1 Notes

The goal for today is to review multivariable differentiation. Let's start with the Fréchet derivative.

Definition 1.1. Let V and W be normed vector spaces (you can assume for our purposes that the vector spaces are isomorphic to \mathbb{R}^n for some n), $U \subseteq V$ an open subset of V. A functor $f: U \to W$ is called *Fréchet differentiable* at $x \in U$ if there exists a (continuous) linear operator $A: V \to W$ such that

$$\lim_{\|h\|\to 0} \frac{\|f(x+h) - f(x) - Ah\|_W}{\|h\|_V} = 0.$$

Note that such a linear operator is unique, since if A and B both satisfy the condition, then we have

$$\lim_{\|h\|\to 0} \frac{\|Ah - Bh\|_W}{\|h\|_V} = 0,$$

so for any $x \in V$, as we take $t \in \mathbb{R}$ to 0, we have

$$\lim_{t \to 0} \frac{\|(A - B)(tx)\|_W}{\|tx\|_V} = \frac{\|(A - B)x\|_W}{\|x\|} = 0,$$

and thus Ax = Bx.

We can thus introduce the following notation, one of $D_x f$, Df_x , Df(x) is used to say that f is differentiable at x and denote the derivative at that point.

We have the following basic properties of the derivative

Proposition 1.1. (1) If f is a (continuous) affine function, in other words f(x) = Ax + t for some (continuous) linear operator $A: V \to W$ and constant $t \in W$, then for all $x \in V$,

$$D_x f = A.$$

In particular, if f is constant, then $D_x f = 0$ everywhere.

- (2) (Chain rule) If V, V', V'' are normed vector spaces, $U \subseteq V, U' \subseteq V', f: U \to V', g: U' \to V'', x \in f^{-1}(U')$, and $D_x f$ and $D_{f(x)}g$ exist, then $D_x(g \circ f) = (D_{f(x)}g) \circ D_x f$.
- (3) If $m: V \times V' \to W$ is (continuous and) bilinear, then

$$D_{(v,v')}m(h,h') = m(h,v') + m(v,h').$$

1.1 Definitions specific to \mathbb{R}^n

If $f : \mathbb{R}^n \to \mathbb{R}^m$, then Df can be written as a matrix, which we call the *Jacobian*. In the particular case that $f : \mathbb{R}^n \to \mathbb{R}$, then we also call Df the *gradient* of f, which is also written ∇f .

Note that we can write $f : \mathbb{R}^n \to \mathbb{R}^m$ as a tuple of functions (f_1, \ldots, f_m) , and $D_x f$ is the matrix (when it exists) with rows $(D_x f_1, \ldots, D_x f_m)$. To prove this, note that $f_i = \pi_i \circ f$, and π_i is linear, so by (1) and (2) above, $D_x f_i = \pi_i \circ D_x f$.

We can also define the jth partial derivative of f as

$$D_{j,x}f := D_{t=0}f(x+te_j),$$

where e_j is the *j*th standard basis vector. By chain rule, again, we can see that if *f* is differentiable at *x*, then $D_{j,x}f$ is the *j*th column of D_xf , which is $(D_xf)e_j$.

The index notation for partial derivatives rather than the conventional notation is chosen to match Spivak's notation.

More generally, if $u \in \mathbb{R}^n$ is a vector, we can define the directional derivative of f in the direction of u to be

$$(\nabla_u f)(x) := D_{t=0}(f(x+ut)),$$

and observe that by chain rule, when f is differentiable at x, we have

$$(\nabla_u f)(x) = (D_x f)u.$$

Finally, there is a partial converse to the observation that when the derivative of f exists then all of f's partial derivatives exist and are given by the entries in the Jacobian of f.

Theorem 1.1 (Spivak 2-8). If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $D_j f_i$ exist and are continuous in a neighborhood of x for all $1 \le i \le m$ and $1 \le j \le n$, then f is differentiable at x and $(D_x f)_{ij} = D_j f_i$.

We call a function f satisfying the hypotheses of the theorem *continuously differentiable*. Functions all of whose higher order partials are differentiable are called C^{∞} functions.

2 Examples and Problems

- (1) Verify the properties listed in Proposition 1.1.
- (2) Generalize the property (3) of Proposition 1.1 to arbitrary (continuous) k-multilinear maps.
- (3) (Weak chain rule for partial derivatives, Spivak 2-9) Let $g_1, \ldots, g_m : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable at a, and let $f : \mathbb{R}^m \to \mathbb{R}$ be differentiable at $(g_1(a), \ldots, g_m(a))$. Define $F : \mathbb{R}^n \to \mathbb{R}$ by $F(x) = f(g_1(x), \ldots, g_m(x))$. Verify:

$$D_{i,a}F = \sum_{j=1}^{m} D_{j,(g_1(a),\dots,g_m(a))}f \cdot D_{i,a}g_j$$

Why do we need to assume that the g_i are continuously differentiable?

(4) Show that if $U \subseteq V$, the directional derivative $\nabla : V \times C^{\infty}(U, W) \to C^{\infty}(U, W)$ is linear in its first variable and satisfies the Leibniz rule in its second, meaning that for $t, s \in \mathbb{R}, u, v \in V$, $f: U \to W$ a C^{∞} function, we have

$$\nabla_{tu+sv,x}f = t\nabla_{u,x}f + s\nabla_{v,x}f,$$

and for $a: U \to \mathbb{R}, f, g: U \to W$,

$$\nabla_{u,x}(f+g) = \nabla_{u,x}f + \nabla_{u,x}g$$
 and $\nabla_{u,x}af = (\nabla_{u,x}a)f(x) + a(x)\nabla_{u,x}f$

(5) Suppose $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ admits a local inverse at $x \in U$, i.e., a continuous function $g: W \to \mathbb{R}^n$ such that $f(x) \in W$, g(f(u)) = u for $u \in f^{-1}(W)$, and f(g(w)) = w for $w \in W$. Then if f is differentiable at x, show that $D_x f$ is invertible if and only if g is differentiable at f(x).

(Originally I forgot to say that we need to assume the derivative is invertible, but if the derivative is not invertible, the inverse can fail to be differentiable, as with $f(x) = x^3$ at 0, and it turns out this is an if and only if. I also forgot to assume that g is continuous, which I suspect isn't actually necessary, but that wasn't supposed to be part of the exercise.)

- (6) Compute the following derivatives, where $M_{k \times \ell}$ is the set of $k \times \ell$ real matrices.
 - (a) Let $f: M_{k \times \ell} \times M_{\ell \times n} \to M_{k \times n}$ be given by f(A, B) = AB. What is $D_{(X,Y)}f$?
 - (b) Let $f: M_{n \times n} \to \text{Sym}(n)$ be given by $f(A) = A^T A$. What is $D_X f$?
 - (c) Let $f: M_{n \times n} \to \mathbb{R}$ be given by the determinant: $f(A) = \det A$. What is $D_{I_n} f$, where I_n is the $n \times n$ identity matrix? Can you work out $D_B f$, where B is an invertible $n \times n$ matrix?

3 A Proof of the Chain Rule

When you set out to prove the chain rule, you quickly realize that you need to control the variation of a differentiable function in a neighborhood of the point at which it's differentiable. Here is the appropriate lemma.

Lemma 3.1. If $f : U \subseteq V \to W$ is differentiable at $x \in U$, then for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all $h, h' \in V$ with $||h||, ||h'|| < \delta$ we have

$$||f(x+h) - f(x+h')||_W \le ||D_x f|| ||h - h'|| + \epsilon(||h|| + ||h'||).$$

Note the corollary that f is Lipschitz at points where it is differentiable, in the sense that by taking h' = 0 in the previous lemma, we have that for all $\epsilon > 0$, we can find a $\delta > 0$ such that for $||h|| < \delta$,

$$||f(x+h) - f(x)|| \le (||D_x f|| + \epsilon)||h||.$$

Proof of lemma. For a given ϵ , pick δ such that for $0 < ||h|| < \delta$,

$$\frac{\|f(x+h) - f(x) - D_x fh\|}{\|h\|} < \epsilon.$$

Then for all h with $||h|| < \delta$, we have that

$$||f(x+h) - f(x) - D_x fh|| \le \epsilon ||h||.$$

Now we have for $||h||, ||h'|| < \delta$,

$$\begin{aligned} \|f(x+h) - f(x+h')\| &\leq \|f(x+h) - f(x+h') - D_x f(h-h')\| + \|D_x f(h-h')\| \\ &= \|f(x+h) - f(x) - D_x f(h) - (f(x+h') - f(x) - D_x f(h'))\| + \|D_x f(h-h')\| \\ &\leq \epsilon \|h\| + \epsilon \|h'\| + \|D_x f\| \|h-h'\|, \end{aligned}$$

which is what we want.

Now we can prove the chain rule.

Proof of chain rule. We want to show that if $f: U \subseteq V \to V'$, $g: U' \subseteq V' \to V''$, $x \in f^{-1}(U)$, and $D_x f$ and $D_{f(x)}g$ exist, then $D_x(g \circ f) = D_{f(x)}g \circ D_x f$.

In other words, we need to show that

$$\lim_{\|h\|\to 0} \frac{\|g(f(x+h)) - g(f(x)) - D_{f(x)}g(D_x fh)\|}{\|h\|} = 0$$

Now we can add and subtract $g(f(x) + D_x f(h))$ in the norm on the top, so by triangle inequality, it suffices to show that both

$$\lim_{\|h\|\to 0} \frac{\|g(f(x) + D_x fh) - g(f(x)) - (D_{f(x)})g(D_x fh)\|}{\|h\|} = 0,$$

and

$$\lim_{\|h\|\to 0} \frac{\|g(f(x+h)) - g(f(x) + D_x f(h))\|}{\|h\|} = 0.$$

For the first limit, since g is differentiable, for arbitrary $\epsilon > 0$, for ||w|| small enough, we have

$$||g(f(x) + w) - g(f(x)) + D_{f(x)}gw|| \le \epsilon ||w||.$$

Taking $w = D_x fh$, since $D_x f$ is continuous, we have that for ||h|| small enough,

$$||g(f(x) + D_x fh) - g(f(x)) + D_{f(x)}gD_x fh|| \le \epsilon ||D_x f|| ||h||.$$

Dividing by ||h|| gives us that the desired limit is zero.

For the second limit, we apply the lemma. We have that for any ϵ , when $\|h\|$ is small enough,

$$\|g(f(x+h)) - g(f(x) + D_x fh)\| \le \|D_{f(x)}g\| \|f(x+h) - f(x) - D_x fh\| + \epsilon \|f(x+h) - f(x)\| + \epsilon \|D_x fh\|.$$

Reducing the bound on ||h|| as necessary, for ||h|| small enough, the right hand side is bounded by

 $||D_{f(x)}g||(\epsilon||h||) + \epsilon(||D_xf|| + \epsilon)||h|| + \epsilon||D_xf|| ||h||.$

Then when we divide by ||h||, we get that the second limit is also zero.

4 Solutions

(1) Proposition 1.1 (1) follows immediately from the definition, since if f = Ax + t, then f(x + h) - f(x) - Ah = 0 on the nose.

Proposition 1.1(2) is proved in the section above.

Proposition 1.1 (3) can be proven in the following manner. Since m(x+h, x'+h') = m(x, x') + m(h, x') + m(x, h') + m(h, h'), the proof reduces to showing that

$$\lim_{\|(h,h')\|\to 0} \frac{\|m(h,h')\|\|(h,h')\|}{=} 0.$$

But

$$||m(h,h')|| = ||h|| ||h'|| ||m(h/||h||, h'/||h'||)|| \le M||(h,h')||||(h,h')||$$

for some constant M, since (in the finite dimensional case) m is bounded on pairs of norm one vectors because m is continuous and pairs of norm one vectors form a compact set isomorphic to $S^{n-1} \times S^{m-1}$ if $V \cong \mathbb{R}^n$ and $V' \cong \mathbb{R}^m$. (In the infinite dimensional case, a bilinear function m should be continuous if and only if we have such a bound, though I might be mistaken).

Dividing by ||(h, h')|| and taking the limit we get the result.

(2) The same proof as in part (3) of the previous example gives that if $m(x_1, \ldots, x_k)$ is a multilinear map $V_1 \times \cdots \times V_k \to W$, then

$$D_{(x_1,\ldots,x_k)}m(h_1,\ldots,h_k) = \sum_{i=1}^k m(x_1,\ldots,x_{i-1},h_i,x_{i+1},\ldots,x_k).$$

(3) The reason that we assume that the g_i are continuously differentiable at a is so that we can combine them to form a function $g : \mathbb{R}^n \to \mathbb{R}^m$ whose components are (g_1, \ldots, g_m) , and apply Theorem 1.1 to conclude that g is differentiable at a.

Then our function $F = f \circ g$, so we can apply the chain rule to conclude that $D_a F = D_{g(a)} f \circ D_a g$.

The *i*th partial is given by multiplying with the *i*th standard basis vector e_i , so multiplying e_i on the right, we have $D_{i,a}F = D_{g(a)}f \circ D_{i,a}g$, which is the application of the gradient of f to the column vector whose *j*th entry is the *i*th partial of g_j . Expanding this out into a sum gives the desired result.

(4) Linearity in the first variable follows from the fact that $\nabla_{u,x}f = (D_x f)u$, and $D_x f$ is linear. The second variable is additive because

The second variable is additive because

$$\nabla_{u,x}(f+g) = D_x(f+g)u = (D_xf + D_xg)u = D_xfu + D_xgu = \nabla_{u,x}f + \nabla_{u,x}g.$$

The Leibniz rule is satisfied because multiplication $\cdot : \mathbb{R} \times V \to V$ is bilinear, so we have

$$\begin{aligned} \nabla_{u,x}af &= (D_x(af))u\\ &= (D_x \cdot \circ (a, f))u\\ &= (D_{(a(x),f(x)} \cdot)(D_x(a, f))u\\ &= (D_{(a(x),f(x)} \cdot)(D_xa, D_xf)u\\ &= (D_{(a(x),f(x)} \cdot)(D_xau, D_xfu)\\ &= (D_{(a(x),f(x)} \cdot)(\nabla_{u,x}a, \nabla_{u,x}f))\\ &= (\nabla_{u,x}a)f(x) + a(x)\nabla_{u,x}f. \end{aligned}$$

(5) Without loss of generality, we can assume $U = f^{-1}(W)$, so $f : U \to W$, $g : W \to U$ are inverses. We are given that f is differentiable at $x \in U$. Let y = f(x), and let $A = D_x f$. We are also given that A is invertible. We want to show that g is differentiable at y.

If g is differentiable at y, then $f \circ g = 1_W$ and $g \circ f = 1_U$, so we have $D_x f \circ D_y g = I_n$ and $D_y g \circ D_x f = I_n$, so it's a necessary condition that A be invertible for g to be differentiable. Moreover, when g is differentiable at y, its derivative must be A^{-1} .

Therefore, we need to prove

$$\lim_{\|h\| \to 0} \frac{\|g(y+h) - g(y) - A^{-1}h\|}{\|h\|} = 0.$$

Let h' = g(y+h) - g(y), so that f(x+h') = f(g(y+h)) = y+h.

Then if we fix $\epsilon > 0$, we have that for ||h|| small enough, ||h'|| is small enough that we have $||f(x+h') - f(x) - Ah'|| \le \epsilon ||h'||$, since f is differentiable.

But f(x+h') = y+h = f(x)+h, so this says that $||h - Ah'|| \le \epsilon ||h'||$ for ||h|| small enough.

Hence $||Ah'|| \leq ||h|| + \epsilon ||h'||$. Since we are in finite dimensions, and A is injective, we have that $x \mapsto ||Ax||$ attains a minimum (nonzero) value on the sphere of unit vectors, call that C. Therefore for any h', we have $C||h'|| \leq ||Ah'||$, and we have $||h|| \geq (C - \epsilon)||h'||$. In fact, this should still work for infinite dimensional Banach spaces by the Open Mapping Theorem, but that isn't really on topic.

We can also transform our inequality $||h - Ah'|| \le \epsilon ||h'||$ by applying A^{-1} . Therefore for ||h|| small enough, we have

$$||h' - A^{-1}h|| \le ||A^{-1}(h - Ah')|| \le ||A^{-1}|| ||h - Ah'|| \le \epsilon ||A^{-1}|| ||h'|| \le \epsilon ||A^{-1}|| (C - \epsilon) ||h||$$

Which, since C and $||A^{-1}||$ are constants, implies that by reducing ϵ , we have for ||h|| small enough, that $||g(y+h) - g(y) - A^{-1}h|| = ||h' - A^{-1}h|| \le \epsilon ||h||$. Dividing by ||h||, we have that g is differentiable at y with derivative $(D_x f)^{-1}$.

- (6) (a) Multiplication of matrices is bilinear, so $D_{(X,Y)}f(A,B) = XB + AY$.
 - (b) The map $A \mapsto (A^T, A)$ is linear, so its derivative is itself, and the map we care about is the composite of this map with matrix multiplication, so our derivative is $D_X f(A) = X^T A + A^T X$.
 - (c) The determinant is multilinear in the columns of the input matrix, so if $f(A) = \det A$, then

$$D_{I_n}f(A) = \sum_{i=1}^n \det(e_1, \dots, e_{i-1}, A_i, e_{i+1}, \dots, e_n) = \sum_{i=1}^n A_{ii} = \operatorname{tr} A.$$

When B is invertible, we have that $det(A) = det(B) det(B^{-1}A)$, and $det(B^{-1}A)$ is the composite of det and left multiplication by B^{-1} , which I will denote $\lambda_{B^{-1}}$, which is linear

$$D_B f(H) = \det(B) D_{B^{-1}B} \det \circ D_B \lambda_{B^{-1}} H = \det(B) \operatorname{tr}(B^{-1}H).$$

In fact, since $\det(B)B^{-1}$ is the adjugate matrix of B, invertible matrices are dense in all matrices, and the determinant is a polynomial function, and thus continuously differentiable, we have that this formula implies that for an arbitrary B, $D_B f(H) = \operatorname{tr}((\operatorname{adj} B)H)$. (This observation comes from the wiki page)

This is called Jacobi's formula.