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TRIANGULATIONS OF SIMPLICES WITH VANISHING LOCAL

h-POLYNOMIAL

ANDRÉ DE MOURA, ELIJAH GUNTHER, SAM PAYNE, JASON SCHUCHARDT, AND
ALAN STAPLEDON

Abstract. Motivated by connections to intersection homology of toric mor-
phisms, the motivic monodromy conjecture, and a question of Stanley, we
study the structure of geometric triangulations of simplices whose local h-
polynomial vanishes. As a first step, we identify a class of refinements that
preserve the local h-polynomial. In dimensions 2 and 3, we show that all geo-
metric triangulations with vanishing local h-polynomial are obtained from one
or two simple examples by a sequence of such refinements. In higher dimen-
sions, we prove some partial results and give further examples.

1. Introduction

Let Γ be a triangulation of a simplex ∆ of dimension d − 1. The h-polynomial
h(Γ;x) = h0 + h1x + · · · + hdx

d is a common and convenient way of encoding the
number of faces of Γ in each dimension. It is characterized by the equation

d∑

i=0

hi(x+ 1)d−i =

d∑

i=0

fi−1x
d−i,

where f−1 = 1 and fi is the number of i-dimensional faces of Γ, for i ≥ 0. The
coefficients hi are non-negative integers. One powerful tool for studying h(Γ;x) is
the local h-polynomial ℓ(Γ;x) = ℓ0 + ℓ1x+ · · ·+ ℓdx

d, introduced by Stanley in his
seminal paper [Sta92]. It is characterized via Möbius inversion by the equation

(1) h(Γ;x) =
∑

F≤∆

ℓ(ΓF ;x),

where ΓF denotes the restriction of the triangulation Γ to a face F (which may be
empty or all of ∆), together with the condition ℓ(∅;x) = 1.

The local h-polynomial has remarkable properties. In particular, the coefficients
ℓi are nonnegative and satisfy ℓi = ℓd−i. Moreover, if the subdivision is regular, then
these coefficients are unimodal. Among other applications, Stanley used local h-
polynomials to prove that h-polynomials increase coefficientwise under refinement.

As discussed in Section 2, the local h-polynomial also behaves predictably with
respect to basic operations on subdivisions. It is additive for refinements that non-
trivially subdivide only one facet, multiplicative for joins, and vanishes on the trivial
subdivision. In particular, if Γ′ is a refinement of Γ that nontrivially subdivides
only one facet, and that subdivision is the cone over a subdivision of a codimension
1 face, then ℓ(Γ′;x) = ℓ(Γ;x). We call such subdivisions conical facet refinements.

Our aim is to study geometric triangulations with vanishing local h-polynomial.
One might hope that all such subdivisions are obtained from the trivial subdivision
by a sequence of conical facet refinements. However, not all triangulations Γ with
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vanishing local h-polynomial can be obtained from the trivial subdivision in this
way. One notable example in dimension 2 is the following subdivision, which we
call the triforce1.

All of our theorems are for geometric triangulations, and all triangulations in
this paper are assumed to be geometric.

Theorem 1.1. In dimension 2, any triangulation with vanishing local h-polynomial
is obtained from either the trivial subdivision or the triforce by a sequence of conical
facet refinements.

The two cases in the theorem are distinguished by the internal edge graph, i.e.,
the union of the edges that meet the interior of the subdivided simplex, which
also figures prominently in the proof. For an iterated conical facet refinement of
the triforce subdivision, the internal edge graph has Euler characteristic zero and
contains no vertices of the original triangle. For an iterated conical facet refinement
of the trivial subdivision in dimension 2, the internal edge graph is a tree that
contains exactly one of the vertices of the original triangle.

In dimension three, the structural classification is even simpler.

Theorem 1.2. In dimension 3, any triangulation with vanishing local h-polynomial
is obtained from the trivial subdivision by a sequence of conical facet refinements.

The proof again relies on an analysis of the internal edge graph, which in dimension
three is a union of trees, each of which contains exactly one vertex supported on a
face of codimension at least 2 in the original simplex.

This structure of the internal edge graph is similar in higher dimensions. Note
that ℓ0 = 0 for any triangulation of a nonempty simplex.

Theorem 1.3. Let Γ be a triangulation of a simplex of dimension at least 3 such
that ℓ1 = ℓ2 = 0. Then the internal edge graph of Γ is a union of trees each of
which contains exactly one vertex supported on a face of codimension at least 2.

However, the pattern of obtaining all triangulations whose local h-polynomials van-
ish from a finite collection of examples by iterated conical facet refinements does
not continue in higher dimensions. See Section 5.

Our investigation into the structure of triangulations with vanishing local h-
polynomial is motivated by recent connections to algebraic and arithmetic geometry.
Local h-polynomials appear prominently in formulas for dimensions of homology
groups of intersection complexes for toric morphisms [dCMM18] and multiplicities
of eigenvalues of monodromy [KS16, Sta17]. In Igusa’s p-adic monodromy con-
jecture [Igu75], and the motivic generalization of Denef and Loeser [DL98], the
essential question is understanding whether or not these multiplicities vanish. This
problem is also natural and interesting from a purely combinatorial viewpoint;
Stanley specifically asked for a nice characterization of such triangulations in his
original paper [Sta92, Problem 4.13].

1This name reflects the subdivision’s realization in a sacred golden relic that is the ultimate
source of power in the action-adventure video game series The Legend of Zelda.
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2. Preliminaries

We consider only geometric subdivisions Γ of a (d− 1)-simplex ∆, except where
explicitly stated otherwise. In particular, all of the triangulations that we consider
are realized by subdividing a linearly embedded simplex into subsimplices. For
further details and background on local h-polynomials, we refer the reader to the
recent survey article of Athanasiadis [Ath16], as well as [Sta92].

2.1. Formulas for the local h-polynomial. We recall two useful formulas for
the local h-polynomial ℓ(Γ;x). First, by applying Möbius inversion to (1), we can
express ℓ(Γ;x) as an alternating sum of h-polynomials:

(2) ℓ(Γ;x) =
∑

F≤∆

(−1)codim(F )h(ΓF ;x).

Here, the codimension is codim(F ) = d− 1− dim(F ), since dim(∆) = d− 1.
Let σ : Γ → ∆ be the map taking a face G ∈ Γ to the smallest face F ≤ ∆ that

contains it. One says that G is carried by σ(G), and the excess of G is

e(G) := dim(σ(G)) − dim(G).

As in [Sta92, Prop. 2.2], we can then express the local h-polynomial as

(3) ℓ(Γ;x) =
∑

G∈Γ

(−1)codim(G)xd−e(G)(x− 1)e(G).

Definition 2.1. We say that G ∈ Γ is an interior face if σ(G) = ∆.

2.2. Elementary properties of the local h-polynomial. The following basic
properties of local h-polynomials were mentioned in the introduction and will be
used in our main arguments.

Given triangulations Γ and Γ′ of simplices ∆ and ∆′, respectively, the join Γ∗Γ′ is
naturally a triangulation of the simplex ∆∗∆′. It is well-known that h-polynomials
are multiplicative for joins, i.e.,

h(Γ ∗ Γ′;x) = h(Γ;x) · h(Γ′;x).

It follows that the local h-polynomial has the analogous property [AS12, Lemma 2.2],
i.e.,

(4) ℓ(Γ ∗ Γ′;x) = ℓ(Γ;x) · ℓ(Γ′;x).

A triangulation Γ′ of ∆ is a refinement of Γ if every G ∈ Γ is a union of faces of
Γ′. We then write Γ′

G for the restriction of Γ′ to G. We are particularly interested
in the restriction of Γ′ to maximal faces, or facets.

Definition 2.2. Let Γ′ be a refinement of Γ, and let G be a facet of Γ. We say
that Γ′ is a facet refinement of Γ along G if, for any facet H 6= G, the restriction
Γ′
H is trivial.

Local h-polynomials behave additively with respect to facet refinements.
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Γ Γ′

Figure 1. A facet refinement of the triforce along its lower left facet.

Proposition 2.3. Let Γ′ be a facet refinement of Γ along G, and let Γ′
G denote the

triangulation of G induced by restricting Γ′. Then

ℓ(Γ′;x) = ℓ(Γ;x) + ℓ(Γ′
G;x).

This follows from [KS16, Corollary 4.7], a much more general result about local h-
polynomials for compositions of strong formal subdivisions, applied to Γ′ → Γ → ∆.
For the reader’s convenience, we include a direct proof in our setting.

Proof. The assertion is vacuously true in dimension zero. We proceed by induction
on dimension. First, we observe that

(5) h(Γ′;x) = h(Γ;x) + h(Γ′
G;x)− h(G;x).

This follows from the formula
∑d

i=0 fi(x − 1)d−i =
∑d

i=0 hix
d−i, by inclusion-

exclusion.
Next, write each h-polynomial in (5) as a sum of local h-polynomials, using

(1). The contributions of the empty faces cancel, and each nonempty face of G
contributes 0, since it is trivially subdivided. Therefore, we have

(6)
∑

{∅}6=H≤∆

ℓ(Γ′
H ;x) =

∑

{∅}6=H≤∆

ℓ(ΓH ;x) +
∑

{∅}6=H′≤G

ℓ(Γ′
H′ ;x).

For each nonempty face H ≤ ∆, either Γ′
H = ΓH or Γ′

H is a facet refinement of ΓH

along G ∩H . If H is a proper face of ∆ then, by induction on dimension, we may
assume ℓ(Γ′

H ;x) = ℓ(ΓH ;x)+ℓ(Γ′
G∩H ;x). Similarly, for any nonempty faceH ′ ≤ G,

either Γ′
H′ is the trivial subdivision, or H ′ is carried by a face H ≤ ∆ such that

H ′ = G∩H and Γ′
H is a facet refinement of ΓH along H ′ . Thus, the contributions

of proper faces in (6) cancel, and we conclude that ℓ(Γ′;x) = ℓ(Γ;x)+ ℓ(Γ′
G;x). �

Definition 2.4. A facet refinement Γ′ of Γ along G is a conical facet refinement
if Γ′

G is the cone over Γ′
H for some codimension 1 face H < G.

Corollary 2.5. Let Γ′ be a facet refinement of Γ along G, and suppose that Γ′
G

is the join of two triangulations of faces of G, one of which has vanishing local h-
polynomial. Then ℓ(Γ′;x) = ℓ(Γ;x). In particular, if Γ′ is a conical facet refinement
of Γ, then ℓ(Γ′;x) = ℓ(Γ;x).

Proof. This follows immediately from (4) and Proposition 2.3. �

3. The internal edge graph

The proofs of the main results of this paper all involve the internal edge graph,
formed by the edges of a triangulation Γ that meet the interior of the simplex ∆.
In this section, we study the properties of this graph when d ≥ 3, and ℓ1 = ℓ2 = 0.
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Figure 2. A triangulation obtained from the triforce by a series
of conical facet refinements.

Let f j
i denote the number of i-simplices in Γ that are carried by j-faces of ∆.

From equation (3), we see that ℓ0 = 0, ℓ1 = fd−1
0 , and

(7) ℓ2 = fd−1
1 − fd−2

0 − (d− 1)fd−1
0 .

In particular, if ℓ1 = 0 then ℓ2 = fd−1
1 − fd−2

0 .
Stanley proved non-negativity of all ℓi, using methods from commutative algebra.

It follows that if there are no interior vertices (i.e., if ℓ1 = 0) then fd−1
1 ≥ fd−2

0 .
Note that every vertex carried by a (d − 2)-face is contained in an interior edge,
so this inequality is a statement about the internal edge graph. We now give a
combinatorial proof of this inequality in a stronger form, showing in particular that
it holds separately on each connected component of the internal edge graph.

Definition 3.1. The internal edge graph of a subdivision Γ of ∆ is the graph Σ(Γ)
whose edges are the edges of Γ carried by the improper face ∆, and whose vertices
are the vertices incident to those edges.

When Γ is clear from context, we will write Σ rather than Σ(Γ).

Proposition 3.2. Let Γ be a triangulation of a (d− 1)-simplex ∆ with d ≥ 3 and
ℓ1 = 0. Then each connected component C of Σ(Γ) contains either a vertex of
excess less than d− 2 or a simple 3-cycle.

Furthermore, if d ≥ 4, and C has no vertices of excess less than d − 2 then C
contains at least two distinct simple 3-cycles.

Proof. We may assume that ∆ is the standard (d−1)-simplex in R
d, i.e., the convex

hull of the standard basis vectors e1, . . . , ed. Let Fi = Conv {e1, . . . , êi, . . . , ed}, and
let πi : R

d → R be the projection onto the ith coordinate axis.
Suppose C is a connected component of Σ all of whose vertices have excess d−2.

We now show that C contains a simple 3-cycle.
Consider the two codimension 1 faces carrying the endpoints of an edge of C.

Without loss of generality, we may assume these to be F1 and F2. Let L be
the linear functional π1 + π2. Let e = Conv {v1, v2} be an edge of C such that
v1 ∈ F1, and v2 ∈ F2, such that L(v1 + v2) is maximal among all such edges. For
(i, j) ∈ {(1, 2), (2, 1)}, let Pi : R

d → R
d be the projection to the linear hyperplane

spanned by Fi along vj − vi. More explicitly, for all w ∈ R
d,

Pi(w) = w −
πi(w)

πi(vj)
(vj − vi),
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Substituting in the definitions above, we observe that

πi(vj)L(Pi(w)− vi) = πi(vj)πj(Pi(w)) − πi(vj)πj(vi)

= πi(vj)πj(w) + πj(vi)πi(w)− πi(vj)πj(vi).

This is invariant under switching i and j, and hence

(8) π1(v2)L(P1(w)− v1) = π2(v1)L(P2(w)− v2).

Applying P1 to the closed star Cl(Star(e)), we see that e projects to v1, and
2-faces project to segments ending at v1. Since e is an interior edge, v1 is in the
relative interior of P1(Cl(Star(e))). Therefore, for any hyperplane H in the image
of P1 that contains v1, there is a vertex of the link of e that projects to either side
of that hyperplane. In particular, there is a vertex w in the link of e such that
L(P1(w) − v1) > 0. Recalling that all vertices of C have excess d − 2, we note
that π1(v2) > 0 and π2(v1) > 0, otherwise they would be contained in F1 ∩ F2.
Therefore, by (8), L(P2(w)− v2) > 0.

We claim that w is not carried by F1 or F2. Indeed, if w is carried by F1, we
would have P1(w) = w and L(v2 + w) > L(v2 + v1), contradicting our maximality
assumption on e. Thus w /∈ F1. An identical argument shows that w is not carried
by F2. This proves the claim. Then without loss of generality, we may assume that
w is carried by F3. The three interior edges of C connecting v1, v2, and w form a
simple 3-cycle. If d = 3, then we are done.

Suppose d ≥ 4. We must show that C contains another simple 3-cycle. Since w
is in lk e, Γ has an interior 2-face G = Conv {v1, v2, w}. Let p denote the projection
along G onto the codimension 2 linear subspace spanned by F1 ∩ F2. Then p(G)
is in the relative interior of p(Cl(Star(G)), and hence there exists a vertex w′ /∈
F1∩F2∩F3 in the link of G. Without loss of generality, w′ /∈ F1. Then Conv {v1, w

′}
is an interior edge in C, and hence w′ is carried by a codimension 1 face of ∆. Since
w′ /∈ F2 ∩ F3, we may assume, without loss of generality, that w′ /∈ F2. Then the
edges of G and Conv {v1, v2, w

′} form two distinct simple 3-cycles in C. �

Let f j
i (C) denote the number of i-faces of C that are carried by j-faces of ∆.

Corollary 3.3. Suppose d ≥ 3 and ℓ1 = 0. Then each connected component C of
Σ has

fd−2
0 (C) ≤ fd−1

1 (C).

Proof. Recall that the Euler characteristic of a connected graph C is

χ(C) = #{vertices of C} −#{edges of C}.

This is also equal to 1 − h1(C), where h1 denotes the first Betti number. Hence
χ(C) ≤ 1, with equality if and only if C is a tree. Moreover, χ(C) = 0 if and only
if C contains a unique simple cycle.

Let C be a connected component of the internal edge graph. Then

fd−2
0 (C) − fd−1

1 (C) = χ(C)− f<d−2
0 (C).

By Proposition 3.2, either χ(C) = 1 and f<d−2
0 is positive, or χ(C) ≤ 0. �

In Section 4, we will repeatedly use the following structural description of the
internal edge graph.

Proposition 3.4. Suppose d ≥ 3, ℓ1 = ℓ2 = 0, and C is a connected component of
Σ. Then either
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(1) C is a tree with a unique vertex of excess less than d− 2, or
(2) d = 3, every vertex of C has excess d − 2, and C has a unique simple

3-cycle.

Proof. Since ℓ1 = 0, we can write ℓ2 as a sum over connected components of Σ

ℓ2 =
∑

C

fd−1
1 (C)− fd−2

0 (C),

=
∑

C

f<d−2
0 (C)− χ(C).

By Proposition 3.2 and Corollary 3.3, each summand is nonnegative, and the sum-
mand corresponding to C is zero if and only if either C is a tree with a unique
vertex of excess less than d − 2, or d = 3, every vertex of C has excess d − 2, and
C contains a unique simple 3-cycle. �

Note that Theorem 1.3 follows immediately from Proposition 3.4.

Remark 3.5. Note that the internal edge graph of any triangulation of a 2-simplex
is connected. To see this, consider a polyhedral subdivision of a triangle with dis-
connected internal edge graph. It must contain a polygon that meets two different
components of the internal edge graph, and such a polygon has at least four edges:
at least two segments of the boundary, and at least one edge from each component
of the internal edge graph that it meets. In particular, it is not a triangulation.

Definition 3.6. Let F be a facet in a triangulation of the simplex ∆. We say that
F is a pyramid if there is some proper face of ∆ that contains every vertex of F
except one.

Remark 3.7. Understanding when a facet of a triangulation is a pyramid is helpful
for potential applications, e.g., to the monodromy conjecture for nondegenerate
hypersurfaces, as mentioned in the introduction. Note that, if Γ′ is a conical facet
refinement of Γ along G, then both G and every facet of Γ′

G is such a pyramid.
Hence, it follows from Theorem 1.2 that, if d = 4 and ℓ(Γ;x) = 0, then every facet
is a pyramid. Similarly, it follows from Theorem 1.1 that, if d = 3 and ℓ(Γ;x) = 0,
then at most one facet is not a pyramid.

The following proposition is not used in the remainder of the paper, but illus-
trates how the structure of the internal edge graph gives useful statements about
which facets of a triangulation with vanishing local h-polynomial are pyramids.

Proposition 3.8. Let Γ be a triangulation of a (d − 1)-simplex ∆ with d ≥ 4. If
ℓ1 = ℓ2 = 0, then every facet G of Γ that contains an interior edge is a pyramid.

Proof. Let Γ be a facet of a triangulation of a (d− 1)-simplex ∆ with d ≥ 4, such
that ℓ1 = ℓ2 = 0. Let G be a facet of Γ that contains an interior edge. We assume
that G is not a pyramid, and will derive a contradiction. Let e1 = Conv {v1, v2}
be an interior edge in G. Let C be the connected component of the interior edge
graph Σ(Γ) containing e1.

By Proposition 3.4, either v1 or v2 is carried by a codimension 1 face. Without
loss of generality, v1 is carried by a codimension 1 face F1. Note that v2 /∈ F1.
Since G is not a pyramid, it has a vertex w2 /∈ F1 distinct from v2. Then
e2 = Conv {v1, w2} lies in C. By Proposition 3.4, either v2 or w2 is carried by
a codimension 1 face. Without loss of generality, v2 is carried by a codimension
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1 face F2. If w2 /∈ F2, then Conv {v2, w2} is an interior edge and C contains a
cycle, contradicting Proposition 3.4. Hence, w2 ∈ F2. Since G is not a pyramid,
it has a vertex w1 /∈ F2 distinct from v1. Then e3 = Conv {w1, v2} lies in C. If
w1 /∈ F1, then Conv {v1, w1} is an interior edge and C contains a cycle, contradict-
ing Proposition 3.4. Hence w1 ∈ F1. By Proposition 3.4, either w1 or w2 is carried
by a codimension 1 face, meaning that they cannot both be contained in some third
codimension 1 face F3. Therefore, e4 = Conv {w1, w2} lies in C, and e1, e3, e4, e2
forms a cycle in C, contradicting Proposition 3.4. �

4. Dimensions 2 and 3

In this section we prove our main structural results, that all subdivisions with
vanishing local h can be obtained by a sequence of conical facet refinements from
the trivial subdivision and the triforce subdivison in dimension 2, and from the
trivial subdivision in dimension 3. For both results our proof is by induction on the
number of vertices or interior edges in the subdivision. In the induction step, we
identify a subcomplex that arises from a conical subdivision of a facet in a coarser
subdivision.

Recall that the support of a subcomplex Γ′ ⊂ Γ is the union of the faces in Γ′.
It is a closed subset of ∆. The relative boundary of any closed subset F ⊂ ∆ is the
intersection of F with the closure of its complement ∆ r F . Note, in particular,
that if F is the support of a subcomplex Γ′ ⊂ Γ, then the relative boundary of F
is the support of a subcomplex of Γ′. When no confusion seems possible, we will
refer to this subcomplex as the relative boundary of Γ′.

Lemma 4.1. Let Γ be a triangulation of a simplex ∆ and let Γ′ ⊆ Γ be a subcomplex
whose support is a simplex F of dimension d − 1. Suppose that Γ′ induces the
trivial subdivision on the relative boundary of F in ∆. Then ℓ(Γ;x) − ℓ(Γ′;x) has
nonnegative coefficients. In particular, if ℓ(Γ;x) = 0, then ℓ(Γ′;x) = 0.

Proof. Since Γ′ does not nontrivially subdivide the relative boundary of F in ∆, we
get a subdivision Γ′′ of ∆ by replacing Γ′ with F itself. Note that Γ is then a facet
refinement of Γ′′ along F , so by Proposition 2.3, we have ℓ(Γ;x) = ℓ(Γ′′;x)+ℓ(Γ′;x),
and the lemma follows. �

Remark 4.2. Note that, in the proof of the lemma, Γ is a conical facet refinement
of Γ′′ (resp. obtained from Γ′′ by a sequence of conical facet refinements) if and only
Γ′ is a conical facet refinement of F (resp. obtained from the trivial subdivision of
F by a sequence of conical facet refinements).

4.1. Dimension 2. We now apply the lemma to prove Theorem 1.1, which says
that any triangulation of a 2-dimensional simplex with vanishing local h-polynomial
is obtained from either the trivial subdivision or the triforce by a sequence of conical
facet refinements.

Proof of Theorem 1.1. If Γ has no interior edges, then it is the trivial subdivision;
this case of the theorem is obvious. We proceed by induction on the number of
interior edges, and consider two cases, according to the possible structures of the
internal edge graph given by Proposition 3.4. (Recall also that the internal edge
graph is connected, by Remark 3.5.)

Case 1: Σ(Γ) is a tree that contains exactly one vertex of excess zero
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We claim that Γ is obtained from the trivial subdivision of ∆ by a sequence of
conical facet refinements. To see this, note that any interior edge that contains
a vertex of excess zero divides Γ into two triangular subcomplexes whose relative
boundary is not subdivided, as shown.

These two subcomplexes have vanishing local h-polynomials, by Lemma 4.1. By
induction, each is obtained from the trivial subdivision by a sequence of conical
facet refinements. Hence Γ is obtained from the subdivision into two triangles by
a sequence of conical facet refinements. The subdivision into two triangles is itself
a conical facet refinement of the trivial subdivision, and we conclude that Γ is
obtained from the trivial subdivision by a sequence of conical facet refinements, as
claimed.

Case 2: Σ(Γ) contains a simple 3-cycle and all of its vertices have excess 1

We claim that Γ is obtained from the triforce by a sequence of conical facet
refinements. To see this, note that the three vertices of the simple 3-cycle must be
carried by the three sides of ∆. This splits Γ into four triangular subcomplexes,
each with unsubdivided relative boundary, i.e., Γ is a refinement of the triforce, and
the induced subdivision on the relative boundary of each of the four triangles is
trivial. Hence, by Lemma 4.1, each of the four induced subdivisions has vanishing
local h-polynomial. In fact, the induced subdivision of the interior triangle must be
trivial (because Γ has no interior vertices). In each of the other three triangles, the
induced subdivision cannot contain a cycle of interior edges, and hence the induced
subdivisions are obtained from the trivial subdivision by a sequence of conical facet
refinements. We conclude that Γ is obtained from the triforce by a sequence of
conical facet refinements, as claimed. �

4.2. Dimension 3. We now apply similar inductive arguments to prove Theo-
rem 1.2, which says that any subdivision Γ of a 3-dimensional simplex ∆ with
vanishing local h-polynomial is obtained from the trivial subdivision by a sequence
of conical facet refinements.

Proof of Theorem 1.2. If Γ has only 4 vertices, then it is the trivial subdivision and
the conclusion is obvious. We proceed by induction on the number of vertices. By
Proposition 3.4, each connected component of the internal edge graph Σ(Γ) is a
tree with exactly one vertex of excess less than 2.

Case 1: Σ(Γ) is empty

Let F be a 2-face of ∆. We claim that ℓ(ΓF ;x) = 0. To see this, note that
any vertex carried by F must be contained in an interior edge. Hence ΓF has no
interior vertices, and ℓ1(ΓF ;x) = 0. Now ΓF is a triangulation of the 2-simplex,
so the symmetry of the local h-polynomial implies that ℓi(ΓG;x) = ℓ3−i(ΓF ;x).
Hence ℓ2(ΓF ;x) = ℓ1(ΓF ;x) = 0, and we conclude that ℓ(ΓF ;x) = 0, as claimed.

We proceed to consider three subcases, according to the internal edge graphs of
the restrictions of Γ to the 2-faces of ∆.

Subcase 1.1: All 2-faces have empty internal edge graph
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Any interior 2-face of Γ contains an edge that is carried by ΓF for some 2-face
F ≤ ∆. So Γ has no interior 2-faces, and hence is the trivial subdivision.

Subcase 1.2: Some 2-face has a 3-cycle in its internal edge graph

Let F1 be a 2-face of ∆ such that ΓF1
contains a 3-cycle of interior edges. The

vertices of this 3-cycle, v2, v3, and v4, are carried by distinct edges of F1. Label
the other 2-faces of ∆ as F2, F3, F4 so that vi is carried by F1 ∩ Fi.

The 2-face Conv {v2, v3, v4} is contained in some 3-face T = Conv {v2, v3, v4, x}
of Γ. Since Σ(Γ) is empty, the edges Conv {x, vi}must be contained in the boundary
of ∆. Hence x must lie in the intersection F2 ∩ F3 ∩ F4, which is the vertex of ∆
opposite F1. Then the 2-faces Conv {v1, v2, x}, Conv {v2, v3, x} and Conv {v1, v3, x}
cut ∆ into four tetrahedral regions (the cone over a triforce subdivision of F1).
By Lemma 4.1, the restriction of Γ to each of these regions has vanishing local
h-polynomial. By induction, the induced subdivision of each of these regions is
obtained from the trivial subdivision by a sequence of conical facet refinements,
and we are done.

Subcase 1.3: No 2-face has a 3-cycle, and some 2-face has an interior edge

Let F be a 2-face of ∆ such that ΓF contains an interior edge. By Proposition 3.4,
there is an edge e carried by F with a vertex of excess 0. Label the vertices of ∆ asA,
B, C, and D, so that F = Conv {B,C,D} and e contains D. Let E ∈ Conv {B,C}
be the second vertex of e.

Let G be an interior 2-face of Γ containing e. Then G = Conv {e, v} for some
vertex v of Γ. This vertex v must lie on Conv {A,B} or Conv {A,C}, so that the
edges Conv {E, v} and Conv {D, v} are not interior. Furthermore, v 6= B,C, since
G is interior. Then either v = A, or, without loss of generality, we may assume
σ(v) = Conv {A,C}. These possibilities are illustrated in Figure 3.

A
B

C

D

E

e

(a) v = A

A
B

C

D

E
v

e

(b) σ(v) = Conv {A,C}

Figure 3. Possible locations for v in Subcase 1.3

If v = A then G, marked in grey in Figure 3a, divides ∆ into two distinct
tetrahedra, that satisfy the conditions of the Lemma 4.1, and by the usual induction
argument we are done.

We may therefore assume σ(v) = Conv {A,C} as in Figure 3b. In this case, G
cuts off a tetrahedron Conv {v, C,D,E}, which satisfies the conditions of Lemma
4.1. By induction, it suffices to consider the case where this tetrahedron is trivially
subdivided. Also since G is an interior 2-face, it must be contained in another
tetrahedron Conv {v,D,E,w} of Γ. We must have w ∈ Conv {v,A}∪Conv {A,B}∪
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Conv {E,B} \ {v, E}, in order to prevent the edges Conv {w, v} and Conv {w,E}
from being interior, and so that w is on the other side of G from C.

Now if σ(w) = Conv {A,B}, then ΓConv{A,B,C} will contain a cycle of interior
edges, with vertices v, E, w. But we assumed that no 2-face has a cycle in its
internal edge graph. Thus, w ∈ Conv {v,A} \ {v} or w ∈ Conv {E,B} \ {E}.
Without loss of generality, we may assume w ∈ Conv {E,B}\{E}. Then regardless
of whether w = B or is instead in the interior of the segment, the tetrahedron
Conv {v,D,w,C} is one to which Lemma 4.1 applies. Moreover, ΓConv{v,D,w,C} is
nontrivial, because G lies in the interior. Hence ΓConv{v,D,w,C} is obtained from
the trivial subdivision by a series of conical facet refinements, and the conclusion
follows by induction.

Case 2: Σ(Γ) is nonempty

By Proposition 3.4, we know that each connected component of Σ(Γ) is a tree
rooted at a unique vertex of excess less than 2. We consider one of these components
C and let v1 be one of its leaves at maximal distance from the root. Let w be the
unique vertex adjacent to v1 in C, and let F be the 2-face carrying v1. Let v2, · · · , vr
be the other leaves that are adjacent to w and carried by F , as in Figure 4.

root

w

v1 · · · vr

carried by F

Figure 4. Structure of C.

Let X be the subcomplex of ΓF that is the union of the closed stars of v1, . . . , vr.

Claim: X ⊆ Cl(Star(w)).

In other words, we claim that Γ contains, as a subcomplex, the cone over X with
vertex w. To prove this, it suffices to show that if G is a k-face of ΓF containing some
vertex vi, then G is contained in a face of Star(w). Any such G must be contained
in an interior (k + 1)-face of Γ. Let w′ be a vertex such that Conv {G,w′} is an
interior (k + 1)-face. Note that Conv {vi, w

′} is an interior edge. Since vi is a leaf
of the internal edge graph, we have w′ = w. Hence Conv {G,w} is a face of Star(w)
that contains G. This proves the claim.

Subcase 2.1: There is a vertex of X carried by F that is not in {v1, . . . , vr}

Let v be a vertex of X that is carried by F and not contained in {v1, . . . , vr}.
Since v ∈ X , there is an edge Conv {v, vi} in X for some index i. By the claim
proved above, Conv {v, vi, w} is a face of Γ, and Conv {v, w} is an edge of C. Since
v 6∈ {v1, . . . , vr}, it must be the parent of w.
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Consider the link lkΓF
(v). This is a cycle of edges in ΓF that contains vi. If

every edge in lkΓF
(v) contains some vj ∈ {v1, . . . , vr}, then Star(v) is contained in

Cl(Star(w)) and hence Conv {v, w} is the unique interior edge containing v. This
contradicts the fact that v is the parent of w. Hence lkΓF

(v) contains multiple
vertices not in {v1, . . . , vr}.

Choose vertices w1 and w2 in lkΓF
(v) that are not in {v1, . . . , vr} so that every

vertex in the path between w1 and w2 that contains vi is in {v1, . . . , vr}. Note that,
since w1 and w2 are adjacent to w and not in {v1, . . . , vr}, and since v is the parent
of w in C, the edges Conv {w,wi} must not be interior. Similarly, w cannot be the
root of C. Hence w is carried by a 2-face that contains both w1 and w2.

It follows that w1 and w2 lie on an edge of F . Thus the subcomplex with support
Conv {v, w1, w2, w} satisfies the conditions of Lemma 4.1.

Subcase 2.1.1: Conv {v, w1, w2, w} is trivially subdivided

We claim that this is impossible. Indeed, if Conv {v, w1, w2, w} is trivially subdi-
vided, then lkΓF

(v) consists of the edge Conv {w1, w2} together with a sequence of
edges connecting w1 to w2 in which all other vertices are contained in {v1, . . . , vr}.
Then every facet containing v is a pyramid with base on F and vertex at w. Hence,
v is a leaf of C. This is impossible, since we have already shown that v is the parent
of w. This proves the claim.

Subcase 2.1.2: Conv {v, w1, w2, w} is nontrivially subdivided

In this case, by the induction hypothesis, ΓConv{v,w1,w2,w} is obtained from the
trivial subdivision by a series of conical facet refinements, and the result follows by
induction.

Subcase 2.2: Every vertex of X carried by F is in {v1, . . . , vr}

In this case, every edge in the boundary of X connects two vertices that are in
the boundary of F . Then the closureX ′ of any connected component of the relative
interior of X is a subcomplex with support a polygon whose relative boundary in
F is trivially subdivided. If the support of X ′ is a triangle, then we can apply
Lemma 4.1 for the subcomplex of Γ given by the cone over X ′ with vertex w, and
be done by induction.

If X ′ is not a triangle, then we show that X ′ is contained in a larger subcomplex
Y ⊂ ΓF such that

(1) The relative boundary of Y in F is trivially subdivided.
(2) The cone over Y with vertex w is a subcomplex of Γ.
(3) The support of Y is a triangle.

Once we find such a Y , then the conclusion of the theorem follows by Lemma 4.1
and induction on the number of vertices.

In order to find Y as above, we begin with Y0 = X ′, and construct an increasing
sequence of subcomplexes

Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = Y

such that each Yi has properties (1) and (2), and the support of Y is a triangle.
We describe the construction of Yi+1 from Yi in terms of corner cutting edges.

Definition 4.3. A boundary edge e of Yi is corner cutting if its vertices are carried
by edges of F , and Yi lies on the side of e opposite from the corner that it cuts off.
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In our construction, if Yi is not a triangle then Yi+1 has strictly fewer corner
cutting edges than Yi. Since Y0 has at most 3 corner cutting edges, the procedure
will terminate for some n ≤ 3.

Yi

vw2

w1

e

Figure 5. A corner cutting edge e with vertices w1 and w2

Subcase 2.2.1: Yi has no corner cutting edges

In this case, we claim that the support of Yi is triangular. First, if Yi has no
boundary edges, then its support is F . Suppose Yi has some boundary edge e. If
both vertices of e are carried by edges, then Yi is the on the same side as the vertex
of F cut off by e. Any other boundary edge of Yi would have to be corner cutting.
Hence, the support of Yi is the triangle cut off by e, and we are done.

Otherwise, e contains a vertex of F , and hence divides F into two triangles. Once
again, any other boundary edge would have to be corner cutting, so the support of
Yi is a triangle. This proves the claim, and completes this subcase.

It remains to consider the situation where Yi has a corner cutting edge e, with
vertices w1 and w2. Let v be the vertex of F cut off by e, as in Figure 5. We
consider two further subcases, according to whether or not w is the root of C, as
illustrated in Figure 6.

v

w1

w2

w

w3

(a) w carried by a 2-face

v

w1

w2

w

(b) w contained in F1 ∩F2

Figure 6. Possible locations for w, with the region Yi shaded

Subcase 2.2.2: Yi has a corner cutting edge, and w is not the root of C
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If w is not the root, then it is carried by some 2-face of ∆ other than F . It cannot
be carried by the face opposite v, since then both of the edges Conv {w1, w} and
Conv {w2, w} would be interior, meaning that w1 and w2 would both be low excess
vertices on the same component of the internal edge graph. Therefore without loss
of generality, we can assume that w is carried by the 2-face F ′ 6= F containing w2.

Note that the support of Yi is a polygon, and if we now think of its boundary not
in F , but in the plane containing F , there are exactly two vertices of the boundary
adjacent to w1; one of these is w2, and the other is some vertex, which we call w3.

The edge Conv {w,w3} cannot be interior, since w3 is contained in the boundary
of F , and hence has low excess, but w1 is the root of C. Thus w3 ∈ F ∩F ′, as shown
in Figure 6a. It follows that the polygon Yi both contains and is contained in the
triangle bounded by Conv {w1, w2}, Conv {w2, w3}, and Conv {w1, w3}. Therefore,
Yi is the triangle Conv {w1, w2, w3}, and we are done.

Subcase 2.2.3: Yi has a corner cutting edge, and w is the root of C

In this case, w cannot have an interior edge to either w1 or w2, since w1 and w2

both have low excess, and w is the root of C. Therefore, if F1 and F2 are the faces
other than F containing w1 and w2 respectively, then w must lie on the edge F1∩F2,
possibly at the vertex, though this will not matter. This situation is illustrated in
Figure 6b. Since Conv {w,w1, w2} is in fact a 2-face of Γ, the subcomplex with
support Conv {w,w1, w2, v} satisfies the hypotheses of Lemma 4.1. Thus we may
assume that it is trivially subdivided. We then set Yi+1 to be the union of Yi with
the triangle Conv {w1, w2, v}. Then Yi+1 satisfies properties (1) and (2), and has
fewer corner cutting edges than Yi. Repeating this procedure, as Y0 has at most
three corner cutting edges, we eventually arrive at Yn satisfying properties (1)-(3),
and the theorem follows. �

5. Higher dimensions

While Theorem 1.3, which is an immediate consequence of Proposition 3.4, says
that the structure of the internal edge graph is essentially the same in higher dimen-
sions, it seems that this is not sufficient for a useful classification of triangulations
with vanishing local h-polynomial. Indeed, there are infinitely many different trian-
gulations of the 4-simplex with empty internal edge graph. For instance, the join of
the triforce with an arbitrary subdivision of the 1-simplex has this property. These
triangulations give rise to the following negative result.

Proposition 5.1. There is no finite collection of triangulations of the 4-simplex
with vanishing local h-polynomials from which all others can be obtained by a series
of conical facet refinements.

Proof. Let Γn be the subdivision of the 1-simplex with n interior vertices, and let
Γ′ be the triforce. If e is an edge of Γn such that both endpoints are interior,
then the join of e with the center facet of Γ′ is not a pyramid. Hence Γn ∗ Γ′ is a
triangulation with vanishing local h-polynomial that has n− 1 non-pyramid facets.
The proposition follows, since, as discussed in Remark 3.7, all of the new facets
introduced by a conical facet refinement are pyramids. �

We leave the problem of classifying triangulations with vanishing local h-polynomial
in dimensions 4 and higher open, for future research.
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