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Abstract

In this report we will present the basic definitions and results in the study of compact Riemann surfaces and

describe a proof of the Riemann – Roch theorem, as well as discuss its application to embedding compact Riemann

surfaces into projective space. The proof we present will be a mostly immediate application of sheaf cohomology,

and we give an abbreviated account of the definitions and theorems therein. Our primary reference for the topics

covered is [Forster]. Many of the proofs presented here can be found in greater detail there. Another good reference

on Riemann surfaces is [Miranda].

0 What is a Riemann surface?

0.1 Definition

Riemann surfaces are topological spaces locally modeled on open subsets of C. As we will talk about

embeddings into projective space, it will be convenient to define general complex manifolds before specializing

to Riemann surfaces. For a good introduction to general complex manifolds, we point the reader to

[Huybrechts, Ch. 2].

Definition 0.1. Let U be an open subset of Cn. Give it coordinates z1, . . . , zn and write zj = xj + iyj .

Define the differential operator ∂
∂zj

= 1
2

(
∂
∂xj

+ i ∂
∂yj

)
. A smooth function f : U −! C is called holomorphic

if it satisfies the Cauchy – Riemann equation ∂f
∂zj

= 0 for all j. A map f : U −! Cm with coordinates

f = (f1, . . . , fm) is said to be holomorphic if each coordinate fj is holomorphic.

Definition 0.2. Let X be a (nonempty) topological space. An n – dimensional holomorphic atlas A on

X is a set of pairs (U, φ) with U ⊆ X open and φ : U −! Cn a homeomorphism onto an open subset of

Cn. We call U a coordinate patch and φ a coordinate chart. The space X must be covered by coordinate

patches, i.e.
⋃

(U,φ)∈A U = X. Additionally, the charts must be holomorphically compatible in the following

sense. For (U, φ), (V, ψ) ∈ A such that U ∩ V is nonempty, we must have that the composition φ ◦ ψ−1 is

holomorphic in the sense defined above, where we suppress writing explicit restrictions.

Definition 0.3. A complex manifold of dimension n is a Hausdorff space equipped with an equivalence

class of n – dimensional holomorphic atlases, where A and B are said to be equivalent if A ∪ B is also an

atlas.

Definition 0.4. A map f : X −! Y between complex manifolds is holomorphic if ψ◦f ◦φ−1 is holomorphic

in the sense of complex variables for all charts φ on X and ψ on Y , where restrictions are again suppressed.

A holomorphic map with holomorphic inverse is called a biholomorphism.

0.2 Examples

Example. Let U ⊆ C be open and nonempty with the holomorphic atlas {(U, ι)}, where ι : U −! C is the

inclusion map.

One can check that if U and V are open subsets of C with the above holomorphic atlases, then a map

f : U −! V is holomorphic in the sense of complex analysis if and only if it is holomorphic in the sense of

complex manifolds.

Our next example will be complex projective space. As we will be interested later in embedding compact

Riemann surfaces into projective space, we’ll need the definition in higher dimensions than just 1.
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Example. Let n ≥ 1 and consider the action of the unit group C× = C− {0} on the complex vector space

Cn+1 via scalar multiplication. We define Pn as the quotient space (Cn+1 − {0})/C×. Its points represent

complex lines through the origin in Cn+1. This is a topological space which we will give the structure of a

complex manifold of dimension n.

We write the coordinates of Cn+1 as z0, . . . , zn. Elements of Pn will be written as [z0 : · · · : zn], which

we refer to as homogeneous coordiantes. Let Ui = {[z0 : · · · : zn] ∈ Pn : zi 6= 0}. These form an open

cover of Pn. We can define charts on Ui by observing that any point in Ui can be written uniquely as

[z0 : · · · : 1 : · · · : zn], with 1 in the ith coordinate. Then our chart φi : Ui −! Cn will take such a point to

(z0, . . . , zi−1, zi+1, . . . , zn).

It is important to note that Pn is compact. Indeed, we can view view Pn alternatively as S2n+1/S1,

where we view these spheres as contained in Cn+1 and C respectively.

Then P1 is a Riemann surface covered by two patches U0 and U1, both of which are biholomorphic to C.

It is worth pointing out that the transition map φ1 ◦ φ−10 : C− {0} −! C− {0} is given by z 7! 1/z. Let’s

note that U0 consists of elements of the form [z : 1] for z ∈ C. We can see then that the complement of U0

in P1 consists of the single point [1 : 0]. Hence, P1 is a one point compactification of the complex plane, and

is therefore homeomorphic to the sphere S2. It is therefore common to refer to P1 as the Riemann sphere.

We will also often write P1 as C ∪ {∞}, where C is identified with U0 and ∞ = [1 : 0].

Example. Let v1, v2 form a basis of C as a real vector space. We let Λ = Zv1 +Zv2, which is a free abelian

group generated by v1, v2. Λ is called a lattice in C. The quotient group C/Λ can be given the structure

of a Riemann surface with a holomorphic projection π : C −! C/Λ. For some open subset U ⊆ C which

is disjoint from all of its translates λ + U for λ ∈ Λ, it follows that π|U : U −! π[U ] is a homeomorphism.

We can define a chart on π[U ] via π|−1U . One can then check that this yields a holomorphic atlas on C/Λ,

endowing it with the structure of a Riemann surface. We call C/Λ a complex torus.

Complex torii are also compact. Indeed, consider K = {t1v1 + t2v2 : ti ∈ [0, 1]}. Then the restriction of

π to K maps onto C/Λ and K is compact.

Let’s also note that all complex torii are diffeomorphic, but not necessarily biholomorphic. Indeed, one

can show that C/Λ1 and C/Λ2 are biholomorphic if and only if Λ1 = aΛ2 for some a ∈ C. This reflects the

relative rigidity of complex geometry as opposed to real geometry.

0.3 First properties of Riemann surfaces

By passing to coordinate patches, it is roughly true that any fact about complex analysis will become a

local fact about Riemann surfaces.

Proposition 0.1 (The identity theorem for Riemann surfaces). Let X and Y be Riemann surfaces and let

f and g be holomorphic functions X −! Y . Suppose that X is connected. If the set {z ∈ X : f(z) = g(z)}
has a nonempty interior, then f = g.

Proof. f and g will agree on a coordinate patch U by the identity theorem from complex analysis. Applying

the identity theorem again will allow this equality to extend to any coordinate patch V which intersects U .

A connectedness argument will extend this equality to all of X, so that f = g.

Corollary 0.0.1 (The maximum principle for Riemann surfaces). Let X be a compact, connected Riemann

surface and let f : X −! C be a holomorphic function. Then f is constant.

Proof. By compactness of X, there is some z0 ∈ X such that |f(z0)| is maximized. Using the complex

analytic maximum principle in some chart about z0, we have that f is constant on a nonempty open set.

By the identity theorem, it follows that f is constant.
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1 Meromorphic functions and divisors

It is often fruitful to understand the geometry of a space in terms of coordinate functions defined on

it. In complex geometry, we expect our coordinate functions to be maps into C. However, we saw in the

maximum principle from the previous section that the only globally defined holomorphic functions to C on a

compact Riemann surface are constant. Hence, we have no choice but to broaden our notion of a coordinate

function. We will do this with meromorphic functions.

1.1 Meromorphic functions

Definition 1.1. Let X be a Riemann surface. A meromorphic function on X is a holomorphic map

X − S −! C where S is discrete and closed. Furthermore, we want the elements of S to represent poles of

f , rather than potentially being essential singularities. Hence, we also require that limz!s |f(z)| = ∞ for

s ∈ S. We denote the set of meromorphic functions by M(X).

As discussed in section 0, the projective line P1 can be thought of as C ∪ {∞}. By including ∞ in our

codomain, we can treat the singular points as the same as any other point.

Proposition 1.1. Let X be a Riemann surface and f : X − S −! C be a meromorphic function. Then f

can be extended to a holomorphic function F : X −! P1 via

F (z) =

{
f(z) z /∈ S
∞ z ∈ S

Conversely, any holomorphic function F : X −! P1 which is not the constant function at ∞ yields a

meromorphic function away from the singular set S = F−1[∞].

Definition 1.2. Let f ∈M(X) be a meromorphic function and let P ∈ X. Take a coordinate patch (U, φ)

about P . Then f ◦ φ−1 is a meromorphic function on φ[U ], so we let ordP (f) be the order of f ◦ φ−1 at

φ(P ). This will be an element of Z ∪ {∞}.

Of course, we must check that this definition is well defined, as a different coordinate chart could a priori

yield a different order. However, this does not occur and is a routine check.

From now on we will mostly think of meromorphic functions as maps to P1 which are not identically ∞.

Allowing our functions to attain ∞ is a significant boon to the flexibility of our coordinate functions. For

instance, P1 itself has many nonconstant meromorphic functions on it, such as the identity map P1 −! P1,

and more generally, rational functions extended to P1. Complex torii also have interesting meromorphic

functions on them through the theory of elliptic functions, which we will not explore here. The Riemann

– Roch theorem will provide us with a remarkably fine control in prescribing meromorphic functions to

Riemann surfaces with given data on the poles and roots. The nature of this “fine control” is formalized

with divisors.

Convention. From here on out, X will always refer to a compact, connected Riemann surface.

1.2 Divisors

Definition 1.3. A divisor D on X is a finite formal sum of points in X. We may write divisors as

D =
∑

P∈X DPP , with DP ∈ Z. The DP may be thought of as a weight attached to the point P . The

group of divisors is written as Div(X).

Additionally, there is a group homomorphism deg : Div(X) −! Z via deg(D) =
∑

P∈X DP
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Example. Let f ∈M(X) be a meromorphic function which is not identically 0. We associate to f a divisor

(f), which we call a principal divisor, defined as follows. This sum is finite due to compactness.

(f) =
∑
P∈X

ordP (f)P

Definition 1.4. Let D and D′ be divisors on X. We write D ≤ D′ if for all points P ∈ X, DP ≤ D′P . At

this point, it will also be convenient to notate (0) =∞, where 0 denotes the constantly 0 function. This is

not a divisor, but we will extend our partial order so that D ≤ ∞ for all divisors D. We furthermore say

that ∞+D =∞ for all D.

Say D is a divisor on X and f is a meromorphic function. Let’s ponder the situation (f) + D ≥ 0.

Consider D = 2P −Q, for P 6= Q. Then saying (f)+D ≥ 0 is equivalent to ordP (f) ≥ −2 and ordQ(f) ≥ 1.

That is, f has a pole of order at least 2 at P and a root of order at least 1 at Q. In this context, we can

therefore view the statement (f) +D ≥ 0 as saying that f has poles at least as prescribed by D. When we

make statements like this, a pole of negative order means a root and vice versa.

For a general divisor D, it is not at all obvious that a meromorphic function with poles at least as

prescribed by D exists at all. And in fact, for many divisors, such a thing will be impossible. The Riemann–

Roch theorem will afford us a deep understanding of when such a meromorphic function exists.

2 The cohomology black box

This section will contain the technical heart of the coming proof of Riemann – Roch. As suggested by

the title, we will have to treat all the results in this section as a black box. The material presented here can

be found in the special case of Riemann surfaces in [Forster, §12]. For the more general theory, the classic

paper by Serre [FAC] is a wonderful reference for Cech cohomology. One can also read [Hartshorne, Ch. 3]

for the derived functor approach using injectives. The previous two references are especially focused on the

algebraic case. For an in depth and general approach, [Bredon] is a more than comprehensive reference for

what we need here. Furthermore, cohomology is used all over the place in [Huybrechts] and one can read

Appendix B therein for a quick summary of the statements of sheaf cohomology.

2.1 Sheaves

Let’s begin with the particular “sheaves” we care about before delving into the general theory. Let D

be a divisor on a compact connected Riemann surface X. For an open subset U of X, we let OD(U) be the

set of meromorphic functions on U with poles at least as prescibed by D. Formally we define,

OD(U) = {f ∈M(U) : (f) +D|U ≥ 0}

Here, D|U =
∑

P∈U DPP . It’s clear that OD(U) is a C vector space for all U .

For example, O0(U) is the space of holomorphic functions U −! C. We write O = O0. We can now

express the maximum principle as saying that O(X) = C.

The Riemann – Roch theorem will provide us with a formula for the dimension of OD(X), which we

shall see will grow roughly linearly in deg(D). In particular, we will often be able to ensure the existence of

nonconstant meromorphic functions with certain data on the poles as prescribed by a divisor.

Definition 2.1. A sheaf (of C vector spaces) F on a topological space A is a choice of C vector space F(U)

for all open subsets U ⊆ A along with “restriction” homomorphisms ρVU : F(V ) −! F(U) for any inclusion

of open sets U ⊆ V . These maps must be compatible in the sense that ρVU ◦ ρWV = ρWU for U ⊆ V ⊆W . We

often write f |U for ρVU (f). The above data is also subject to the following two axioms regarding an open

cover U =
⋃
i∈I Ui of an open subset U of A.

4



(i) If f ∈ F(U) satisfies f |Ui = 0 for all i ∈ I, then f = 0.

(ii) Let’s say we have fi ∈ F(Ui) for all i such that fi|Ui∩Uj = fj |Ui∩Uj for all i, j ∈ I. Then there is an

element f ∈ F(U) such that f |Ui = fi.

Examples. 1. For a divisor D and a Riemann surface X, OD as defined above is a sheaf with the

restriction maps being actual restriction of functions.

2. Let P ∈ X. We define the skyscraper sheaf CP as

CP (U) =

{
C P ∈ U
0 P /∈ U

with restriction maps id or 0 when appropriate.

3. We have the trivial sheaf 0(U) = 0 for all U .

Definition 2.2. Let F , G be sheaves on a space A. A morphism α : F −! G is a collection of morphisms

αU : F(U) −! G(U) which are compatible with respect to restriction in the sense that the following diagram

commutes whenever U ⊆ V .

F(V ) G(V )

F(U) G(U)

αV

ρVU ρVU

αU

2.2 Cohomology

Definition 2.3. Let V,W,U be C vector spaces with maps f : V −!W and g : W −! U . We say that the

sequence V W U
f g

is exact if ker(g) = im(f). Given a longer sequence like the following

. . . Vi−1 Vi Vi+1 . . .

we say this is exact if every triple Vi−1 Vi Vi+1 is exact per the above definition.

For example, V W 0
f

is exact if and only if f is surjective, and dually 0 V W
f

is exact if and only if f is injective.

We will now extend this notion to sheaves. One approach is to define an appropriate notion of images

and kernels of sheaf maps. Images of maps of sheaves are subtle, so we instead define exactness using stalks.

Definition 2.4. Let F be a sheaf on a space A and let a ∈ A. We define the stalk of F at a concisely as

the colimit Fa = colima∈U⊆A openF(U). Explicitly, that means that Fa =
∐
a∈U⊆A openF(U)/∼ where

∐
is the disjoint union and the equivalence relation ∼ is defined as follows. Let f ∈ F(U), g ∈ F(V ). We

say f ∼ g if there is some nonempty open subset W ⊆ U ∩ V such that f |W = g|W . This can be given the

structure of a C vector space.

There is a map F(U) −! Fa for any neighborhood a ∈ U . We write this map as f 7! fa, and refer

to fa as the germ of f at a. Elements of the stalk Fa are therefore represented by elements of F(U) for

some neighborhood U , and two such representatives are equivalent if they agree near a. The stalk therefore

captures the local data about a.

Now, let α : F −! G and let a ∈ A. We get an induced map αa : Fa −! Ga, which arises concisely

by functoriality of the colimit. Explicitly, this map takes a germ fa ∈ Fa to the germ (αU (f))a for some

representative f ∈ F(U) of the germ fa. One must of course check that this is a well defined homomorphism,

but this is routine and affords us the definition of exactness of a sequence of sheaf morphisms.
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Definition 2.5. Let F G Hα β
be a sequence of morphisms of sheaves over some space A. We

say that this sequence is exact if it is stalkwise exact, that is for all a ∈ A the associated sequence on stalks

Fa Ga Ha
αa βa

is exact in the usual sense for C vector spaces we defined above.

With the notion of exactness out of the way, we present without proof the fundamental property of the

sheaf cohomology groups.

Proposition 2.1 (The long exact sequence of cohomology). Let 0 F G H 0α β

be an exact sequence of sheaves on a space A. We call this a short exact sequence. There exists a “natural”

exact sequence of C vector spaces

0 H0(A,F) H0(A,G) H0(A,H) H1(A,F) H1(A,G) H1(A,H) . . .
α∗ β∗ α∗ β∗

with this three-periodic pattern continuing indefinitely. We furthermore know that H0(X,F) = F(X).

We do not present the computational tools of injective resolutions or Cech cohomology, and instead point

the reader to the above references. The next two results can be proven using Cech cohomology, as seen in

[Forster, 16.6] and [Forster, 14.10] respectively, though the latter uses quite a bit of analysis whereas the

former is much easier.

Lemma 2.1. H0(X,CP ) = C and H1(X,CP ) = 0.

Lemma 2.2. H1(X,O) is finite dimensional.

We will now present the key example of the long exact sequence of cohomology used for Riemann –

Roch.

Lemma 2.3 (The key short exact sequence). Let D be a divisor on X. Let P ∈ X and D′ = D+ P . Then

we have the following short exact sequence.

0 OD OD′ CP 0ι π

The map ι : OD −! OD′ is inclusion. Indeed, as D′ ≥ D, for f have to have poles at least as prescribed

by D it must have poles at least D′. Formally, we have that (f) + D′|U ≥ (f) + D|U , whence f ∈ OD(U)

implies f ∈ OD′(U).

The map π : OD′ −! CP is more subtle. Let U ⊆ X and f ∈ OD′(U). If p /∈ U then we are forced to

take π(f) = 0. If p ∈ U , take coordinates ω about P . Then in these coordinates, f(ω) (meaning f ◦ ω−1)
has the Laurent series expansion f(ω) =

∑
anω

n. Now, let k = DP , i.e. the multiplicity of P appearing in

D. Then as f ∈ OD′(U) and D′ = D + P it follows that the order of the pole of f at P is at most k + 1.

Hence, the Laurent series expansion is trivial below −(k+ 1). That is, it’s of the form
∑

n≥−(k+1) anω
n. We

then take π(f) = a−(k+1). One must of course check well definition and the like, but this is routine.

As for exactness, the only interesting stalk to check is at P . And indeed, at P we can see that π(f) = 0

holds if and only if f has a Laurent expansion of the form
∑

n≥−k anω
n, so that the pole at P has order at

most −k. That is, so that f ∈ OD(U), which means that f ∈ im(ι).

Corollary 2.3.1 (The key long exact sequence of cohomology). We have the exact sequence

0 H0(X,OD) H0(X,OD′) C H1(X,OD) H1(X,OD′) 0
ι∗ π∗ ι∗ π∗
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3 Proving Riemann – Roch

We now finally have the requisite technology to state Riemann – Roch. First, some notation. If F is a

sheaf of C vector spaces over a space A we let hi(A,F) denote the dimension of H i(A,F).

Theorem 3.1 (Riemann – Roch). Let X be a compact connected Riemann surface and D a divisor on X.

We then have the formula

h0(X,OD)− h1(X,OD) = 1− h1(X,O) + deg(D)

The number h1(X,O) is referred to as the genus of X, and we often write this as g = h1(X,O).

The strategy to prove Riemann – Roch will be to “induct upwards and downwards” on the divisor D.

That is, we let D′ = D + P for some point P and show that Riemann – Roch holds for D if and only if it

holds for D′. The “if” direction is the downwards induction going from D′ to D and the “only if” direction

is the upwards induction going from D to D′. All divisors arise by adding or subtracting points from one

another in some finite fashion, so if we show the above double inductive step, it will suffice to prove Riemann

– Roch for just one fixed divisor. And indeed, the result is obvious for the divisor D = 0, as O0 = O and

h0(X,O) = 1 by the maximum principle.

Before we do this, we should take note that this formula does not even make sense unless we insist on

finite dimensionality of the relevant cohomology groups, as otherwise we cannot make sense of subtraction.

The proofs of finite dimensionality will follow a similar “double induction” pattern to the proof of Riemann

– Roch itself.

Proposition 3.1. The cohomology groups H0(X,OD) are finite dimensional for all divisors D.

Proof. Let’s start with D = 0. Then H0(X,O0) = H0(X,O) = O(X), which is C by the maximum principle.

To piece together our double induction, we will use the key long exact sequence of cohomology above:

0 H0(X,OD) H0(X,OD′) C H1(X,OD) H1(X,OD′) 0
ι∗ π∗ ι∗ π∗

We can break off a piece of this to get a short exact sequence

0 H0(X,OD) H0(X,OD′) im(π∗) 0

By rank nullity, H0(X,OD) is finite dimensional if and only if H0(X,OD′) is finite dimensional, as im(π∗)

is finite dimensional. Writing down the rigorous “double induction” from here will be tedious, so instead

we illustrate the method with an example. The point is to traverse from D to 0, our base case, using the

equivalence we just showed. Take D = P −Q. Then h0(X,OD) is finite if and only if h0(X,OD−P ) is finite.

D − P = −Q, which is now closer to 0. Applying this equivalence once more yields h0(X,O−Q) is finite if

and only if h0(X,O0) is finite. We showed above that h0(X,O0) = 1, so indeed h0(X,OD) is finite.

As for finite dimensionality of H1(X,OD), the method is exactly the same as above. The “double

inductive” step will again arise by splitting the long exact sequence of cohomology, this time using the

following:

0 cok(π∗) H1(X,OD) H1(X,OD′) 0

Here, cok(π∗) is the cokernel C/ im(π∗). This is finite dimensional, so as h1(X,O) is finite, we can proceed

as above.

Proof of Riemann – Roch. As discussed above, Riemann – Roch clearly holds for the divisor D = 0, so we

need to prove a double inductive step. Let D be a divisor and D′ = D + P . We claim Riemann – Roch

holds for D if and only if it holds for D′.
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Repeatedly applying rank – nullity to the key long exact sequence yields the following identity

h0(X,OD)− h0(X,OD′) + 1− h1(X,OD) + h1(X,OD′) = 0

Rearranging this yields

h0(X,OD)− h1(X,OD) + 1 = h0(X,OD′)− h1(X,OD′)

Furthermore, 1 = deg(D′)− deg(D), so we conclude

h0(X,OD)− h1(X,OD)− deg(D) = h0(OD′)− h1(X,OD′)− deg(D′)

Riemann – Roch holding for D′ means that the right hand side of this equation equals 1−h1(X,O), and

Riemann – Roch holding for D means that the left hand side equals 1 − h1(X,O). Thus, we have shown

that Riemann – Roch holds for D if and only if it holds for D′. This with the result for D = 0 affords us a

double induction to prove Riemann – Roch for all divisors.

4 So what?

Our goal now is to explain in what sense Riemann – Roch is a meaningful theorem. One sense in which

the theorem is currently unsatisfying is that the H1 are seemingly defined by fiat to allow the formula to

hold. We will later explain more in depth what these terms mean, but even without this we get a nontrivial

result. Let’s first state what Riemann – Roch tells us if we shut our eyes at the H1 terms.

Corollary 4.0.1 (Minimalist form of Riemann – Roch). There is a constant C depending only on X so

that h0(X,OD) ≥ C + deg(D).

This itself is a significant result. It tells us that the dimension of H0(X,OD) = OD(X) grows at least

linearly in deg(D). In particular, for sufficiently large deg(D) we actually know that OD(X) has some

nonconstant elements. That is,

Corollary 4.0.2. Every compact connected Riemann surface X admits a nonconstant map X −! P1.

This stands in contrast to holomorphic coordinate functions on X, i.e. maps X −! C, which are all

constant. That tells us that there is no direct holomorphic analog of the Whitney embedding theorem,

which allows smooth manifolds to be embeded in RN , for compact Riemann surfaces. But by virtue of

Riemann – Roch, meromorphic coordinate functions (maps X −! P1) abound. Hence, if we replace our

affine coordinate functions X −! C with projective coordinate functions X −! P1, we are led to the

following embedding theorem.

Theorem 4.1 (The projective embedding theorem). Let X be a connected compact Riemann surface. Then

there is some holomorphic embedding F : X −! PN for some N . By an embedding, we mean that F is

injective and that its derivative is also injective.

However, we will need a better understanding of the h1(X,OD) term in Riemann – Roch to show this.

Specifically, we will need to know that this term vanishes for deg(D) sufficiently large to precisely control

the growth of h0(X,OD).

Before this, let’s discuss how to define maps into PN . Say we have meromorphic functions f0, . . . , fN on

X. Since we have been calling these coordinate functions, we better be able to piece them together to get a

map F : X −! PN whose projective coordinates are the fi, that is F = [f0 : · · · : fN ]. We must however be

a bit careful. The homogeneous coordinates on a point in PN are not allowed to all be 0, so we must insist
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that not all fi are identically 0. If x ∈ X is a point such that not all fi(x) = 0 and so that x is not a pole of

any fi, then (f0(x), . . . , fN (x)) is in CN+1−{0}. Then this defines a point F (x) = [f0(x) : · · · : fN (x)] ∈ PN .

We also want to extend F to be defined at points x so that all fi(x) = 0 or that some fi(x) =∞. This

can be done by factoring out sufficient powers of the coordinate z from the local Laurent expansions of

the fi about some point where F is not defined. Doing so will not change the value of F , as homogeneous

coordinates are invariant under scaling, and will then allow for an extension to any such point. A more

detailed form of this argument is in [Miranda, Ch. 5, Lemma 4.2].

4.1 On H1

We’ll first discuss H1(X,O). We previously referred to h1(X,O) as the genus of X. Referring to it as

such requires justification, as the term genus is a pre – existing topological term. Indeed, as the taxonomical

name suggests, the genus forms a classification of surfaces. Compact connected orientable surfaces are

classified up to diffeomorphism by the number of holes they possess, and the number of holes is called the

genus. For instance, spheres have genus 0 and torii have genus 1. This is a purely topological notion, and

incredibly the topological notion of the genus via holes and the complex analytic notion of the genus via

g = h1(X,O) agree. One can see [Miranda, Ch. 6, §3]. This enhances Riemann – Roch significantly, as one

of the terms is now purely topological. Indeed, we can rewrite Riemann – Roch now as saying

h0(X,OD)− h1(X,OD) = 1− g + deg(D)

Both sides of course depend on D, but the left hand side includes terms on the complex analytic structure

of X, whereas the right hand side includes terms on the topology of X. This provides a deep connection

between the topology and analysis of compact connected Riemann surfaces.

Now we discuss H1(X,OD). For any compact connected Riemann surface X there is a special divisor

KX called the canonical divisor. The canonical divisor is defined as the principal divisor associated to a

meromorphic 1 form on X, but we will not discuss the notion of differential calculus on Riemann surfaces

so we will simply assert its existence and state some properties. This is discussed in more detail in [Forster,

§17].

Proposition 4.1. (a) deg(KX) = 2g − 2.

(b) There is a canonical isomorphism H1(X,OD)∗ ∼= H0(X,OK−D).

It turns out that for a nonconstant meromorphic function f on a compact Riemann surface X that

deg((f)) = 0. See [Miranda, Ch. 2, Prop. 4.12]. So if deg(D) < 0, we have that H0(X,OD) = 0.

Corollary 4.1.1. H1(X,OD) = 0 if deg(D) > 2g − 2.

Corollary 4.1.2. For deg(D) > 2g − 2, Riemann – Roch says

h0(X,OD) = 1− g + deg(D)

This gives us a precise linear growth on h0(X,OD) for large enough deg(D), which we can use in the

following refinement of the projective embedding theorem.

4.2 Projective embedding

Theorem 4.2. Let D be a divisor with deg(D) > 2g and let f0, . . . , fN be a basis for H0(X,OD). Let

F : X −! PN have homogeneous coordinates F = [f0 : . . . fN ]. Then F is an embedding of X into PN .
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Proof. We prove injectivity of F . Let x1 6= x2 be distinct points. Now let D′ = D − x2 and D′′ = D′ − x1.
Then deg(D′′) = deg(D)− 2 > 2g − 2. Hence, we have

h0(X,OD′) = 1− g + deg(D′)

= 1− g + deg(D′′) + 1

= h0(X,OD′′) + 1

So there is some f ∈ H0(X,OD′) − H0(X,OD′′). Then f satisfies (f) + D′ ≥ 0 and (f) + D′′ 6≥ 0. In

particular, ordx1(f) = −Dx1 and ordx2(f) ≥ −Dx2 + 1.

Let kj = mini ordxj (fi) Suppose that it were the case that ordx(fi) > −Dx for all i. Then f0, . . . , fN
would all be in H0(X,OD−x), which is a codimension 1 subspace of H0(X,OD) by the same argument as

for D′ and D′′. But they form a basis for H0(X,OD) so this is a contradiction. Hence, kj = −Dxj .

We take coordinates ωj with ωj(xj) = 0 defined on open neighborhoods Uj , which we can shrink to be

disjoint as X is Hausdorff. H0(X,OD′) ⊆ H0(X,OD), so we write f =
∑
λifi in our above basis. We

consider then the meromorphic functions gij(ω) = fi(ωj)/ω
kj
j and gj(ω) = f(ω)/ω

kj
j . The purpose of this is

that ordxj (gj) = ordxj (f)− kj = ordxj (f) +Dxj . Hence, ordx1(g1) = 0 so g1(x1) 6= 0 and ordx2(g2) ≥ 1 so

g2(x2) = 0.

As homogeneous coordinates are invariant under scaling,

F (xj) = [f0(xj) : · · · : fN (xj)] = [g0j(xj) : · · · : gNj(xj)]

Furthermore,
∑

i λigij(xj) = gj(xj). Hence,
∑

i λigi1(x1) 6= 0 and
∑

i λigi2(x2) = 0. Thus, the points

[g01(x1) : · · · : gN1(x1)] and [g02(x2) : · · · : gN2(x2)] cannot be equal. Hence, F (x1) 6= F (x2).

The proof that F is an immersion is a similar pattern. One needs only show that F ′(x0) 6= 0 for any

x0 ∈ X. This can be done by considering the divisor D′ = D− x0, the details of which we omit. This proof

can be found in [Forster, Thm. 17.22]

Riemann – Roch has afforded us enough meromorphic coordinate functions to treat all compact Riemann

surfaces as embedded submanifolds of PN . In fact, compact connected Riemann surfaces are embedded

subvarieties of PN . That is, they are defined by the zero set of some finite collection of homogeneous

polynomials. One can see [Griffiths and Harris, Ch. 1, §3] for the general result along these lines called

Chow’s theorem. It turns out then that the complex analytic theory of compact connected Riemann surfaces

is precisely the same as the algebro – geometric theory of nonsingular projective curves over C. This allows

the simultaeneous use of both analytic and algebraic methods when studying these objects.

5 Conclusion

The Riemann – Roch theorem is a foundational result in the theory of compact connected Riemann

surfaces. We have presented here just a fraction of its implications and meaning, and we invite the reader

to consult [Miranda] and [Forster] for further study. In short, we have discussed the interplay between

topology and analysis that Riemann – Roch implies. Furthermore, we have utilized Riemann – Roch to

prove the projectivity of compact Riemann surfaces. As discussed, it is even true that compact Riemann

surfaces are projective varieties. If we look back at the proof of Riemann – Roch, the method was wholly a

computation with sheaf cohomology. This, together with algebraicity of compact Riemann surfaces, suggests

that Riemann – Roch can be generalized to algebraic geometry far beyond C.
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