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ALGEBRAICALLY CLOSED FIELDS IN EQUIVARIANT ALGEBRA

JASON SCHUCHARDT, BEN SPITZ, AND NOAH WISDOM

Abstract. Using the Burklund-Schlank-Yuan abstraction of “algebraically closed” to “Null-
stellensatzian”, we show that a G-Tambara functor is Nullstellensatzian if and only if it is
the coinduction of an algebraically closed field (for any finite group G). As a consequence we
deduce an equivalence between the K-theory spectrum of any Nullstellensatzian G-Tambara
functor with the K theory of some algebraically closed field.
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1. Introduction

In [BSY] the notion of a Nullstellensatzian object in a category is introduced in order to
abstract the definition of an algebraically closed field. A ring is an algebraically closed field
if and only if it is a Nullstellensatzian object in the category of rings, and the central aim of
[BSY] is to classify the Nullstellensatzian objects in a certain category of great importance
to homotopy theorists. In particular, there is a functor for which the Nullstellensatzian
objects are precisely those obtained by applying the functor to an algebraically closed field
of characteristic p. The authors of [BSY] obtain many striking applications of their results.
For example, under mild conditions, every object in a category admits a morphism to a
Nullstellensatzian object (in some sense this is a generalization of taking an algebraic closure).
This immediately allows the authors of [BSY] to reduce the remaining part of the proof of the
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famed red-shift conjecture to merely establishing a red-shift property for Nullstellensatzian
objects in their setting, which (along with [Yua21]) completes the proof of the red-shift
conjecture.

In equivariant homotopy theory, homotopy groups of highly structured ring spectra give
Tambara functors rather than rings. One might hope to prove equivariant analogues of the
results of [BSY]; such results would likely be useful in the study of chromatic equivariant
homotopy theory, especially in relation to the Balmer spectrum computations of [BGH20]
[Bar+19], or towards the problem of studying motivic height [BGL22]. As a stepping stone
towards this, we first study the purely algebraic case: in this article, we completely classify
the algebraically closed objects in the category of Tambara functors. Additionally, we classify
Nullstellensatzian G-rings, and compute algebraic closures.

Roughly speaking, the impetus of equivariant algebra is to port over results from com-
mutative algebra, broadly construed, to Tambara functors. For example, Nakaoka [Nak12a]
[Nak12b] has defined ideals, domains, fields, and localizations of Tambara functors, Blumberg
and Hill [BH18] define free polynomial algebras over a Tambara functor (which are observed
to be almost never flat by Hill-Merhle-Quigley [HMQ22]), and Hill [Hil17] has established a
robust theory of Andre-Quillen homology and Kähler differentials. In [Cha+24], the second
author, along with Chan, Mehrle, Quigley, and Van Niel, initiate a study of affine schemes of
Tambara functors, and prove an analogue of the going up theorem, as well as a weak version
of a Hilbert basis theorem. Also, a complete description of all field-like Tambara functors for
G = Z/pn is given by the third author in [Wis24].

Recall from [BSY] the definition of a Nullstellensatzian object in a category.

Definition 1.1. A category D with an initial object is Nullstellensatzian if every compact,
nonterminal object admits a map to the initial object. An object x in a category C is Nullstel-
lensatzian if the slice category x/C of x-algebras is Nullstellensatzian.

Our main result is a complete classification of Nullstellensatzian objects in the category
of G-Tambara functors, for any finite group G. We remark that complete classifications
of Nullstellensatzian objects are sparse in the literature; to the author’s knowledge, the
only other categories for which Nullstellensatzian objects are completely characterized are
the category of rings (by Hilbert’s Nullstellensatz), and the category of T (n)-local E∞-ring
spectra [BSY] (although it seems that the notion of “algebraically closed group” studied, for
example, in [Sco51] [Mac72] [Bel74] is very closely related to the notion of Nullstellensatzian
group).

Theorem A (cf. Theorem 5.7). Let k be a Nullstellensatzian Tambara functor. Then k is
isomorphic to the coinduction of an algebraically closed field, i.e., k is the fixed-point Tambara
functor associated to the G-ring Fun(G,F ) for F algebraically closed.

In fact, it turns out that k and F are Morita equivalent: their respective categories of
modules are equivalent (this is a very special case of a much broader result, see [Wis25] for
a more complete discussion). Thus we deduce the following.

Theorem B (cf. Corollary 5.12). Let k be a Nullstellensatzian Tambara functor. Then we
have an equivalence of E∞-rings K(k) ∼= K(k(G/G)) of K-theory spectra.

In particular, the computations of Suslin [Sus83] towards the K-groups of algebraically
closed fields also apply verbatim to the K-groups of Nullstellensatzian G-Tambara functors.
To the author’s knowledge, this is the first identification of the K-theory spectrum of (the
Green functor underlying) a Tambara functor, although we are unable to fully determine
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its homotopy groups. We also direct the reader to [CW25] for the first full computation of
the K-theory spectrum, along with all of the K-groups, of a Tambara functor for which the
previously mentioned Morita equivalence argument does not work.

We note that the study of modules over (the Green functor underlying) a Tambara functor,
particularly their homological algebra, has a rich history. For example, [HMQ22] observe that
free polynomial algebras over Tambara functors tend to fail to be flat as modules, in contrast
to the classical picture, where R[x] is a free R-module, for any ring R. As a consequence of our
Morita equivalence result, free polynomial algebras over Nullstellensatzian Tambara functors
are always flat; in fact, they are always free. Additionally, [BSW17] show that the category
of so-called cohomological G-Mackey functors turns out to have finite global projective di-
mension with surprising frequency; our Morita equivalence result implies that (the Green
functor underlying) any Nullstellensatzian Tambara functor has global projective dimension
0. Lastly, [Hil17] studies square-zero extensions in the context of modules over Tambara
functors, and we expect the story of [Hil17] to simplify enormously over Nullstellensatzian
Tambara functors.

We now turn our attention to the proof of our main result. We may control the behavior
of Nullstellensatzian objects by controlling compact objects. It turns out that the compact
objects in the category of Tambara functors are precisely the finitely presented Tambara
functors (this is a completely formal fact from the theory of universal algebra, which we
exposit in Proposition 4.3). Thus, in particular, the free Tambara functor on a finite G-set is
always compact. However, we will require many more examples of compact Tambara functors,
and for this we prove the following theorem.

Theorem C (cf. Theorem 4.29). The functor S 7→ S : CRing → TambG preserves compact
objects and compact morphisms. In other words, Z is a finitely presented Tambara functor,
and if R → S is a finitely presented morphism of rings, then R → S is a finitely presented
morphism of Tambara functors.

One of the key ingredients of this result is, in turn, the fact that the free Tambara func-
tor A[xG] is Noetherian; this an equivariant incarnation of the Hilbert basis theorem. We
establish this by proving the following stronger statement, which generalizes the case G = Cp

proven in [Cha+24, Proposition 3.9].

Theorem D (cf. Proposition 3.12). The free Tambara functor A[xG] on a generator at level
G/G is levelwise finitely generated as a commutative ring.

With these tools, we can establish necessary conditions for a Tambara functor to be Null-
stellensatzian; namely, that any Nullstellensatzian Tambara functor is isomorphic to one of
the claimed form. We then prove our main theorem by establishing that everything of this
form is, in fact, Nullstellensatzian.

A formal consequence of our classification of Nullstellensatzian Tambara functors is that
the Nullstellensatzian G-rings are precisely those of the form Fun(G,F ) with F algebraically
closed. Additionally, from this we may describe algebraic closures of field-like Tambara func-
tors. From this, one might expect to be able to study Galois theory of Tambara fields, because
normal and separable field extensions may both be defined purely in terms of algebraic clo-
sures, without any reference to elements. However, as observed in [Wis24], there are not
really enough examples of field-like Tambara functors (at least for G = Z/pn) to give rise to
interesting examples.

Finally, one might have hoped for a more exotic answer to the question “what are the
Nullstellensatzian G-Tambara functors”. We might therefore have worked in a sufficiently
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large and well-behaved full subcategory of Tamb consisting of Tambara functors which are not
coinduced. In this situation, if a Nullstellensatzian Tambara functor R is field-like, then each
ring R(G/H) would be an honest field, and one would hope for Nullstellensatzian objects in
this setting to give rise to interesting finite group actions on fields.

Unfortunately, this method turns out not to yield a nice answer. Indeed, in [Wis25] the
third-named author constructs such a category of G-Tambara functors essentially by formally
declaring coinductions to be zero. It then turns out that if R is a Nullstellensatzian object in
the resulting category, and R is field-like, then R(G/e) is an algebraically closed field, which
by Artin-Schreier theory forces it to have characteristic 0 and forces the G-action on R(G/e)
to factor through C2. On the other hand, it is observed in [Wis25] that there are many
Nullstellensatzian objects which are not field-like; their study remains open and presumably
related to our initial motivation of the study of an equivariant chromatic Nullstellensatz.

1.1. Contents. We begin with a review of Tambara functors in section 2. Next, we recall
the relevant results of Nakaoka [Nak12a] on field-like Tambara functors and Blumberg-Hill
[BH18] on free polynomial Tambara functors in section 3. In section 4, we state from [BSY]
the definition of a Nullstellensatzian object in a category C, and study how compact and
Nullstellensatzian objects interact with adjoint functors. Finally, in section 5, we characterize
the Nullstellensatzian objects in the category of Tambara functors.

1.2. Notation and Terminology. When there is only one group in play, we may abbreviate
“G-Tambara functor” and “G-Mackey functor” simply as “Tambara functor” and “Mackey
functor.” The category of Tambara functors will be denoted TambG or Tamb, and the category
of Mackey functors will be denoted MackG or Mack. If k is a Tambara functor, we will use
term k-algebra to refer to an object of the slice category k/Tamb, i.e., a morphism k → T for
some Tambara functor T . We will typically use Algk to denote the category of k-algebras.

For R a commutative G-ring, R will denote the fixed-point Tambara functor of R.
We will often refer to a Nullstellensatzian object as algebraically closed. Since we are

working solely with field-like Tambara functors, there is no risk of confusion with other
possible definitions of algebraically closed objects (in particular in terms of nonexistence of
finite étale extensions).

1.3. Acknowledgements. The authors would like to thank Mike Hill for many things, in-
cluding suggesting a simplified argument for Example 5.4, as well as Tomer Schlank for posing
this question, and Allen Yuan, David Chan, and Haochen Cheng for helpful discussions. The
authors also thank J.D. Quigley for insightful comments on an early draft.

Schuchardt and Spitz were partially supported by NSF grant DMS-2136090.

2. Primer on Tambara Functors

Tambara functors are an “equivariant generalization” of commutative rings—for each finite
group G, there is a notion of “G-Tambara functor,” and in the case that G is the trivial
group, this notion coincides exactly with that of a commutative ring. For the unfamiliar
reader, a thorough treatment of the theory of Tambara functors is given in [Str12]. We give
here a streamlined introduction, containing only the necessary details to state the relevant
definitions.

We use SetG to denote the category of finite G-sets, and Set to denote the category of
all sets. Eventually, we will define a G-Tambara functor to be a certain kind of functor
PG → Set from the category PG to be defined below. The first step towards constructing PG
is the following observation about slices of SetG:
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Proposition 2.1. Let f : X → Y be a morphism of finite G-sets. The functor Σf :

SetG/X → SetG/Y defined by g 7→ f ◦ g sits in an adjoint triple

SetG/X

SetG/Y

Σf Πff∗

where f∗ is given by pullback along f , and Πf is the functor defined on objects by

Πf (g : A→ X) :=
{
(y, t) : y ∈ Y, t ∈ Γ(g, f−1(y))

} (y,t)7→y
−−−−−→ Y,

where for g : Z → X, and A ⊆ X,

Γ(g,A) := {t ∈ Set(A,Z) | g ◦ t = 1A} =
∏

a∈A

g−1(a)

is the set of sections of g on the subset A. The G-action is given by g(y, t) = (gy, x 7→
gt(g−1x)).

Now we can begin defining PG.
Definition of PG (Part 1). In the category PG,

• objects are finite G-sets;
• morphisms X → Y are isomorphism classes of bispans, i.e. diagrams

X ← • → • → Y

in SetG, where two diagrams X ← A → B → Y and X ← A′ → B′ → Y are said to
be isomorphic if there exist isomorphisms A→ A′ and B → B′ in SetG making

A B

X Y

A′ B′

∼= ∼=

commute. We use [X ← A→ B → Y ] to denote the isomorphism class of the diagram
X ← A→ B → Y .

We must now describe the composition operation in PG. First, we name three classes of
distinguished morphisms.

Definition 2.2. Let f : X → Y be a morphism in SetG. We declare

Tf = [X
id
←− X

id
−→ X

f
−→ Y ]

Nf = [X
id
←− X

f
−→ Y

id
−→ Y ]

Rf = [Y
f
←− X

id
−→ X

id
−→ X]

Tambara functors are also known as TNR functors, referring to these distinguished classes
of morphisms.
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Definition of PG (Part 2). For any diagram X
h
←− A

g
−→ B

f
−→ Y in SetG, we declare

Tf ◦Ng ◦Rh = [X
h
←− A

g
−→ B

f
−→ Y ]

in PG.
We will next define pairwise compositions for morphisms in the three distinguished classes

T , N , and R. Within individual classes, the composition is straightforward.

Definition of PG (Part 3). For any diagram X
f
−→ Y

g
−→ Z in SetG, we declare

Tg ◦ Tf = Tg◦f

Ng ◦Nf = Ng◦f

Rf ◦Rg = Rg◦f

in PG.
When the morphisms are in T and R, or in N and R, composition is also easy to define.

Definition of PG (Part 4). For any pullback square

W Y

X Z

f ′

g′
y

g

f

in SetG, we declare

Rg ◦ Tf = Tf ′ ◦Rg′

Rg ◦Nf = Nf ′ ◦Rg′

in PG.
The most complicated composition rule is between morphisms in the T and N classes.

Definition of PG (Part 5). Consider a diagram X
f
−→ Y

g
−→ Z in SetG, and view f as an

object of SetG/Y . Apply Πg to f and apply g∗ to Πgf to obtain a diagram

• •

X Y Z

g′

g∗Πgf
y

Πgf

f g

in SetG. Now the counit ε of the adjunction g∗ ⊣ Πg yields a morphism g∗Πgf → f in

SetG/Y , giving us a diagram

• •

X Y Z

g′

εf
g∗Πgf
y

Πgf

f g

in SetG. We declare

Ng ◦ Tf = TΠgf ◦Ng′ ◦Rεf

in PG.
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One must check that the above definitions of pairwise compositions are coherent, i.e.,
respect the isomorphism relation of Part 1 of the definition, and do not force additional
relations between diagrams. This is indeed true (see [GK13, Lemma 2.15]), and with this in
place, the composition operation in PG is fully defined, since an arbitrary composition of two
morphisms can be reduced via:

(TNR)(TNR) TN(TR)NR

 T (TNR)RNR

 TNRNR

 TN(NR)R

 TNR.

The identity arrow of an object X ∈ PG is RidX = NidX = TidX .

Proposition 2.3. PG admits finite products, given on objects by disjoint union of G-sets.

Definition 2.4. A G-semi-Tambara functor is a product-preserving functor PG → Set.

A G-semi-Tambara functor comes equipped with certain operations on its output sets:

Proposition 2.5. Let X be a finite G-set, and let F : PG → Set be a G-semi-Tambara
functor. Let ∇X : X ∐X → X denote the codiagonal. We obtain operations

+F,X := F (X) × F (X) ∼= F (X ∐X)
F (T∇X

)
−−−−−→ F (X)

·F,X := F (X) × F (X) ∼= F (X ∐X)
F (N∇X

)
−−−−−→ F (X)

which make (F (X),+F,X , ·F,X) into a commutative semiring1.

A Tambara functor is simply a semi-Tambara functor for which all of these commutative
semirings are in fact rings.

Definition 2.6. A G-Tambara functor is a G-semi-Tambara functor F such that (F (X),+F,X)
is an abelian group for all finite G-sets X.

Since Tambara functors preserve products and ∅ is the terminal object in PG, every
Tambara functor sends ∅ to a singleton set (whose commutative ring structure must be that
of the zero ring). Moreover, every morphism in the category of finite G-sets decomposes
canonically as a disjoint union of morphisms between transitive G-sets (or from the empty
set to a transitive G-set). Every transitive G-set is isomorphic to G/H for some subgroup
H ≤ G, and a morphism G/H → G/K is always a composition

G/H
xH 7→xg−1(gHg−1)
−−−−−−−−−−−−→ G/gHg−1 → G/K

for some g ∈ G such that gHg−1 ⊆ K. Thus, the data of a G-Tambara functor can also be
specified by finitely many commutative rings with finitely many functions between them:

1A semiring is just like a ring, except that it need not admit additive inverses of its elements. These are
also known as rigs.
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Proposition 2.7. A G-Tambara functor F is determined (up to isomorphism) by the com-
mutative rings F (G/H) for all subgroups H ≤ G, together with the operations

trKH := F (G/H)
F (TG/H→G/K)
−−−−−−−−−→ F (G/K) “restriction”

nmK
H := F (G/H)

F (NG/H→G/K)
−−−−−−−−−−→ F (G/K) “transfer”

resKH := F (G/K)
F (RG/H→G/K)
−−−−−−−−−−→ F (G/H) “norm”

cH,g := F (G/H)
F (TG/H→G/gHg−1 )
−−−−−−−−−−−−→ F (G/gHg−1) “conjugation”

for all subgroups H ≤ K ≤ G and all elements g ∈ G.

This can be used to give an alternative definition of Tambara functors; see [Str12] for
details. In particular, we note that the cH,g operations give an action of the “Weyl group,”

WG(H) := NG(H)/H on F (G/H), called the Weyl action. The resKH operations are ring

homomorphisms, the trKH operations are F (G/K)-module homomorphisms, and the nmK
H

operations are homomorphisms of underlying multiplicative monoids.
Lastly, a common source of Tambara functors is the fixed-point Tambara functor construc-

tion.

Definition 2.8. If R is a commutative ring with G action, then the fixed point Tambara
functor of R, R, is the G-Tambara functor defined by R(G/H) = RH , cH,gx = gx, and when
H ⊆ K, resKH x = x,

trKH x =
∑

kH∈K/H

kx, and nmK
H x =

∏

kH∈K/H

kx.

When R is an ordinary ring we regard it as having the trivial G-action, in which case R is
also called the constant Tambara functor on R.

Lemma 2.9. The fixed-point Tambara functor construction is right adjoint to the evaluation
functor evG/e : TambG → CRingG that sends a Tambara functor T to the ring T (G/e) with
its Weyl group action.

Proof. Let S be a commutative ring with G-action and T be a G-Tambara functor. We’ll
describe the unit and counit of the adjunction.

The unit map, ηT : T → T (G/e), is given componentwise by the restriction maps resHe :

T (G/H) → T (G/e)H . That these maps are compatible with the norms and transfers fol-
lows from the rules for composition. The counit map is even more straightforward, since
evG/e(S) = Se = S, and the counit map will just be the identity map.

The triangle identities follow from the facts that ηS reduces to the identity map S → S
and that the G/e component of ηT is the identity map T (G/e)→ T (G/e). �

2.1. The Burnside Tambara functor and the free Green functor. The Burnside Tam-
bara functor, which we will denote by A, is the monoidal unit for the box product of Mackey
functors, and therefore the initial Tambara functor, so for Tambara functors it plays the role
that Z does for ordinary commutative rings.

Although the description above determines A, we’ll give it a more concrete definition.

Definition 2.10. Let P+
G denote the additive completion of the semi-additive category PG.

Then A is the representable functor A(X) := P+
G (∅,X).
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Since representable functors are product preserving, A is a Tambara functor, and by the
Yoneda lemma, TambG(A, R) ∼= R(∅) ∼= ∗, since ∅ is the terminal object in PG and R is
product preserving, where we use ∗ to denote a one element set or G-set. Therefore A is, in
fact, the initial Tambara functor, so this agrees with our description above.

Then for an orbit G/H, we have that A(G/H) is the group completion of the monoid of
isomorphism classes of diagrams of G-sets of the form

∅← ∅→ X
p
→ G/H.

The category of G-sets over G/H is equivalent to the category of H-sets, so A(G/H) is
naturally isomorphic to the Burnside ring ofH, which is the Grothendieck ring of the category
of finite H-sets.

Now a Green functor is a monoid for the box product of G-Mackey functors. Green functors
can equivalently be described as a Mackey functor, R, with a ring structure on every abelian
group R(X) such that the restriction maps are ring homomorphisms and the transfers are
module homomorphisms.

Now for any Green functor R and ordinary ring A, let R⊗A denotes the levelwise tensor
product of R with A, (R⊗A)(X) := R(X)⊗A. R⊗A is naturally a Green functor as well,
since the tensor product of a ring homomorphism or module homomorphism with a fixed ring
is still a ring or module homomorphism.

Lemma 2.11. If R is a Green functor and A is a commutative ring, then the levelwise
tensor product R⊗A represents the functor that sends a Green functor S to pairs (f, g) of a
Green functor morphism f : R → S and a ring morphism g : A → S(∗). The universal pair
consists of the Green functor map ιR : R → R⊗ A which sends r to r ⊗ 1 and the ring map
ιA : A→ R(∗)⊗A which sends a to 1⊗ a.

Proof. If S is a Green functor, then a map φ : R⊗A→ S has ring maps φX : R(X)⊗A→ S(X)
as components.

The component of our natural transformation corresponding to the pair (ιR, ιA) is the map
GreenG(R⊗A,S)→ GreenG(R,S)⊗Ring(A,S(∗)) that sends φ : R⊗S to the pair (φιR, φ∗ιA).

To show that this is an isomorphism, we’ll show that this map is invertible. So suppose
we’re given f : R → S and g : A → S(∗). Then if we let tX : X → ∗ be the terminal map
and t∗X : S(∗)→ S(X) be the restriction, then we can define ψX : R(X)⊗A→ S(X) to be

R(X)⊗A
fX⊗t∗Xg
→ S(X) ⊗ S(X)→ S(X).

Then for any map α : X → Y , if α∗ is the restriction map along α, then

α∗ψY (r ⊗ a) = (α∗fY (r))(α
∗t∗Y g(a)) = (fX(α∗r))(t∗Xg(a)) = ψX(α∗(r ⊗ a)).

Similarly, if Tα represents the transfer map along α, then

TαψX(r ⊗ a) = Tα(fX(r)t∗Xg(a)) = Tα(fX(r)α∗t∗Y g(a)) = (TαfX(r))t∗Y g(a)

= fY (Tαr)t
∗
Y g(a) = ψY (Tα(r ⊗ a)).

So ψ is a valid map of Green functors.
Then ψιR(r) = ψ(r ⊗ 1) = f(r), and ψ∗ιA(a) = ψ∗(1 ⊗ a) = g(a). Conversely, if we start

with a map φ and build ψ from f = φιR and g = φ∗ιA, then

ψX(r ⊗ a) = (φXιR(r))(t
∗
Xφ∗ιA(a)) = φX(r ⊗ 1)φX(1⊗ a) = φX(r ⊗ a).

�
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Corollary 2.12. The functor A 7→ R⊗A is the left adjoint to the evaluation functor evGreen
∗ :

Alg[R]→ CRing that sends an R-algebra in Green functors, S, to S(∗).

Since we can write that evaluation functor as a composite of the forgetful functor from R-
algebras to Green functors and then as evaluation at ∗ from Green functors to commutative
rings, we have that the left adjoint of the composite is naturally isomorphic to the composite
of the left adjoints of each of those functors, which gives us the following additional corollary.

Corollary 2.13. There is a natural isomorphism R ⊗ A ∼= R ⊠ (A ⊗ A), where A is the
Burnside Tambara functor.

Proof. By the above corollary, since A is initial in Green functors, so the category of Green
functors is equivalent to the category of A-algebras, the adjoint to evaluation at ∗ from Green
functors is A 7→ A ⊗ A. Then since ⊠ is the coproduct of Green functors, S 7→ R⊠ S is left
adjoint to the forgetful functor from R-algebras to Green functors. �

Now we’re particularly interested in the case where A is a polynomial ring, Z[x1, . . . , xn].
By Corollary 2.12, we have that A[x] := A ⊗ Z[x] is the free Green functor on a single
element adjoined at the G/G level. Our goal is to show that in fact A[x] has a Tambara

functor structure, which is characterized by the property that nmH
K resGK xi = resGH x

[H:K]
i for

K ⊆ H ⊆ G.
If that holds, then when R is a Tambara functor, then if we define R[x1, . . . , xn] to be

R ⊠ A[x1] ⊠ · · · A[xn]
∼= R ⊗ Z[x1, . . . , xn], then R[x1, . . . , xn] also has a Tambara functor

structure, and it will be characterized by the property that nmH
K resGK xi = resGH x

[H:K]
i for

K ⊆ H ⊆ G and 1 ≤ i ≤ n.
In order to prove this, we’ll need results of Nakaoka from [Nak11]. In particular, the results

we’re using are Proposition 2.11, Theorem 2.12, Corollary 2.14, Theorem 2.15 and Corollary
2.17 of that paper, which can be summarized in the following way:

Theorem 2.14 (Nakaoka). If M is a semi-Mackey functor, thought of as having restrictions
and norms, then there is a free Tambara functor generated by M , A[M ], whose elements over
a given G-set X are isomorphism classes of pairs (α : S → X,m ∈ M(S)), which can be
thought of as formal transfers Tαm. Here free means that the functor M 7→ A[M ] is left
adjoint to the forgetful functor from Tambara functors to their multiplicative semi-Mackey
functors. Moreover, the same is true if you choose a subcategory of allowed norms and work
with the corresponding incomplete semi-Mackey functors and incomplete Tambara functors.

Lemma 2.15. If M is an ordinary monoid, and M is the constant semi-Mackey functor on
M , then A[M ] is isomorphic as a Green functor to A⊗ Z[M ].

Proof. The key is to show that there is a natural isomorphism GreenG(A[M ], S) ∼= Mon(M,S(∗)).
Then we have the sequence of natural isomorphisms

GreenG(A[M ], S) ∼= Mon(M,S(∗)) ∼= CRing(Z[M ], S(∗)) ∼= GreenG(A⊗ Z[M ], S),

which shows A[M ] ∼= A⊗ Z[M ].
Nakaoka’s theorem constructs the same object regardless of what subcategory of allowed

norms you take, so if we take the minimal subcategory generated by the fold maps, then in
fact, Nakaoka’s theorem tells us

GreenG(A[M ], S) ∼= CoeffMon(M,S) ∼= Mon(M,S(∗)),

where CoeffMon is the category of coefficient systems in monoids, which is to say product
preserving functors from SetGop to Mon. �
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Corollary 2.16. A ⊗ Z[x] ∼= A[N], and therefore has a Tambara functor structure, with

nmH
K x = x[H:K] for K ⊆ H ⊆ G.

Proof. Write the elements of the monoid N as tn so that we can distinguish them from ordinary
uses of the integers. Then since Z[x] ∼= Z[N], with x going to t1, we have

A⊗ Z[x] ∼= A⊗ Z[N] ∼= A[N],

and nmH
K t1 = t[H:K] in N. �

Altogether, the results in this section establish the following result:

Proposition 2.17. For a Tambara functor R, R[x1, . . . , xn] is an R-Tambara algebra with

norms characterized by nmH
K resGK xi = resGH x

[H:K]
i , which is isomorphic as a Green functor

to the levelwise tensor product, R⊗ Z[x1, . . . , xn].

2.2. Coinduction. Let H ≤ G be an inclusion of finite groups. There is a restriction functor
RG

H : TambG → TambH , given levelwise by (RG
Hk)(H/K) = k(G/K). More precisely, RG

H is
given by precomposition with the product-preserving functor G×H − : PH → PG.

For completely formal reasons [Str12, Section 18], RG
H has both a left adjoint, denoted NG

H

and called induction or norm, and a right adjoint, denoted CG
H and called coinduction. It

turns out that G×H − : PH → PG is right adjoint to the forgetful functor PG → PH , and it
follows that CG

H is given by precomposition with the forgetful functor [BH18, Theorem 6.4].
Recall that that the category of e-Tambara functors is naturally identified with the cate-

gory of commutative rings, so the coinduction functor, CG
e , can be described as going from

commutative rings to G-Tambara functors. This functor plays an important role in our
classification of Nullstellensatzian Tambara functors, so we need to say what it does more
concretely. We do so by observing that the restriction functor RG

e : TambG → Tambe ≃ CRing

is the composite of the evaluation functor, evG/e : TambG → CRingG, which remembers the

Weyl action, and the forgetful functor, U : CRingG → CRing, so CG
e is the composite of

the right adjoints of these functors. By Lemma 2.9 at the end of the previous section, the
adjoint to evG/e is given by the fixed-point Tambara functor construction, so we just need to
determine the right adjoint to the forgetful functor. This is well-known in its own right, as
well as a special case of a well-known result about the right adjoint to evaluation on presheaf
categories, but we’ll give the specific result and its proof here.

Lemma 2.18. Given a commutative ring R, the right adjoint to the forgetful functor, U :
CRingG → CRing, sends R to the G-ring Fun(G,R) of functions G → R, whose G-action is
given by (g · ϕ)(h) = ϕ(hg).

Proof. Let S be a commutative ring with G-action, and let R be an ordinary commutative
ring.

If ϕ : S → Fun(G,R) is a map of commutative rings with G action, then the adjoint,
ϕ̃ : US → R, is given by ϕ̃(s) := ϕs(e). On the other hand, if we start with some ring map
ϕ̃ : US → R, we can recover ϕ from the fact that if ϕ exists, it must satisfy

ϕs(g) = ϕs(e · g) = (g · ϕs)(e) = ϕgs(e) = ϕ̃(gs),

but that gives us a definition of ϕ.
�

Putting the pieces together, we get a clear description of CG
e R:

Lemma 2.19. Let R be a commutative ring. Then CG
e R = Fun(G,R).
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Proof. We note that RG
e = k 7→ k(G/e) : TambG → CRing factors through CRingG, by first

remembering the Weyl action on k(G/e) and then forgetting it. Thus, we compute CG
e as a

composition of two right adjoints, which are as follows:

G−Tamb

G−CRing

CRing

evG/e S 7→S

forget R7→Fun(G,R)

⊣

⊣

�

3. Recollections on the Commutative Algebra of Tambara Functors

In this section we review the established story of commutative algebra in Tambara functors.
Nakaoka [Nak12a] [Nak12b] has established relatively well-behaved notions of prime ideals,
localizations, integral domains, and fields for Tambara functors. On the other hand, Blumberg
and Hill [BH18] established a useful notion of “free polynomial algebra” which will play a
central role in our study of Nullstellensatzian Tambara functors. For an introduction to
G-Tambara functors, see [Str12] and [BH18].

3.1. Prime Ideals and Tambara Fields. Nakaoka originally defined prime ideals and field-
like Tambara functors in [Nak12a]. We collect some of the relevant results here, and refer the
interested reader to the excellent exposition in [Nak12a].

Definition 3.1. An ideal of a Tambara functor k is a kernel of a morphism from k. More
precisely, an ideal I of k is a collection of subsets I(G/H) ⊆ k(G/H) (for all subgroups
H ≤ G) such that there is some morphism ϕ : k → k′ such that I(G/H) = {x ∈ k(G/H) :
ϕG/H(x) = 0} for all H ≤ G.

Equivalently, a collection of subsets I(G/H) ⊆ k(G/H) forms an ideal if and only if the
following conditions all hold:

(1) I(G/H) is an ideal of the commutative ring k(G/H) for all H ≤ G;
(2) I(G/H) is closed under the Weyl action on k(G/H) for all H ≤ G;
(3) I is closed under transfer, norm, and restriction for all inclusions of subgroups H ′ ≤

H ≤ G.

Definition 3.2. A Tambara functor k is said to be field-like (or a Tambara field) if 0 is the
unique proper ideal of k.

The following gives a relatively straightforward and checkable condition for when a Tam-
bara functor is field-like.

Proposition 3.3 ([Nak12a, Theorem 4.32]). A Tambara functor k is field-like if and only if
all restriction maps k(G/e)→ k(G/H) are injective and k(G/e) has no nontrivial G-invariant
ideal.

In particular, if k is a Tambara functor with each k(G/H) a field, then k is field-like. So,
given a field F, the constant Tambara functor at F is field-like. Additionally, if F ⊂ L is a
Galois extension with Galois group G, then the fixed-point Tambara functor of L is field-like.
One may also show that the coinduction of any field-like H-Tambara functor to a G-Tambara
functor is field-like. In fact, the converse is also true.
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Theorem 3.4 ([Wis24] [Wis25]). Let k be a field-like G-Tambara functor. Then k ∼= CG
Hℓ

for some field-like H-Tambara functor ℓ such that each ℓ(G/H) is a field. Let R ∼= CG
HS be

any isomorphism of G-Tambara functors. Then R is field-like if and only if S is.

However, there are field-like Tambara functors which are not fixed-point Tambara functors
(in particular, not coinduced, not constant, and not arising from a Galois extension). For
example (cf. [Wis24]), let ℓ be a non-perfect field of characteristic p, and define a Cp-Tambara
functor kℓ by setting kℓ(Cp/e) equal to ℓ with the trivial Cp action and kℓ(Cp/Cp) equal to
the image of the Frobenius endomorphism. The restriction map is the inclusion of the image
of Frobenius (which is a proper subfield since ℓ is not perfect), the transfer map is zero, and
the norm map is Frobenius. If G is any nontrivial finite group, then it has a subgroup Cp for
some prime p. Coinducing this example to G then produces a field which is not a fixed-point
Tambara field.

3.2. Free Algebras.

Proposition 3.5. Let k be a Tambara functor. There is a free-forgetful adjunction between
Tambara functors and k-algebras. The forgetful functor sends a k-algebra k → K to K, and
the free functor is given by the box product k ⊠−.

Proof. This comes from the fact that ⊠ is the coproduct in the category of Tambara functors.
Given a Tambara functor T and a k-algebra α : k → K, a morphism of k-algebras k⊠T → K
is a morphism f : k ⊠ T → K of Tambara functors making the diagram

T k ⊠ T K

k

i
α

fj

commute, where i and j are the structure maps of the coproduct k ⊠ T . By the universal
property of coproducts, f is uniquely determined by the data of a pair of morphisms (f1 :
k → K, f2 : T → K) such that f1 ◦ i = α. Sending f to f2 ◦ j gives a natural bijection from
Algk(k ⊠ T,K) to TambG(T,K). �

Proposition 3.6 ([BH18, Definition 5.4]). For any subgroup H of G, there exists a Tambara
functor A[xH ] which represents the functor K 7→ K(G/H) sending a Tambara functor to its
level H ring.

Corollary 3.7. Let k be a Tambara functor. In the category of k-algebras, there exists a
Tambara functor k[xH ] which represents the functor K 7→ K(G/H) sending a k-algebra to its
level H ring.

Proof. In fact, k[xH ] is given by k ⊠A[xH ]. For any k-algebra K, we have

Algk(k ⊠A[xH ],K) ∼= TambG(A[xH ],K)

∼= K(G/H).

This isomorphism is natural in K, so this verifies the desired universal property. �

Lemma 3.8 ([BH18, Proposition 5.2]). In the category of Tambara functors, filtered colimits
may be computed levelwise. More precisely, we have

(colimiKi) (G/H) ∼= colimi (Ki(G/H))
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for filtered diagrams K : I → Tamb. In other words, A[xH ] is compact in the category of
Tambara functors.

Corollary 3.9. Let k be a Tambara functor. In the category of k-algebras, filtered colimits
may be computed levelwise.

Proof. By Proposition 3.5, we have an isomorphism

Algk(k[xH ], colimK) = Algk(k ⊠A[xH ], colimK)

∼= TambG(A[xH ], colimK)

∼= colimi TambG(A[xH ],Ki)

∼= colimi Algk(k[xH ],Ki)

for filtered diagrams K : I → Algk. �

Definition 3.10. The free polynomial k-algebra on n generators in respective levels H1, ...,Hn

is

k[xH1
, ..., xHn ] := k ⊠A[xH1

]⊠ ...⊠A[xHn ]

Repeating the argument of the previous proof, we see that the free polynomial k-algebra
k[xHi ]i∈I represents the functor sending a k-algebra K to the set

∏
i∈I K(G/Hi).

Lemma 3.11. For any G-Tambara functor k, RG
H(k[xG]) ∼= (RG

Hk)[xH ].

Proof. We start with the case k = A. Because coinduction is given by precomposition with
restriction, we have

TambH(RG
HA[xG], T )

∼= TambG(A[xG], C
G
HT )

∼= (CG
HT )(G/G)

∼= T (H/H)

∼= TambH(A[xH ], T )

naturally in T . Thus, RG
HA[xG]

∼= A[xH ].
Next, since RG

H is a left adjoint, it preserves coproducts. Thus,

RG
Hk[xH ] ∼= RG

H(k ⊠A[xG]) ∼= RG
Hk ⊠R

G
HA[xG]

∼= (RG
Hk)[xH ]. �

We record one more fact here, which will eventually allow us to prove that certain Tambara
functors are finitely presented.

Proposition 3.12. For all H ≤ G, AG[xG](G/H) is a finitely generated ring.

In order to prove the proposition we first need a lemma.

Lemma 3.13. If R is a Tambara functor, then for K ≤ H, resHK : R(G/H) → R(G/K) is
an integral map of rings.

Proof. Consider the Tambara functor S := R[x], which is isomorphic to the levelwise tensor
product by Proposition 2.17, so we have that S(G/H) ∼= R(G/H)[x].

Then if a ∈ R(G/K), let p(x) = nmH
K(x − a) ∈ R(G/H)[x]. The Mackey double coset

formula tells us that (x − a) divides resHK nmH
K(x − a), and p(a) = resHK(p)(a), so p(a) = 0.

Since p is monic (its leading term is NH
K x = x[H:K]), a is integral over R(G/H). �

Now we can prove the proposition.
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Proof of Proposition 3.12. We induct on the order of G. When G = e is the trivial group,
Ae[xe] ∼= Z[x], which is certainly finitely generated. Otherwise, assume that the result holds
for all subgroups of G. Note that RG

HAG[xG] = AH [xH ], so this tells us that all of the rings
AG[xG](G/H) are finitely generated for G 6= H.

Now for each H < G choose generators yHi of AG[xG](G/H), and for later convenience
assume that yH0 = resGH xG for each subgroup H. For each yHi , by integrality of restriction
maps we can choose a monic polynomial mH

i (s) ∈ AG[xG][s] such that mH
i (yHi ) = 0.

Let S be the subring of AG[xG](G/G) generated by AG(G/G), the coefficients of the
mH

i , and the elements nmG
H yHi . This is a finitely generated ring, since AG(G/G) is finitely

generated, and there are only finitely many elements yHi . Moreover, by construction each
of the rings AG[xG](G/H) is still integral over S, since S contains the coefficients of monic
polynomials killing the generators of those rings. Therefore, since the rings AG[xG](G/H)
are finitely generated and integral over S, they are module finite over S. So for each proper
subgroup H we can choose finitely many elements zHj which generate AG[xG](G/H) as a
module over S.

Then S and the elements trGH z
H
j together generate all of AG[xG](G/G). This is because

AG[xG](G/G) is generated over AG(G/G) by elements of the form

trGH
∏

i

nmH
Ki

resGKi
xG,

for some choice of Ki ≤ H ≤ G. Now if H = G, all of the elements nmG
Ki

resGKi
xG are in S

already, since resGKi
xG = yKi

0 and S includes the norms of our chosen generators.

Otherwise, when H 6= G, the generator is of the form trGH a for some element a of

AG[xG](G/H), and we can write a in the form
∑n

k=1 res
G
H(ak)z

H
k for elements ak ∈ S. But

then

trGH a = trGH

n∑

k=1

ak · z
H
k =

n∑

k=1

ak tr
G
H z

H
k ,

which is in our ring. �

4. Adjunctions and Compact Algebras

Since Nullstellensatzian Tambara functors are defined in terms of compact objects, we
must establish some basic facts about these.

Definition 4.1. An object x in a category C is said to be compact if the functor C(x,−)
preserves filtered colimits.

For categories of algebraic objects (more precisely, for multi-sorted varieties in the sense
of universal algebra), compact objects are precisely those objects which are finitely presented
[AR94, Corollary 3.13]. For example, if R is a commutative ring, the compact objects of
the category of R-algebras are precisely the finitely presented R-algebras. More generally, if
k is a Tambara functor, the compact objects of the category of k-algebras are precisely the
finitely presented k-algebras.

Definition 4.2. Let k be a Tambara functor. A k-algebra is finitely generated if it is a
quotient of some k[xH1

, . . . , xHn ], and finitely presented if furthermore the quotient is by a
finitely generated Nakaoka ideal. Equivalently, a finitely presented k-algebra is the coequalizer
of a diagram

k[xHi ]i∈I ⇒ k[xHj ]j∈J
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with I and J finite sets.

Proposition 4.3. Let k be a Tambara functor. A k-algebra is compact if and only if it is
finitely presented.

Proof. This follows immediately from [AR94, Corollary 3.13] once we establish that the cate-
gory of k-algebras is a multi-sorted variety. So, we will encode the category of k-algebras as
the category of algebras for a multi-sorted equational theory.

We have one sort for each subgroup ofG, so that a k-algebraX consists of sets {X(G/H)}H≤G.
We have a nullary operation x : ∗ → X(G/H) for each x ∈ k(G/H), encoding the structure
map k → X. We additionally have unary operations res,nm, tr, c to encode the Tambara
operations of X, and nullary, unary, and binary operations at each level of X to encode the
commutative ring structures of the levels of X. Then we impose equational axioms which
encode the axioms of a Tambara functor, as well as the fact that k → X is a homomorphism
of Tambara functors. Algebras for this equational theory are precisely k-algebras. �

4.1. Nullstellensatzian Objects. The authors of [BSY] introduce the notion of a Nullstel-
lensatzian object, which generalizes the notion of an algebraically closed field. The idea is
that a Nullstellensatzian object “satisfies the conclusion of Hilbert’s Nullstellensatz,” and for
commutative rings this turns out to be equivalent to being an algebraically closed field.

Definition 4.4. Let C be a category with an initial object. C is Nullstellensatzian if all
compact nonterminal objects of C admit a map to the initial object.

Definition 4.5. Let C be a category. A morphism f : x→ y in C is called compact if it is a
compact object of the coslice category x/C of objects under x.

Definition 4.6. Let C be a category admitting a terminal object. An object x of C is said to
be Nullstellensatzian if both:

(1) x is not terminal;
(2) For all compact morphisms f : x → y with y nonterminal, there exists a morphism

g : y → x such that g ◦ f = idx.

Note that the second condition is equivalent to x/C being a Nullstellensatzian category.

Proposition 4.7. The Nullstellensatzian objects of the category of commutative rings are
precisely the algebraically closed fields.

Proof. This is shown in [BSY], Theorem 6.1. It is essentially an immediate consequence of
Hilbert’s Nullstellensatz. �

4.2. Sufficient Conditions for a Functor to Preserve Nullstellensatzian Objects.

We are interested in studying Nullstellensatzian objects, and in this subsection we give one
method which sometimes constructs them: Lemma 4.14, which roughly says that right ad-
joints which preserve filtered colimits often produce Nullstellensatzian objects.

Lemma 4.8. Let F : C → D be left adjoint to some functor G which preserves filtered
colimits. Then F sends compact objects to compact objects.
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Proof. Let x be a compact object of C, and let Y : I → D be a filtered diagram in D. We
have

D(Fx, colim Y ) ∼= C(x,G colim Y )

∼= C(x, colim(G ◦ Y ))

∼= colimi C(x,GYi)

∼= colimiD(Fx, Yi),

so Fx is a compact object of D. �

Lemma 4.9. Let C be a category, and let f : x→ y be a morphism in C. Then

(1) cod : x/C→ C preserves filtered colimits;
(2) f∗ : y/C→ x/C preserves filtered colimits.

Proof. The first claim is [Osm21, Corollary 1.4]. The second claim reduces to the first: notice
that f∗ : y/C→ x/C is also given by

y/C ∼= f/(x/C)
cod
−−→ x/C. �

Lemma 4.10. Let C be a category and x an object in C. If I is a category, then the categories
of diagrams α of shape I in x/C and of diagrams α+ of shape I+ in C are equivalent, where
α+(0) = x and I+ is I with a freely adjoined initial object 0. Moreover, for any diagram
α : I → x/C the inclusion of I+ into I++ induces an equivalence of categories from cocones
on α+ to cocones on α, where −+ is the operation of freely adjoining a terminal object to a
category. Therefore α has a colimit if and only if α+ does.

Proof. Consider the diagram

Cocones(α) Cat(I+, x/C) Cat(I++ ,C)

∗ Cat(I, x/C) Cat(I+,C)

∗ C

α

ev0

All of the squares are pullback squares. The lower right square being a pullback square proves
the first claim, and then the fact that the upper left square is a pullback square (by definition
of the category of cocones to α) and that the upper right is a pullback square tell us that the
upper rectangle is also a pullback square, so the category of cocones to α is equivalent to the
category of cocones to α+. �

Corollary 4.11. If G : D→ C preserves filtered colimits, then for any y ∈ D, y/G : y/D→
Gy/C preserves filtered colimits.

Proof. Suppose that we have a diagram α : I → y/D where I is a filtered category and
suppose this has a colimit given by an extension β : I+ → y/D. Then by Lemma 4.10 above,
since α has a colimit the corresponding diagram α+ has a colimit which will be given by β+.
If I is filtered then I+ is also filtered, so G ◦ β+ gives the colimit of G ◦ α+ since G preserves
filtered colmits. And G◦β+ ∼= ((y/G)◦β)+, so (y/G)◦β is the colimit of (y/G)◦α. Therefore
y/G preserves filtered colimits. �
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Lemma 4.12. Let F : C → D be a functor having a right adjoint G that preserves filtered
colimits. Then F sends compact morphisms to compact morphisms.

Proof. Let f : x → y be a compact morphism in C. The functor x/F : x/C → Fx/D has
a right adjoint given by η∗ ◦ Fx/G, where η is the unit of the adjunction F ⊣ G. Since
η∗ preserves filtered colimits by Lemma 4.9 and since Fx/G preserves filtered colimits by
Corollary 4.11 we have that (x/F )f = Ff is a compact object in Fx/D, i.e. Ff is a compact
morphism in D. �

The following lemma is likely well-known to experts, but we provide a proof here for
completeness.

Lemma 4.13. Let C be a category. The class of compact morphisms in C is closed under
composition.

Proof. Let f : x→ y and g : y → z be compact morphisms in C. Now let ω : I → x/C be a
filtered diagram in x/C, and consider a morphism ϕ : g ◦ f → colim ω in x/C.

x y z

•

f

colimω

g

ϕ

Since f is compact, the morphism ϕ ◦ g : f → colimω factors through ω(i0) for some i0 ∈ I.
Let w0 be the codomain of ω(i0), so that we have

x y z

w0

•

f

ω(i0)

colimω

g

α

ϕ

for some morphism α. Now we consider the composition

ω′ := i0/I
i0/ω
−−−→ ω(i0)/(x/C)

ω(i0)/ cod
−−−−−−→ w0/C

α∗

−→ y/C

which is a filtered diagram in y/C. Note that the following diagram commutes:

i0/I ω(i0)/(x/C) w0/C y/C

I x/C

i0/ω

ω′

cod

ω(i0)/ cod

cod

α∗

f∗

ω

Thus, by Lemma 4.9 we have

f∗ colimω′ = colim(f∗ ◦ ω′) = colim(ω ◦ cod),

and since I is filtered, the image of cod : i0/I → I is a final subcategory of I. Overall, this
gives

f∗ colim ω′ = colimω,
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and in particular we note cod colim ω′ = cod(f∗ colimω′) = cod colimω.
So, we have a diagram

y z

•

g

colimω′
ϕ

which we have not yet checked commutes. The commutativity is easy to check, however,
because we know that colim ω′ factors through ω′(idi0), i.e. the lower triangle in the commu-
tative square

y z

w0 •

g

ω(i0) colimω′ ϕ

commutes. Now, since g is a compact morphism in C, we know that ϕ factors through ω′(γ)
for some γ ∈ i0/I. We have γ : i0 → i1 for some i1 ∈ I; letting w1 denote the codomain of
ω(i1), we get

x y y z

w0 w1

w1 •

f

ω(i0)

ω(i1)

α

ω′(γ)

g

ω′(γ)

colimω′

β

ϕ

ω(γ)

for some morphism β. Putting these diagrams together, we have

x y z

w1

•

f

ω(i1)

colimω′◦f

g

ω′(γ)
β

ϕ

and we recall colimω′ ◦ f = f∗ colimω′ = colim ω. Thus, β factors ϕ through ω(i1). Since ϕ
was arbitrary, we conclude that g ◦ f is a compact morphism in C, as desired. �

Lemma 4.14. Let F : C→ D be left adjoint to G : D→ C. Suppose that:

(1) G preserves filtered colimits and initial objects,
(2) F reflects terminal objects (at least when restricted to compact objects),
(3) D is Nullstellensatzian.

Then C is Nullstellensatzian.

Proof. Since D is Nullstellensatzian it has an initial object 0D. By the first assumption, G0D
is initial in C, so C has an initial object. Now let x be a compact, nonterminal object in C.
By the second assumption and Lemma 4.8, Fx is compact and nonterminal in D. Then by
the third assumption, there exists a map Fx→ 0D. Now the adjunction F ⊣ G gives a map
x→ G0D, and G0D is initial in C. �

The previous lemma is one tool for constructing Nullstellensatzian objects. We have an-
other such tool:
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Proposition 4.15. Let C and D be categories with terminal objects and let F : C→ D be left
adjoint to a functor G : D → C that preserves filtered colimits. Let x be a Nullstellensatzian
object in D. Suppose that:

(1) Gx is nonterminal.
(2) Precomposition with the counit ǫ∗x : x/D→ FGx/D has a left adjoint ǫx∗.
(3) The composite ǫx∗ ◦ (Gx/F ) : Gx/C → x/D reflects terminal objects (at least when

restricted to compact objects).

Then Gx is also Nullstellensatzian.

Proof. x is Nullstellensatzian by definition if and only if x is nonterminal and (x/D) is Null-
stellensatzian,

So since Gx is assumed to be nonterminal, this follows from applying the previous theorem
to the composite adjunction

Gx/C⇋ FGx/D⇋ x/D.

The left adjoint in the first adjunction is given by Gx/F with right adjoint η∗Gx ◦ (FGx/G).
In the second adjunction the right adjoint is ǫ∗x and the left adjoint is ǫx∗.

The composite left adjoint reflects terminal objects by assumption, so we just need to check
that the composite right adjoint preserves filtered colimits and sends the initial object to the
initial object. By the triangle identity, the composite right adjoint is given by x/G which
preserves filtered colimits by Corollary 4.11 and sends 1x to 1Gx as required. �

Corollary 4.16. Let C and D be categories with terminal objects and let F : C → D be left
adjoint to a functor G : D → C that preserves filtered colimits. Let x be a Nullstellensatzian
object in D. Assume that

(1) G reflects terminal objects,
(2) D has all pushouts.

Then Gx will be Nullstellensatzian if the following condition holds:
For all compact morphisms α : Gx→ y if we form the pushout square

FGx x

Fy z

Fα

ǫx

and z is terminal in D then y is terminal in C.

Proof. If x is Nullstellensatzian, then it is nonterminal and since G reflects terminal objects
Gx is nonterminal. So condition 1 of the proposition holds. Also when D has pushouts, then
for any f : a → b in D, f∗ : b/D → a/D has a left adjoint, which is given by pushout along
f . Therefore ǫx∗ is given by pushout along ǫx. So condition 2 holds. That then makes the
pushout condition above a restatement of condition 3 of the proposition. �

4.3. Examples of Important Functors that Preserve Nullstellsatzian Objects.

Proposition 4.17. For a finite group G, the functor Fun(G,−) : CRing→ CRingG preserves
Nullstellensatzian objects.

Proof. Fun(G,−) is right adjoint to the forgetful functor, and if Fun(G,A) = 0, then A = 0,
so it reflects terminal objects. Moreover, CRingG and CRing both have all filtered colimits
which are computed in Set, and since G is finite, Fun(G,−) commutes with filtered colimits
in Set and therefore commutes with filtered colimits of commutative rings as well.
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Therefore we are in the situation of Corollary 4.16, so we just need to check the pushout
condition. If k is a commutative ring, then the counit ǫk is evaluation at the identity element
of G, eve : Fun(G, k)→ k.

If A is an algebra over Fun(G, k) in CRingG, via a map α : Fun(G, k) → A, then the
idempotents δg ∈ Fun(G, k) which are the indicator functions for each of the elements g ∈ G
induce a product decomposition

A =
∏

g∈G

Aδg,

and since G acts transitively on the δg, we have that if A0 = Aδe, then A ∼= Fun(G,A0).
Moreover if we let α0 be the map k ∼= kδe → Aδe ∼= A0, then α ∼= Fun(G,α0).

Then the pushout square we get is

Fun(G, k) k

Fun(G,A0) A0

Fun(G,α0)

ǫk

α0

ǫA0

and if A0 is 0, then so was A. �

Lemma 4.18. The fixed point Tambara functor − : CRingG → TambG preserves Nullstellen-
satzian objects.

Proof. Let S be a commutative ring with G-action. Since fixed points are finite limits they
commute with filtered colimits and arbitrary limits, and we know that the fixed point Tam-
bara functor is right adjoint to evG/e, and if S = 0, then S must have been zero in the first
place. So we just need to check the pushout condition.

If A is an S-algebra, then the pushout is A(G/e) ⊗S(G/e) S ∼= A(G/e). So if the pushout
is zero, then A(G/e) is zero, which implies that A is zero. �

If we combine the previous two results with Lemma 2.19, which says that the coinduction
functor is the composite CG

e R = Fun(G,R), then we get the following corollary:

Corollary 4.19. Let G be a finite group. Then the coinduction functor CG
e : CRing→ TambG

preserves Nullstellensatzian objects.

Now, from our classification of Nullstellensatzian Tambara functors, it will turn out that
when N is a normal subgroup of G, the evaluation functors evG/N : TambG → CRingG/N

preserve Nullstellensatzian objects. We will directly prove this in two cases, when N = G
(Proposition 5.6) and when N = e (Proposition 4.21). When N = e, the proof is able to
exploit the fact that, in this case, evaluation and restriction are the same and restriction is
also a left adjoint.

While we could use the N = e case to prove the classification theorem, we will instead use
the N = G case because the proof in the N = G case generalizes to incomplete Tambara
functors with relatively small modifications.

Lemma 4.20. For a finite G-set X, the functor evX : TambG → CRing has a left adjoint.
The same is also true for evG/H : TambG → CRingWG(H).

Proof. Let A be a commutative ring. We can (functorially) write A as a coequalizer of free
commutative rings, coeqZ[xj : j ∈ J ] ⇒ Z[xi : i ∈ I] for some indexing sets I and J and
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maps of commutative rings. Then we can construct the exact same diagram in Tambara
functors by adjoining the variables at level X and define

LA = coeqAG[x
X
j : j ∈ J ]⇒ AG[x

X
i : i ∈ I].

Then for any Tambara functor S, we have that TambG(LA,S) is naturally isomorphic to
maps I → S(X) picking out families of elements of S(X) that satisfy the relations imposed
by the coequalizer. And that is naturally isomorphic to CRing(A,S(X)). Therefore a left
adjoint exists.

The same proof works when we remember the Weyl action. �

Proposition 4.21. The functor evG/e : TambG → CRingG preserves Nullstellensatzian ob-
jects.

Proof. By the lemma above evG/e preserves filtered colimits and has a left adjoint. It also

reflects terminal objects, because if k(G/e) = 0, then 1G = nmG
e 1e = 0, so k = 0. So we just

need to verify the pushout condition.
Let Le be the left adjoint to evG/e constructed above. Then if A is a k(G/e) algebra, let

B := LeA⊠Lek(G/e) k denote the pushout. We want to show that if B is zero, then A must
have already been zero. Now recall that evG/e is also a left adjoint whose right adjoint is the
fixed point Tambara functor construction. So evG/eB = (evG/e LeA) ⊠evG/e Lek(G/e) k(G/e).

However, if S is any commutative ring with a G-action, evG/e LeS ∼= S, since for any other
commutative ring with G-action, T , we have the following natural isomorphisms

CRingG(evG/e LeS, T ) ∼= TambG(LeS, T ) ∼= CRingG(S, evG/e T ) = CRingG(S, T ),

since evG/e T = T e = T by definition.
Therefore evG/eB ∼= A⊠k(G/e) k(G/e) ∼= A. So if B is zero, A is also zero.

�

This proof is really more about the restriction functor than it is about the evaluation
functor, and indeed a version of this proposition should also be true for slight modifications
of the restriction functors RG

H : TambG → TambH where we modify the target category to
keep track of the full G-action.

4.4. Finitely Presented Fixed-Point Tambara Functors. The existence of the coinduc-
tion functor also simplifies many calculations involving free algebras. We will record some
of these here, leading to an important consequence: S 7→ S : CRing → TambG preserves
compact objects and compact morphisms.

Proposition 4.22. Let k be a Tambara functor. Then

k[xe](G/e) ∼= k(G/e)[xg |g ∈ G]

as commutative rings.

Proof. Let ke = k(G/e). We have

Algke(k[xe](G/e), S) = Algke
(
RG

e k[xe], S
)

∼= Algk
(
k[xe], C

G
e S

)

∼=
(
CG
e S

)
(G/e)

= Fun(G,S)

∼= Algke(ke[xg|g ∈ G], S)

natural in k(G/e)-algebras S. �
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Proposition 4.23. For any Tambara functor k, k⊠− : TambG → TambG preserves levelwise
surjections.

Proof. This can be checked directly from the coend formula for the box product. �

Corollary 4.24. Z[x] is a compact object in AlgZ.

Proof. Z[x] is generated as a Z-algebra (indeed, even as a Tambara functor) by the element

x at level G/G. Thus, we have a surjection Z[xG]→ Z[x].
Next, we note that A → Z is surjective, so

A[xG] = A⊠A[xG]→ Z⊠A[xG] = Z[xG]

is surjective. Since A[xG] is levelwise finitely generated, we conclude that Z[xG] is also
levelwise finitely generated (in particular, levelwise Noetherian). Thus, every ideal of Z[xG]
is finitely generated. In particular, the kernel of Z[xG] → Z[x] is finitely generated, so Z[x]
is compact in AlgZ. �

Proposition 4.25. S 7→ S : CRing→ AlgZ preserves finite coproducts.

Proof. For the empty coproduct we have directly that Z is initial in AlgZ. [LRZ24, Lemma

5.1] shows that S ⊗ S′ ∼= S ⊠ S′, and we must show that this agrees with S ⊠Z S
′. This

is simply because S ⊠Z S
′ is defined as a coequalizer of two morphisms which are already

equal—morphisms from Z are unique whenever they exist, because such a morphism consists
levelwise of ring homomorphisms from Z. �

Corollary 4.26. Z[x] has the structure of a co-(commutative ring) object in the category of

Z-algebras, coming from its co-(commutative ring) object structure in CRing.

This tells us that AlgZ

(
Z[x], S

)
has a natural commutative ring structure for any Z-algebra

S, i.e. AlgZ

(
Z[x],−

)
is a functor AlgZ → CRing.

Proposition 4.27. S 7→ S : CRing→ AlgZ is left adjoint to AlgZ(Z[x],−).

Proof. Given a morphism ϕ : S → T , define a morphism ϕ̃ : S → AlgZ(Z[x], T ) by

ϕ̃(s)G/H(f) = f(ϕG/H(s)).

It is easy to check that ϕ̃(s) is a homomorphism of Tambara functors for all s, and then that
ϕ̃ is a ring homomorphism. Thus, we obtain a function

ϕ 7→ ϕ̃ : TambG(S, T )→ CRing(S,AlgZ(Z[x], T ))

which is clearly natural in S and T . In the other direction, let ψ : S → AlgZ(Z[x], T ) be a

ring homomorphism. Then define ψ̂ : S → T by

ψ̂G/H(s) = ψ(s)G/H(x).

We check that
̂̃ϕG/H(s) = ϕ̃(s)G/H(x) = ϕG/H(s)

and
˜̂
ψ(s)G/H(x) = ψ̂G/H(s) = ψ(s)G/H(x),

so these constructions are mutually inverse. �

Corollary 4.28. S 7→ S : CRing→ AlgZ preserves compact morphisms.
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Proof. By Corollary 4.24, AlgZ(Z[x],−) preserves filtered colimits. By Lemma 4.12, we are
done. �

Theorem 4.29. S 7→ S : CRing → TambG preserves compact objects and compact mor-
phisms.

Proof. Because A/AlgZ
∼= AlgA = A/TambG, a morphism in AlgZ is compact if and only if

it is compact in TambG. Next, consider a compact object R ∈ CRing. Then (equivalently)
Z → R is compact in CRing, so Z → R is compact in AlgZ, so Z → R is compact in TambG.
Since A → Z is also compact (it is surjective), we conclude that A → R is compact, i.e., R
is compact in TambG. �

5. Classification of Nullstellensatzian Objects

In this section we characterize the Nullstellensatzian G-Tambara functors and Nullstellen-
satzian G-rings, and study the algebraic K-theory of Nullstellensatzian Tambara functors.
Additionally, we study algebraic closures of field-like G-Tambara functors.

Definition 5.1 ([BSY]). A Tambara functor k is Nullstellensatzian if every compact, non-
terminal object in the slice category of Tambara functor algebras over k admits a map to the
initial k-algebra idk : k → k.

First, we collect some immediate consequences of this definition.

Proposition 5.2. Let k be a Nullstellensatzian Tambara functor. Then k is field-like.

Proof. Let H ≤ G and x ∈ k(G/H) be arbitrary. If (x) 6= k, then q : k → k/(x) is a nonzero,
compact k-algebra, so it admits a retraction r : k/(x) → k such that r ◦ q = 1k. Then
r(q(x)) = 0 = x, so x = 0. So k has no proper nonzero ideals.

�

Corollary 5.3. Let k be a Nullstellensatzian Tambara functor. Then k(G/G) is a field.

Proof. This is true of any field-like Tambara functor, see [Nak12a, Remark 4.36]. �

One might guess that if each level k(G/H) is an algebraically closed field, then k is Nullstel-
lensatzian. However, this is not the case, as the following example shows. Roughly speaking,
the correction is that one must consider k(G/H) as a ring with Weyl group action, and ask
for it to be Nullstellensatzian in the appropriate category of rings with group action.

Example 5.4. IfG is not the trivial group, the constant Tambara functor at the algebraically
closed field C is not a Nullstellensatzian Tambara functor.

Proof. Consider the complex representation C[G] of G, which contains a copy of C in its
fixed points via 1 7→

∑
g∈G g. Let X := C[G]/C, which is again a complex representation

of G. Now SymC(X) is a G-C-algebra, and we can invert the elements of G to obtain
Y := SymC(X)[g−1 : g ∈ G], which is again a G-C-algebra.

Since G is not the trivial group, pick a function f : G → C such that
∑

g∈G f(g) = 0

and f(g) 6= 0 for all g ∈ G. This yields a C-linear function X → C, which then gives us a
C-algebra map SymC(X) → SymC(C)

∼= C. Since f was nowhere-zero, this descends to a
C-algebra map Y → C, and thus we conclude that Y 6= 0.

Now let E := Y , which is a C-algebra. Since Y is finitely presented, it is compact over C, so
(by Theorem 4.29) E is compact over C. Moreover, since Y 6= 0 we have E 6= 0. Now suppose
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towards a contradiction that there exists a morphism of Tambara functors ϕ : E → C. In
E(G/e) we have RG

e T
G
e (e) =

∑
g∈G g = 0, so we get

|G|ϕ(e) = RG
e T

G
e ϕ(e) = ϕ(RG

e T
G
e e) = ϕ(0) = 0,

whence ϕ(e) = 0. However, e is a unit in E(G/e) = Y , so ϕ(e) must be a unit, which is a
contradiction. �

While Example 5.4 might be surprising at first, it offers the following heuristic. Null-
stellensatzian objects must receive many maps. When G acts trivially on something, any
G-equivariant map must factor through G-orbits. However, the G-orbits of any coinduced
Tambara functor are zero, and the only way to receive a morphism from the zero Tambara
functor is to be zero. In light of this, the third-named author conjectures in [Wis25] that
the constant C Tambara functor actually is Nullstellensatzian if one works in the category of
so-called clarified G-Tambara functors. However, the results of [Wis25] essentially say that
this is the only possibility for field-like Nullstellensatzian clarified Tambara functors, and in
fact there exist many Nullstellensatzian clarified Tambara functors which are not field-like.

Lemma 5.5. If k is a Nullstellensatzian Tambara functor, then the counit map k → k(G/e)
is an isomorphism.

Proof. The components of the counit map k → k(G/e), are the restriction maps resHE :

k(G/H) → k(G/e)H . Since k is a Tambara field these are injective, so we just need to show
that the restriction maps are also surjective to the fixed points.

Let y ∈ k(G/e)H , and consider the k-algebra k[xG/H ]/(resHe xG/H − y). This is nonzero,
since it admits a map to k(G/e) sending xG/H to y, and it is finitely presented, so it admits

a retraction, q, to k. Then resHe q(xG/H) = q(y) = y is a lift of y to k(G/H). �

Proposition 5.6. The functor ev∗ : TambG → CRing preserves Nullstellensatzian objects.

Proof. Since filtered colimits are pointwise in Tambara functors, ev∗ preserves filtered colimits.
By Lemma 4.20, ev∗ is a right adjoint. If ev∗ k = 0, then k = 0, since for any subgroup H,
1H ∈ k(G/H) is the restriction of 1G ∈ k(G/G) = k(∗), so if 1G = 0, 1H = 0 for all H, so
k = 0. Therefore ev∗ reflects terminal objects.

Thus we just need to check that when ev∗ k 6= 0 the pushout condition of Corollary 4.16
holds. Let L∗ be the left adjoint to ev∗. Then we need to show that for a finitely presented
k(∗) algebra, A, if the pushout (L∗A)⊠L∗k(∗)k is zero, then A must have been zero. Since A is
finitely presented, we can write it as a polynomial algebra, A ∼= k(∗)[x1, . . . , xn]/(f1, . . . , fm),
for some polynomials f1, . . . , fm. Then we have that L∗A ∼= L∗k(∗)[x∗,1, . . . , x∗,n]/(f1, . . . , fm),
and the pushout is

(L∗A)⊠L∗k(∗) k
∼= k[x∗,1, . . . , x∗,n]/(f1, . . . , fm),

where the fi are viewed as polynomials in the x∗,1, . . . , x∗,n.
Consider the Tambara functor k[x1, . . . , xn], which is isomorphic to the levelwise tensor

product of k with Z[x1, . . . , xn] by Proposition 2.17. Then we have a map k[x∗,1, . . . , x∗,n]→
k[x1, . . . , xn] given by sending x∗,i to xi, so by taking quotients we can define a map from the
pushout, k[x∗,1, . . . , x∗,n]/(f1, . . . , fm), to k[x1, . . . , xn]/(f1, . . . , fm). Then we can complete
the proof by showing that ev∗(k[x1, . . . , xn]/(f1, . . . , fm)) ∼= A, since then if the pushout is
zero, k[x1, . . . , xn] is zero, and therefore A is zero.

To show this, let I be the ideal of k(∗)[x1, . . . , xn] generated by the polynomials f1, . . . , fm
and let J be the ideal of k[x1, . . . , xn] generated by f1, . . . , fm. Certainly we have that
I ⊆ J(∗), and we can complete the proof by showing that this is actually an equality.
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Any element of J(∗) can be written as a sum of elements of the form

trGH
(
a · nmH

K resGK b
)
,

for subgroups K ⊆ H ⊆ G, a ∈ (k[x1, . . . , xn])(G/H) and b ∈ I. so it suffices to show that

these generators are all contained in I. The key here is to show that nmH
K resGK b = resGH b

[H:K],
since then

trGH
(
a · nmH

K resGK b
)
= trGH

(
a · resGH b[H:K]

)
= b[H:K] trGH a ∈ I.

Then since k is a Tambara field, it satisfies the monomorphic restriction condition, so
k[x1, . . . , xn] also satisfies the monomorphic restriction condition, since at level G/H it is
isomorphic to k(G/H)[x1, . . . , xn].

Therefore we can verify our identity by applying resHe to both sides, which gives us

resHe resGH b
[H:K] =

∏

hK∈H/K

(hK) resKe resGK b = resHe nmH
K resGK b. �

Theorem 5.7. A Tambara functor k is Nullstellensatzian if and only if k ∼= CG
e (F) for some

algebraically closed field F.

Proof. The reverse direction is Corollary 4.19. For the forwards direction, we begin by con-
structing a useful compact k-algebra. Let K be the quotient of k[xG/e] by the following
relations at level G/e (recalling k[xG/e](G/e) ∼= k(G/e)[xg |g ∈ G] from Proposition 4.22):

(1) (idempotence) x2g = xg
(2) (orthogonality) xgxh = 0 when g 6= h

(3) (completeness)
∑

g∈G

xg = 1

To see that K is nonzero, observe that we may construct a k-algebra map K → CG
e k(G/e)

as follows. First, choose k[xG/e]→ CG
e k(G/e) classifying the choice of any idempotent which

determines a projection CG
e k(G/e)

∼= Fun(G/e, k(G/e)) → k(G/e). Next, observe that this
map respects the three relations above, so that it descends to K → CG

e k(G/e). Since the
codomain of this morphism is nonzero (here we use the assumption that k is nonzero), the
domain is also nonzero.

Since K is a quotient of a finitely generated polynomial algebra by finitely many relations,
K is a compact k-algebra, and hence admits a section K → k. Let yg ∈ k(G/e) denote
the image of xg ∈ K(G/e). Then the collection of yg form a complete set of orthogonal
idempotents in k(G/e), hence determine an isomorphism k(G/e) ∼=

∏
g∈G k(G/e) · yg. Since

the yg form a G-orbit, the rings k(G/e) · yg are all isomorphic, so if we let A = k(G/e) · ye,
we can rewrite this as an isomorphism k(G/e) ∼= Fun(G,A).

Now by Lemma 5.5 k ∼= k(G/e), so k ∼= Fun(G,A), and we know that CG
e A
∼= Fun(G,A),

so this shows that k is coinduced. All that remains is to show that A is an algebraically
closed field.

However, the diagonal map ∆ : A → Fun(G,A)G is an isomorphism to the G-fixed
points, so we have that k(∗) ∼= Fun(G,A)G ∼= A, and k(∗) is an algebraically closed field
by Proposition 5.6. �

It is often considered a defect of the ideal-centric definition of field-like Tambara functors
that there are examples of Tambara fields for which not every module is free. However, as
pointed out to us by Mike Hill, the category of modules over the coinduction of a ring is
naturally equivalent to the category of modules over the original ring (see Proposition 5.8
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below). Thus this defect is miraculously absent for Nullstellensatzian Tambara functors, by
the above theorem. In particular, if one attempts to define the K-theory of a Tambara functor
in terms of its module category, then the K-theory of Nullstellensatzian Tambara functors
is determined straightforwardly by the K-theory of algebraically closed fields. The following
result is a discrete version of the results in [BDS15].

Proposition 5.8. Let R be a ring. Coinduction induces an adjoint equivalence between the
category of R-modules and the category of CG

e R-modules (defined as Mackey functor modules
over the underlying Green functor of CG

e R).

Proof. Recall that any Tambara functor has the structure of a monoid with respect to the box
product, and a module over a Tambara functor is a module over the underlying monoid. If
k is any G-Green functor and M is a k-module, it follows that every abelian group M(G/H)
is a k(G/H)-module. If k = CG

e R, then we may view M(G/H) as an R-module through the
restriction (i.e., the diagonal action). Note that the idempotents in Fun(G/H,R) determine
an R-module decomposition

M(G/H) ∼= Fun(G/H,MH )

for some R-module MH .
The canonical map

M →M(G/e)

of Mackey functors is surjective in every level by the double coset formula. Thus it suffices to
show that all restriction maps forM are injective. To see this, recall the Frobenius reciprocity
relations

Tf (x) ·m = Tf (x · Rf (m))

for every f : G/e → G/H. In CG
e R, the unit of each ring CG

e R(G/H) is in the image of the
transfer. Choosing a preimage of the unit, x, we see that if Rf (m) = 0, then

m = Tf (x) ·m = Tf (x · Rf (m)) = Tf (0) = 0

hence Rf is injective, as desired. �

In fact, we may use the equivalence of Proposition 5.8 to give an alternative proof that
the coinduction of any algebraically closed field is Nullstellensatzian, bypassing the need for
Lemma 4.14. Namely, observe that the Nullstellensatzian condition for an object is stated
in terms of a property of a certain category. To see that CG

e F is Nullstellensatzian, for F

an algebraically closed field, it suffices to show that the category of Tambara functor CG
e F

algebras is equivalent to the category of F-algebras.
Next, observe that a CG

e F-algebra is precisely a monoid in the category of CG
e F-modules

with respect to the box product relative to CG
e F. Indeed, such a monoid is automatically

a Green functor, necessarily of the form CG
e R, and since restriction maps are injective, the

double coset formula implies that there is precisely one possible choice of norms. Similarly,
an F-algebra is precisely a monoid in the category of F-modules with respect to the tensor
product relative to F. So the desired equivalence of algebra categories follows from the
following lemma.

Lemma 5.9. The equivalence of Proposition 5.8 is strong symmetric monoidal (with respect
to the tensor product over F and the box product relative to CG

e F).
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Proof. Let CG
e X and CG

e Y denote two arbitrary CG
e F-modules. Since their box product over

CG
e F is again a module, it is coinduced from a F-module Z. Using the natural isomorphism

Fun(G,Z) ∼=
(
CG
e X ⊠CG

e F C
G
e Y

)
(G/e) ∼= Fun(G,X) ⊗Fun(G,F) Fun(G,Y )

we deduce a natural isomorphism Z ∼= X ⊗F Y . Applying coinduction we obtain the desired
natural isomorphism

CG
e X ⊠CG

e F C
G
e Y
∼= CG

e Z
∼= CG

e (X ⊗F Y ) . �

In fact, these results are strengthened greatly. In [CW25] the third-named author and
David Chan show that any coinduction CG

H with G abelian induces a symmetric monoidal
equivalence on module categories. In [Wis25] the third-named author removes the commuta-
tivity assumption, and extends the result to categories of Tambara functor algebras.

Theorem 5.10 ([CW25] [Wis25]). Let k be an H-Tambara functor. Then there is a sym-
metric monoidal equivalence

Modk ≃ ModCG
Hk

of categories with respect to the relative box product, and an equivalence of categories

Algk ≃ AlgCG
Hk

of algebras.

Corollary 5.11. If F is algebraically closed, then CG
e F is Nullstellensatzian.

Since we visibly never used the norms in this proof, it clearly applies to incomplete Tambara
functors as well.

Corollary 5.12. If k ∼= CG
e F is Nullstellensatzian, then the equivalence of Proposition 5.8

induces an equivalence of E∞-ring spectra K(k) ∼= k(F).

We may directly deduce a classification of Nullstellensatzian G-rings from Theorem 5.7,
although a similar argument (building a compact algebra whose section forces structure) also
goes through. We give this alternate approach to demonstrate the robustness of Lemma 4.14.

Theorem 5.13. A G-ring k is Nullstellensatzian if and only if it is the coinduction of an
algebraically closed field F, k ∼= Fun(G,F).

Proof. By Proposition 4.17, every G-ring of the form Fun(G,F) for F an algebraically closed
field is Nullstellensatzian. For the converse, if aG-ring k is Nullstellensatzian, then Lemma 4.18
tells us that k is Nullstellensatzian. Therefore k ∼= CG

e (F) for some algebraically closed field
F by Theorem 5.7, and evaluating at G/e on both sides gives that k ∼= Fun(G,F). �

Presumably this result yields a K-theoretic statement analogous to Corollary 5.12 in the
context of Merling’s genuine K-theory spectrum of a ring with G-action [Mer17], although
the authors have not determined the precise form of this relationship. It is likely either
a statement about G-fixed points or the underlying nonequivariant spectrum of Merling’s
construction.

Finally, we aim to characterize “the” algebraic closure of a field-like Tambara functor. As
in the nonequivariant case, it turns out that algebraic closures are unique up to isomorphism.
Recall [Nak12a, Remark 4.36] that if k is a field-like Tambara functor, then the fixed-points
k(G/e)G are a field.
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Theorem 5.14. Assume k is field-like. There is a map k → CG
e

(
k(G/e)G

)
, where the

codomain is the coinduction of an algebraic closure of the field k(G/e)G, and any map from
k to a Nullstellensatzian Tambara functor K factors (noncanonically) through this map.

Proof. Fix a choice of algebraic closure k(G/e)G → k(G/e)G. Rotating the coinduction-

restriction adjunction, we obtain CG
e

(
k(G/e)G

)
.

Now let k → K any map with K algebraically closed. Then K ∼= CG
e F for some alge-

braically closed field F. Rotating the coinduction-restriction adjunction and applying fixed-
points, we obtain a map

k(G/e)G ⊂ k(G/e)→ F.

Since k(G/e) is integral over k(G/e)G (by [AM69, Exercise 5.12]), this map factors through

k(G/e) → k(G/e)G → F,

where the first map is our fixed choice of algebraic closure of k(G/e)G. Applying CG
e to

the second map yields a morphism of Nullstellensatzian Tambara functors which manifestly
factors k → K on the G/e level. Since all objects are fields, all restriction maps are injective,

so checking that k → CG
e k(G/e)

G factors k → K may be done on the G/e level. �

For this reason, we refer to (a fixed choice of map) k → CG
e k(G/e)

G as algebraic closure
of k. Of course, if k is not a field, then there may be nonisomorphic choices of algebraic
closures; this may be seen in the nonequivariant setting, for example, by consideration of the
maps Z→ Fp → Fp for p any prime.

Similarly, one may check that for any G-ring of the form Fun(G/H,F), there is a unique
algebraic closure, up to noncanonical isomorphism, given by Fun(G,F), for F an algebraic
closure of F.

5.1. Incomplete Tambara Functors. We can generalize Tambara functors by replacing
PG with other categories of a similar flavor (i.e. whose morphisms are bispans). In full
generality there are many interesting categories that one can use in place of PG [Spi24], but
the interesting generalization for our purposes will be to consider categories PG,O×

, where
O× is a subcategory of G-set which is wide, pullback-stable, and a symmetric monoidal
subcategory with respect to the coproduct. PG,O×

is the subcategory of PG consisting of

diagrams X
h
←− A

g
−→ B

f
−→ Y such that g ∈ O×. That this is a subcategory can be checked

using pullback stability and the formulas for composing the generating morphisms above.
We require O× to be a symmetric monoidal subcategory with respect to the product so that
PG,O×

has all products and they agree with the products in PG, which are given by disjoint
union of G-sets.

Then we can define PG,O×
-Tambara functors in exactly the same way as above. These are

called incomplete Tambara functors because they also admit a description as in Proposition 2.7,
with exactly one difference: we only have norm maps nmK

H when the map G/H → G/K lies
in O×. Incomplete Tambara functors were originally introduced in [BH18], and we refer the
reader to this source for a more complete exposition.

One might wonder the extent to which our results apply to incomplete Tambara functors,
and more generally bi-incomplete Tambara functors (those are Tambara functors which in
addition to not having all norms, do not necessarily have all transfers). In fact, as we
have remarked, the coinduction of an algebraically closed field is always a Nullstellensatzian
incomplete Tambara functor. However, there are Nullstellensatzian objects not of this form.
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To see this, consider the category of “maximally” bi-incomplete G-Tambara functors, ie
those which have no norms and no transfers. The category of such is just the category of
coefficient systems of rings. In this category, form the unique bi-incomplete Tambara functor
k whose G/G-level is an algebraically closed field F, and whose remaining levels are zero. The
slice category of bi-incomplete Tambara functor algebras over k may be identified with the
category of F-algebras. In particular, this implies k is Nullstellensatzian.

One may be able to use Lemma 2.19 to give a classification of Nullstellensatzian bi-
incomplete Tambara functors. The authors plan to investigate this in future work.
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