 in filtration 2s + 1 and a D2(S
n−1) in

filtration 2s + 2. So we end up getting operations for the elements of the homotopy groups of
D2(S

n), which look more like the homotopy power operations than the Steenrod operations, which
should correspond to elements of the homology of D2(S

n).
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However, if F• is an algebra over another filtered spectrum F ′
• (which we can always take to

be F• if there isn’t something more useful), then we get something a little more useful for our
purposes if we tensor Pα with F ′

• and multiply back down again. So let PF ′α denote the composite
DCp(U•(r, s, n)) ⊗ F ′

• → F• ⊗ F• → F•. This map carries quite a bit of useful information, but
in particular, it induces a map on the associated gradeds that in filtration ps looks like F ′

0,1 ⊗
DCp(Sn) → Fps,ps+1. Then if we take πm of both sides, we get πm(F ′

0,1⊗DCp(S
n)) → πmFps,ps+1 =

Eps,m
1 .
Now in the case that F• = Sh(T ;E)Y where T is the Whitehead tower and Y and E are

connective E∞ ring spectra, we can take F ′
• to be Sh(T ;E)S, in which case we have that F ′

0,1 is an

Eilenberg-Maclane spectrum on the group H0
(
π0

(
E⊗•+1

))
, where the cohomology here is that of

the cosimplicial abelian group. In other words given a class α we get a map

(PFα)∗ : Hm

(
DCp(S

n);H0
(
π0

(
E⊗•+1

)))
→ Eps,m

1 .

In the specific case that E = HF2, Y = S, and p = 2, then we get that DC2(S
n) = ΣnRP∞

n ,
and the map becomes

(PFα)∗ : Hm (ΣnRP∞
n ;F2) → E2s,m

1 .

Since Hm(ΣnRP∞
n ;F2) is 0 for m < 2n and F2 for m ≥ 2n, this gives us classes in E2s,m

1 for
m ≥ 2n, and using the usual indexing for the Steenrod squares, we can define Sqi(α) to be the
class in E2s,n+i

1 , so that Sqn(α) is the class α2 in E2s,2n
1 .

Returning to the general case, so far I’ve just discussed what’s happening in filtration ps, but
the objects U•(r, s, n) encode dr, so PF ′α also encodes information about the differentials on the
Steenrod operations. In particular, a nonzero differential on a class in D2(U•(r, s, n))⊗F ′

• gives us
the first possibly nonzero differential on the image of that class in F•.

We can get this information about the differentials by looking at a second filtration on our
filtered object induced by the skeletal filtration on ECp, since this is the filtration used to compute
cellular homology, which is the easiest way to get at our Steenrod operations. Essentially a Steenrod
operation is given by a cell em of DCp(S

n) whose attaching map vanishes in F ′
0,1 homology. Then

understanding the differential comes down to understanding this attaching map, and how it lifts
up the filtration. This is where we need to actually use details of the filtration in question.

2.2 Localizations and spectra of Tambara functors

Historically, an extremely useful strategy for proving results about commutative rings has been to
simplify problems by using the techniques of algebraic geometry to reduce global questions to local
ones.

Nakaoka [10] defined prime ideals for Tambara functors and defined a spectrum of a Tambara
functor as a topological space. We’d like to have a sheaf or sheaf-like structure on this to so that
we can do something similar to algebraic geometry for Tambara functors.

However, while we can define localizations by adjoining inverses to elements, several things go
wrong. Firstly, if a is a single element of a Tambara functor, T , the map SpecT [a−1] → SpecT
is not always the inclusion of an open subset. Secondly, the complements of prime ideals are not
multiplicatively closed. Thirdly, even when SpecT [a−1] → SpecT is the inclusion of an open subset,
these subsets don’t form a basis for the topology on SpecT .

In joint work, Ben Spitz and I showed that for AG the Burnside Tamabara functor, there is an
open subset of Spec(AG), U ̸= ∅, such that for any Tambara functor T ̸= 0 and map f : AG → T
there is a prime ideal p ∈ Spec(AG) such that f∗p ̸∈ U . In other words U despite being nonempty
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cannot contain any nonempty affine open subsets, so we cannot define a structure sheaf on SpecT
in a manner analogous to that for ordinary commutative rings.

However, the reason for this failure also suggests a possible solution to the problem. The
problem is that if T is a G-Tambara functor then Spec(T ) has additional structure beyond that of
a topological space, specifically we showed that Spec(T ) contains the spectra of T ’s restrictions to
H-Tambara functors with NG(H)/H action, Spec(RG

HT ), as retract subspaces, and the reason our
open subset U failed to contain the image of any Tambara spectrum was that an arbitrary open
subset doesn’t have to respect this additional structure.

2.3 Algebraically closed (Nullstellensatzian) Tamabara functors

Burklund, Schlank and Yuan [5] introduced the concept of Nullstellensatzian objects. A nonterminal
object a of a category C is Nullstellensatzian if all nonterminal compact objects a → b in the
undercategory C/a admit a section b → a.

The name comes from the fact that the Nullstellensatz says that algebraically closed fields are
Nullstellensatzian objects in the category of commutative rings, and in fact these are all of the
Nullstellensatzian objects.

In the case of Tambara functors we can take this to be the definition of algebraically closed.
In joint work [12], Ben Spitz, Noah Wisdom and I showed that the Nullstellensatzian G-Tambara
functors are all of the form CG

e k, where CG
e is the coinduction functor from commutative rings to

G-Tambara functors, which is right adjoint to the restriction functor from G-Tambara functors to
commutative rings and where k is an ordinary algebrically closed field.

3 Future Research

3.1 Steenrod operations in Adams-like spectral sequences

As mentioned in the introduction, I think a particularly interesting direction to take my work
on Steenrod operations in Adams-like spectral sequences is to look at Steenrod operations in the
equivariant context, and in particular to look at the spectral sequence that we get from taking our
tower functor to be the regular slice filtration functor. Then we’ll get a G-E∞ filtration and the
corresponding spectral sequence will be a spectral sequence of Tambara functors.

3.2 Spectra of Tambara functors

I plan to continue joint work with Ben Spitz and Hiroyuki Nakaoka on understanding localizations
of Tambara functors at prime ideals and connecting this to the geometry of the spectrum.

Another project I’ve been working on in the same vein is that of understanding the geometry
of the Tambara functor in terms of the Balmer spectrum of its module category. For rings, Balmer
showed [1] that the Balmer spectrum of the tensor triangular category of perfect complexes of
modules over that ring is naturally isomorphic to the usual prime spectrum of the ring.

If T is a Tambara functor, then the category of modules over T has not just tensor products,
but in fact norms that turn it into a sort of categorified Tambara functor. Then if we restrict our
tensor triangular ideals to ones that respect this additional structure we would hope that we again
get a natural isomorphism of the Tambara spectrum of T with the Balmer spectrum of the category
of perfect complexes of modules over T .

This would then shed light on the problem of localizing a Tambara functor at prime ideals, since
the quotient of the category of perfect complexes of modules over a ring by a prime tensor-triangular
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ideal is the category of perfect complexes of modules over the ring localized at the corresponding
prime of the ring.
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