References, Hida "Elementary theory ..."
Hida 80 "It was away ..."
Lafferty
Note by Samuel Marks "p-adic modular forms @ a Semi"

\(p \)-adic interpolation

Given

\(\mathbb{C} \overset{J}{\rightarrow} \mathbb{Z} \leftarrow \mathbb{Q} \)

Can we interpret these integral point products? i.e.
First, Eisenstein Series

Recall \(E_k(z) = \frac{1}{2\pi i} \sum_{n \neq 1} \frac{\zeta(1-k)}{n^k} \) for \(k > 2 \)

Consider \(\sigma_{k-1}(n) = \sum_{d \mid n} d^{k-1} \)

Then \(d \in (\mathbb{Z}/p^e)^\times \) and, so as \(|(\mathbb{Z}/p^e)^\times| = \mathcal{E}(p^e) = p^{\nu_e}(p-1) \)

we deduce

\[k \equiv k' \mod p^{k-1}(p-1) \Rightarrow \sigma_{k-1}(n) \equiv \sigma_{k'-1}(n) \mod p^e \]

This is \(p \)-adic continuity, so we expect to take a limit \(E_k \) with \(K = \lim_{i \to \infty} E_{k_i} \) converging in \(\mathbb{Z}_p^\times \).

Indeed, let \(K = \lim_{i \to \infty} E_{k_i} \in \mathbb{Z} \)

Then \(\sigma_{k_i} \rightarrow \sigma_k \) and we write

\[E(k) = \sum a_n e^n \in \mathbb{Z}_p[[e]] \]

where \(a_0 = \lim_{i \to \infty} \frac{1}{2\pi i} \zeta(1-k_i) \), \(a_n = \lim_{i \to \infty} \sigma_{k_i-1}(n) \), \(n \geq 1 \).
Def (Serre): A p-adic modular form (for $\Gamma_1(\mathbb{Z})$) is a formal power series in $\mathcal{O}_p[[q]]$

s.t. $\exists \tilde{f}_i$ rational modular forms

s.t. $\tilde{f}_i \rightarrow f$ in the sense of Fourier coefficients.

If f_i has weight k_i, then $k = \lim_{i \to \infty} k_i \in \mathbb{Z}_p^+$

converges and we say f has weight k.

Remk.: We put a norm on $M(G)$ via

$$ | E_{n} \tilde{e}_{\gamma} | = \sup_{|b|_p < 1} | \gamma b | $$

so that $M(G, \mathcal{O}_p)$ is the completion.

The weight now ranges in \mathbb{Z}_p^+, which is no longer discrete.

What about the constant coefficient?

Prop. Let $f_i \rightarrow f$ in $M(G, \mathcal{O}_p)$ so that f_i has weight k_i.

If i. $q_n(f_i) \rightarrow q_n(f)$ uniformly

ii. $k_i \rightarrow k \in \mathbb{Z}_p^+$

Then $a_0(f_i) \rightarrow a_0(f)$.
Apply this to $E(k)$ to conclude that

$$\lim_{i \to \infty} \varphi(1-k) = \varphi(1-k)^{(\text{def})}$$

is continuous.

Observe also that $E(k) = \varphi_{p}(1) - p^{k-1} \varphi_{p}(1+p)$, so that $\varphi_{p}(1-k) = (1-p^{k-1}) \varphi(1-k)$ for $k \in \mathbb{Z}$.

Thus, we reach the Kubota-Leopoldt L-function.
More generally we follow Hida, et.

Setup:

\[K/\mathcal{O}_p \text{ finite} \]
\[\mathcal{O}_0/\mathcal{O} \text{ finite so } K_0 \subset K \text{ dense} \]
\[\text{Fix } \varepsilon_{0} \]

First, consider $\Delta = \mathcal{P}_1(N)$ or $\mathcal{P}(N)$

\[\mathcal{M}_K (\Delta, K_0) = \{ f \in \mathcal{M}_K (\Delta) \mid \sigma_n(f) \in K_0 \forall n \in \mathbb{Z} \} \]

\[\mathcal{M}_K (\Delta, K) = \mathcal{M}_K (\Delta, K_0) \otimes K \]

Observe that $\mathcal{M}_K (\Delta, K_0) \rightarrow \mathcal{C}_p [[\xi^{1/\nu}]]$ which is equipped with the norm $\| \xi^{an_{\nu}} \| = \sup |an_{\nu}|$,

whence $\mathcal{M}_K (\Delta, K) = \mathcal{M}_K (\Delta, K_0) \rightarrow \mathcal{C}_p [[\xi^{1/\nu}]]$

Now consider $\Phi = \mathcal{P}_0(N)$ or $\mathcal{P}_1(N) \otimes_{\mathcal{O}} \mathbb{Q}_p$

4 a Dirichlet character mod N or \mathbb{Q}_p with values in K_0

\[\mathcal{M}_K (\Phi, K) = \mathcal{M}_K (\Phi, K_0) \otimes K \]
we replace the K coefficients with Ω_k if $|f| \leq 1$, i.e., the Fourier coefficients lip in Ω_k.

we similarly define cusp forms, denoted with \mathcal{S}.

Let $\Lambda = K \otimes \Omega_k$. Write

$$M(\Delta', A) = \bigcup_{|\Delta'|} \bigoplus_{\Delta \leq \Lambda} \text{Mod}(\Delta', A)$$

and let $\overline{M}(\Delta', A)$ be its completion (closure in $\Lambda[[q]]$)

This is the space of p-adic modular forms.

Do the same for \mathcal{G}, and for \mathcal{S}.

Roughly, weight \(k \) modular forms are sections of \(\mathcal{W}^k \) on the modular curve.

Thus, they take pairs \((E, \omega)\)

elliptic curve, holomorphic 1-form

\(E \) complex numbers

\(\mathcal{W} \) modular forms, have a similar

\(\mathcal{W} \) modular approach, but \(E \) is now defined

over an algebra \(\mathcal{R} / \mathcal{O}_L \) for \(\mathcal{C} \) a finite

\(\mathfrak{p} \) prime ideal in \(\mathcal{O}_L \)

- \(\mathfrak{p} \) nilpotent in \(\mathcal{R} \)

- \(E \) is supercuspidal, i.e., \(\mathcal{E}_{p-1}(E, \omega) \) invertible

- these take values in \(\mathcal{R} \) rather than \(\mathbb{C} \).
Hida defines Hecke operators via Katz’s approach.

Instead, we restrict to Lafferty’s definition.

Def (Lafferty), \(\chi \) a Dirichlet character mod \(N, \mathbb{Z} \chi \subseteq \mathbb{C} \).

\[
M_\chi(N, \chi, A) = M_\chi(N, \chi; \mathbb{Z}[x]) \otimes_A
\]

is \(A \)-span of \(M_\chi(N, \chi; \mathbb{Q}(x)) \) in \(A[[Q]] \).

Now let \(f = \sum_{n \leq X} \psi(n) a_n \in M_\chi(N, \chi, A) \)

\[
f f \pi_m = \sum_{n \leq X} q_\pi(f \pi_m) \psi(n) \psi(n/m) \quad (f)
\]

where \(q_\pi(f \pi_m) = \sum_{d | \gcd(d, N/m \chi)} \psi(d) \psi^{k-1}(m/m \chi)(f) \).

\[
H_k(N, \chi; A) \hookrightarrow \text{End}(M_k(N, \chi, A))
\]

\[
\text{Hom}(\mathbb{C}, N, \chi; A) \hookrightarrow \text{End}(S_k(N, \chi, A))
\]

We have, as before, perfect pairings \(\text{Hom} \rightarrow A, \text{Hom} \
ightarrow A \).
Λ-adic forms

Hida, "Elementary..."

We are seeking a notion of a family of p-adic modular forms parameterized by the weight K.

Notation

$\mathfrak{L} = \bigcap_{p \text{ odd}} \mathfrak{L}_p$

$\psi: (\mathbb{Z}/\mathfrak{L})^\times \to \mathbb{Z}_p^\times$ the Teichmüller character

$\mathfrak{O} = \mathfrak{O}_K$ our finite $K(\mathfrak{O}_p, \mathcal{L} = \mathcal{O}[\mathcal{L}])$

$u = 1 + \mathfrak{L}$, a topological generator of \mathbb{Z}_p^\times

Des. A p-adic quasifinite family of character ψ on

s \mathfrak{fr}_k of p-adic modular forms \(s \cdot \mathfrak{fr}_k \)

$s, \mathfrak{fr}_k \in \mathcal{M}_\psi(P_g(N), \psi w^{-k} \mathfrak{L}), p \in \mathfrak{N}^{\geq 2}, \psi = w^a$

$\mathfrak{a}_n(\mathfrak{fr}_k) \in \mathfrak{O}$

$s, \mathfrak{fr}_k \in \mathfrak{O}[[X]]$

$\mathfrak{a}_n(\mathfrak{fr}_k) = A_n(u^{k-1})$
\[u^{r-1} - 1 = (1 - d)^{r-1}, \text{ which is divisible by } r, \]

so \(u^r - 1 \) is divisible by \(r \).

\[f = p x (x + \cdots + x^p) \]

then \(f \in \text{End}(F) \) for \(F \) the multiplicative formal group law.

and \(u^r - 1 \) is divisible by \(f \).

\[\text{Des. } F \in \Lambda[[X]] \text{ is a } \Lambda\text{-adic form of} \]

character 4 is \(f(u^r - 1) \) is the \(q \)-expansion of a \(\Lambda\text{-adic modular form in} \]
\[\text{Res}(\text{so}(1), 4w^{-1}, 0) \]

for \(q \neq p, \Lambda \in \mathbb{N}. \)

This is cuspidal if it's \(q \neq p, \) cuspidal at specialization

This is a \(\Lambda\text{-adic family of } F(u^r - 1) \) is a classical modular form for \(q \neq p, \Lambda. \)
Back to Eisenstein.

We want a \(\Gamma \)-adic formal parametrization \(\mathbb{E}_h \).

First, we find \(\Phi \) s.t., \(\Phi(u^{k-1}) = q^k \).

Let \(s(z) = \frac{\log(z)}{\log(q)} \), \(\log: \mathbb{Z}_p \to \mathbb{F}_p \).

If \(d \equiv 1 \pmod{q} \) then \(d = u^{s(d)} \), so consider

\[A_d(x) = d^{-1}(1+x) s(d) \]

Then \(A_d(u^{k-1}) = d^{-1} u^{s(d)k} = d^{k-1} \).

For \(d \equiv 1 \pmod{q} \), recall \(\mathbb{Z}_p \times = \mathbb{Z}_p \times \mathbb{L}_p \)

\[\mathbb{Z}_p^\times \to \mathbb{L}_p \]

Then let \(A_d(x) = d^{-1} (1+x) s(d) \) for \(p \nmid d \).

\[A_d(u^{k-1}) = d^{-1} s(u^{(d-1)k}) = u^{(d-1)k} d^{k-1} \] for \(k \equiv 0 \pmod{q(d)} \).
Thus, for \(y = \omega^u \mod \) let

\[A^4_n(x) = \sum_{d|n} \varphi(d) A_d(x) \]

So that \(A^4_n(u^{k-1}) = \sigma_{n-1}(u) \) is \(k \equiv a \mod \varphi(d) \).

What about \(\varphi_0 \)?

Consider \(L(\zeta, \zeta) = \sum \zeta(n) n^{-s} \to \delta_{\varphi_0} \) Yildin "Elements..." on (formal) group schemes

\[\Phi_4(x) \in \mathbb{Z}[\zeta][x] \] for \(\Phi_4(\xi x) \to \zeta x \)

\[\Phi_4(u^{k-1}) = \left\{ \begin{array}{ll}
(1 - 4\omega^{-k} v (1 - v^{-k})) L(1 - v, 4\omega^{-k}) & u \neq i d \\
(1^{k-1}) (1 - v^{-k} (1 - v^{-k})) L(1 - v, \omega^{-k}) & u = i d
\end{array} \right. \]

Thus let \(E(y)(x) = \sum A^4_n(x) y^n \)

\[A^4_\sigma(x) = \left\{ \begin{array}{ll}
\Phi_4(x)/2 & \sigma \neq \text{id} \\
\Phi_{1x}(x)/2 & \sigma = \text{id}
\end{array} \right. \]

Thus, a \(\Lambda \)-order form parametrizing \(E(y) \).