
Notes for Math 225A Discussion Week 0 Jason Schuchardt - October 4, 2020

1 Notes

The goal for today is to review multivariable differentiation. Let’s start with the Fréchet derivative.

Definition 1.1. Let V and W be normed vector spaces (you can assume for our purposes that the
vector spaces are isomorphic to Rn for some n), U ⊆ V an open subset of V . A functor f : U →W
is called Fréchet differentiable at x ∈ U if there exists a (continuous) linear operator A : V → W
such that

lim
‖h‖→0

‖f(x+ h)− f(x)−Ah‖W
‖h‖V

= 0.

Note that such a linear operator is unique, since if A and B both satisfy the condition, then we
have

lim
‖h‖→0

‖Ah−Bh‖W
‖h‖V

= 0,

so for any x ∈ V , as we take t ∈ R to 0, we have

lim
t→0

‖(A−B)(tx)‖W
‖tx‖V

=
‖(A−B)x‖W

‖x‖
= 0,

and thus Ax = Bx.

We can thus introduce the following notation, one of Dxf , Dfx, Df(x) is used to say that f is
differentiable at x and denote the derivative at that point.

We have the following basic properties of the derivative

Proposition 1.1. (1) If f is a (continuous) affine function, in other words f(x) = Ax + t for
some (continuous) linear operator A : V →W and constant t ∈W , then for all x ∈ V ,

Dxf = A.

In particular, if f is constant, then Dxf = 0 everywhere.

(2) (Chain rule) If V, V ′, V ′′ are normed vector spaces, U ⊆ V , U ′ ⊆ V ′, f : U → V ′, g : U ′ → V ′′,
x ∈ f−1(U ′), and Dxf and Df(x)g exist, then Dx(g ◦ f) = (Df(x)g) ◦Dxf .

(3) If m : V × V ′ →W is (continuous and) bilinear, then

D(v,v′)m(h, h′) = m(h, v′) +m(v, h′).

1.1 Definitions specific to Rn

If f : Rn → Rm, then Df can be written as a matrix, which we call the Jacobian. In the particular
case that f : Rn → R, then we also call Df the gradient of f , which is also written ∇f .

Note that we can write f : Rn → Rm as a tuple of functions (f1, . . . , fm), and Dxf is the matrix
(when it exists) with rows (Dxf1, . . . , Dxfm). To prove this, note that fi = πi ◦ f , and πi is linear,
so by (1) and (2) above, Dxfi = πi ◦Dxf .

We can also define the jth partial derivative of f as

Dj,xf := Dt=0f(x+ tej),
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where ej is the jth standard basis vector. By chain rule, again, we can see that if f is differentiable
at x, then Dj,xf is the jth column of Dxf , which is (Dxf)ej .

The index notation for partial derivatives rather than the conventional notation is chosen to match
Spivak’s notation.

More generally, if u ∈ Rn is a vector, we can define the directional derivative of f in the direction
of u to be

(∇uf)(x) := Dt=0(f(x+ ut)),

and observe that by chain rule, when f is differentiable at x, we have

(∇uf)(x) = (Dxf)u.

Finally, there is a partial converse to the observation that when the derivative of f exists then all
of f ’s partial derivatives exist and are given by the entries in the Jacobian of f .

Theorem 1.1 (Spivak 2-8). If f : Rn → Rm, and Djfi exist and are continuous in a neighborhood
of x for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, then f is differentiable at x and (Dxf)ij = Djfi.

We call a function f satisfying the hypotheses of the theorem continuously differentiable. Functions
all of whose higher order partials are differentiable are called C∞ functions.

2 Examples and Problems

(1) Verify the properties listed in Proposition 1.1.

(2) Generalize the property (3) of Proposition 1.1 to arbitrary (continuous) k-multilinear maps.

(3) (Weak chain rule for partial derivatives, Spivak 2-9) Let g1, . . . , gm : Rn → R be continuously
differentiable at a, and let f : Rm → R be differentiable at (g1(a), . . . , gm(a)). Define F : Rn →
R by F (x) = f(g1(x), . . . , gm(x)). Verify:

Di,aF =

m∑
j=1

Dj,(g1(a),...,gm(a))f ·Di,agj

Why do we need to assume that the gi are continuously differentiable?

(4) Show that if U ⊆ V , the directional derivative ∇ : V ×C∞(U,W )→ C∞(U,W ) is linear in its
first variable and satisfies the Leibniz rule in its second, meaning that for t, s ∈ R, u, v ∈ V ,
f : U →W a C∞ function, we have

∇tu+sv,xf = t∇u,xf + s∇v,xf,

and for a : U → R, f, g : U →W ,

∇u,x(f + g) = ∇u,xf +∇u,xg and ∇u,xaf = (∇u,xa)f(x) + a(x)∇u,xf.

(5) Suppose f : U ⊆ Rn → Rn admits a local inverse at x ∈ U , i.e., a continuous function
g : W → Rn such that f(x) ∈ W , g(f(u)) = u for u ∈ f−1(W ), and f(g(w)) = w for w ∈ W .
Then if f is differentiable at x, show that Dxf is invertible if and only if g is differentiable at
f(x).

2



Notes for Math 225A Discussion Week 0 Jason Schuchardt - October 4, 2020

(Originally I forgot to say that we need to assume the derivative is invertible, but if the
derivative is not invertible, the inverse can fail to be differentiable, as with f(x) = x3 at 0,
and it turns out this is an if and only if. I also forgot to assume that g is continuous, which I
suspect isn’t actually necessary, but that wasn’t supposed to be part of the exercise.)

(6) Compute the following derivatives, where Mk×` is the set of k × ` real matrices.

(a) Let f : Mk×` ×M`×n →Mk×n be given by f(A,B) = AB. What is D(X,Y )f?

(b) Let f : Mn×n → Sym(n) be given by f(A) = ATA. What is DXf?

(c) Let f : Mn×n → R be given by the determinant: f(A) = detA. What is DInf , where In is
the n×n identity matrix? Can you work out DBf , where B is an invertible n×n matrix?

3 A Proof of the Chain Rule

When you set out to prove the chain rule, you quickly realize that you need to control the variation
of a differentiable function in a neighborhood of the point at which it’s differentiable. Here is the
appropriate lemma.

Lemma 3.1. If f : U ⊆ V → W is differentiable at x ∈ U , then for all ε > 0 there exists a δ > 0
such that for all h, h′ ∈ V with ‖h‖, ‖h′‖ < δ we have

‖f(x+ h)− f(x+ h′)‖W ≤ ‖Dxf‖‖h− h′‖+ ε(‖h‖+ ‖h′‖).

Note the corollary that f is Lipschitz at points where it is differentiable, in the sense that by taking
h′ = 0 in the previous lemma, we have that for all ε > 0, we can find a δ > 0 such that for ‖h‖ < δ,

‖f(x+ h)− f(x)‖ ≤ (‖Dxf‖+ ε)‖h‖.

Proof of lemma. For a given ε, pick δ such that for 0 < ‖h‖ < δ,

‖f(x+ h)− f(x)−Dxfh‖
‖h‖

< ε.

Then for all h with ‖h‖ < δ, we have that

‖f(x+ h)− f(x)−Dxfh‖ ≤ ε‖h‖.

Now we have for ‖h‖, ‖h′‖ < δ,

‖f(x+ h)− f(x+ h′)‖ ≤ ‖f(x+ h)− f(x+ h′)−Dxf(h− h′)‖+ ‖Dxf(h− h′)‖
= ‖f(x+ h)− f(x)−Dxfh− (f(x+ h′)− f(x)−Dxfh

′)‖+ ‖Dxf(h− h′)‖
≤ ε‖h‖+ ε‖h′‖+ ‖Dxf‖‖h− h′‖,

which is what we want. �

Now we can prove the chain rule.
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Proof of chain rule. We want to show that if f : U ⊆ V → V ′, g : U ′ ⊆ V ′ → V ′′, x ∈ f−1(U), and
Dxf and Df(x)g exist, then Dx(g ◦ f) = Df(x)g ◦Dxf .

In other words, we need to show that

lim
‖h‖→0

‖g(f(x+ h))− g(f(x))−Df(x)g(Dxfh)‖
‖h‖

= 0.

Now we can add and subtract g(f(x) +Dxf(h)) in the norm on the top, so by triangle inequality,
it suffices to show that both

lim
‖h‖→0

‖g(f(x) +Dxfh)− g(f(x))− (Df(x))g(Dxfh)‖
‖h‖

= 0,

and

lim
‖h‖→0

‖g(f(x+ h))− g(f(x) +Dxf(h))‖
‖h‖

= 0.

For the first limit, since g is differentiable, for arbitrary ε > 0, for ‖w‖ small enough, we have

‖g(f(x) + w)− g(f(x)) +Df(x)gw‖ ≤ ε‖w‖.

Taking w = Dxfh, since Dxf is continuous, we have that for ‖h‖ small enough,

‖g(f(x) +Dxfh)− g(f(x)) +Df(x)gDxfh‖ ≤ ε‖Dxf‖‖h‖.

Dividing by ‖h‖ gives us that the desired limit is zero.

For the second limit, we apply the lemma. We have that for any ε, when ‖h‖ is small enough,

‖g(f(x+h))−g(f(x)+Dxfh)‖ ≤ ‖Df(x)g‖‖f(x+h)−f(x)−Dxfh‖+ε‖f(x+h)−f(x)‖+ε‖Dxfh‖.

Reducing the bound on ‖h‖ as necessary, for ‖h‖ small enough, the right hand side is bounded by

‖Df(x)g‖(ε‖h‖) + ε(‖Dxf‖+ ε)‖h‖+ ε‖Dxf‖‖h‖.

Then when we divide by ‖h‖, we get that the second limit is also zero.

�

4 Solutions

(1) Proposition 1.1 (1) follows immediately from the definition, since if f = Ax + t, then f(x +
h)− f(x)−Ah = 0 on the nose.

Proposition 1.1 (2) is proved in the section above.

Proposition 1.1 (3) can be proven in the following manner. Since m(x+h, x′+h′) = m(x, x′) +
m(h, x′) +m(x, h′) +m(h, h′), the proof reduces to showing that

lim
‖(h,h′)‖→0

‖m(h, h′)‖‖(h, h′)‖
=

0.

But
‖m(h, h′)‖ = ‖h‖‖h′‖‖m(h/‖h‖, h′/‖h′‖)‖ ≤M‖(h, h′)‖‖(h, h′)‖,
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for some constant M , since (in the finite dimensional case) m is bounded on pairs of norm one
vectors because m is continuous and pairs of norm one vectors form a compact set isomorphic
to Sn−1 × Sm−1 if V ∼= Rn and V ′ ∼= Rm. (In the infinite dimensional case, a bilinear function
m should be continuous if and only if we have such a bound, though I might be mistaken).

Dividing by ‖(h, h′)‖ and taking the limit we get the result.

(2) The same proof as in part (3) of the previous example gives that if m(x1, . . . , xk) is a multilinear
map V1 × · · · × Vk →W , then

D(x1, . . . , xk)m(h1, . . . , hk) =
k∑

i=1

m(x1, . . . , xi−1, hi, xi+1, . . . , xk).

(3) The reason that we assume that the gi are continuously differentiable at a is so that we can
combine them to form a function g : Rn → Rm whose components are (g1, . . . , gm), and apply
Theorem 1.1 to conclude that g is differentiable at a.

Then our function F = f◦g, so we can apply the chain rule to conclude thatDaF = Dg(a)f◦Dag.

The ith partial is given by multiplying with the ith standard basis vector ei, so multiplying ei
on the right, we have Di,aF = Dg(a)f ◦Di,ag, which is the application of the gradient of f to
the column vector whose jth entry is the ith partial of gj . Expanding this out into a sum gives
the desired result.

(4) Linearity in the first variable follows from the fact that ∇u,xf = (Dxf)u, and Dxf is linear.

The second variable is additive because

∇u,x(f + g) = Dx(f + g)u = (Dxf +Dxg)u = Dxfu+Dxgu = ∇u,xf +∇u,xg.

The Leibniz rule is satisfied because multiplication · : R× V → V is bilinear, so we have

∇u,xaf = (Dx(af))u

= (Dx · ◦(a, f))u

= (D(a(x),f(x)·)(Dx(a, f))u

= (D(a(x),f(x)·)(Dxa,Dxf)u

= (D(a(x),f(x)·)(Dxau,Dxfu)

= (D(a(x),f(x)·)(∇u,xa,∇u,xf)

= (∇u,xa)f(x) + a(x)∇u,xf.

(5) Without loss of generality, we can assume U = f−1(W ), so f : U → W , g : W → U are
inverses. We are given that f is differentiable at x ∈ U . Let y = f(x), and let A = Dxf . We
are also given that A is invertible. We want to show that g is differentiable at y.

If g is differentiable at y, then f ◦ g = 1W and g ◦ f = 1U , so we have Dxf ◦ Dyg = In and
Dyg ◦ Dxf = In, so it’s a necessary condition that A be invertible for g to be differentiable.
Moreover, when g is differentiable at y, its derivative must be A−1.

Therefore, we need to prove

lim
‖h‖→0

‖g(y + h)− g(y)−A−1h‖
‖h‖

= 0.

5



Notes for Math 225A Discussion Week 0 Jason Schuchardt - October 4, 2020

Let h′ = g(y + h)− g(y), so that f(x+ h′) = f(g(y + h)) = y + h.

Then if we fix ε > 0, we have that for ‖h‖ small enough, ‖h′‖ is small enough that we have
‖f(x+ h′)− f(x)−Ah′‖ ≤ ε‖h′‖, since f is differentiable.

But f(x+ h′) = y + h = f(x) + h, so this says that ‖h−Ah′‖ ≤ ε‖h′‖ for ‖h‖ small enough.

Hence ‖Ah′‖ ≤ ‖h‖ + ε‖h′‖. Since we are in finite dimensions, and A is injective, we have
that x 7→ ‖Ax‖ attains a minimum (nonzero) value on the sphere of unit vectors, call that C.
Therefore for any h′, we have C‖h′‖ ≤ ‖Ah′‖, and we have ‖h‖ ≥ (C − ε)‖h′‖. In fact, this
should still work for infinite dimensional Banach spaces by the Open Mapping Theorem, but
that isn’t really on topic.

We can also transform our inequality ‖h − Ah′‖ ≤ ε‖h′‖ by applying A−1. Therefore for ‖h‖
small enough, we have

‖h′ −A−1h‖ ≤ ‖A−1(h−Ah′)‖ ≤ ‖A−1‖‖h−Ah′‖ ≤ ε‖A−1‖‖h′‖ ≤ ε‖A−1‖(C − ε)‖h‖.

Which, since C and ‖A−1‖ are constants, implies that by reducing ε, we have for ‖h‖ small
enough, that ‖g(y + h)− g(y)−A−1h‖ = ‖h′ −A−1h‖ ≤ ε‖h‖. Dividing by ‖h‖, we have that
g is differentiable at y with derivative (Dxf)−1.

(6) (a) Multiplication of matrices is bilinear, so D(X,Y )f(A,B) = XB +AY .

(b) The map A 7→ (AT , A) is linear, so its derivative is itself, and the map we care about
is the composite of this map with matrix multiplication, so our derivative is DXf(A) =
XTA+ATX.

(c) The determinant is multilinear in the columns of the input matrix, so if f(A) = detA, then

DInf(A) =

n∑
i=1

det(e1, . . . , ei−1, Ai, ei+1, . . . , en) =

n∑
i=1

Aii = trA.

When B is invertible, we have that det(A) = det(B) det(B−1A), and det(B−1A) is the
composite of det and left multiplication by B−1, which I will denote λB−1 , which is linear

DBf(H) = det(B)DB−1B det ◦DBλB−1H = det(B) tr(B−1H).

In fact, since det(B)B−1 is the adjugate matrix of B, invertible matrices are dense in all
matrices, and the determinant is a polynomial function, and thus continuously differen-
tiable, we have that this formula implies that for an arbitrary B, DBf(H) = tr((adjB)H).
(This observation comes from the wiki page)

This is called Jacobi’s formula.
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