Notes for Math 225A Discussion Week 0 Jason Schuchardt - October 4, 2020

1 Notes

The goal for today is to review multivariable differentiation. Let’s start with the Fréchet derivative.

Definition 1.1. Let V and W be normed vector spaces (you can assume for our purposes that the
vector spaces are isomorphic to R™ for some n), U C V an open subset of V. A functor f: U — W
is called Fréchet differentiable at x € U if there exists a (continuous) linear operator A : V. — W

such that h m
LS h) — fG) — Al

0.
IR]|—0 ||l

Note that such a linear operator is unique, since if A and B both satisfy the condition, then we

have
. ||[Ah = Bh|lw
im ———— =0,
Inll—o |[hllv

so for any x € V', as we take t € R to 0, we have

1A= B) @) _ (A= Balw _
20 el ]

and thus Az = Bz.

We can thus introduce the following notation, one of D, f, Df,, Df(x) is used to say that f is
differentiable at = and denote the derivative at that point.

We have the following basic properties of the derivative

Proposition 1.1. (1) If f is a (continuous) affine function, in other words f(x) = Ax +t for
some (continuous) linear operator A : V. — W and constant t € W, then for allx € V,

Dof = A.

In particular, if f is constant, then D, f = 0 everywhere.

(2) (Chain rule) If V, V', V" are normed vector spaces, U CV, U CV' f:U—=V' g:U = V",
x € f~YU"), and D.f and D)9 emist, then Dy(go f) = (Df)g) © Daf.

(3) If m : V x V' — W is (continuous and) bilinear, then

Dy ym(h, h') = m(h,v") +m(v, h').

1.1 Definitions specific to R"

If f:R™ — R™, then Df can be written as a matrix, which we call the Jacobian. In the particular
case that f: R™ — R, then we also call Df the gradient of f, which is also written V f.

Note that we can write f : R” — R™ as a tuple of functions (f1,..., fm), and D, f is the matrix
(when it exists) with rows (Dyf1, ..., Dy fm). To prove this, note that f; = m; o f, and ; is linear,
so by (1) and (2) above, D, f; =m0 D, f.

We can also define the jth partial derivative of f as

Dj@f = Dt:()f(.% + tej),
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where e; is the jth standard basis vector. By chain rule, again, we can see that if f is differentiable
at z, then D;, f is the jth column of D, f, which is (D f)e;.

The index notation for partial derivatives rather than the conventional notation is chosen to match
Spivak’s notation.

More generally, if u € R™ is a vector, we can define the directional derivative of f in the direction
of u to be

(Vuf) () := Dio(f (x + ut)),

and observe that by chain rule, when f is differentiable at x, we have

Finally, there is a partial converse to the observation that when the derivative of f exists then all
of f’s partial derivatives exist and are given by the entries in the Jacobian of f.

Theorem 1.1 (Spivak 2-8). If f : R™ — R™, and D, f; exist and are continuous in a neighborhood
of x for all1 <i<m and 1 < j <n, then f is differentiable at x and (D, f)i; = D, fi.

We call a function f satisfying the hypotheses of the theorem continuously differentiable. Functions
all of whose higher order partials are differentiable are called C*° functions.

2 Examples and Problems

(1) Verify the properties listed in Proposition 1.1.
(2) Generalize the property (3) of Proposition 1.1 to arbitrary (continuous) k-multilinear maps.

(3) (Weak chain rule for partial derivatives, Spivak 2-9) Let g1, ..., gm : R — R be continuously
differentiable at a, and let f : R™ — R be differentiable at (g1(a),...,gm(a)). Define F' : R" —
R by F(z) = f(g1(z), ..., gm(x)). Verify:

m

DivaF = Z Djv(gl (a)v"'vgm(a))f ) Divagj
7j=1

Why do we need to assume that the g; are continuously differentiable?

(4) Show that if U C V, the directional derivative V : V- x C*°(U, W) — C*(U, W) is linear in its
first variable and satisfies the Leibniz rule in its second, meaning that for ¢,s € R, u,v € V,
f:U — W a C* function, we have

vtu—i—sv,xf = tvu,xf + va,xfa
and fora:U — R, f,g: U — W,

vu@(f + 9) = vu@f + vu,xg and vu,xaf = (vu,xa)f(l‘) + a(x)vu,xf

(5) Suppose f : U € R"™ — R™ admits a local inverse at = € U, i.e., a continuous function
g: W — R™ such that f(x) € W, g(f(u)) = u for u € f~Y(W), and f(g(w)) = w for w € W.
Then if f is differentiable at x, show that D, f is invertible if and only if g is differentiable at

f ().
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(Originally I forgot to say that we need to assume the derivative is invertible, but if the
derivative is not invertible, the inverse can fail to be differentiable, as with f(x) = 3 at 0,
and it turns out this is an if and only if. I also forgot to assume that g is continuous, which I
suspect isn’t actually necessary, but that wasn’t supposed to be part of the exercise.)

(6) Compute the following derivatives, where My is the set of k x ¢ real matrices.
(a) Let f: Myxe X Myxn — My be given by f(A, B) = AB. What is Dx v f?
(b) Let f : Myx, — Sym(n) be given by f(A) = AT A. What is Dx f?
(c) Let f: My,xn — R be given by the determinant: f(A) = det A. What is Dy, f, where I, is

the n x n identity matrix? Can you work out Dpf, where B is an invertible n x n matrix?

3 A Proof of the Chain Rule

When you set out to prove the chain rule, you quickly realize that you need to control the variation
of a differentiable function in a neighborhood of the point at which it’s differentiable. Here is the
appropriate lemma.

Lemma 3.1. If f : U CV — W s differentiable at x € U, then for all ¢ > 0 there exists a § > 0
such that for all h,h' € V' with ||h]|, ||W/]| < § we have

If(x+ k) = f(z+ )llw < [ DefllIR = bl + e[l + [B])-

Note the corollary that f is Lipschitz at points where it is differentiable, in the sense that by taking
R =0 in the previous lemma, we have that for all e > 0, we can find a § > 0 such that for |h|| < J,

1z +h) = f@)] <UD+ e)lA]-
Proof of lemma. For a given ¢, pick ¢ such that for 0 < ||h|| < 4,

If (@ +h) = f() = Dafhll _
7]

Then for all h with ||h|| < 6, we have that

[f (@ +h) = f(z) = Do fh]| < €[|].

Now we have for ||h|, ||W]| < 4,

1f(@+h) = fla+ W) < [ f(@+h) = fla+H) = Dof(h— )| + | Daf (h— 1)
— [|f(& +h) = f(a) = Dofh— (fla+H) = f(x) = Daf )| + | Daf (h— )|
< ellhll + €l Wl + | Da I — K]l

which is what we want. |

Now we can prove the chain rule.
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Proof of chain rule. We want to show that if f: U CV — V', g: U CV' = V" z¢c f~Y(U), and
D, f and Dy(,g exist, then Dy(go f) = Dy(z)g0 Do f.

In other words, we need to show that

lg(f(z +h)) = g(f(x)) = Dy g(Dafh)I

Il|—0 [ B

Now we can add and subtract g(f(z) + D, f(h)) in the norm on the top, so by triangle inequality,
it suffices to show that both

lg(f(x) + Dafh) — g(f(2)) = (Dga))g(Da R _

]l 0 Al ’
and
i MU @+ 1) = g(f (@) + Daf (DI _
Al|—0 [ '

For the first limit, since g is differentiable, for arbitrary € > 0, for ||w|| small enough, we have

lg(f (@) +w) — g(f(2)) + Dyygwl| < ef|wl.

Taking w = D, fh, since D, f is continuous, we have that for ||| small enough,

lg(f(z) + Dafh) = g(f(2)) + Dy(a)gDa fHI] < €[ D[R]

Dividing by ||h|| gives us that the desired limit is zero.

For the second limit, we apply the lemma. We have that for any €, when ||| is small enough,

lg(f(z+h)=g(f(@)+ Do fR)| < [[Dy@ygllllf(x+h) = f(2) = Do fhl|+ell f(z+h) = f ()| +€l| Dz f Rl

Reducing the bound on | k|| as necessary, for ||h|| small enough, the right hand side is bounded by
1D s(2)9I(€llRl]) + (| Do f[| + )[Rl + €[l D f[[ 2]

Then when we divide by ||h||, we get that the second limit is also zero.

4 Solutions

(1) Proposition 1.1 (1) follows immediately from the definition, since if f = Az + ¢, then f(z +
h) — f(z) — Ah = 0 on the nose.

Proposition 1.1 (2) is proved in the section above.

Proposition 1.1 (3) can be proven in the following manner. Since m(z+h, 2’ +h') = m(z,2") +
m(h,z") +m(z, h') + m(h, '), the proof reduces to showing that

!/ !/
L I
[[(h,h")[|—=0 =

But
[m(h, KO = ([ [lm(h/ RN B /IR DI < My RN Chs RO
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for some constant M, since (in the finite dimensional case) m is bounded on pairs of norm one
vectors because m is continuous and pairs of norm one vectors form a compact set isomorphic
to S"L x §m~Lif V =2 R™ and V/ = R™. (In the infinite dimensional case, a bilinear function
m should be continuous if and only if we have such a bound, though I might be mistaken).

Dividing by ||(h, k)| and taking the limit we get the result.

(2) The same proof as in part (3) of the previous example gives that if m(x1, ..., zy) is a multilinear
map Vi x -+ x Vi = W, then

k
D(IL’l,. . .,xk)m(hl, .o .,hk) = Zm(ml, e ,xi_l,hi,xiﬂ, e ,xk).
i=1

(3) The reason that we assume that the g; are continuously differentiable at a is so that we can
combine them to form a function g : R™ — R™ whose components are (g1, ..., gm), and apply
Theorem 1.1 to conclude that g is differentiable at a.

Then our function F' = fog, so we can apply the chain rule to conclude that D, F' = Dy(,) foDqg.

The ¢th partial is given by multiplying with the ¢th standard basis vector e;, so multiplying e;
on the right, we have D; o F' = Dy f o Dj g, which is the application of the gradient of f to
the column vector whose jth entry is the ith partial of g;. Expanding this out into a sum gives
the desired result.

(4) Linearity in the first variable follows from the fact that V,, . f = (Dyf)u, and D, f is linear.
The second variable is additive because
vu,x(f + g) = D:v(f + g)u = (Dxf + Dacg)u = Dacfu + D:vgu = Vu,;vf + vu,mg-

The Leibniz rule is satisfied because multiplication - : R x V' — V is bilinear, so we have

Vuzaf = (Dz(af))u

= (Dg - o(a, f))u

= (D(a(x) f(x))( z(a, f))u

= (D(a(a),f(2)") (Dza; Dy f)u

= (D(a(a),f(2)) (Dwau, Dy fu)
= (Da(@),f@)) (Vuzt, Vuzf)
= (Vuga)f(z) + a(z)Vua f.

(5) Without loss of generality, we can assume U = f~Y(W), so f : U — W, g: W — U are
inverses. We are given that f is differentiable at x € U. Let y = f(z), and let A = D, f. We
are also given that A is invertible. We want to show that g is differentiable at y.

If g is differentiable at y, then fog = 1y and go f = 1y, so we have D, f o D,g = I, and
Dygo D,f = I, so it’s a necessary condition that A be invertible for g to be differentiable.
Moreover, when g is differentiable at y, its derivative must be A=,

Therefore, we need to prove

lg(y + h) — g(y) — A~ 'hl|

=0.
||| =0 A
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Let h' = g(y + h) — g(y), so that f(z+h') = f(g(y +h)) =y + h.

Then if we fix € > 0, we have that for ||k small enough, ||| is small enough that we have
|f(x+h")— f(x) — AW'|| < €||W]|, since f is differentiable.

But f(x + h') =y + h = f(x) + h, so this says that ||h — Ah'|| < €||'|| for ||| small enough.

Hence [|AR|| < ||h|| + €||h'||. Since we are in finite dimensions, and A is injective, we have
that x — ||Az|| attains a minimum (nonzero) value on the sphere of unit vectors, call that C.
Therefore for any h', we have C||I|| < ||AR/||, and we have ||h|| > (C — €)||//||. In fact, this
should still work for infinite dimensional Banach spaces by the Open Mapping Theorem, but
that isn’t really on topic.

We can also transform our inequality ||h — AR'|| < €||h’|| by applying A~!. Therefore for ||h||
small enough, we have

I — A7'R]| < [ATH(h = AR < JATHIR — AR < e ATH[[R]] < e A7HI(C = e)ll.

Which, since C' and |A~!|| are constants, implies that by reducing e, we have for ||h|| small
enough, that ||g(y + h) — g(y) — A~th| = || — A=1h|| < €||h||. Dividing by ||h||, we have that
g is differentiable at y with derivative (D, f)~!.

(6) (a) Multiplication of matrices is bilinear, so D(x yyf(A, B) = XB + AY.

(b) The map A + (AT, A) is linear, so its derivative is itself, and the map we care about
is the composite of this map with matrix multiplication, so our derivative is Dx f(A) =
XTA+ ATX.

(¢) The determinant is multilinear in the columns of the input matrix, so if f(A) = det A, then

D[nf(A) == Zdet(el, e ,67;,1,141‘, Citlye--y en) == ZA” == tl“A.
i=1 i=1

When B is invertible, we have that det(A) = det(B)det(B~!A), and det(B~'A) is the
composite of det and left multiplication by B~!, which I will denote A1, which is linear

Dpf(H) = det(B)Dg-15det oDpAp—1 H = det(B) tr(B~1H).

In fact, since det(B)B~! is the adjugate matrix of B, invertible matrices are dense in all
matrices, and the determinant is a polynomial function, and thus continuously differen-
tiable, we have that this formula implies that for an arbitrary B, Dpf(H) = tr((adj B)H).
(This observation comes from the wiki page)

This is called Jacobi’s formula.



