1 Notes

The goal for today is to review multivariable differentiation. Let's start with the Fréchet derivative.
Definition 1.1. Let V and W be normed vector spaces (you can assume for our purposes that the vector spaces are isomorphic to \mathbb{R}^{n} for some $\left.n\right), U \subseteq V$ an open subset of V. A functor $f: U \rightarrow W$ is called Fréchet differentiable at $x \in U$ if there exists a (continuous) linear operator $A: V \rightarrow W$ such that

$$
\lim _{\|h\| \rightarrow 0} \frac{\|f(x+h)-f(x)-A h\|_{W}}{\|h\|_{V}}=0
$$

Note that such a linear operator is unique, since if A and B both satisfy the condition, then we have

$$
\lim _{\|h\| \rightarrow 0} \frac{\|A h-B h\|_{W}}{\|h\|_{V}}=0
$$

so for any $x \in V$, as we take $t \in \mathbb{R}$ to 0 , we have

$$
\lim _{t \rightarrow 0} \frac{\|(A-B)(t x)\|_{W}}{\|t x\|_{V}}=\frac{\|(A-B) x\|_{W}}{\|x\|}=0
$$

and thus $A x=B x$.
We can thus introduce the following notation, one of $D_{x} f, D f_{x}, D f(x)$ is used to say that f is differentiable at x and denote the derivative at that point.

We have the following basic properties of the derivative
Proposition 1.1. (1) If f is a (continuous) affine function, in other words $f(x)=A x+t$ for some (continuous) linear operator $A: V \rightarrow W$ and constant $t \in W$, then for all $x \in V$,

$$
D_{x} f=A
$$

In particular, if f is constant, then $D_{x} f=0$ everywhere.
(2) (Chain rule) If $V, V^{\prime}, V^{\prime \prime}$ are normed vector spaces, $U \subseteq V, U^{\prime} \subseteq V^{\prime}, f: U \rightarrow V^{\prime}, g: U^{\prime} \rightarrow V^{\prime \prime}$, $x \in f^{-1}\left(U^{\prime}\right)$, and $D_{x} f$ and $D_{f(x)} g$ exist, then $D_{x}(g \circ f)=\left(D_{f(x)} g\right) \circ D_{x} f$.
(3) If $m: V \times V^{\prime} \rightarrow W$ is (continuous and) bilinear, then

$$
D_{\left(v, v^{\prime}\right)} m\left(h, h^{\prime}\right)=m\left(h, v^{\prime}\right)+m\left(v, h^{\prime}\right)
$$

1.1 Definitions specific to \mathbb{R}^{n}

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then $D f$ can be written as a matrix, which we call the Jacobian. In the particular case that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then we also call $D f$ the gradient of f, which is also written ∇f.

Note that we can write $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ as a tuple of functions $\left(f_{1}, \ldots, f_{m}\right)$, and $D_{x} f$ is the matrix (when it exists) with rows $\left(D_{x} f_{1}, \ldots, D_{x} f_{m}\right)$. To prove this, note that $f_{i}=\pi_{i} \circ f$, and π_{i} is linear, so by (1) and (2) above, $D_{x} f_{i}=\pi_{i} \circ D_{x} f$.

We can also define the j th partial derivative of f as

$$
D_{j, x} f:=D_{t=0} f\left(x+t e_{j}\right)
$$

where e_{j} is the j th standard basis vector. By chain rule, again, we can see that if f is differentiable at x, then $D_{j, x} f$ is the j th column of $D_{x} f$, which is $\left(D_{x} f\right) e_{j}$.
The index notation for partial derivatives rather than the conventional notation is chosen to match Spivak's notation.

More generally, if $u \in \mathbb{R}^{n}$ is a vector, we can define the directional derivative of f in the direction of u to be

$$
\left(\nabla_{u} f\right)(x):=D_{t=0}(f(x+u t))
$$

and observe that by chain rule, when f is differentiable at x, we have

$$
\left(\nabla_{u} f\right)(x)=\left(D_{x} f\right) u
$$

Finally, there is a partial converse to the observation that when the derivative of f exists then all of f 's partial derivatives exist and are given by the entries in the Jacobian of f.

Theorem 1.1 (Spivak 2-8). If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $D_{j} f_{i}$ exist and are continuous in a neighborhood of x for all $1 \leq i \leq m$ and $1 \leq j \leq n$, then f is differentiable at x and $\left(D_{x} f\right)_{i j}=D_{j} f_{i}$.

We call a function f satisfying the hypotheses of the theorem continuously differentiable. Functions all of whose higher order partials are differentiable are called C^{∞} functions.

2 Examples and Problems

(1) Verify the properties listed in Proposition 1.1.
(2) Generalize the property (3) of Proposition 1.1 to arbitrary (continuous) k-multilinear maps.
(3) (Weak chain rule for partial derivatives, Spivak 2-9) Let $g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable at a, and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be differentiable at $\left(g_{1}(a), \ldots, g_{m}(a)\right)$. Define $F: \mathbb{R}^{n} \rightarrow$ \mathbb{R} by $F(x)=f\left(g_{1}(x), \ldots, g_{m}(x)\right)$. Verify:

$$
D_{i, a} F=\sum_{j=1}^{m} D_{j,\left(g_{1}(a), \ldots, g_{m}(a)\right)} f \cdot D_{i, a} g_{j}
$$

Why do we need to assume that the g_{i} are continuously differentiable?
(4) Show that if $U \subseteq V$, the directional derivative $\nabla: V \times C^{\infty}(U, W) \rightarrow C^{\infty}(U, W)$ is linear in its first variable and satisfies the Leibniz rule in its second, meaning that for $t, s \in \mathbb{R}, u, v \in V$, $f: U \rightarrow W$ a C^{∞} function, we have

$$
\nabla_{t u+s v, x} f=t \nabla_{u, x} f+s \nabla_{v, x} f
$$

and for $a: U \rightarrow \mathbb{R}, f, g: U \rightarrow W$,

$$
\nabla_{u, x}(f+g)=\nabla_{u, x} f+\nabla_{u, x} g \text { and } \nabla_{u, x} a f=\left(\nabla_{u, x} a\right) f(x)+a(x) \nabla_{u, x} f
$$

(5) Suppose $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ admits a local inverse at $x \in U$, i.e., a continuous function $g: W \rightarrow \mathbb{R}^{n}$ such that $f(x) \in W, g(f(u))=u$ for $u \in f^{-1}(W)$, and $f(g(w))=w$ for $w \in W$. Then if f is differentiable at x, show that $D_{x} f$ is invertible if and only if g is differentiable at $f(x)$.
(Originally I forgot to say that we need to assume the derivative is invertible, but if the derivative is not invertible, the inverse can fail to be differentiable, as with $f(x)=x^{3}$ at 0 , and it turns out this is an if and only if. I also forgot to assume that g is continuous, which I suspect isn't actually necessary, but that wasn't supposed to be part of the exercise.)
(6) Compute the following derivatives, where $M_{k \times \ell}$ is the set of $k \times \ell$ real matrices.
(a) Let $f: M_{k \times \ell} \times M_{\ell \times n} \rightarrow M_{k \times n}$ be given by $f(A, B)=A B$. What is $D_{(X, Y)} f$?
(b) Let $f: M_{n \times n} \rightarrow \operatorname{Sym}(n)$ be given by $f(A)=A^{T} A$. What is $D_{X} f$?
(c) Let $f: M_{n \times n} \rightarrow \mathbb{R}$ be given by the determinant: $f(A)=\operatorname{det} A$. What is $D_{I_{n}} f$, where I_{n} is the $n \times n$ identity matrix? Can you work out $D_{B} f$, where B is an invertible $n \times n$ matrix?

3 A Proof of the Chain Rule

When you set out to prove the chain rule, you quickly realize that you need to control the variation of a differentiable function in a neighborhood of the point at which it's differentiable. Here is the appropriate lemma.

Lemma 3.1. If $f: U \subseteq V \rightarrow W$ is differentiable at $x \in U$, then for all $\epsilon>0$ there exists $a \delta>0$ such that for all $h, h^{\prime} \in V$ with $\|h\|,\left\|h^{\prime}\right\|<\delta$ we have

$$
\left\|f(x+h)-f\left(x+h^{\prime}\right)\right\|_{W} \leq\left\|D_{x} f\right\|\left\|h-h^{\prime}\right\|+\epsilon\left(\|h\|+\left\|h^{\prime}\right\|\right)
$$

Note the corollary that f is Lipschitz at points where it is differentiable, in the sense that by taking $h^{\prime}=0$ in the previous lemma, we have that for all $\epsilon>0$, we can find a $\delta>0$ such that for $\|h\|<\delta$,

$$
\|f(x+h)-f(x)\| \leq\left(\left\|D_{x} f\right\|+\epsilon\right)\|h\| .
$$

Proof of lemma. For a given ϵ, pick δ such that for $0<\|h\|<\delta$,

$$
\frac{\left\|f(x+h)-f(x)-D_{x} f h\right\|}{\|h\|}<\epsilon .
$$

Then for all h with $\|h\|<\delta$, we have that

$$
\left\|f(x+h)-f(x)-D_{x} f h\right\| \leq \epsilon\|h\| .
$$

Now we have for $\|h\|,\left\|h^{\prime}\right\|<\delta$,

$$
\begin{aligned}
\left\|f(x+h)-f\left(x+h^{\prime}\right)\right\| & \leq\left\|f(x+h)-f\left(x+h^{\prime}\right)-D_{x} f\left(h-h^{\prime}\right)\right\|+\left\|D_{x} f\left(h-h^{\prime}\right)\right\| \\
& =\left\|f(x+h)-f(x)-D_{x} f h-\left(f\left(x+h^{\prime}\right)-f(x)-D_{x} f h^{\prime}\right)\right\|+\left\|D_{x} f\left(h-h^{\prime}\right)\right\| \\
& \leq \epsilon\|h\|+\epsilon\left\|h^{\prime}\right\|+\left\|D_{x} f\right\|\left\|h-h^{\prime}\right\|
\end{aligned}
$$

which is what we want.

Now we can prove the chain rule.

Proof of chain rule. We want to show that if $f: U \subseteq V \rightarrow V^{\prime}, g: U^{\prime} \subseteq V^{\prime} \rightarrow V^{\prime \prime}, x \in f^{-1}(U)$, and $D_{x} f$ and $D_{f(x)} g$ exist, then $D_{x}(g \circ f)=D_{f(x)} g \circ D_{x} f$.
In other words, we need to show that

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|g(f(x+h))-g(f(x))-D_{f(x)} g\left(D_{x} f h\right)\right\|}{\|h\|}=0 .
$$

Now we can add and subtract $g\left(f(x)+D_{x} f(h)\right)$ in the norm on the top, so by triangle inequality, it suffices to show that both

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|g\left(f(x)+D_{x} f h\right)-g(f(x))-\left(D_{f(x)}\right) g\left(D_{x} f h\right)\right\|}{\|h\|}=0,
$$

and

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|g(f(x+h))-g\left(f(x)+D_{x} f(h)\right)\right\|}{\|h\|}=0 .
$$

For the first limit, since g is differentiable, for arbitrary $\epsilon>0$, for $\|w\|$ small enough, we have

$$
\left\|g(f(x)+w)-g(f(x))+D_{f(x)} g w\right\| \leq \epsilon\|w\| .
$$

Taking $w=D_{x} f h$, since $D_{x} f$ is continuous, we have that for $\|h\|$ small enough,

$$
\left\|g\left(f(x)+D_{x} f h\right)-g(f(x))+D_{f(x)} g D_{x} f h\right\| \leq \epsilon\left\|D_{x} f\right\|\|h\| .
$$

Dividing by $\|h\|$ gives us that the desired limit is zero.
For the second limit, we apply the lemma. We have that for any ϵ, when $\|h\|$ is small enough,
$\left\|g(f(x+h))-g\left(f(x)+D_{x} f h\right)\right\| \leq\left\|D_{f(x)} g\right\|\left\|f(x+h)-f(x)-D_{x} f h\right\|+\epsilon\|f(x+h)-f(x)\|+\epsilon\left\|D_{x} f h\right\|$.
Reducing the bound on $\|h\|$ as necessary, for $\|h\|$ small enough, the right hand side is bounded by

$$
\left\|D_{f(x)} g\right\|(\epsilon\|h\|)+\epsilon\left(\left\|D_{x} f\right\|+\epsilon\right)\|h\|+\epsilon\left\|D_{x} f\right\|\|h\| .
$$

Then when we divide by $\|h\|$, we get that the second limit is also zero.

4 Solutions

(1) Proposition 1.1 (1) follows immediately from the definition, since if $f=A x+t$, then $f(x+$ $h)-f(x)-A h=0$ on the nose.

Proposition 1.1 (2) is proved in the section above.
Proposition 1.1 (3) can be proven in the following manner. Since $m\left(x+h, x^{\prime}+h^{\prime}\right)=m\left(x, x^{\prime}\right)+$ $m\left(h, x^{\prime}\right)+m\left(x, h^{\prime}\right)+m\left(h, h^{\prime}\right)$, the proof reduces to showing that

$$
\lim _{\left\|\left(h, h^{\prime}\right)\right\| \rightarrow 0} \frac{\left\|m\left(h, h^{\prime}\right)\right\|\left\|\left(h, h^{\prime}\right)\right\|}{=} 0 .
$$

But

$$
\left\|m\left(h, h^{\prime}\right)\right\|=\|h\|\left\|h^{\prime}\right\|\left\|m\left(h /\|h\|, h^{\prime} /\left\|h^{\prime}\right\|\right)\right\| \leq M\left\|\left(h, h^{\prime}\right)\right\|\left\|\left(h, h^{\prime}\right)\right\|,
$$

for some constant M, since (in the finite dimensional case) m is bounded on pairs of norm one vectors because m is continuous and pairs of norm one vectors form a compact set isomorphic to $S^{n-1} \times S^{m-1}$ if $V \cong \mathbb{R}^{n}$ and $V^{\prime} \cong \mathbb{R}^{m}$. (In the infinite dimensional case, a bilinear function m should be continuous if and only if we have such a bound, though I might be mistaken).

Dividing by $\left\|\left(h, h^{\prime}\right)\right\|$ and taking the limit we get the result.
(2) The same proof as in part (3) of the previous example gives that if $m\left(x_{1}, \ldots, x_{k}\right)$ is a multilinear $\operatorname{map} V_{1} \times \cdots \times V_{k} \rightarrow W$, then

$$
\left.D_{\left(x_{1}\right.}, \ldots, x_{k}\right) m\left(h_{1}, \ldots, h_{k}\right)=\sum_{i=1}^{k} m\left(x_{1}, \ldots, x_{i-1}, h_{i}, x_{i+1}, \ldots, x_{k}\right)
$$

(3) The reason that we assume that the g_{i} are continuously differentiable at a is so that we can combine them to form a function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ whose components are $\left(g_{1}, \ldots, g_{m}\right)$, and apply Theorem 1.1 to conclude that g is differentiable at a.

Then our function $F=f \circ g$, so we can apply the chain rule to conclude that $D_{a} F=D_{g(a)} f \circ D_{a} g$.
The i th partial is given by multiplying with the i th standard basis vector e_{i}, so multiplying e_{i} on the right, we have $D_{i, a} F=D_{g(a)} f \circ D_{i, a} g$, which is the application of the gradient of f to the column vector whose j th entry is the i th partial of g_{j}. Expanding this out into a sum gives the desired result.
(4) Linearity in the first variable follows from the fact that $\nabla_{u, x} f=\left(D_{x} f\right) u$, and $D_{x} f$ is linear.

The second variable is additive because

$$
\nabla_{u, x}(f+g)=D_{x}(f+g) u=\left(D_{x} f+D_{x} g\right) u=D_{x} f u+D_{x} g u=\nabla_{u, x} f+\nabla_{u, x} g .
$$

The Leibniz rule is satisfied because multiplication $\cdot: \mathbb{R} \times V \rightarrow V$ is bilinear, so we have

$$
\begin{aligned}
\nabla_{u, x} a f & =\left(D_{x}(a f)\right) u \\
& =\left(D_{x} \cdot \circ(a, f)\right) u \\
& =\left(D_{\left(a(x), f(x)^{\cdot}\right.}\right)\left(D_{x}(a, f)\right) u \\
& =\left(D_{\left(a(x), f(x)^{\cdot}\right.}\right)\left(D_{x} a, D_{x} f\right) u \\
& =\left(D_{\left(a(x), f(x)^{\cdot}\right.}\right)\left(D_{x} a u, D_{x} f u\right) \\
& =\left(D_{(a(x), f(x)} \cdot\right)\left(\nabla_{u, x} a, \nabla_{u, x} f\right) \\
& =\left(\nabla_{u, x} a\right) f(x)+a(x) \nabla_{u, x} f
\end{aligned}
$$

(5) Without loss of generality, we can assume $U=f^{-1}(W)$, so $f: U \rightarrow W, g: W \rightarrow U$ are inverses. We are given that f is differentiable at $x \in U$. Let $y=f(x)$, and let $A=D_{x} f$. We are also given that A is invertible. We want to show that g is differentiable at y.

If g is differentiable at y, then $f \circ g=1_{W}$ and $g \circ f=1_{U}$, so we have $D_{x} f \circ D_{y} g=I_{n}$ and $D_{y} g \circ D_{x} f=I_{n}$, so it's a necessary condition that A be invertible for g to be differentiable. Moreover, when g is differentiable at y, its derivative must be A^{-1}.

Therefore, we need to prove

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|g(y+h)-g(y)-A^{-1} h\right\|}{\|h\|}=0
$$

Let $h^{\prime}=g(y+h)-g(y)$, so that $f\left(x+h^{\prime}\right)=f(g(y+h))=y+h$.
Then if we fix $\epsilon>0$, we have that for $\|h\|$ small enough, $\left\|h^{\prime}\right\|$ is small enough that we have $\left\|f\left(x+h^{\prime}\right)-f(x)-A h^{\prime}\right\| \leq \epsilon\left\|h^{\prime}\right\|$, since f is differentiable.

But $f\left(x+h^{\prime}\right)=y+h=f(x)+h$, so this says that $\left\|h-A h^{\prime}\right\| \leq \epsilon\left\|h^{\prime}\right\|$ for $\|h\|$ small enough.
Hence $\left\|A h^{\prime}\right\| \leq\|h\|+\epsilon\left\|h^{\prime}\right\|$. Since we are in finite dimensions, and A is injective, we have that $x \mapsto\|A x\|$ attains a minimum (nonzero) value on the sphere of unit vectors, call that C. Therefore for any h^{\prime}, we have $C\left\|h^{\prime}\right\| \leq\left\|A h^{\prime}\right\|$, and we have $\|h\| \geq(C-\epsilon)\left\|h^{\prime}\right\|$. In fact, this should still work for infinite dimensional Banach spaces by the Open Mapping Theorem, but that isn't really on topic.

We can also transform our inequality $\left\|h-A h^{\prime}\right\| \leq \epsilon\left\|h^{\prime}\right\|$ by applying A^{-1}. Therefore for $\|h\|$ small enough, we have

$$
\left\|h^{\prime}-A^{-1} h\right\| \leq\left\|A^{-1}\left(h-A h^{\prime}\right)\right\| \leq\left\|A^{-1}\right\|\left\|h-A h^{\prime}\right\| \leq \epsilon\left\|A^{-1}\right\|\left\|h^{\prime}\right\| \leq \epsilon\left\|A^{-1}\right\|(C-\epsilon)\|h\|
$$

Which, since C and $\left\|A^{-1}\right\|$ are constants, implies that by reducing ϵ, we have for $\|h\|$ small enough, that $\left\|g(y+h)-g(y)-A^{-1} h\right\|=\left\|h^{\prime}-A^{-1} h\right\| \leq \epsilon\|h\|$. Dividing by $\|h\|$, we have that g is differentiable at y with derivative $\left(D_{x} f\right)^{-1}$.
(6) (a) Multiplication of matrices is bilinear, so $D_{(X, Y)} f(A, B)=X B+A Y$.
(b) The $\operatorname{map} A \mapsto\left(A^{T}, A\right)$ is linear, so its derivative is itself, and the map we care about is the composite of this map with matrix multiplication, so our derivative is $D_{X} f(A)=$ $X^{T} A+A^{T} X$.
(c) The determinant is multilinear in the columns of the input matrix, so if $f(A)=\operatorname{det} A$, then

$$
D_{I_{n}} f(A)=\sum_{i=1}^{n} \operatorname{det}\left(e_{1}, \ldots, e_{i-1}, A_{i}, e_{i+1}, \ldots, e_{n}\right)=\sum_{i=1}^{n} A_{i i}=\operatorname{tr} A
$$

When B is invertible, we have that $\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}\left(B^{-1} A\right)$, and $\operatorname{det}\left(B^{-1} A\right)$ is the composite of det and left multiplication by B^{-1}, which I will denote $\lambda_{B^{-1}}$, which is linear

$$
D_{B} f(H)=\operatorname{det}(B) D_{B^{-1} B} \operatorname{det} \circ D_{B} \lambda_{B^{-1}} H=\operatorname{det}(B) \operatorname{tr}\left(B^{-1} H\right)
$$

In fact, since $\operatorname{det}(B) B^{-1}$ is the adjugate matrix of B, invertible matrices are dense in all matrices, and the determinant is a polynomial function, and thus continuously differentiable, we have that this formula implies that for an arbitrary $B, D_{B} f(H)=\operatorname{tr}((\operatorname{adj} B) H)$. (This observation comes from the wiki page)

This is called Jacobi's formula.

